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Abstract

We study buyer-optimal information structures under monopoly pricing. The
information structure determines how well the buyer learns his valuation and af-
fects, via the induced distribution of posterior valuations, the price charged by the
seller. Motivated by the regulation of product information, we assume that the
seller can disclose more if the learning is imperfect. Extensionproof information
structures prevent such disclosure, which is a constraint in the design problem.
Our main result identifies a two-parameter class of information structures that
implements every implementable buyer payoff. An upper bound on the buyer pay-
off where the social surplus is maximized and the seller obtains just her perfect-
information payoff is attainable with some, but not all priors. When this bound
is not attainable, optimal information structures can result in a higher payoff for
the seller and in an inefficient allocation.
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1 Introduction

Before making a purchase decision, consumers typically try to assess how well the prod-

uct under consideration matches their preferences, using various sources of information.

Examples include technical specifications or a list of ingredients published by the seller,

advertising, reviews, product samples, and testing the product during a trial period.

Whereas sellers often have considerable control over such information, its disclosure is

regulated in many countries, with the aim of promoting consumer welfare. The Eu-

ropean Union, for example, has passed regulation ranging from food information over

insurance mediation to the content of financial security prospectuses. It has also in-

troduced a mandatory period of 14 days during which consumers can withdraw from a

sales contract concluded via the Internet.1 Effectively, this period amounts to a trial

period during which consumers can learn better to what extent the product fits their

preferences.

Sellers are usually free to provide more information than the regulator requires. A

trial period, for instance, can be extended beyond the obligatory number of days.2 When

setting minimum disclosure requirements, the regulator must therefore take into account

how the requirements affect sellers’ incentives to disclose more. More information is not

necessarily advantageous for buyers: it allows better purchasing decisions, but if the

information creates more dispersion in the buyers’ willingness to pay, sellers may raise

prices. Hence, what are buyer-optimal minimum disclosure requirements when the seller

can disclose more? This is the question we address in this paper.

We take an information-design approach and study buyer-optimal information struc-

tures under monopoly pricing. In our model, the seller has a single object for sale, which

she values at zero, and she faces one potential buyer. The seller and the buyer have a

common prior about the buyer’s valuation for the object, which is unknown to both of

1See, respectively, Regulation (EU) No 1169/2011, Directive 2002/92/EC, Regulation (EU)

2017/1129, and Directive 2011/83/EU.
2For example, in the European Union, the Apple online store accepts returns within the obligatory

14 days, whereas Amazon extended this period to 30 days, Zalando, an online fashion retailer, to 100

days, and IKEA to a full year.
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them. An information structure consists of a set of signals and probability distributions

over signals conditional on the buyer’s valuation. At the outset, the buyer (or a regulator)

chooses an information structure. Thereafter, the seller sets a price and decides about

releasing additional information. Specifically, she can extend the information structure

by adding a signal component. At the end, the buyer privately observes the signal of the

(possibly extended) information structure, updates to a posterior valuation, and decides

whether or not to buy. Since any additional signal component can be incorporated at

the outset, we restrict attention to information structures under which the seller has no

incentive to disclose more. We call such information structures extensionproof . Accord-

ingly, we study the buyer’s (or regulator’s) problem subject to the constraint that the

information structure is extensionproof.

The core assumption of our model is that the buyer cannot commit to ignore any

additional information released by the seller: such commitment power would eliminate

the extensionproofness constraint. Once the seller has fixed the price, the buyer can

only benefit from using any additional information when making his purchase decision.

The seller may thus question the credibility of any claim to ignore information, making

it natural to assume that the buyer lacks commitment. A further motivation for this

assumption is that the regulation of product information is prevalent for consumer goods,

where the buyer’s identity is largely anonymous and the terms of trade are standardized.

An anonymous buyer cannot make the seller aware of his intention to ignore information,

and even if he could, this would not change the good’s standard price.

In our model, any information that the buyer obtains is private—the seller discloses

without observing as in the seminal contributions by Lewis and Sappington (1994) and

Eső and Szentes (2007). For illustration, consider a trial period that enables the buyer

to partially learn his willingness to pay by experimenting with the product. Choos-

ing the length of the period gives the seller control over the accuracy of the buyer’s

learning, but what the buyer learns is his private information. Similarly, based on the

features highlighted to him by the insurer, a potential insuree privately determines to

what extent the insurance contract is appropriate for his personal situation. More gen-

erally, a consumer’s assessment based on product information is typically governed by
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an idiosyncratic learning process that is not perfectly predictable by the seller.

Our model makes no restrictions on the information design. Specifically, every dis-

tribution of posterior beliefs that is consistent with Bayesian updating can be attained.

For example, the information structure may allow more precise learning about extreme

rather than intermediate valuations, or the seller’s extension may be more informative

depending on what the buyer knows already. Indeed, regulators and sellers often have

considerable control over the buyers’ learning. For instance, when viewing the good

as a bundle of product attributes (such as the camera, battery life, and screen quality

of a smartphone) and assuming lexicographic preferences, then disclosing only the key

attributes will make those who discover a strong liking or dislike more confident as to

their willingness to pay than others. Moreover, the importance of information about one

attribute can depend on what else is disclosed (e.g., information about the cases avail-

able for a smartphone upon inspecting its look and feel). Digital products may permit

particular flexibility. For example, the buyers’ learning about a software application can

be fine-tuned through a careful choice of the functionality of the trial version they are

given access to.

The following insights on buyer-optimal regulation of product information emerge

from our analysis. First, learning the valuation perfectly is typically not optimal for

the buyer even though imperfect information must be safeguarded against extensions.

Second, the extensionproofness constraint always binds, that is, the seller’s incentives to

disclose more must always be taken into account. Third, the most effective deterrence

of harmful extensions requires the disclosure of anything that helps the buyer assess the

relevance of any information that remains concealed, which results in the buyer deeming

more or less extreme valuations likely depending on the inferred relevance. Fourth, there

can be different allocative consequences: In some markets, the buyer-optimal regulation

also maximizes the social surplus and only grants the lowest implementable payoff to

the seller, which is what she could secure by extending to perfect information. In other

markets, however, it sacrifices some social surplus and grants a higher payoff to the

seller, who thus strictly prefers being regulated over perfect information. Moreover, all

these insights extend to situations where the seller can screen the buyer sequentially.
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Our main result, on which these insights largely build, identifies a two-parameter

class of information structures with the property that for every buyer payoff that can

be implemented by some information structure, there exists an information structure in

this class that implements this payoff. The information structures are characterized as

follows. The two parameters determine an interval of valuations. All valuations outside

this interval are disclosed perfectly. All valuations inside it are pooled, pairwisely and

such that the posterior valuation is always the same. In particular, the pooling proceeds

in a deterministic, negative assortative fashion: high valuations are pooled with low ones

according to a decreasing matching function.

In the derivation of this result, we exploit a connection to matching, or optimal

transport. We consider the problem of inducing a given buyer payoff while minimizing

the seller’s gain from disclosing more. We confine this problem to information structures

that pool only the valuations inside some interval, pairwisely and such that the posterior

valuation is always the same. Here, the pooling might still be stochastic. The key

step is to establish an equivalence between such information structures and a certain

class of all bivariate distributions with given marginals. Working with the bivariate

distributions, we get an optimal-transport problem. This problem has a supermodular

objective function, which implies that pooling in a deterministic, negative assortative

fashion is optimal.

The main result narrows the search for buyer-optimal information structures down to

the two parameters of the negative assortative information structures. A natural upper

bound for the buyer payoff is given by trade with probability one, maximizing the social

surplus, and the seller getting just her perfect-information payoff, which she can always

secure by disclosing perfect information. Through the restriction to negative assortative

information structures, we obtain a characterization of the priors with which this upper

bound is attainable. When the bound is not attainable, optimal information structures

can result in the seller getting a strictly higher payoff than under perfect information and,

at the same time, in a probability of trade strictly less than one and thus an inefficient

allocation. But negative assortative information structures are constrained efficient: for

any given buyer payoff, they induce the highest possible corresponding seller payoff.
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Our analysis contributes to the literature on information design (e.g., Kamenica

and Gentzkow, 2011; Bergemann, Brooks, and Morris, 2015; Li and Shi, 2017). The

most closely related paper is the one by Roesler and Szentes (2017), who also study

buyer-optimal information structures under monopoly pricing but without disclosure

by the seller. Their results provide a benchmark for evaluating the relevance of our

extensionproofness constraint. The constraint always binds: unconstrained optimal in-

formation structures yield the seller even less than her perfect-information payoff. Like

us, Roesler and Szentes identify a class of information structures that implements ev-

ery implementable buyer payoff. We show that their class need not contain an optimal

information structure for our setting. In both settings, optimal information structures

typically do not remove the buyer’s uncertainty completely (see also Kessler, 1998).

Several recent papers also study information structures that pool types in a negative

assortative fashion. Von Wangenheim (2017) shows that the same class of informa-

tion structures as here implements every implementable combination of buyer and seller

payoff in sequential screening.3 The key difference is that the buyer eventually learns

his valuation perfectly, whereas in our paper the seller endogenously decides how much

information to add. Nikandrova and Pancs (2017) consider sequential two-bidder auc-

tions with information acquisition. When recommending information acquisition to the

second bidder, the auctioneer optimally pools high and low bids of the first bidder to

mitigate incentive constraints. Goldstein and Leitner (2018) and Garcia and Tsur (2018)

show that the optimal disclosure policy of an informed regulator may feature negative

assortative pooling of banks in financial markets and of risk types in insurance markets,

respectively. Studying a dynamic model of cheap talk, Golosov, Skreta, Tsyvinski, and

Wilson (2014) construct equilibria that involve negative assortative pooling and improve

communication compared to the static model. The idea that information structures need

not pool more than two states into a given message is also used by Kolotilin (2018), who

furthermore describes a pooling of high states with low ones.

Li and Norman (2018) study a general persuasion game where, as in our model,

several players can disclose information sequentially (see Gentzkow and Kamenica, 2017,

3We thank Jonas von Wangenheim for pointing us to this class.
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for simultaneous disclosure). Like here, attention can be restricted to equilibria in which

subsequent players have no incentive to add information. Similarly, Perez-Richet and

Skreta (2018) consider a model of test falsification and show that optimal tests can be

found among falsification-proof ones.

Concerning persuasion of a privately informed receiver, Kolotilin, Li, Mylovanov, and

Zapechelnyuk (2017) establish a payoff equivalence between experiments in which the

disclosure is independent of the receiver’s type and mechanisms in which the disclosure

depends on a report by the receiver (see also Guo and Shmaya, 2019). For our main

result, we assume that the seller’s extension can condition directly on the signal from

the original information structure. We show that if the buyer observes the signal before

the seller decides about providing an extension, mechanisms in which the extension and

the terms of trade depend on a report are suboptimal for the seller.

While our focus is on buyer-optimal information structures, another strand of lit-

erature on information design studies seller-optimal information structures for various

selling environments (see, e.g., Lewis and Sappington, 1994; Bergemann and Pesendor-

fer, 2007; Eső and Szentes, 2007; Board and Lu, 2018). The buyer in our model has no

private information at the outset, and to maximize the social surplus, he should always

get the object. Thus, the seller-optimal information structure would simply provide no

information. A large and influential literature investigates the incentives of sellers to vol-

untarily disclose information that is objective (i.e., everybody can assess its relevance)

and certifiable (i.e., the seller can prove the true state). According to the “unraveling”

argument (Grossman and Hart, 1980; Milgrom, 1981), sellers automatically have an in-

centive to disclose such information. In our model, the argument does not apply: the

relevance of the information to the buyer depends on the buyer’s individual preferences,

which the seller does not know (see also Koessler and Renault, 2012).

The rest of the paper is organized as follows. The next section presents the model.

Section 3 shows that becoming perfectly informed is typically not optimal for the buyer.

Section 4 illustrates our results for a uniform prior. In Section 5, we establish the

main result on negative assortative information structures. Section 6 studies buyer-

optimal information structures. In Section 7, we discuss general mechanisms, a weaker
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extensionproofness constraint, how the seller’s ability do add information changes the

design problem, and what happens if seller and buyer switch roles. Section 8 concludes.

Most proofs are in the Appendix.

2 Model

Payoffs and prior information. A seller has a single object to sell to a buyer. The

buyer’s valuation for the object is initially unknown to both parties. Both believe that

it is drawn from the cumulative distribution function (CDF) F over [0, 1], which admits

the strictly positive probability density function (PDF) f . The seller offers the object

at a take-it-or-leave-it price p. If the buyer accepts the offer and has valuation v, then

his payoff is v− p and the seller’s payoff is p. If the buyer rejects, payoffs are both zero.

Information structures. Before the buyer decides about the purchase, he receives

information about his valuation. Specifically, he observes a signal from some information

structure. An information structure is a combination (S, (Gv)) of a signal set S and CDFs

Gv on S such that if the buyer has valuation v, then a signal s ∈ S is drawn from Gv

and privately observed by the buyer. A perfect information structure, for example, has

CDFs Gv whose supports are disjoint across v, so that it reveals the valuation fully. The

signal set S of an information structure is a subspace of some Euclidean space. Let Ḡ

denote the unconditional CDF on S, that is,

Ḡ(s) :=
∫ 1

0

∫
{e∈S:e≤s}

dGv(e)dF (v).

Actions and timing. There are three stages. First, the buyer (or a regulator) chooses

an information structure (Sa, (Ga
v)). In the second stage, the seller observes (Sa, (Ga

v))

and sets a price p. Moreover, she decides about releasing additional information. Specif-

ically, she can extend (Sa, (Ga
v)) to any information structure (S, (Gv)) with S = Sa×Sb

for some Sb and
∫
Sb dGv(·, sb) = Ga

v. In the third stage, the buyer observes the (possibly

extended) information structure and the signal, updates his belief about his valuation,

and decides whether or not to buy the object.

8



Posterior beliefs and posterior valuations. Upon observing signal s ∈ S from

information structure (S, (Gv)), the buyer updates his belief to a posterior distribution

function Fs over valuations v ∈ [0, 1]. Formally, the posteriors are characterized by the

condition that for all V ∈ B([0, 1]) and all M ∈ B(S),∫
M

∫
V
dFs(v)dḠ(s) =

∫
V

∫
M
dGv(s)dF (v), (1)

where B(·) denotes the respective Borel σ-algebra.4 Hence, the posterior valuation upon

observing s is E[v|s] =
∫ 1

0 vdFs(v), and so the information structure induces the CDF of

posterior valuations

H(w) :=
∫
{s∈S:E[v|s]≤w}

dḠ(s).

Note that under a perfect information structure, H coincides with the prior F .

We assume that the buyer purchases the object if and only if E[v|s] ≥ p. Thus,

given price p and a CDF of posterior valuations H, the (ex-ante) probability of trade is∫ 1
p dH(w).5 An information structure induces price p, buyer payoff U , and seller payoff

Π if p ∈ argmaxq q
∫ 1
q dH(w), U =

∫ 1
p (w − p)dH(w), and Π = p

∫ 1
p dH(w).6 In words,

this means that without additional disclosure, the seller is willing to set price p and this

price results in buyer payoff U and seller payoff Π. When the seller has no incentive to

disclose more, we occasionally use the term implement instead of ‘induce’.

Our aim is to study the information structures that maximize the buyer payoff when

the seller can disclose more. Let (Sa, (Ga
v)) be any information structure, and suppose it

is optimal for the seller to extend (Sa, (Ga
v)) to (S, (Gv)). Then, by the optimality of the

seller’s extension, (S, (Gv)) does not induce further disclosure. Accordingly, we confine

the analysis to information structures under which the seller has no incentive to disclose

more (and we usually omit the superscripts a, b). We call such information structures

extensionproof.

4Thus, the posteriors Fs are the CDFs corresponding to a regular conditional distribution, which

exists and is unique almost everywhere (see, e.g., Dudley, 2002, Thm. 10.2.2).
5Integrals of the form

∫ b

a
stand for

∫
[a,b]. This distinction matters because distributions such as H

can have atoms. Here, for example, we account for the case that w = p with positive probability.
6Where no confusion results, we write “payoff” instead of “expected payoff”, and similarly for surplus.
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3 Suboptimality of Perfect Information

First, we show that perfectly learning his valuation is typically not optimal for the buyer.

Under a perfect information structure, the posterior valuation is distributed according

to the prior F , and so the seller payoff at price p is [1 − F (p)]p. Denote the lowest

optimal price for the seller by

p∗ := min argmax
p

[1− F (p)]p

and the corresponding seller payoff by

Π∗ := [1− F (p∗)]p∗.

Thus, a perfect information structure induces at most the buyer payoff
∫ 1

p∗
(v − p∗)dF (v).

Proposition 1. Suppose the PDF f is continuous. Then, there exists an extensionproof

information structure that induces a buyer payoff strictly greater than
∫ 1
p∗(v− p∗)dF (v).

To make the buyer better off than under perfect information, the information struc-

ture must implement a price p < p∗. This requires that the probability of trade at price

p is greater than under perfect information,
∫ 1

p
dH(w) >

∫ 1

p
dF (v), (2)

for otherwise the seller would gain by extending to perfect information and charging p∗.

The only way to achieve (2) is by pooling (a nonzero mass of) valuations v < p with

valuations v > p into signals that result in posterior valuations of at least p: because of

the valuations v < p, this increases the probability of trade at p. Indeed, the proof of

Proposition 1 shows that pooling all valuations within some interval [v, p∗] into the same

signal, which results in posterior valuation E[v|v ∈ [v, p∗]] < p∗, and perfectly disclosing

all other valuations suffices to improve on perfect information under a continuous PDF.
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4 Example: The Uniform Case

To illustrate our main results, we construct here a buyer-optimal information structure

for the special case where the prior is the uniform distribution (i.e., F (v) = v).

Because the seller can always extend to perfect information, she must get under

any extensionproof information structure at least her perfect-information payoff Π∗ =

maxp(1 − p)p = 1/4. The maximum social surplus is E[v] = 1/2, which materializes

if trade happens with probability one. Consequently, the buyer payoff, which is the

difference between the social surplus and the seller payoff, can be at most 1/4.

We will show that the following information structure attains this upper bound on

the buyer payoff: If v > 1/2, display s = v with probability one. Thus, the buyer learns

his valuation perfectly. If v ≤ 1/2, display s = |v− 1/4| with probability one. Thus, for

valuations v ≤ 1/2 the buyer only learns the distance between his valuation and 1/4,

which leads to posterior valuation 1/4. The distribution of posterior valuations is then

H(w) =



0 if w ∈ [0, 1
4),

1
2 if w ∈ [1

4 ,
1
2 ],

w if w ∈ (1
2 , 1].

(3)

It is straightforward to verify that this information structure induces price 1/4, that

is, 1/4 ∈ argmaxp p
∫ 1
p dH(w). Moreover, as trade happens at this price with probability

one, the induced seller and buyer payoffs are both equal to 1/4.

We now demonstrate that the above information structure is extensionproof—the

seller cannot gain by extending it. To this end, we show that there is no combination

of an extension and a price q that yields a seller payoff strictly greater than 1/4. Under

every extension, prices below 1/4 or above 1/2 are strictly dominated by price 1/2,

which just yields seller payoff 1/4. So take any price q ∈ (1/4, 1/2) and suppose the

seller chooses an extension that maximizes the probability of trade (and hence her payoff)

at q. First note that for some valuations v, the signal s is already sufficiently informative

such that no extension can change the buyer’s decision: he always buys if v ≥ 1/2 and

he never buys if v ∈ (1/2 − q, q) (i.e., if s < q − 1/4). To maximize the probability of
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trade for the remaining valuations v, the seller can extend the information structure as

follows: If v ∈ [q, 1/2], display a signal BUY with probability one.7 If v ∈ [0, 1/2 − q],

display BUY with probability

x(v) :=
1
2 − v − q
q − v

.

Then, upon observing s and BUY the buyer assigns the probabilities

x(1
4 − s)

x(1
4 − s) + 1 =

s+ 1
4 − q

2s and 1
x(1

4 − s) + 1 =
s− 1

4 + q

2s

to v = 1/4− s and v = 1/4 + s, respectively. Hence,

E[v|s, BUY ] =
(s+ 1

4 − q)(
1
4 − s) + (s− 1

4 + q)(1
4 + s)

2s = q,

that is, the buyer’s posterior valuation upon observing s and BUY is exactly q. Con-

sequently, for any s, the extension persuades the buyer to buy with probability one if

v ≥ q and with the highest possible probability (i.e., x(v) or 0) if v < q. The seller

payoff with this extension is(
1− q +

∫ 1
2−q

0
x(v)dv

)
q <

(
1− q +

∫ 1
2−q

0

1
2 − q
q

dv

)
q = 1

4 .

Hence, the information structure is extensionproof.

Note that there are many information structures that also induce the CDF of pos-

terior valuations (3) but are not extensionproof. For example, suppose all v > 1/2 are

disclosed perfectly and all v ≤ 1/2 are pooled into the same signal. In that case, the

seller could add the information of whether or not the valuation exceeds 1/4. Thus the

buyer’s posterior valuation is 3/8 if v ∈ [1/4, 1/2] and the price 3/8 yields seller payoff

(1− 1/4) · 3/8 > 1/4. Hence, for extensionproofness the distribution of posterior beliefs

matters, not just the distribution of posterior valuations.

5 Negative Assortative Information Structures

We now return to the general case, where the prior F is arbitrary, and show that the

search for buyer-optimal information structures can be restricted to a two-parameter

7For convenience, we occasionally use terms such as “BUY ” for particular signals.
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class of information structures, which we call “negative assortative”. Every imple-

mentable combination of price and buyer payoff remains implementable when restricting

to this class, along with the highest possible corresponding seller payoff. The optimal

information structure for the uniform case in the preceding section belongs to this class.

To make the logic of our derivation clear, we break it down into three steps. The first

step (Lemma 1) shows that every implementable combination of buyer and seller payoff

as well as price can be implemented by an information structure that pools not more

than two valuations into any signal and under which the posterior valuation either equals

the price or the true valuation. Accordingly, we restrict attention to such information

structures thereafter. The second step (Lemma 2) determines optimal extensions for

the seller. The final step (Lemmas 3 and 4) shows that the problem of minimizing the

seller’s gain from an extension while inducing a given combination of buyer payoff and

price is an optimal transport problem, which has a well-known solution.

We say that an information structure (S, (Gv)) is p-pairwise if for almost all signals

s there exist valuations vL, vH ∈ [0, 1] such that the posterior belief Fs has support

{vL, vH} and

either: vL = vH (4)

or: vL < p < vH and E[v|s] = Fs(vL)vL + [1− Fs(vL)]vH = p. (5)

Thus, under a p-pairwise information structure the buyer deems at most two valuations

possible upon observing the signal, and whenever he deems two valuations possible, his

posterior valuation is exactly p. The buyer-optimal information structure presented in

Section 4 is p-pairwise (with p = 1/4).8

Lemma 1. For every extensionproof information structure that induces price p, there

exists an extensionproof p-pairwise information structure that induces the same price,

the same buyer payoff, and the same seller payoff.

Invoking this lemma, we can restrict attention to p-pairwise information structures.

The basic intuition is as follows. The price and the payoffs depend only on the CDF of

8Moreover, its signal is a deterministic function of the valuation, which need not hold for p-pairwise

information structures in general.
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posterior valuations. To deter extensions by the seller, the CDF of posterior valuations

should be implemented by an information structure that is already as informative as

possible. Every information structure that pools more than two valuations into the

same signal can be made more informative without changing posterior valuations. For

example, suppose three valuations v′ < v′′ < v′′′ are pooled into the same signal s,

where E[v|s] ∈ (v′′, v′′′). Then, one can instead pool v′ with v′′′ and v′′ with v′′′ into

two distinct signals such that the posterior valuation is E[v|s] after either one. In this

fashion, the proof of Lemma 1 extends an arbitrary extensionproof information structure

that induces price p to a p-pairwise information structure that induces the same price

and the same payoffs. Extensionproofness of the latter follows from extensionproofness

of the former, as the seller could perform the extension herself.

We adapt our notation to p-pairwise information structures. Notice that if some

signals induce posterior beliefs that have the same support, then by (4) and (5) these

posterior beliefs coincide almost surely. All such signals can be merged. We therefore

denote signals of a p-pairwise information structure directly by s = (vL, vH), where

{vL, vH} is the support of Fs. For valuations v < p, we have almost surely either

v = vL < vH or v = vL = vH , that is, the support of Gv is contained in {v}×({v}∪[p, 1]).

Define for all v < p

GH
v (vH) := Gv(v, vH).

Similarly, for valuations v > p we have almost surely either v = vH > vL or v = vH = vL,

that is, the support of Gv is contained in ([0, p] ∪ {v})× {v}. Define for all v > p

GL
v (vL) := Gv(vL, v).

Hence, for valuations v < p the first component of the signal equals v and the second

is drawn from GH
v , and the buyer learns v perfectly with probability GH

v (v). Similarly,

for valuations v > p the first component of the signal is drawn from GL
v and the second

equals v, and the buyer learns v perfectly with probability 1−GL
v (p).

Next, we turn to the seller’s response against a p-pairwise information structure.

For an arbitrary price q > p, we construct an extension that maximizes the probability

of trade given that price, analogously to Section 4. Regardless of the extension, there
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will be trade with probability one after all signals s = (vL, vH) with vL = vH ≥ q.

Moreover, there will be no trade after all s with vH < q. Consider the following extension,

performed for all signals s with vL < vH ∈ [q, 1]: If v = vH , display a signal BUY with

probability one. If v = vL, display BUY with probability

xq(vL, vH) := p− vL
vH − p

vH − q
q − vL

.

To see that this extension maximizes the probability of trade at price q, note that given

(5) the posterior valuation upon observing s and BUY is exactly q:

E[v|s, BUY ] = Fs(vL)xq(vL, vH)vL + [1− Fs(vL)]vH
Fs(vL)xq(vL, vH) + 1− Fs(vL) = q.

Consequently, for any s = (vL, vH) with vL < vH ∈ [q, 1], the extension persuades the

buyer to buy with probability one if v = vH and with the highest possible probability if

v = vL. We call this extension q-optimal. The following lemma summarizes.

Lemma 2. Under a q-optimal extension of a p-pairwise information structure, the

probability of trade conditional on the true valuation v and the signal s = (vL, vH) is

one if v = vH ≥ q, xq(vL, vH) if v = vL < vH ∈ [q, 1], and zero otherwise.

We now consider the problem of designing a p-pairwise information structure that

minimizes the seller’s gain from an arbitrary q-optimal extensions while inducing a given

combination of buyer payoff and price. We will ultimately state this problem as an

optimal transport problem, where the choice set is a set of all bivariate distribution

functions with given marginals.

First, we establish an equivalence between p-pairwise information structures and

certain bivariate distribution functions. A distribution function J on [0, p] × [p, 1] is

p-pairwise if its marginals are

JL(vL) := J(vL, 1) = 1
c

∫ vL

0
α(v)(p− v)dF (v),

JH(vH) := J(p, vH) = 1
c

∫ vH

p
α(v)(v − p)dF (v),

where c > 0 is a parameter and α a function from [0, 1] to [0, 1] such that

c =
∫ p

0
α(v)(p− v)dF (v) =

∫ 1

p
α(v)(v − p)dF (v).
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A p-pairwise information structure (S, (Gv)) and a p-pairwise distribution function J

are equivalent if9

J(vL, vH) = 1
c

∫ vL

0

∫ vH

p
dGH

v (u)(p− v)dF (v) and α(v) =


1−GH

v (v) for v < p,

GL
v (p) for v > p.

Lemma 3. Every p-pairwise information structure that is not perfect is equivalent to a

unique p-pairwise distribution function. Every p-pairwise distribution function is equiv-

alent to an almost everywhere unique p-pairwise information structure.

Under a p-pairwise information structure, each valuation v is pooled into poste-

rior valuation p with some probability α(v) and is perfectly disclosed with probability

1− α(v). If the buyer updates to posterior valuation p and buys at price p, he makes

a loss whenever his true valuation is smaller than p and a profit whenever his true val-

uation is greater. The parameter c measures both the aggregate loss of the valuations

below p and the aggregate profit of the valuations above p, which are equal because the

posterior valuation is p. The marginal JL gives for each vL ∈ [0, p] the (share of the)

aggregate loss that valuations v ≤ vL contribute, and the marginal JH gives for each

vH ∈ [p, 1] the (share of the) aggregate profit that valuations v ∈ [p, vH ] contribute.

Now, the bivariate distribution J describes how the (shares of) profits and losses are

matched with each other, or, put differently, how the loss mass from JL is transported

to JH .10 For every vH ∈ [p, 1], the marginal JH specifies how much loss mass must be

matched with the profit mass of the valuations v ∈ [p, vH ]—so much that for almost

every pair (vL, vH), the matched loss from vL exactly balances the matched profit from

vH . This condition is equivalent to requiring that for almost every signal s = (vL, vH),

the posterior valuation is exactly p, which explains the equivalence between p-pairwise

distribution functions and p-pairwise information structures. Indeed, when choosing

among p-pairwise information structures, fixing the probabilty α(v) with which each

9As c > 0 by definition, there is no J that is equivalent to a degenerate p-pairwise (S, (Gv)) where

1 − GH
v (v) = 0 for almost all v < p and GL

v (p) = 0 for almost all v > p, which corresponds to perfect

information. Perfect information is irrelevant for the following analysis that uses J .
10We can also say that J describes how the profit mass from JH is transported to JL.
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valuation v is pooled amounts to fixing the marginals JL and JH , and fixing how the

valuations are pooled amounts to fixing the distribution J beyond the marginals.

By Lemma 3, a p-pairwise information structure and the equivalent p-pairwise distri-

bution function are interchangeable. Consider a p-pairwise distribution function J that

induces price p. Observe that the induced buyer payoff is∫ 1

p
(v − p)dF (v)− c (6)

and the induced seller payoff is[
1− F (p) +

∫ p

0
α(v)dF (v)

]
p. (7)

We use J to quantify the probability of trade under a q-optimal extension. Define

φq(vL, vH) := max
{

(vH − q)c
(vH − p)(q − vL) , 0

}
.

Then, according to Lemma 2, the probability of trade given price q is∫ p

0

∫ 1

p
max{xq(vL, vH), 0}dGH

vL
(vH)dF (vL) + 1− F (q)

=
∫ p

0

∫ 1

p
φq(vL, vH)1

c
(p− vL)dGH

vL
(vH)dF (vL) + 1− F (q)

=
∫
S
φq(vL, vH)dJ(vL, vH) + 1− F (q). (8)

Thus, using J the probability of trade under a q-optimal extension can be expressed as

an expectation of the function φq. Informally speaking, φq(vL, vH) is the amount of the

prior density f(vL) that can be pooled into posterior valuation q per unit of matched

loss and profit between vL and vH . Importantly, the function φq is supermodular.

It turns out that we can focus on p-pairwise distribution functions J under which each

valuation is either always or never pooled into posterior valuation p (i.e., α(v) ∈ {0, 1}

for all v) and under which those valuations that are pooled constitute and interval.

Observe that if the interval [v, v] is pooled into p, then
∫ v
v (v − p)dF (v) = 0, and so v

is uniquely determined by p and v. A p-pairwise distribution function J will be called

(p, v)-pairwise if for the corresponding v,

α(v) =


1 for v ∈ [v, v],

0 for v /∈ [v, v].
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Lemma 4. For every extensionproof p-pairwise distribution function that induces price

p, there exists an extensionproof (p, v)-pairwise distribution function that induces the

same price, the same buyer payoff, and a weakly higher seller payoff.

Now, fix p ∈ [0, 1] and v < p such that the (p, v)-pairwise distribution functions

induce price p. This also fixes the buyer and the seller payoff. What is not yet fixed

is, informally, how the valuations vL ∈ [v, p) are pairwisely pooled with the valuations

vH ∈ (p, v], possibly in a stochastic way, such that the posterior valuation is always p.

Consider the problem of fixing this pairwise pooling so that it is “as extensionproof” as

possible. That is, consider the problem of choosing among the (p, v)-pairwise distribution

functions to minimize the probability of trade (8) under an arbitrary q-optimal extension:

min
J

∫
S
φq(vL, vH)dJ(vL, vH)

s.t. JL(vL) = 1
c

∫ vL

v
(p− v)dF (v) and JH(vH) = 1

c

∫ vH

p
(v − p)dF (v).

This is an optimal-transport problem. By the supermodularity of φq, the problem is

solved by the Fréchet-Hoeffding lower bound

J(vL, vH) := max{JL(vL) + JH(vH)− 1, 0}

(see, e.g., Marshall, Olkin, and Arnold, 2011, Corollary 12.M.3.a). As J is independent of

q, it simultaneously minimizes the seller’s gain from every q-optimal extension, rendering

J extensionproof whenever extensionproof (p, v)-pairwise distribution functions exist.

The support of J consists of all pairs (vL, vH) such that JL(vL) + JH(vH)− 1 = 0,

which can be written as
∫ vH
vL

(p − v)dF (v) = 0. Hence, the equivalent p-pairwise infor-

mation structure is constructed as follows: If v /∈ [v, v], display s = (v, v). If v ∈ [v, v],

display the signal s = (vL, vH) ∈ [v, p]× [p, v] that (uniquely) solves

v ∈ {vL, vH} and
∫ vH

vL
(p− v)dF (v) = 0.

We call this the (p, v)-negative-assortative information structure.

Consider any extensionproof information structure that is not perfect and induces

price p. By Lemma 1, there is an extensionproof p-pairwise information structure with

18



equivalent distribution function J (Lemma 3) that induces the same price and payoffs.

Then, by Lemma 4, there is an extensionproof (p, v)-pairwise J that weakly increases

the induced seller payoff and that, as we have just shown, is equivalent to the (p, v)-

negative-assortative information structure. We have established our main result.11

Theorem 1. For every extensionproof information structure that induces price p, there

exists an extensionproof (p, v)-negative-assortative information structure that induces the

same price, the same buyer payoff, and a weakly higher seller payoff.

According to this result, negative assortative information structures implement every

implementable price and buyer payoff and the highest possible corresponding seller pay-

off. Hence, attention can be restricted to this class of information structures whenever

the designer’s objective is increasing in the buyer payoff and the seller payoff.

6 Buyer-Optimal Information Structures

By Theorem 1, the search for buyer-optimal information structures can be restricted to

(p, v)-negative-assortative information structures, that is, to choosing the two param-

eters p and v. Before stating this problem, note that the pairs of valuations that are

pooled under a (p, v)-negative-assortative information structure are determined by the

strictly decreasing function µp : [v, v]→ [v, v] that is implicitly defined by

µp(v) 6= v and
∫ µp(v)

v
(p− u)dF (u) = 0 (9)

for v 6= p and by µp(p) = p. Thus, v is pooled with µp(v). In particular, µp(µp(v)) = v

and µp(v) = v.

A (p, v)-negative-assortative information structure yields buyer payoff
∫ 1
v (v−p)dF (v)

and seller payoff [1−F (v)]p if it induces price p and is extensionproof. The information

structure induces price p if

[1− F (v)]p ≥ [1− F (q)]q for all q /∈ (p, µp(v)). (10)

11Note that perfect information is accommodated by setting v = p.
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As the seller can always extend to perfect information, she must at least get her perfect-

information payoff Π∗ = maxq[1 − F (q)]q. Accordingly, we can replace (10) by the

simpler condition

[1− F (v)]p ≥ Π∗. (11)

Let the seller’s payoff from charging price q ∈ (p, µp(v)) and performing the q-optimal

extension be defined as

Ψ(q, p, v) :=
[
1− F (q) +

∫ µp(q)

v
xq(v, µp(v))dF (v)

]
q.

The information structure is extensionproof if the seller payoff at price p is greater than

her payoff from any extension,

[1− F (v)]p ≥ Ψ(q, p, v) for all q ∈ (p, µp(v)). (12)

Thus, the problem of designing a buyer-optimal (p, v)-negative-assortative informa-

tion structure can be stated as

max
(p,v)

∫ 1

v
(v − p)dF (v) s.t. (11) and (12). (13)

We refer to solutions of problem (13) as optimal (p, v). The following proposition char-

acterizes these solutions.

Proposition 2. Optimal (p, v) exist and have the following properties:

(i) If (p, v) = (Π∗, 0) satisfies (12), then (p, v) = (Π∗, 0) is uniquely optimal and

implements buyer payoff U := E[v]− Π∗.

(ii) If (p, v) = (Π∗, 0) does not satisfy (12), then there exist

ω := min{ v : (p, v) = (Π∗/[1− F (v)], v) satisfies (12) }

and p̂(v) := min{ p : (p, v) satisfies (11) and (12) } for all v ∈ [0, ω],

where ω > 0, p̂(0) > Π∗, and p̂(·) is strictly increasing. If (p, v) is optimal, then

v ∈ [0, ω] and p = p̂(v). The implemented buyer payoff is strictly less than U .
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As the seller payoff is at least Π∗ and the social surplus at most E[v], which is obtained

when trade happens with probability one, the buyer payoff is at most U = E[v] − Π∗

(like in the uniform case in Section 4). Among (p, v)-negative-assortative information

structures, only (p, v) = (Π∗, 0) induces both trade with probability one and seller payoff

Π∗, making it the unique candidate for attaining the upper bound U on the buyer payoff.

Hence, if (p, v) = (Π∗, 0) satisfies the extensionproofness constraint (12), this is the

unique optimum and the resulting buyer payoff is U , which is case (i) of Proposition 2.

If (p, v) = (Π∗, 0) does not satisfy (12), the buyer payoff cannot attain U , and case

(ii) of Proposition 2 applies. Any (p, v) that satisfies (11) and (12) then either induces

inefficient trade (v > 0) or a seller payoff strictly greater than under perfect information

([1−F (v)]p > Π∗) or both. With the value ω, the proposition provides an upper bound

on the inefficiency that optimal (p, v) may introduce: ω is the smallest v among all

feasible (p, v) that induce seller payoff Π∗. Any v > ω is dominated because it yields

less social surplus but a weakly greater seller payoff. Indeed, the proposition transforms

problem (13) into a one-dimensional problem with v ∈ [0, ω] as the only choice variable.

Specifically, solutions to (13) take the form (p̂(v), v), where p̂(v) is the lowest price p that

renders (p, v) feasible. The function p̂ is strictly increasing. Hence, an optimal choice of

v resolves a trade-off between lower prices p̂(v) and more information (higher v).

Which of the two cases of Proposition 2 obtains, and how the trade-off in the latter

case is resolved, depends on the prior F . In what follows, we focus on a class of priors

where the extensionproofness constraint (12) is particularly well behaved.

Define the prior F to be regular if [1−F (v)]v is strictly quasiconcave, the PDF f is

twice differentiable for all v ∈ (0, 1), and

f ′′(v)v ≥ −2f ′(v) + f ′(v) max
{

0, f
′(v)v

12f(v) −
1
4

}
for all v ∈ (Π∗, 1). (14)

The following example presents a class of regular priors.12

Example 1. Suppose the prior is a beta distribution with parameters a ≥ 1 and b ∈ (0, 1].

12While f ′ ≥ 0 for all priors in this class, regularity does not preclude f ′ < 0. For example, a prior

with F (v) = 1 + ln(v)/e for v ≥ e−2, F (v) ≥ 1−f(v)v for v < e−2, and twice differentiable f is regular.
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The corresponding PDF is

f(v) = va−1(1− v)b−1∫ 1
0 u

a−1(1− u)b−1du
.

Since f ′(v) = [(a − 1)v−1 + (1 − b)(1 − v)−1]f(v) ≥ 0, [1 − F (p)]p is strictly concave.

Moreover, (14) holds if

f ′′(v)v ≥ −2f ′(v) + [f ′(v)]2v
f(v) .

Using f ′′(v) = {[(a − 1)v−1 + (1 − b)(1 − v)−1]2 − (a − 1)v−2 + (1 − b)(1 − v)−2}f(v),

this inequality simplifies to (1− b)(1− v)−2v ≥ −(a− 1)v−1 − 2(1− b)(1− v)−1, which

clearly holds. Thus, the prior is regular.

Suppose the prior F is regular. Recall from Section 3 that the price p∗ maximizes the

seller payoff under perfect information. The strict quasiconcavity of [1− F (q)]q implies

that [1− F (q)]q is strictly increasing and decreasing, respectively, at all prices q below

and above p∗. Condition (14), in turn, implies that the third derivative of the seller’s

extension payoff Ψ(·, p, v) is negative, as stated in the following lemma together with

properties of the first derivative.

Lemma 5. Suppose the prior F is regular and (11) holds. Then for all q ∈ (p, µp(v)),

Ψ(q, p, v) is thrice differentiable with respect to q and ∂3Ψ(q, p, v)/∂q3 ≤ 0. Moreover,

lim
q ↓ p

∂Ψ(q, p, v)
∂q

= −∞ and ∂Ψ(q, p, v)
∂q

∣∣∣∣
q=µp(v)

= ∂[1− F (q)]q
∂q

∣∣∣∣
q=µp(v)

.

Since the seller’s extension payoff Ψ(·, p, v) as a function of q is decreasing and in-

finitely steep at the lower limit of its domain (p, µp(v)), it is convex for low values of q.

Hence, the negative third derivative implies that Ψ(·, p, v) is either convex throughout or

switches to concave for high values of q. Figure 1 depicts three curves with this property.

Because the first derivative of Ψ(·, p, v) equals that of [1− F (q)]q at the upper limit of

its domain (p, µp(v)), Ψ(·, p, v) is increasing at q = µp(v) if and only if µp(v) ≤ p∗. Thus,

the extension payoff is quasiconvex if µp(v) ≤ p∗, as depicted in panel (a) of Figure 1.

In that case, any (p, v) that satisfies (11) also satisfies the extensionproofness constraint

(12). If µp(v) > p∗, by contrast, then (p, v) may or may not be extensionproof, as panels

(b) and (c) of Figure 1 illustrate.
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p µp(v)
q

p∗

Ψ(q, p, v)

[1− F (v)]p

(a) (p, v) is extensionproof

p µp(v)p∗
q

Ψ(q, p, v)

[1− F (v)]p

(b) (p, v) is extensionproof

p µp(v)p∗
q

Ψ(q, p, v)

[1− F (v)]p

(c) (p, v) is not extensionproof

Figure 1: Possible shapes of the seller’s extension payoff Ψ(·, p, v) under regularity

Now, consider (p, v) = (Π∗, 0). As we just found, if µΠ∗(0) ≤ p∗, then (Π∗, 0) is

extensionproof. If µΠ∗(0) > p∗, then the seller can perform the p∗-optimal extension and

sell at p∗ with strictly greater probability than under perfect information, which means

Ψ(p∗,Π∗, 0) > Π∗, that is, (Π∗, 0) is not extensionsproof. Consequently, whether case (i)

or (ii) of Proposition 2 applies only depends on whether or not µΠ∗(0) ≤ p∗. Moreover,

according to the definition of µp in (9), µΠ∗(0) ≤ p∗ is equivalent to E[v|v ≤ p∗] ≥ Π∗.

The following proposition incorporates this insight and further strengthens our charac-

terization of optimal (p, v) for regular priors.

Proposition 3. Suppose the prior F is regular.

(i) If E[v|v ≤ p∗] ≥ Π∗, then (p, v) = (Π∗, 0) is uniquely optimal and implements

buyer payoff U and seller payoff Π∗.

(ii) If E[v|v ≤ p∗] < Π∗, then optimal (p, v) implement a buyer payoff strictly less

than U and a seller payoff strictly greater than Π∗. Moreover,

ω = min{ v : [1− F (v)]E[v|v ≤ v ≤ p∗] = Π∗ } < p∗

and the implemented buyer payoff is strictly greater than
∫ 1
ω vdF (v) − Π∗ >∫ 1

p∗(v − p∗)dF (v).

First, Proposition 3 provides a simple condition to determine whether or not the

buyer payoff attains U : this depends on whether or not under perfect information, the

buyer’s valuation conditional on not buying, E[v|v ≤ p∗], is greater than the seller payoff.
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Second, whenever the buyer payoff does not attain U , the seller obtains a payoff

strictly greater than Π∗. That is, the seller strictly prefers buyer-optimal information

over perfect information. To prove this result, we show in the Appendix that, for v

sufficiently close to ω, increasing v to ω leads to a relatively large increase in the price p̂(v)

and thus to a decrease in the buyer payoff from (p̂(v), v). Hence (p̂(ω), ω) is not optimal,

and since among all v ∈ [0, ω] only v = ω implements seller payoff Π∗, the optimal

(p̂(v), v) implement a strictly higher seller payoff. The characterization of the function p̂

contained in the proof uses that for any (p̂(v), v) the extensionproofness constraint (12)

binds at just one q, which satisfies a first-order condition. This is illustrated in panel

(b) of Figure 1 and is, as we show, yet another implication of regularity.

Finally, Proposition 3 provides a simple definition of ω and improves the lower bound

on the buyer payoff we established in Section 3: the buyer payoff is bounded away from

the perfect-information payoff
∫ 1
p∗(v − p∗)dF (v).

We now present two classes of regular priors that are special cases of Example 1. In

the first example, the buyer payoff attains U .

Example 2. Let the prior be a beta distribution with parameters a ≥ 1 and b = 1.

Then, F (v) = va, p∗ = (1 + a)−1/a and E[v|v ≤ p∗] = p∗a/(1 + a) = Π∗. Hence, case (i)

of Proposition 3 applies. For a = 1, we obtain the uniform prior studied in Section 4.

In the second example, case (ii) of Proposition 3 applies. Also with a specific regular

prior, optimal (p, v) typically cannot be obtained in closed form.13 Yet, the problem

lends itself to numerical simulation. While according to the proposition v = ω is not

optimal, we ran simulations showing that v = 0 is also not optimal. Hence, buyer-

optimal information structures can result in trade with probability strictly less than

one, that is, in an inefficient allocation.

Example 3. Let the prior be a beta distribution with parameters a = 1 and b ∈ (0, 1).

Then, F (v) = 1 − (1 − v)b, p∗ = (1 + b)−1, and one can show that E[v|v ≤ p∗] < Π∗.

For example, for b = 1/2, E[v|v ≤ p∗] = (6
√

3− 8)/(9
√

3− 9) < 2/(3
√

3) = Π∗. Hence,

13In particular, the pooled valuation µp(v) typically cannot be obtained in closed form. E.g., if F is

a polynomial of degree m, one can show that µp(v) is a root of a polynomial of degree m+ 1.
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b 0.05 0.10 0.20 0.25 0.50 0.75

v = 0
p̂(0) 0.82549 0.72264 0.58724 0.53881 0.38586 0.30282

buyer payoff 0.12689 0.18646 0.24609 0.26119 0.28081 0.26860

v = vopt vopt 0.17719 0.14438 0.09145 0.07396 0.02775 0.00917

p̂(vopt) 0.83178 0.73151 0.59658 0.54758 0.39085 0.30485

buyer payoff 0.12778 0.18775 0.24721 0.26212 0.28109 0.26865

Table 1: Simulation results for Example 3

case (ii) of Proposition 3 applies. Table 1 presents the results of numerical simulations

for six different values for b.14 We found that the buyer payoff under (p̂(v), v) is strictly

quasiconcave in v and maximized at the value v = vopt that is given in the table along

with the corresponding optimal price p̂(vopt) and buyer payoff. In all six cases, vopt is

strictly positive. Table 1 also contains the price and buyer payoff under (p̂(0), 0), which

maximizes the buyer payoff under efficient trade and is strictly suboptimal.

In this section, we have focused on (p, v)-negative-assortative information structures.

Using Theorem 1, our findings concerning the buyer payoff under optimal (p, v) immedi-

ately translate to buyer-optimal information structures in general. Regarding the seller

payoff, however, Theorem 1 leaves open the possibility that under a regular prior where

E[v|v ≤ p∗] < Π∗, there is a buyer-optimal information structure that just yields seller

payoff Π∗. We prove that this cannot be the case as part of the following corollary, which

summarizes the main results for general information structures.

Corollary 1. Buyer-optimal information structures implement buyer payoff U if (p, v) =

(Π∗, 0) satisfies (12) and strictly less otherwise. For a regular prior, buyer-optimal infor-

mation structures implement buyer payoff U and seller payoff Π∗ if E[v|v ≤ p∗] ≥ Π∗ and

a buyer payoff strictly less than U and a seller payoff strictly greater than Π∗ otherwise.
14The Mathematica source code for these simulations is available on request from the authors.
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7 Discussion

In this section, we consider a different timing that allows for sequential screening, study

a weaker extensionproofness constraint, investigate how the seller’s ability to add infor-

mation changes the design problem, and analyze a variant of the model where the seller

chooses the information structure and the buyer can extend it.

7.1 Sequential Screening

In the original model, the buyer obtains all information at the same time. A standard

argument shows that it is then optimal for the seller to make a take-it-or-leave-it price

offer (see Riley and Zeckhauser, 1983). We assume now that any additional information

the seller discloses is observed by the buyer at a later point in time. Moreover, the seller

can enter into a contract with the buyer after the buyer obtains information from the

original information structure, but before the seller releases any additional information.

As a consequence, the seller can screen the buyer sequentially if she discloses more.

The new timing is as follows. First, the buyer (or a regulator) chooses an informa-

tion structure (Sa, (Ga
v)). He now observes the signal sa immediately. Then the seller,

knowing (Sa, (Ga
v)) but not sa, offers a mechanism that determines both the additional

information to be released and the terms of trade. The buyer must accept or reject the

mechanism before obtaining the additional information.

We continue to assume that by releasing additional information, the seller may extend

(Sa, (Ga
v)) to any information structure (Sa×Sb, (Gv)) for some Sb as defined in Section 2.

Equivalent to this, we say that the seller may provide any extension, denoted by X :=

(Sb, (Gb
v,sa)), where Gb

v,sa(sb) is such that Gv(sa, sb) =
∫
{e∈Sa:e≤sa}G

b
v,e(sb)dGa

v(e). That

is, X is a combination of a set of signals and CDFs under which a signal sb ∈ Sb is drawn

conditional on the valuation v and the original signal sa.

We focus on deterministic mechanisms represented by menus of the form

{(X(s̃a), c(s̃a), p(s̃a)) : s̃a ∈ Sa}.

If the buyer accepts, he chooses a combination (X(s̃a), c(s̃a), p(s̃a)) from the menu, where

X(s̃a) is an extension and c(s̃a), p(s̃a) represent a call option. Upon making his choice as
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indicated by s̃a, the buyer observes an additional signal sb from X(s̃a), pays the option

price c(s̃a) in any case, and may purchase the object at the strike price p(s̃a). We assume

that the buyer purchases the object if and only if E[v|sa, sb] ≥ p(s̃a).

A menu is incentive compatible if the buyer’s expected payoff conditional on the

signal sa from the original information structure is maximized when he chooses the

combination (X(sa), c(sa), p(sa)). Invoking the revelation principle, we may restrict

attention to incentive-compatible menus. A menu is individually rational if the buyer’s

expected payoff conditional on sa is greater than or equal to zero when he chooses

(X(sa), c(sa), p(sa)).

Posted-price mechanisms are a particular class of menus where for some extension

X and some strike price p, (X(s̃a), c(s̃a), p(s̃a)) = (X, 0, p) for all s̃a ∈ Sa. Such a menu

is equivalent to just one combination, with an option price of zero. Thus, the buyer is

not screened sequentially: his only decision is whether or not to buy the object at price

p, and he obtains all information beforehand. Note that every posted-price mechanism

is automatically incentive compatible and individually rational.

In the original model, the seller was restricted to using posted-price mechanisms.

As we show now, the seller does not gain from using menus other than posted-price

mechanisms also under the new timing, where she could screen the buyer sequentially.

Moreover, there are no such other menus that are optimally chosen by the seller and

yield a higher buyer payoff. Hence, our analysis of buyer-optimal information structures

in the preceding sections carries over without change.

Proposition 4. Let (Sa, (Ga
v)) be any information structure. For every incentive-

compatible and individually rational menu, there exists a posted-price mechanism that

yields the same buyer payoff and a weakly higher seller payoff.

To build intuition for this result, suppose the additional information arrives exoge-

nously. Ideally, the seller would just post a take-it-or-leave-it price offer equal to the

posterior valuation conditional on the signal from the original information structure.

Since only the buyer knows the signal, this scheme is not possible. Usually, it is then

advantageous to screen the signal and offer a menu of call options (see, e.g., Courty and
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Li, 2000). In our setting, the seller has another tool that allows making the probability

of trade contingent on the signal: she can design the additional information. By disclos-

ing more or less, conditional on the true signal, she can change the probability that the

buyer buys the object at any given price. This tool is so effective that the seller abstains

from screening the signal altogether.15

In a seminal paper, Eső and Szentes (2007) study the problem of designing an op-

timal sequential selling mechanism that determines both the terms of trade and the

disclosure of additional information. In their model, the original information is exoge-

nous, and the disclosure cannot condition on it directly. They transform the additional

information into a variable that is independent of the original information and find that,

under certain distributional assumptions, the optimal mechanism perfectly discloses the

variable. In our model, where the original information is endogenous, these distribu-

tional assumptions are violated in general. Indeed, take any extensionproof information

structure. By Proposition 4, the seller does not gain by disclosing additional information

using a (deterministic) sequential mechanism—even if the disclosure can condition on

the original information directly.16

7.2 Weak Extensionproofness

So far, we have assumed that the seller’s extension can condition on the signal that

the buyer receives from the original information structure. Such extensions may be

the appropriate notion when, for example, the disclosure concerns different product

attributes as described in the Introduction. In other applications, the seller’s choice

15Smolin (2019) considers a model in which a buyer has private information about the relevance of

various product attributes and the seller can disclose information about each attribute. Effectively,

the information content of the disclosure for the buyer’s valuation then depends on the true attribute

relevance. Under certain assumptions, a posted-price offer is optimal for the seller, like in our model.
16Krähmer (2018) considers a model with exogenous original information in which a seller can secretly

randomize over disclosures. He shows that such randomization is useful for belief elicitation: if the

posterior beliefs conditional on the original information have full support, and assuming finitely many

posterior beliefs and valuations, the seller can fully extract the social surplus.
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of extensions may be more limited (after all, the buyer privately observes the original

signal). We now consider the case that the extension can only condition on the valuation.

Formally, if (Sa, (Ga
v)) is the original information structure and (Sa × Sb, (Gv)) the

extended one, then the extension is independent if Gv = Ga
vG

b
v for some CDF Gb

v over

Sb. An information structure is weakly extensionproof if the seller has no incentive to

independently extend it. Every extensionproof information structure is, of course, also

weakly extensionproof. In particular, a negative assortative information structure is

weakly extensionproof if and only if it is extensionproof: as under such information

structures the signal is a deterministic function of the valuation, nothing changes when

the extension cannot condition on the signal directly.

However, Theorem 1, which allowed us to focus on negative assortative information

structures, characterizes the implementable buyer payoffs under the original extension-

proofness constraint. In the derivation, we used extensions that condition on the original

signal to show that the restriction to p-pairwise information structures is without loss of

generality (Lemma 1) and for the q-optimal extension (Lemma 2). This raises the ques-

tion of whether certain payoffs are implementable by weakly extensionproof information

structures but not by extensionproof ones. According to the following proposition, such

information structures cannot be p-pairwise.

Proposition 5. A p-pairwise information structure is extensionproof if and only if it is

weakly extensionproof.

Under the original extensionproofness constraint, the buyer payoff attains the upper

bound U for some but not all priors. We show now that this remains true under weak

extensionproofness and that, for a regular prior, U is attained under weak extension-

proofness if and only if U is attained under extensionproofness. We first establish an

auxiliary result, which says that valuations above p∗ must not be pooled with valuations

below p∗. Otherwise, the seller could trade at price p∗ with a greater probability than

under perfect information, obtaining a payoff greater than Π∗.

Lemma 6. An information structure (S, (Gv)) that induces buyer payoff U is weakly
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extensionproof only if ∫
{s∈S:Fs(p∗)∈(0,1)}

dḠ(s) = 0. (15)

Now, in order to induce trade at price Π∗ with probability one and thus attain the

upper bound U , the lowest posterior valuation must be at least Π∗. By Lemma 6,

this requires that the valuations below p∗ can be pooled in such a way that the lowest

posterior valuation is at least Π∗. This is possible only if the prior mean E[v|v ≤ p∗] of

these valuations is greater than Π∗.

Proposition 6. Weakly extensionproof information structures that induce buyer payoff

U exist only if E[v|v ≤ p∗] ≥ Π∗.

For a regular prior, Propositions 3 and 6 imply that E[v|v ≤ p∗] ≥ Π∗ is necessary and

sufficient for attaining U under both weak extensionproofness and extensionproofness.

7.3 Comparison: No Extension by the Seller

Here, we compare our results with those of Roesler and Szentes (2017), who study buyer-

optimal information structures when the seller cannot disclose more. They identify a

class of information structures, from now on called the RS class, with the property that

for every information structure there exists one in this class that induces the same seller

payoff and a weakly higher buyer payoff. When the seller cannot disclose more, the only

relevant property of an information structure is the induced CDF of posterior valuations.

An information structure is in the RS class if and only if the induced CDF of posterior

valuations is

HB
q (w) :=



0 if w ∈ [0, q),

1− q
w

if w ∈ [q, B),

1 if w ∈ [B, 1]

for some q ∈ (0, 1] and some B ∈ [q, 1]. Moreover, an information structure that induces

HB
q exists if and only if the prior F is a mean-preserving spread of HB

q . For a given

HB
q , the seller is indifferent between all prices p ∈ [q, B]. Hence, her payoff is q, and the

probability of trade is one if she charges price q.
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According to Roesler and Szentes (2017, Theorem 1), the buyer-optimal information

structures in their setting result in trade with probability one at price

pRS := min
{
q : ∃B ∈ [q, 1] s.t. F is a mean-preserving spread of HB

q

}
.

It turns out that none of these information structures is (weakly) extensionproof.

Proposition 7. pRS < Π∗. Hence, the information structures that are buyer optimal

when the seller cannot provide an extension are not (weakly) extensionproof.

The (weak) extensionproofness constraint thus always binds, and the seller’s ability

to add information always makes her strictly better off and the buyer strictly worse off.

Roesler and Szentes (2017, Lemma 1) show that if some information structure results

in seller payoff q, then the CDF of posterior valuations is a mean-preserving spread of

the corresponding CDF HB
q . In this sense, the information structures in the RS class are

least informative. In our setting, by contrast, the goal is to implement the desired CDF

of posterior valuations with an information structure that is as informative as possible

to deter extensions. This suggests that focusing on the RS class may cause a loss of

generality when the seller can add information. Indeed, the following result shows that

the upper bound U on the buyer payoff in our setting is never attainable with this class.

Proposition 8. There is no (weakly) extensionproof information structure in the RS

class that induces buyer payoff U .

7.4 Switched Roles in Information Design

Suppose the seller chooses the information structure and the buyer can extend it. When

he decides on the extension, the buyer knows the information structure but not yet

the signal. The seller, in turn, knows the extension when she sets the price. One

interpretation of this setting is that the extension is performed by a consumer protection

agency that reacts to the seller’s disclosure of product information.

We assume that the seller always sets the lowest price that is optimal for her. Adapt-

ing our terminology, we say that an information structure induces price p (and the cor-

responding payoffs) if p = min argmaxq q
∫ 1
q dH(w). An information structure is buyer
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extensionproof if the buyer has no incentive to extend it. Similar to our original analy-

sis, we can restrict attention to buyer-extensionproof information structures. The seller

payoff must again be at least Π∗, the payoff the seller can get by providing perfect

information. In what follows, we show that the seller payoff is actually equal to Π∗.

Virtually the same argument as in the original model allows us to confine the analysis

to p-pairwise information structures (cf. Lemma 1).

Lemma 7. Every buyer-extensionproof information structure that induces price p and a

seller payoff weakly greater than Π∗ can be extended to a p-pairwise information structure

that induces the same price, the same buyer payoff, and the same seller payoff.

Consider any p-pairwise information structure that induces price p and a seller payoff

strictly greater than Π∗. Suppose the buyer chooses an extension that in addition reveals

whether or not his valuation is below some cutoff v′ < p. Thus, he perfectly learns his

valuation for signals s = (vL, vH) with vL < v′ < vH , whereas he learns nothing new for

all other signals. Now, let v′ be such that, at price p, this extension strictly decreases the

probability of trade but the seller still obtains a payoff strictly greater than Π∗. As the

extended information structure is still p-pairwise, the seller payoff at prices q > p is still

at most [1− F (q)]q ≤ Π∗. Hence, the seller charges a price q ≤ p, and the buyer payoff

strictly increases, that is, the original information structure is not buyer extensionproof.

This establishes the following proposition.

Proposition 9. Every buyer-extensionproof information structure that is optimal for

the seller induces seller payoff Π∗.

Perhaps surprisingly, the seller does not have a first-mover advantage: in the original

model, where the buyer chooses the information structure and the seller can extend it,

the seller payoff can be strictly greater than Π∗ (see Proposition 3). Intuitively, choosing

an extension gives the buyer more direct control over the seller’s pricing decision than

designing the information structure.

The buyer may indeed prefer the switched roles. Suppose E[v|v ≤ p∗] ≥ Π∗ and

consider the (Π∗, 0)-negative-assortative information structure. This information struc-

ture is optimal for the seller because she can secure herself (via price p∗) payoff Π∗ no
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matter what extension the buyer chooses, and by Proposition 9 no other information

structure yields more. Moreover, this information structure induces buyer payoff at the

upper bound U , which is more than under any extension. Hence, buyer payoff U can be

attained whenever E[v|v ≤ p∗] ≥ Π∗. In the original model, by contrast, this condition

is sufficient for attaining U under a regular prior (see Proposition 3) but not in general.17

8 Conclusion

An important insight from the theory of information design is that buyers who can choose

what information to obtain may benefit from staying imperfectly informed about their

willingness to pay. In particular, doing so is beneficial if it reduces the dispersion in their

estimated willingness to pay in such a way that the seller offers more favorable terms

of trade. Studying buyer-optimal regulation of product information, we have dropped

the assumption that one side of the market fully controls the information structure:

the regulator usually can only impose minimum disclosure requirements, and the seller

is free to disclose more. To prevent (harmful) additional disclosure, the regulator’s

problem must include the constraint that the information structure be extensionproof.

As we have shown, this constraint always binds under buyer-optimal regulation, and

the seller profits from her partial control of information at the expense of the buyer.

Preemptively removing all uncertainty, however, is virtually never the best way to deal

with the constraint, that is, staying imperfectly informed still remains beneficial.

Our main contribution is a two-parameter class of information structures that max-

imially deter extensions, where one parameter determines the price and the other one the

information content. This class always contains a buyer-optimal information structure,

which can be found once the prior belief over the buyer’s valuation is specified. To attain

17To demonstrate that E[v|v ≤ p∗] ≥ Π∗ is in general not sufficient for attaining U in the original

model, suppose f(v) = 1 + 4v if v ∈ [0, 1/8), f(v) = 3/4 if v ∈ [1/8, 3/8), f(v) = 3−4v if v ∈ [3/8, 1/2),

and f(v) = 1 if v ∈ [1/2, 1]. For this prior, E[v|v ≤ p∗] = Π∗ = 1/4. However, by exploiting the

symmetry of the PDF around v = 1/4, one can analytically show that (p, v) = (1/4, 0) violates (12) for

q = 3/8. Hence, by Corollary 1, buyer payoff U cannot be attained.
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a lower price than under perfect information, some interval of valuations are pooled such

that the posterior valuation equals the desired price; this way, the probability of trade

at that price increases, inducing the seller to charge it. One feature stands out: inside

the interval, each valuation is pooled with just one other valuation, lower ones being

pooled with higher ones in negative assortative fashion.

The optimality of negative assortative information structures makes precise the in-

tuition that, to deter additional disclosure, the regulator should minimize the seller’s

control of information by requiring the disclosure of anything that leaves the desired

dispersion in the estimated willingness to pay unchanged. In particular, the regulator

should require the release of any information that helps assessing the relevance of the

information that remains concealed, such as the importance of non-revealed features of

the product. Depending on how the buyer assesses the size of the impact that learning

also the non-revealed features would have on his evaluation of the product, he will deem

more or less extreme valuations likely, just as negative assortative pooling prescribes. In

practice, this could mean requiring the publication of test results from which the buyer

can learn how strongly his evaluation would change when testing it himself. Or when a

set of product attributes are substitutes for each other, some of those attributes should

be revealed to the buyer: depending on how much the buyer already likes the revealed

attributes, he deems the unrevealed substitutes less or more important.

An ideal solution for the buyer, who gets the residual surplus, would be an (exten-

sionproof) information structure that simultaneously maximizes the social surplus and

only grants the lowest implementable payoff to the seller, which equals the seller payoff

under perfect information. Often, this ideal is indeed attainable. In particular, buyer-

optimal regulation need not come at a cost in terms of social surplus. In other cases,

however, it is advantageous to neither maximize the social surplus nor restrict the seller

to the lowest implementable payoff. Hence, the seller may strictly prefer buyer-optimal

information over perfect information.

Our analysis has applications beyond buyer-optimal information. First, negative

assortative information structures implement every implementable price and buyer pay-

off together with the highest corresponding seller payoff. Hence, attention can also be
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restricted to such information structures if the designer’s objective is an increasing func-

tion of buyer and seller payoff, possibly subject to a price constraint. Second, and more

generally, we have uncovered a connection between information design and matching, or

optimal transport: information design problems that require a given set of states to be

optimally pooled pairwisely into a given posterior mean can be transformed into optimal-

transport problems. Whenever not just the distribution of posterior means matters, but

also how states are pooled into these means, this connection may prove useful.

A Appendix: Proofs

Proof of Proposition 1. We will construct an extensionproof information structure

that induces a buyer payoff strictly greater than
∫ 1
p∗(v − p∗)dF (v). As a starting point,

consider the following class of information structures that are parameterized by a cutoff

v ≤ p∗: signal s = v is displayed if v /∈ [v, p∗] whereas the same signal s = ŝ is displayed if

v ∈ [v, p∗]. Hence, after signal ŝ the posterior valuation is E[v|v ∈ [v, p∗]] and otherwise

the buyer perfectly learns v. If the seller sets price p = E[v|v ∈ [v, p∗]], her payoff is

Ω(v) := [1− F (v)]E[v|v ∈ [v, p∗]].

Other prices p ∈ [v, p∗] are clearly suboptimal and prices p /∈ [v, p∗] result in a payoff

of at most Π∗, as under perfect information. Consequently, the information structure

induces price E[v|v ∈ [v, p∗]] if Ω(v) > Π∗.

We now show that for some v < p∗, indeed Ω(v) > Π∗. Using integration by parts,

E[v|v ∈ [v, p∗]] =
∫ p∗
v vf(v)dv

F (p∗)− F (v) = v +
∫ p∗
v (F (p∗)− F (v))dv
F (p∗)− F (v) .

By the continuity of f , the derivative exists for all v ≤ p∗ and equals

d

dv
E[v|v ∈ [v, p∗]] = f(v)

∫ p∗
v (F (p∗)− F (v))dv

[F (p∗)− F (v)]2 < f(v) p∗ − v
F (p∗)− F (v) .

Hence, the derivative of Ω also exists, is continuous, and satisfies

Ω′(v) < −f(v)E[v|v ∈ [v, p∗]] + [1− F (v)]f(v) p∗ − v
F (p∗)− F (v) .
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Moreover,

Ω′(p∗) = lim
v→p∗

Ω′(v) < −f(p∗)p∗ + 1− F (p∗).

As p∗ ∈ argmaxp[1−F (p)]p satisfies the first-order condition −f(p∗)p∗+ 1−F (p∗) = 0,

we have Ω′(p∗) < 0. Noting that Ω(p∗) = Π∗, there thus are v < p∗ such that Ω(v) > Π∗.

Fix v < p∗ such that Ω(v) > Π∗. Now, either the corresponding information structure

is extensionproof and the seller sets price E[v|v ∈ [v, p∗]] < p∗ or the seller prefers to

extend it. If the seller extends it, she sets a price p ∈ (v, p∗) because all prices p /∈ (v, p∗)

result in a seller payoff of at most Π∗. In any case, the possibly extended information

structure induces a price p < p∗, is extensionproof, and perfectly reveals all valuations

v > p∗. Because of the latter, the CDF of posterior valuations H satisfies H(v) = F (v)

for v ≥ p∗. Therefore, the induced buyer payoff is
∫ 1

p
(v−p)dH(v) =

∫ p∗

p
(v−p)dH(v)+

∫ 1

p∗
(v−p)dF (v) ≥

∫ 1

p∗
(v−p)dF (v) >

∫ 1

p∗
(v−p∗)dF (v),

where the final inequality follows from p < p∗.

Proof of Lemma 1. Let (Sa, (Ga
v)) be extensionproof. We first extend (Sa, (Ga

v)) such

that the support of the posterior belief consists of at most two valuations almost surely

and the CDF of posterior valuations remains unchanged. The extended information

structure, denoted by (Sab, (Gab
v )), has signals (sa, sb), where sb ∈ Sb = [0, 1]2. In the

following, we define the CDF over sb conditional on v and sa, assuming without loss of

generality that the support of Fsa is not a singleton. Let

w(sa) := E[v|sa],

c(sa) :=
∫ w(sa)

0
(w(sa)− v)dFsa(v) =

∫ 1

w(sa)
(v − w(sa))dFsa(v).

We write sb = (vL, vH), where vL ≤ vH . If v ∈ [0, w(sa)], then (vL, vH) is drawn from the

set {(vL, vH) : vL = v, vH ∈ [w(sa), 1]}, where vH is distributed according to the CDF

GH(vH |sa) := 1
c(sa)

∫ vH

w(sa)
(uH − w(sa))dFsa(uH). (A.1)

If v ∈ [w(sa), 1], then (vL, vH) is drawn from the set {(vL, vH) : vL ∈ [0, w(sa)], vH = v},
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where vL is distributed according to the CDF18

GL(vL|sa) := 1
c(sa)

∫ vL

0
(w(sa)− uL)dFsa(uL).

Thus, the distribution function of (vL, vH) conditional on only sa (and not v) draws

signals from [0, w(sa)]× [w(sa), 1] and is given by

Ḡ(vL, vH |sa) =
∫ vL

0
GH(vH |sa)dFsa(v) +

∫ vH

w(sa)
GL(vL|sa)dFsa(v)

= 1
c(sa)

∫ vL

0

∫ vH

w(sa)
(uH − uL)dFsa(uH)dFsa(uL), (A.2)

where the second line follows from Fubini’s Theorem. Clearly, under the extended

information structure (Sab, (Gab
v )) the support of the posterior belief consists of at most

two valuations almost surely. Specifically, the posterior belief Fsa,(vL,vH) has support

{vL, vH} and is characterized by the probability Fsa,(vL,vH)(vL) that the valuation equals

vL. Analogously to the definition of the posterior belief in (1), for all ML ∈ B([0, w(sa)])

and all MH ∈ B([w(sa), 1]) we have∫
ML×MH

Fsa,(vL,vH)(vL)dḠ(vL, vH |sa) =
∫
ML

∫
MH

dGH(vH |sa)dFsa(vL). (A.3)

Plugging (A.1) and (A.2) into (A.3) gives

1
c(sa)

∫
ML

∫
MH

Fsa,(vL,vH)(vL)(vH − vL)dFsa(vH)dFsa(vL)

= 1
c(sa)

∫
ML

∫
MH

(vH − w(sa))dFsa(vH)dFsa(vL).

Since this equation holds for Fsa,(vL,vH)(vL) = (vH−w(sa))/(vH−vL), and since Fsa,(vL,vH)

is unique for almost all (vL, vH), we have E[v|sa, (vL, vH)] = w(sa) almost surely.19

Thus, the extended information structure (Sab, (Gab
v )) induces the same CDF of posterior

valuations as (Sa, (Ga
v)). Consequently, (Sab, (Gab

v )) induces the same price, the same

18There are other extensions under which the posterior belief also consists of at most two valuations

almost surely and the CDF of posterior valuations remains unchanged. The extension presented here

is simple in that the CDFs GH(·|sa) and GL(·|sa) do not depend on v.
19It suffices to consider only signal sets in the Cartesian product of the σ-algebras B([0, w(sa)]) and

B([w(sa), 1]) rather than arbitrary sets in the product σ-algebra because, for each v, one component of

the signal (vL, vH) is fixed and the other is drawn from [0, w(sa)] or [w(sa), 1], respectively.
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buyer payoff, and the same seller payoff. Moreover, (Sab, (Gab
v )) is also extensionproof

because the seller could have performed the extension herself.

Let p be any optimal price for the seller under (Sab, (Gab
v )). We now extend (Sab, (Gab

v ))

to a p-pairwise information structure (Sabc, (Gabc
v )). Conditional on signal (sa, (vL, vH)),

the extension acts as follows:

• If E[v|sa, (vL, vH)] = p, then E[v|sa, (vL, vH), sc] = p (no disclosure).

• If E[v|sa, (vL, vH)] > p and vL < p < vH , then E[v|sa, (vL, vH), sc] ∈ {p, vH}

(partial disclosure).

• In all other cases, E[v|sa, (vL, vH), sc] ∈ {vL, vH} (full disclosure).

Clearly, (Sabc, (Gabc
v )) is p-pairwise. Note that by the extensionproofness of (Sab, (Gab

v )),

signals (sa, (vL, vH)) with E[v|sa, (vL, vH)] < p and vL < p < vH have probability zero.

Hence, by construction, E[v|sa, (vL, vH), sc] ≥ p if and only if E[v|sa, (vL, vH)] ≥ p, and

so at price p, the buyer payoff and the probability of trade remain unchanged. By the

latter, also the seller payoff remains unchanged at p. Since (Sab, (Gab
v )) is extensionproof,

it follows that p remains optimal for the seller under (Sabc, (Gabc
v )) and that (Sabc, (Gabc

v ))

is extensionproof as well.

Proof of Lemma 2. In the main text.

Proof of Lemma 3. First, we derive a property of the CDFs GL
v and GH

v of p-pairwise

information structures. Suppose (S, (Gv)) is p-pairwise. By (4) and (5),
∫ 1

0
(p− v)dFs(v) = 0 for almost all s = (vL, vH) with vL < vH . (A.4)

Because a function whose integral is zero on every measurable set is zero almost every-

where, (A.4) holds if and only if
∫
ML×MH

∫ 1

0
(p− v)dFs(v)dḠ(s) = 0 (A.5)
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for all ML ∈ B([0, p]) and all MH ∈ B([p, 1]).20 As the support of Fs is contained in

ML ∪MH for almost all signals s ∈ML ×MH , (A.5) can be written as∫
ML×MH

∫
ML∪MH

(v − p)dFs(v)dḠ(s) = 0

⇐⇒
∫
ML×MH

∫
ML

(p− v)dFs(v)dḠ(s) =
∫
ML×MH

∫
MH

(v − p)dFs(v)dḠ(s)

⇐⇒
∫
ML

∫
MH

dGH
v (u)(p− v)dF (v) =

∫
MH

∫
ML

dGL
v (u)(v − p)dF (v) (A.6)

where the last line uses the definition of the posterior belief Fs in (1). Thus, GL
v and GH

v

belong to a p-pairwise information structure if and only if (A.6) for all ML and MH .

We are now ready to prove the lemma. First, we consider an arbitrary p-pairwise

information structure (S, (Gv)) that is not perfect and show the existence of a unique

equivalent p-pairwise distribution function J . The function α for J is uniquely pinned

down by the requirement for equivalence that α(v) = 1 − GH
v (v) for v < p and α(v) =

GL
v (p) for v > p. Setting ML = [0, vL] and MH = [p, vH ] in (A.6), we obtain∫ vL

0

∫ vH

p
dGH

v (u)(p− v)dF (v) =
∫ vH

p

∫ vL

0
dGL

v (u)(v − p)dF (v). (A.7)

Hence, the specified α is consistent with the parameter c for J satisfying

c =
∫ p

0
(1−GH

v (v))(p− v)dF (v) =
∫ 1

p
GL
v (p)(v − p)dF (v).

Moreover, c > 0 because (S, (Gv)) is not perfect, and thus neither GL
v (p) = 0 for almost

all v > p nor 1−GH
v (v) = 0 for almost all v < p. Given c, the distribution function J

is uniquely pinned down by the requirement for equivalence that

J(vL, vH) = 1
c

∫ vL

0

∫ vH

p
dGH

v (u)(p− v)dF (v). (A.8)

Using (A.7), the marginals of J are consistent with α and satisfy

J(vL, 1) = 1
c

∫ vL

0
[1−GH

v (v)](p− v)dF (v),

J(p, vH) = 1
c

∫ vH

p
GL
v (p)(v − p)dF (v).

20As in the proof of Lemma 1, it suffices to consider only signal sets in the Cartesian product of

the σ-algebras rather than arbitrary sets in the product σ-algebra because, for each v, Gv is either a

distribution function over [0, p]× {v} or over {v} × [p, 1].
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Hence, the uniquely specified equivalent J is indeed a p-pairwise distribution function.

Now, we consider an arbitrary p-pairwise distribution function J and construct an

equivalent p-pairwise information structure (S, (Gv)). Let JH|LvL
denote the CDF of vH

over [p, 1] conditional on vL, and let JL|HvH
denote the CDF of vL over [0, p] conditional

on vH . JH|LvL
and JL|HvH

are characterized by the condition that∫
ML×MH

dJ(vL, vH) =
∫
ML

∫
MH

dJH|LvL
(vH)dJL(vL) =

∫
MH

∫
ML

dJL|HvH
(vL)dJH(vH) (A.9)

for all ML ∈ B([0, p]) and all MH ∈ B([p, 1]). As the CDFs JH|LvL
and JL|HvH

correspond to

two regular conditional distributions, they exist and are unique almost everywhere (see,

e.g., Dudley, 2002, Thm. 10.2.2). We use JH|LvL
, JL|HvH

, and α of J to define the CDFs GH
v

and GL
v , which suffices to fully specify a p-pairwise information structure (S, (Gv)). Let

GH
v (vH) = JH|Lv (vH)α(v) + 1− α(v) for all v < p,

GL
v (vL) = JL|Hv (vL)α(v) for all v > p.

Observe that thus GH
v (v) = 1−α(v) and GL

v (p) = α(v). Moreover, using the definition of

JL and setting ML = [0, vL] and MH = [p, vH ], the first equality in (A.9) can be written

as (A.8). Consequently, (S, (Gv)) is equivalent to J . (S, (Gv)) is indeed p-pairwise

because using the definition of JL and JH , the second equality in (A.9) yields (A.6).

Finally, we show that equivalent p-pairwise information structures are unique almost

everywhere. Suppose (S, (Gv)) and (S, (Ĝv)) are p-pairwise and equivalent to the same

p-pairwise distribution function J . Then, 1 − α(v) = GH
v (v) = ĜH

v (v) for v < p and

α(v) = GL
v (p) = ĜL

v (p) for v > p. Moreover, for all vL ∈ [0, p] and all vH ∈ [p, 1],

cJ(vL, vH) =
∫ vL

0

∫ vH

p
dGH

v (u)(p− v)dF (v) =
∫ vL

0

∫ vH

p
dĜH

v (u)(p− v)dF (v) (A.10)

⇐⇒
∫ vL

0
[GH

v (vH)−GH
v (v)](p− v)dF (v) =

∫ vL

0
[ĜH

v (vH)− ĜH
v (v)](p− v)dF (v)

⇐⇒
∫ vL

0
[GH

v (vH)− ĜH
v (vH)](p− v)dF (v) = 0. (A.11)

As F corresponds to a regular probability measure (see, e.g., Rudin, 1987, Thm. 2.18),

every measurable set in [0, p] can be approximated by a countable union of closed balls.

Therefore, because F is atomless, (A.11) implies∫
ML

[GH
v (vH)− ĜH

v (vH)](p− v)dF (v) = 0 for every ML ∈ B([0, p]).
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Hence, GH
v (vH) = ĜH

v (vH) for all vH ∈ [p, 1] and almost all v ∈ [0, p]. On the other

hand, as (S, (Gv)) and (S, (Ĝv)) both satisfy (A.6), (A.10) also implies∫ vH

p

∫ vL

0
dGL

v (u)(v − p)dF (v) =
∫ vH

p

∫ vL

0
dĜL

v (u)(v − p)dF (v).

Proceeding from this as we did for GH
v and ĜH

v , we find that GL
v (vL) = ĜL

v (vL) for all

vL ∈ [0, p] and almost all v ∈ [p, 1]. Consequently, every p-pairwise distribution function

is equivalent to an almost everywhere unique p-pairwise information structure.

Proof of Lemma 4. Let J be an extensionproof p-pairwise distribution function that

induces price p. Denote by C the copula of J , that is, J(vL, vH) = C(JL(vL), JH(vH)).

For v such that ∫ p

v
(p− v)dF (v) =

∫ p

0
α(v)(p− v)dF (v) = c, (A.12)

let J̃ be a (p, v)-pairwise distribution function that also has copula C, which exists by

Sklar’s Theorem. The buyer payoff (6) at price p is
∫ 1
p (v − p)dF (v) − c under both J̃

and J . The seller payoff (7) at price p is weakly higher under J̃ than under J because∫ p

v
dF (v) ≥

∫ p

0
α(v)dF (v). (A.13)

To see this, suppose, by contradiction, that (A.13) does not hold. Then (A.12) implies

1∫ p
v dF (v)

∫ p

v
(p− v)dF (v) > 1∫ p

0 α(v)dF (v)

∫ p

0
α(v)(p− v)dF (v).

This is a contradiction as p−v is decreasing in v and the CDF F (v)/[
∫ p
v dF (u)] over [v, p]

first-order stochastically dominates the CDF [
∫ v

0 α(u)dF (u)]/[
∫ p
0 α(u)dF (u)] over [0, p].

Since J is extensionproof and induces price p, it induces a seller payoff that is at

least as high as the perfect-information payoff Π∗ = maxq[1 − F (q)]q. Since under J̃ ,

the seller payoff at any price q /∈ [v, v] equals [1−F (q)]q, it follows that J̃ induces price

p. It remains to show that J̃ is extensionproof.

Observe that for vL ∈ [0, v], we have JL(vL) ≥ 0 = J̃L(vL), whereas for vL ∈ [v, p],

1− JL(vL) = 1
c

∫ p

vL
α(v)(p− v)dF (v) ≤ 1

c

∫ p

vL
(p− v)dF (v) = 1− J̃L(vL).

Moreover, for vH ∈ [p, v],

JH(vH) = 1
c

∫ vH

p
α(v)(v − p)dF (v) ≤ 1

c

∫ vH

p
(v − p)dF (v) = J̃H(vH),
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whereas for vH ∈ [v, 1], JH(vH) ≤ 1 = J̃H(vH). Consequently,

JL(vL) ≥ J̃L(vL) for all vL and JH(vH) ≤ J̃H(vH) for all vH . (A.14)

Consider an arbitrary p-pairwise distribution function Ĵ . Using (8), the gain in seller

payoff when the seller charges price q > p and performs the q-optimal extension instead

of charging price p and not performing any extension equals
[∫
S
φq(vL, vH)dĴ(vL, vH) + 1− F (q)

]
q −

[∫
S
φp(vL, vH)dĴ(vL, vH) + 1− F (p)

]
p

=
∫
S
[φq(vL, vH)q − φp(vL, vH)p]dĴ(vL, vH) + [1− F (q)]q − [1− F (p)]p. (A.15)

We will show that the integral in (A.15) is smaller for Ĵ = J̃ than for Ĵ = J . Accordingly,

because J is extensionproof, also J̃ is extensionproof. We will use the shorthand notation

δ(vL, vH) := φq(vL, vH)q − φp(vL, vH)p = max
{

q(vH − q)c
(vH − p)(q − vL) , 0

}
− pc

(p− vL) .

The function δ is decreasing in vL and increasing in vH . This can be seen as follows.

For vH ≤ q, ∂δ(vL, vH)/∂vL = −pc(p− vL)−2 < 0. For vH > q,

∂

∂vL
δ(vL, vH) = q(vH − q)c

(vH − p)(q − vL)2 −
pc

(p− vL)2

= (vH − q)q(p− vL)2 − (vH − p)p(q − vL)2

(vH − p)(q − vL)2(p− vL)2 c < 0,

where the numerator is negative because q > p implies (vH − q) < (vH − p), q(p− vL) <

p(q− vL), and (p− vL) < (q− vL). Moreover, ∂δ(vL, vH)/∂vH = ∂φq(vL, vH)q/∂vH ≥ 0.

Define vL := p − vL. Let K be the joint distribution function of vL and vH that is

implied by J . The marginals of K are KL(vL) = 1−JL(p−vL) and KH(vH) = JH(vH).

Let D be the copula of K and recall that C is the copula of J . By Nelsen (2006,

Thm. 2.4.4), D(u1, u2) = u2 −C(1− u1, u2). Let K̃, K̃L, and K̃H be the corresponding

distribution functions implied by J̃ . Note that K̃ also has copula D.

Because of (A.14), we have KL(vL) ≤ K̃L(vL) for all vL and KH(vH) ≤ K̃H(vH)

for all vH . Together with the fact that K and K̃ have a common copula, this implies

according to Shaked and Shanthikumar (2007, Thm. 6.B.14) that K̃ is smaller than K
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in the usual stochastic order. Hence, since δ(p− vL, vH) is increasing in vL and vH ,∫
S
δ(vL, vH)dJ̃(vL, vH) =

∫
S
δ(p− vL, vH)dK̃(vL, vH)

≤
∫
S
δ(p− vL, vH)dK(vL, vH) =

∫
S
δ(vL, vH)dJ(vL, vH).

Consequently, the integral in (A.15) is smaller for Ĵ = J̃ than for Ĵ = J .

Proof of Theorem 1. In the main text.

Proof of Proposition 2. We first prove that optimal (p, v) exist. The objective func-

tion
∫ 1
v (v− p)dF (v) in problem (13) is continuous in (p, v). The set of (p, v) that satisfy

(11) and (12) is nonempty because it contains (p, v) = (p∗, p∗), where p∗ is the lowest

price that is optimal for the seller under perfect information (as defined in Section 3).

We now show that the set of (p, v) that satisfy (11) and (12) is closed. Let ((pk, vk)) be a

sequence such that (pk, vk) satisfies (11) and (12) for all k and (pk, vk)→ (p′, v′). (p′, v′)

satisfies (11) because the constraint function in (11), [1− F (v)]p− Π∗, is continuous in

(p, v). Note that since
∫ l
v(p− v)dF (v) is continuous in (l, p, v) and strictly increasing in

l, µp(v) is continuous in (p, v). For every q ∈ (p′, µp′(v′)), there must then exist k′ such

that q ∈ (pk, µpk(vk)) for all k > k′. Now, the constraint function in (12),

[1− F (v)]p−
[
1− F (q) +

∫ µp(q)

v
xq(v, µp(v))dF (v)

]
q,

is continuous in (p, v) by the Dominated Convergence Theorem since

xq(v, µp(v))f(v)1v∈[v,µp(q)] ≤ f(v),

where 1 denotes the indicator function. Hence, (p′, v′) also satisfies (12). Consequently,

problem (13) has a solution as it corresponds to maximizing a continuous function over

a nonempty, closed, and bounded set.

Case (i) is proved in the main text directly following the proposition. To prove

case (ii), we first establish two claims. The first claim says that for a (p, v)-negative-

assortative information structure with fixed p, the seller’s gain from setting price q and

performing the q-optimal extension is strictly increasing in v.
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Claim A1. Let v′ < v ≤ p and q ∈ (p, µp(v)]. Then,

Ψ(q, p, v)− [1− F (v)]p > Ψ(q, p, v′)− [1− F (v′)]p.

Proof. We have

Ψ(q, p, v)−Ψ(q, p, v′) + [F (v)− F (v′)] p =
∫ v

v′
p− qxq(v, µp(v))dF (v) > 0,

where the inequality follows from

xq(v, µp(v)) = (p− v)[µp(v)− q]
(q − v)[µp(v)− p] <

p− v
q − v

≤ p

q
.

The second claim says that decreasing v strictly relaxes (11) and (12).

Claim A2. Suppose (p, v) satisfies (11) and (12). Then for every v′ < v,

[1− F (v′)]p > Π∗, (A.16)

[1− F (v′)]p > Ψ(q, p, v′) for all q ∈ (p, µp(v′)). (A.17)

Proof. (A.16) holds because (p, v) satisfies (11) and 1 − F (v′) > 1 − F (v). Since (p, v)

satisfies (12), Claim A1 implies

Ψ(q, p, v′)− [1− F (v′)]p < 0 for all q ∈ (p, µp(v)]. (A.18)

By contradiction, suppose there exist q ∈ (µp(v), µp(v′)) such that

Ψ(q, p, v′)− [1− F (v′)]p ≥ 0.

Since q < µp(v′) is equivalent to µp(q) > v′, Claim A1 implies

Ψ(q, p, µp(q))− [1− F (µp(q))]p > 0.

This results in a contradiction because

Ψ(q, p, µp(q)) = [1− F (µp(q))]µp(q) ≤ Π∗,

whereas

[1− F (µp(q))]p > [1− F (v)]p ≥ Π∗,
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where the first inequality follows from the fact that q > µp(v) implies µp(q) < v and the

second inequality follows from the assumption that (p, v) satisfies (11). Hence,

Ψ(q, p, v′)− [1− F (v′)]p < 0 for all q ∈ (µp(v), µp(v′)). (A.19)

Taken together, (A.18) and (A.19) give (A.17).

Now, consider case (ii). Recall from the first part of the proof that the constraint

functions in (11) and (12) are continuous in (p, v). Hence, the sets used in the definition

of ω and of p̂(v) are closed and bounded. Accordingly, ω and p̂(v) exist if these sets are

nonempty. Indeed, ω exists because (p, v) = (Π∗/[1− F (p∗)], p∗) = (p∗, p∗) satisfies (12).

Moreover, p̂(ω) = Π∗/[1 − F (ω)], and p̂(v) exists for v < ω because (p̂(ω), v) satisfies

(11) and (12) by Claim A2. Because (p, v) = (Π∗, 0) violates (12), ω > 0 and p̂(0) > Π∗.

Next, we prove that p̂(v) is strictly increasing. By contradiction, suppose there exist

v′, v′′ ∈ [0, ω] with v′ < v′′ and p̂(v′) ≥ p̂(v′′). By Claim A2, (v′, p̂(v′′)) satisfies (11) and

(12) with strict inequality, which contradicts the definition of p̂(v′) as the lowest feasible

price given v′.

Finally, suppose (p, v) is optimal. Note that any (p′, v′) that satisfies (11) and (12)

implements social surplus
∫ 1
v′ vdF (v) and a seller payoff of at least Π∗. If v′ > ω, the

implemented buyer payoff is thus at most
∫ 1
v′ vdF (v) − Π∗ <

∫ 1
ω vdF (v) − Π∗, where

the right-hand side is the buyer payoff implemented by (p̂(ω), ω). Hence, v ∈ [0, ω].

Because the buyer payoff
∫ 1
v (v − p′)dF (v) is strictly decreasing in p′, we have p = p̂(v).

As (p, v) 6= (Π∗, 0), the implemented buyer payoff is strictly less than U .

Proof of Lemma 5. Recall that under a regular prior, the PDF f is twice differentiable

and satisfies (14). As (p, v) remains fixed, in what follows we write Ψ(q) instead of

Ψ(q, p, v) and µ(q) instead of µp(q). Moreover, let

A(q) :=
∫ µ(q)

v
xq(v, µ(v))dF (v) =

∫ µ(q)

v

p− v
µ(v)− p

µ(v)− q
q − v

dF (v).

Then, Ψ(q) = [1− F (q)]q + A(q)q and

Ψ′′′(q) = A′′′(q)q + 3A′′(q)− f ′′(q)q − 3f ′(q). (A.20)

45



First, we show that Ψ′′′(q) ≤ 0 for q ∈ (p, µ(v)). Observe that by (11), we have

p ≥ Π∗; hence, to all q ∈ (p, µ(v)) the inequality in (14) applies.

Noting that the integrand in A(q) vanishes at v = µ(q), we have

A′(q) = −
∫ µ(q)

v

p− v
µ(v)− p

µ(v)− v
(q − v)2 dF (v). (A.21)

The second derivative is

A′′(q) = 2
∫ µ(q)

v

p− v
µ(v)− p

µ(v)− v
(q − v)3 dF (v)− p− µ(q)

q − p
f(µ(q))
q − µ(q)µ

′(q)

= 2
∫ µ(q)

v

p− v
µ(v)− p

µ(v)− v
(q − v)3 dF (v) + f(q)

q − µ(q) ,

where the second line uses

(p− µ(v))f(µ(v))µ′(v) = (p− v)f(v), (A.22)

which follows from the definition of µ in (9) when taking the derivative with respect to

v. Using (A.22) once more,

A′′′(q) = −6
∫ µ(q)

v

p− v
µ(v)− p

µ(v)− v
(q − v)4 dF (v)− 3− µ′(q)

(q − µ(q))2f(q) + f ′(q)
q − µ(q) .

So by (A.20),

Ψ′′′(q) =− 6
∫ µ(q)

v

p− v
µ(v)− p

µ(v)− v
(q − v)4 vdF (v) + µ′(q)q

(q − µ(q))2f(q)

− 3µ(q)
(q − µ(q))2f(q) + µ(q)

q − µ(q)f
′(q)− 2f ′(q)− f ′′(q)q.

(A.23)

The first line of (A.23) is clearly nonpositive. We will show that the second line is

nonpositive as well, and thus Ψ′′′(q) ≤ 0.

First, suppose f ′(q) ≤ 0. Then (14) is equivalent to f ′′(q)q ≥ −2f ′(q), which guar-

antees that the second line of (A.23) is indeed nonpositive.

Now, suppose f ′(q) > 0. The second line of (A.23) is nonpositive if and only if

3µ(q)f(q)− µ(q)(q − µ(q))f ′(q) + (q − µ(q))2[2f ′(q) + f ′′(q)q] ≥ 0.

Define γ := µ(q)
q

and divide by q to get

R(γ) := 3γf(q)− γ(1− γ)f ′(q)q + (1− γ)2[2f ′(q)q + f ′′(q)q2] ≥ 0.
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Since µ(p) = p, µ(µ(v)) = v, and µ is decreasing, γ ∈ [0, 1] for all q ∈ [p, µ(v)]. We will

show that R(γ) ≥ 0 for all γ ∈ [0, 1], which implies that the second line of (A.23) is

nonpositive.

R is a quadratic function of the form R(γ) = a0 + a1γ + a2γ
2 with coefficients

a0 := 2f ′(q)q + f ′′(q)q2, a1 := 3f(q)− f ′(q)q − 2a0, a2 := f ′(q)q + a0.

By (14), a0 ≥ 0 and a2 > 0. Hence, R is strictly convex. Moreover, R(0) ≥ 0 and

R(1) > 0. Observe that R′(0) = a1. If a1 ≥ 0, R(γ) ≥ R(0) ≥ 0 for all γ. If a1 < 0,

R(γ) ≥ 0 for all γ if and only if R does not have two real roots, that is, if and only

if the discriminant a2
1 − 4a0a2 is nonpositive. Taken together, we are left to show that

a1 ≥ −2√a0a2 or, equivalently,

3f(q)− f ′(q)q ≥ −2
(√

a0(a0 + f ′(q)q)− a0
)
. (A.24)

If 3f(q)−f ′(q)q ≥ 0, (A.24) holds because the right-hand side is nonpositive. If 3f(q)−

f ′(q)q < 0, then (14) implies

a0 ≥
f ′(q)q(f ′(q)q − 3f(q))

12f(q) >
(f ′(q)q − 3f(q))2

12f(q) .

It is straightforward to verify that (A.24) holds with equality for a0 = (f ′(q)q−3f(q))2

12f(q) .

Moreover, since the right-hand side of (A.24) is decreasing in a0,21 a0 ≥ f ′(q)q(f ′(q)q−3f(q))
12f(q)

is sufficient for (A.24). This completes the proof that Ψ′′′(q) ≤ 0.

Now, we show the properties of the first derivative, that is, of

Ψ′(q) = 1− F (q)− f(q)q + A′(q)q + A(q). (A.25)

Note that 1− F (p)− f(p)p is bounded and A(p) ≤ F (p). From (A.21),

A′(q) = −
∫ µ(q)

v

(
p− v

(q − v)2 + (p− v)2

(µ(v)− p)(q − v)2

)
dF (v).

Consequently, along every decreasing sequence of values q converging to p,

lim
q ↓ p

A′(q) ≤ lim
q ↓ p
−
∫ µ(q)

v

p− v
(q − v)2f(v)dv

= −
∫ p

v

1
p− v

f(v)dv

≤ − min
z∈[v,p]

f(z)
∫ p

v

1
p− v

dv = −∞,

21By the inequality of arithmetic and geometric means, ∂
∂a0

√
a0(a0 + f ′(q)q) =

1
2 (a0+a0+f ′(q)q)√

a0(a0+f ′(q)q)
≥ 1.
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where the first equality follows from µ(p) = p and from the Monotone Convergence

Theorem as (p−v)(q−v)−21v∈[v,µ(q)] is decreasing in q, and where the last equality follows

from 1/(p− v) = −d ln(p− v)/dv. Hence, (A.25) implies that limq ↓ p Ψ′(q) = −∞.

Finally, since A(µ(v)) = A′(µ(v)) = 0, (A.25) implies that Ψ′(µ(v)) equals the

derivative of [1− F (q)]q at q = µ(v).

Proof of Proposition 3. Suppose F is regular. Then, as we have shown in the main

text, (p, v) = (Π∗, 0) satisfies (12) if and only if E[v|v ≤ p∗] ≥ Π∗. Hence, case (i)

immediately follows from case (i) of Proposition 2.

Consider case (ii) where E[v|v ≤ p∗] < Π∗. Hence, case (ii) of Proposition 2 applies,

and optimal (p, v) implement a buyer payoff strictly less than U . To prove the additional

results for this case, we will need the following claim. It says that under the (p̂(ω), ω)-

negative-assortative information structure, the pooling interval is (ω, p∗) and the seller’s

extension payoff has no interior maximum.

Claim A3. Suppose the prior F is regular. Then, µp̂(ω)(ω) = p∗ and

[1− F (ω)]p̂(ω) = Ψ(µp̂(ω)(ω), p̂(ω), ω) > Ψ(q, p̂(ω), ω) for all q ∈ (p̂(ω), µp̂(ω)(ω)).

Proof. First, we show that µp̂(ω)(ω) = p∗. By contradiction, suppose µp̂(ω)(ω) 6= p∗. If

µp̂(ω)(ω) > p∗, then

Ψ(p∗, p̂(ω), ω) > Π∗ = [1− F (ω)]p̂(ω),

where the equality follows from the definition of ω and p̂. Hence, (p̂(ω), ω) violates

the extensionproofness constraint (12), which is a contradiction. So let µp̂(ω)(ω) < p∗.

Because µp(v) is continuous in (p, v) (see the proof of Proposition 2), there exist (p′, v′)

where v′ < ω and p′ = Π∗/[1− F (v′)] such that µp′(v′) < p∗. Note that (p′, v′) satisfies

(11). Then, as shown in the main text (directly after Lemma 5), µp′(v′) < p∗ implies

that (p′, v′) also satisfies (12). This is a contradiction because ω is the lowest v such

that (Π∗/[1− F (v)], v) satisfies (12).

Now, since µp̂(ω)(ω) = p∗, Ψ(µp̂(ω)(ω), p̂(ω), ω) = Π∗ = [1−F (ω)]p̂(ω). The inequality

in Claim A3 holds because (p̂(ω), ω) satisfies (12) and because by Lemma 5, Ψ(·, p̂(ω), ω)

is strictly decreasing for q close to p̂(ω) and ∂3Ψ(q, p̂(ω), ω)/∂q3 ≤ 0 for all q.
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As µp̂(ω)(ω) = p∗ by Claim A3, we have p̂(ω) = E[v|ω ≤ v ≤ p∗] and therefore

[1− F (ω)]E[v|ω ≤ v ≤ p∗] = Π∗. In fact, any (p, v) such that p = E[v|v ≤ v ≤ p∗] and

[1 − F (v)]E[v|v ≤ v ≤ p∗] = Π∗ satisfies (12) because of Lemma 5. Hence, ω must be

the smallest v with these properties, that is,

ω = min{ v : [1− F (v)]E[v|v ≤ v ≤ p∗] = Π∗ },

as stated in the proposition. Assuming the PDF f to be continuous, as is true for

regular F , we have shown in the proof of Proposition 1 (see page 35) for the function

Ω(v) = [1 − F (v)]E[v|v ≤ v ≤ p∗] that there are v′ < p∗ such that Ω(v′) > Π∗. Now,

since Ω(0) = E[v|v ≤ p∗] < Π∗ and Ω is continuous, we have ω < p∗.

In the remainder of the proof we show that (p, v) = (p̂(ω), ω) is not optimal. By

Proposition 2, optimal (p, v) therefore implement a seller payoff strictly greater than

Π∗. Moreover, the implemented buyer payoff under optimal (p, v) is thus strictly greater

than under (p̂(ω), ω), that is, strictly greater than
∫ 1
ω vdF (v) − Π∗ >

∫ 1
p∗(v − p∗)dF (v),

where the inequality follows from ω < p∗.

Since the function p̂ is increasing, it is differentiable at almost all v ∈ (0, ω). The

following claim provides a limit of the derivative of p̂ as v approaches ω.

Claim A4. Suppose the prior F is regular. Then,

lim
v→ω

dp̂(v)
dv

= f(ω)p̂(ω)
1− F (ω) . (A.26)

Proof. Consider v ∈ (0, ω), and recall that in this case (p̂(v), v) implements seller payoff

[1 − F (v)]p̂(v) > Π∗. As p̂(v) is by definition the lowest feasible price given v and as

(11) is not binding, (12) must be binding (for otherwise the price could be reduced):

there must exist q ∈ (p̂(v), µp̂(v(v)) such that Ψ(q, p̂(v), v) = [1 − F (v)]p̂(v) and such

that Ψ(·, p̂(v), v) is maximized at q. Indeed, this (interior) maximizer is unique because

Ψ(·, p, v) is strictly decreasing at q close to p and ∂3Ψ(q, p, v)/∂q3 ≤ 0 by Lemma 5. We

denote this unique maximizer by q̂(v). Consequently, for any v ∈ (0, ω), we have

Ψ(q̂(v), p̂(v), v) = [1− F (v)]p̂(v) and ∂Ψ(q, p̂(v), v)
∂q

∣∣∣∣
q=q̂(v)

= 0.

Our goal is to obtain the derivative dp̂(v)/dv using the Implicit Function Theorem.
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For v ∈ (0, ω), p ∈ (v, E[v|v ∈ [v, 1]), and q ∈ (p, µp(v)), define the function

Φ(q, p, v) :=

[1− F (v)]p−Ψ(q, p, v)
∂Ψ(q,p,v)

∂q

 .
Observe that for every v ∈ (0, ω), (q, p) = (q̂(v), p̂(v)) solves Φ(q, p, v) = 0. To prepare

for applying the Implicit Function Theorem to the latter equation, we first determine

properties of the function Φ. The derivative of Φ with respect to (q, p) is given by

Dq,pΦ(q, p, v) =

−∂Ψ(q,p,v)
∂q

1− F (v)− ∂Ψ(q,p,v)
∂p

∂2Ψ(q,p,v)
∂q2

∂2Ψ(q,p,v)
∂q∂p

 , (A.27)

and the derivative with respect to v is given by

DvΦ(q, p, v) =

−f(v)p− ∂Ψ(q,p,v)
∂v

∂2Ψ(q,p,v)
∂q∂v

 . (A.28)

Under a regular prior, the PDF f is twice differentiable. As may be checked, this implies

that all partial derivatives in (A.27) and (A.28) exist and are continuous in (q, p, v). That

is, Φ is continuously differentiable.

To apply the Implicit Function Theorem, we next show that for v close to ω, the deter-

minant |Dq,pΦ(q, p, v)| is not zero at (q, p) = (q̂(v), p̂(v)). Because ∂2Ψ(q, p, v)/∂q2 < 0

and because ∂Ψ(q, p, v)/∂q = 0 at (q, p) = (q̂(v), p̂(v)), it suffices to show that

lim
v→ω

∂Ψ(q, p, v)
∂p

∣∣∣∣∣∣
(q,p)=(q̂(v),p̂(v))

= 0. (A.29)

As the integrand in Ψ(q, p, v) vanishes at v = µp(q), we have

∂Ψ(q, p, v)
∂p

=
∫ µp(q)

v

∂xq(v, µp(v))
∂p

+ ∂xq(v, µp(v))
∂µp(v)

∂µp(v)
∂p

dF (v),

where

∂xq(v, µp(v))
∂p

= µp(v)− v
[µp(v)− p]2

µp(v)− q
q − v

,

∂xq(v, µp(v))
∂µp(v)

∂µp(v)
∂p

= q − p
[µp(v)− p]2

p− v
q − v

F (µp(v))− F (v)
[µp(v)− p]f(µp(v)) .

To prove (A.29), we first show that p̂(v) converges to p̂(ω) and q̂(v) to µp̂(ω)(ω). In-

deed, limv→ω p̂(v) exists and equals p̂(ω) because if lim infv→ω p̂(v) < p̂(ω), then eventu-

ally p̂(v) < Π∗/[1−F (v)], contradicting that p̂(v) satisfies (11). To see that limv→ω q̂(v)
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exists and equals µp̂(ω)(ω), note that the function Ψ(µp̂(·)(·), p̂(·), ·) − [1 − F (·)]p̂(·) is

continuous at ω, and so limv→ω Ψ(µp̂(v)(v), p̂(v), v)) = [1 − F (ω)]p̂(ω) by Claim A3.

If lim infv→ω q̂(v) < µp̂(ω)(ω), it follows that, along a subsequence, Ψ(·, p̂(v), v) could

eventually not have a negative third derivative, contradicting Lemma 5.

Now, recall ω < p∗, which implies p̂(ω) > ω and therefore µp̂(ω)(ω) > p̂(ω). As

limv→ω p̂(v) = p̂(ω) and limv→ω q̂(v) = µp̂(ω)(ω), it follows that there is a v′ < ω such

that for all v ∈ (v′, ω), the integrand in

∂Ψ(q, p, v)
∂p

∣∣∣∣
(q,p)=(q̂(v),p̂(v))

is bounded. Since limv→ω µp̂(v)(q̂(v)) = ω, the Dominated Convergence Theorem implies

that (A.29) holds. Consequently, there is a v′′ < ω such that for all v ∈ (v′′, ω), the

determinant |Dq,pΦ(q, p, v)| is not zero at (q̂(v), p̂(v)).

Thus, the Implicit Function Theorem (see, e.g., Munkres, 1991, Thms. 9.1 and 9.2)

applies: For every v′′′ ∈ (v′′, ω), there are a neighborhood V of v′′′ and unique continuous

functions q̃, p̃ on V such that (q̃(v′′′), p̃(v′′′)) = (q̂(v′′′), p̂(v′′′)) and Φ(q̃(v), p̃(v), v) = 0

for all v ∈ V . Moreover, the derivatives of q̃ and p̃ exist at all v ∈ V and are given bydq̃(v)
dv

dp̃(v)
dv

 = −[Dq,pΦ(q, p, v)]−1DvΦ(q, p, v)
∣∣∣∣
(q,p)=(q̃(v),p̃(v))

.

Hence, using (A.27) and (A.28),

dp̃(v)
dv

= −
∂2Ψ(q,p,v)

∂q2

[
f(v)p+ ∂Ψ(q,p,v)

∂v

]
− ∂Ψ(q,p,v)

∂q
∂2Ψ(q,p,v)
∂q∂v

|Dq,pΦ(q, p, v)|

∣∣∣∣∣
(q,p)=(q̃(v),p̃(v))

,

which, noting that ∂Ψ(q, p, v)/∂q = 0 at (q, p) = (q̃(v), p̃(v)), simplifies to

dp̃(v)
dv

=
f(v)p+ ∂Ψ(q,p,v)

∂v

1− F (v)− ∂Ψ(q,p,v)
∂p

∣∣∣∣∣
(q,p)=(q̃(v),p̃(v))

. (A.30)

As the function p̃ is unique, we have dp̂(v)/dv = dp̃(v)/dv at every v ∈ (v′′′, ω) where

dp̂(v)/dv exists. Observe that

∂Ψ(q, p, v)
∂v

= −xq(v, µp(v))qf(v) = − p− v
µp(v)− p

µp(v)− q
q − v

qf(v).
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Since q̂(v) converges to µp̂(ω)(ω), we obtain

lim
v→ω

∂Ψ(q, p, v)
∂v

∣∣∣∣
(q,p)=(q̂(v),p̂(v))

= 0. (A.31)

Finally, combining (A.30) with (A.31) and (A.29) thus yields (A.26).

Now, by Claim A4 there exist v′ < ω such that

dp̂(v)
dv

>
f(v)[p̂(v′)− v]

1− F (ω) for all v ∈ (v′, ω). (A.32)

As p̂ is increasing,

p̂(ω)− p̂(v′) ≥
∫ ω

v′

dp̂(v)
dv

dv >
1

1− F (ω)

∫ ω

v′
[p̂(v′)− v]dF (v),

where the second inequality follows from (A.32). As a consequence,
∫ 1

v′
[v−p̂(v′)]dF (v)−

∫ 1

ω
[v−p̂(ω)]dF (v) =

∫ ω

v′
[v−p̂(v′)]dF (v)+[1−F (ω)][p̂(ω)−p̂(v′)] > 0,

that is, (p̂(v′), v′) implements a strictly higher buyer payoff than (p̂(ω), ω). This com-

pletes the proof that (p, v) = (p̂(ω), ω) is not optimal.

Proof of Corollary 1. Suppose F is regular and E[v|v ≤ p∗] < Π∗. We will show

that the seller payoff is strictly greater than Π∗ under all buyer-optimal information

structures. By Proposition 1, these information structures implement a price p < p∗.

By contradiction, suppose there is a buyer-optimal information structure (S, (Gv))

that implements seller payoff Π∗, buyer payoff U , and price p < p∗. Under (S, (Gv)), valu-

ations below p∗ are not pooled with valuations above p∗ (i.e.,
∫
{s∈S:Fs(p∗)∈(0,1)} dḠ(s) = 0)

because otherwise, the seller could first extend to a p-pairwise information structure that

yields the same payoff (Lemma 1) and then perform the p∗-optimal extension (Lemma

2) to obtain a payoff strictly greater than Π∗. Recall that H(w) =
∫
{s∈S:E[v|s]≤w} dḠ(s) is

the CDF of posterior valuations under (S, (Gv)). As valuations below p∗ are not pooled

with valuations above p∗, we can write the buyer payoff as

U =
∫ 1

p
(v− p)dH(v) =

∫ p∗

p
(v− p)dH(v) +

∫ 1

p∗
(v− p)dF (v) ≥

∫ 1

p∗
(v− p)dF (v). (A.33)

52



By Theorem 1 and Propositions 2 and 3, there is a v < ω such that (p̂(v), v) is

optimal, p̂(v) = p, and the implemented buyer payoff is

U =
∫ 1

µp̂(v)(v)
(v − p̂(v))dF (v). (A.34)

As shown at the beginning of the proof of Claim A4 (in the proof of Proposition 3),

for any v < ω, the seller’s extension payoff Ψ(·, p̂(v), v) is maximized at a unique q ∈

(v, µp̂(v)(v)). As the third derivative of Ψ(·, p̂(v), v) is negative (Lemma 5), Ψ(·, p̂(v), v)

thus is decreasing at µp̂(v)(v). Lemma 5 and the strict quasiconcavity of [1−F (q)]q then

imply µp̂(v)(v) > p∗. Consequently, (A.34) yields

U <
∫ 1

p∗
(v − p)dF (v),

which contradicts (A.33). Hence, there can be no such (S, (Gv)).

Proof of Proposition 4. Fix (Sa, (Ga
v)) and an arbitrary incentive-compatible and in-

dividually rational menu {(X(s̃a), c(s̃a), p(s̃a)) : s̃a ∈ Sa}. We will construct a posted-

price mechanism that yields the same buyer payoff and a weakly higher seller payoff.

First, we construct for each s̃a ∈ Sa the extension XI(s̃a) = ({BUY,NOT}, (Ĝb
v,sa))

from the extension X(s̃a) = (Sb, (Gb
v,sa)) as follows: Whenever X(s̃a) displays a sig-

nal sb ∈ Sb such that E[v|sa, sb] ≥ p(s̃a) (i.e., the buyer buys), XI(s̃a) displays the

signal BUY . Otherwise, XI(s̃a) displays the signal NOT . We write Pr[BUY |sa] and

Pr[NOT |sa] = 1 − Pr[BUY |sa] for the respective probabilities. Clearly, the expected

buyer payoff conditional on sa from (XI(s̃a), c(s̃a), p(s̃a)) and from (X(s̃a), c(s̃a), p(s̃a))

are the same, and the buyer buys if and only if he observes signal BUY . Hence, the

“modified” menu {(XI(s̃a), c(s̃a), p(s̃a)) : s̃a ∈ Sa} is incentive compatible and individu-

ally rational and yields the same buyer payoff and seller payoff as the original menu.

Let p := inf s̃a∈Sa c(s̃a) + p(s̃a). By deviating (and always buying), the buyer can

secure himself a payoff arbitrarily close to E[v|sa] − p. Incentive compatibility of the

modified menu thus implies

Pr[BUY |sa][E[v|sa, BUY ]− p(sa)]− c(sa) ≥ E[v|sa]− p. (A.35)

Now, consider the posted-price mechanism (XII , 0, p), where for each (v, sa) the CDF

Gb
v,sa of XII = ({BUY,NOT}, (Gb

v,sa)) coincides with the respective CDF of XI(sa). We
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will compare purchase decision and buyer payoff conditional on sa under (XII , 0, p) with

those under the modified menu. For sa such that (c(sa), p(sa)) = (0, p), it is immediate

that they are the same. In what follows, we hence assume (c(sa), p(sa)) 6= (0, p).

For sa such that Pr[BUY |sa] = 0, individual rationality of the modified menu implies

c(sa) = 0 and, as (c(sa), p(sa)) 6= (0, p), (A.35) yields 0 > E[v|sa]− p. Under (XII , 0, p),

the buyer hence also never buys and gets the same payoff as under the modified menu.

For sa such that Pr[BUY |sa] = 1, the definition of p implies that (A.35) holds with

equality. Under (XII , 0, p), the buyer hence also always buys and gets the same payoff

as under the modified menu.

For sa such that Pr[BUY |sa] ∈ (0, 1), we use

E[v|sa] = Pr[BUY |sa]E[v|sa, BUY ] + Pr[NOT |sa]E[v|sa, NOT ]

(i.e., the martingale property of posterior valuations) to rewrite inequality (A.35) as

Pr[NOT |sa](p− E[v|sa, NOT ]) ≥ Pr[BUY |sa][p(sa)− p] + c(sa).

As (c(sa), p(sa)) 6= (0, p), the right-hand side is strictly positive. So, p > E[v|sa, NOT ].

On the other hand, because the modified menu is individually rational,

Pr[BUY |sa][E[v|sa, BUY ]− p(sa)]− c(sa) ≥ 0.

As (c(sa), p(sa)) 6= (0, p), this implies E[v|sa, BUY ] > p. Under (XII , 0, p), the buyer

hence also buys if and only if he observes the signal BUY . Since (c(sa), p(sa)) 6= (0, p),

however, the buyer payoff is strictly higher than under the modified menu,

Pr[BUY |sa](E[v|sa, BUY ]− p) > Pr[BUY |sa][E[v|sa, BUY ]− p(sa)]− c(sa).

Finally, we construct an extension XIII from XII such that (XIII , 0, p) yields the

same buyer payoff as the modified menu for all sa. XIII coincides with XII unless sa

is such that Pr[BUY |sa] ∈ (0, 1) and (c(sa), p(sa)) 6= (0, p). In the latter case, XIII is

defined as follows: Whenever XII displays BUY conditional on sa, XIII displays BUY .

Whenever XII displays NOT conditional on sa, XIII displays BUY with probability

ε and NOT with probability 1 − ε. Before specifying ε, note that the buyer payoff is
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continuous and decreasing as a function of ε. At ε = 0 (same information), it equals the

payoff under the posted-price mechanism (XII , 0, p). At ε = 1 (no information), it is

weakly smaller than the buyer payoff under the modified menu by (A.35). Hence, there

exists an ε > 0 such that the payoff is equal to the payoff under the modified menu

and E[v|sa, BUY ] ≥ p. Choose this ε. By construction, the probability of trade under

(XIII , 0, p) is higher than under the modified menu, resulting in a higher social surplus.

We conclude that compared with {(X(s̃a), c(s̃a), p(s̃a)) : s̃a ∈ Sa}, the posted-price

mechanism (XIII , 0, p) yields the same buyer payoff and a weakly higher social surplus,

which implies a weakly higher seller payoff.

Proof of Proposition 5. The “only if” part is clear. It remains to prove that if a

p-pairwise information structure is not extensionproof, then it is also not weakly exten-

sionproof. We will do so by showing that, for every p-pairwise information structure

and every q > p, there is an independent extension that induces the same probability of

trade at price q, and hence the same seller payoff, as the q-optimal extension.

Let (Sa, (Ga
v)) be p-pairwise and suppose the seller sets price q > p. Regardless of

the extension, there is trade with probability one after all signals sa = (vL, vH) with

vL = vH ≥ q, and there is no trade after all signals sa with vH < q. Only after signals

sa with vL < q ≤ vH , the probability of trade depends on the extension. We denote the

set of such signals by Ŝa := {sa ∈ Sa : vL < q ≤ vH}.

Consider the independent extension that, conditional on v /∈ [p, q), draws the addi-

tional signal sb from Sb = [q, 1] according to Gb
v. The CDFs Gb

v are defined as follows:

• If v ∈ [0, p), then Gb
v has support [q, 1] and

Gb
v(sb) = p− v

q − v
sb − q
sb − p

+ 1− p− v
q − v

1− q
1− p.

Hence, Gb
v has an atom at sb = q and for sb ∈ (q, 1] a PDF gbv with

gbv(sb) = p− v
q − v

q − p
(sb − p)2 .

• If v ∈ [q, 1], then Gb
v has support [q, v] and

Gb
v(sb) = v − p

v − q
sb − q
sb − p

.
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Hence, Gb
v is atomless and has a PDF gbv with

gbv(sb) = v − p
v − q

q − p
(sb − p)2 .

Now, suppose the buyer observes sa = (vL, vH) ∈ Ŝa and sb. If sb /∈ (q, vH ], this

perfectly reveals that the valuation is v = vL. If sb ∈ (q, vH ], the posterior valuation is

E[v|sa, sb] =
Fsa(vL) gbvL(s

b) vL + [1− Fsa(vL)] gbvH(sb) vH
Fsa(vL) gbvL(sb) + [1− Fsa(vL)] gbvH(sb)

=
Fsa(vL) p−vL

vH−p
vH−q
q−vL

vL + [1− Fsa(vL)]vH
Fsa(vL) p−vL

vH−p
vH−q
q−vL

+ 1− Fsa(vL)

= Fsa(vL)xq(vL, vH)vL + [1− Fsa(vL)]vH
Fsa(vL)xq(vL, vH) + 1− Fsa(vL) = q.

Conditional on sa ∈ Ŝa, the probability of trade is thus equal to the probability of

sb ∈ (q, vH ]. Hence, conditional on sa ∈ Ŝa and v = vH , the probability of trade is one,

and conditional on sa ∈ Ŝa and v = vL, the probability of trade is equal to

Gb
vL

(vH)−Gb
vL

(q) = p− vL
vH − p

vH − q
q − vL

= xq(vL, vH).

By Lemma 2, the probability of trade is the same as under the q-optimal extension.

Proof of Lemma 6. Consider an information structure (S, (Gv)) that induces buyer

payoff U and suppose (15) does not hold, that is,
∫
{s∈S:Fs(p∗)∈(0,1)} dḠ(s) > 0. By the

right-continuity of distribution functions, there exists a δ > 0 and a subset of signals

M := {s ∈ S : 0 < Fs(p∗) and Fs(p∗ + δ) < 1}

such that
∫
M dḠ(s) > 0. To show that (S, (Gv)) is not weakly extensionproof, we will

construct an independent extension under which the probability of trade at price p∗ is

strictly greater than 1− F (p∗), implying a seller payoff strictly greater than Π∗.

Consider the following independent extension. If v ∈ (p∗, p∗ + δ], display a signal

BUY 1 with probability one. If v > p∗+ δ, display a signal BUY 2 with probability one.

If v ≤ p∗, display BUY 2 with some probability ε > 0 and otherwise a signal NOT .

Hence, for s ∈ S, the posterior valuation given s and BUY 1 is greater than p∗, and the
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posterior valuation given s and BUY 2 is22

wε(s, BUY 2) := εFs(p∗)
εFs(p∗) + 1− Fs(p∗ + δ)E[v|s, v ≤ p∗]

+ 1− Fs(p∗ + δ)
εFs(p∗) + 1− Fs(p∗ + δ)E[v|s, v > p∗ + δ].

Let Mε := {s ∈M : wε(s, BUY 2) < p∗}.

Under this extension, the probability of trade at price p∗ is

Q := ε
∫ p∗

0

∫
M\Mε

dGv(s)dF (v)︸ ︷︷ ︸
(i)

+
∫ p∗+δ

p∗
dF (v)︸ ︷︷ ︸

(ii)

+
∫ 1

p∗+δ

∫
S\Mε

dGv(s)dF (v)︸ ︷︷ ︸
(iii)

.

Part (i) covers the case that v ∈ [0, p∗], BUY 2 is displayed, and wε(s, BUY 2) ≥ p∗. The

latter holds if and only if s ∈ M \Mε because for s /∈ M , as v is in the support of Fs
for almost all s, Fs(p∗ + δ) = 1 and thus wε(s, BUY 2) < p∗. Part (ii) represents the

buyer buying after observing BUY 1. Part (iii) covers the case that v ∈ (p∗ + δ, 1] and

wε(s, BUY 2) ≥ p∗. The latter also holds for s /∈ M because then Fs(p∗) = 0 as v is in

the support of Fs for almost all s. The probability Q can be restated as

Q =
[∫ p∗

0

∫
M
dGv(s)dF (v)−

∫ p∗

0

∫
Mε

dGv(s)dF (v)
]
ε+1−F (p∗)−

∫ 1

p∗+δ

∫
Mε

dGv(s)dF (v),

which, by the definition of the posterior in (1), is equivalent to

Q =
[∫
M
Fs(p∗)dḠ(s)−

∫
Mε

Fs(p∗)dḠ(s)
]
ε+1−F (p∗)−

∫
Mε

[1−Fs(p∗+δ)]dḠ(s). (A.36)

By the definition of Mε, E[wε(s, BUY 2)|s ∈Mε] is equal to

ε
∫
Mε
Fs(p∗)dḠ(s)

ε
∫
Mε
Fs(p∗)dḠ(s) +

∫
Mε

(1− Fs(p∗ + δ))dḠ(s)
E[v|s ∈Mε, v ≤ p∗]

+
∫
Mε

(1− Fs(p∗ + δ))dḠ(s)
ε
∫
Mε
Fs(p∗)dḠ(s) +

∫
Mε

(1− Fs(p∗ + δ))dḠ(s)
E[v|s ∈Mε, v > p∗ + δ].

(A.37)

22As BUY 2 is displayed only if v /∈ (p∗, p∗ + δ] and as the true valuation v is in the support of the

posterior distribution Fs for almost all s, the extended information structure assigns probability zero

to signals (s,BUY 2) such that Fs(p∗) = 1− Fs(p∗ + δ) = 0.
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Using (A.37), we have

E[wε(s, BUY 2)|s ∈Mε] < p∗

⇐⇒
∫
Mε

[1− Fs(p∗ + δ)]dḠ(s) <
∫
Mε

Fs(p∗)dḠ(s) p∗ − E[v|s ∈Mε, v ≤ p∗]
E[v|s ∈Mε, v > p∗ + δ]− p∗ ε

=⇒
∫
Mε

[1− Fs(p∗ + δ)]dḠ(s) <
∫
Mε

Fs(p∗)dḠ(s)p
∗

δ
ε. (A.38)

Combining (A.38) with (A.36) gives

Q > 1− F (p∗) +
[∫
M
Fs(p∗)dḠ(s)−

∫
Mε

Fs(p∗)dḠ(s)
(

1 + p∗

δ

)]
ε. (A.39)

Now, limε→0wε(s, BUY 2) = E[v|s, v > p∗ + δ] > p∗. By Ergorov’s Theorem, the

convergence is uniform across s except on a subset of arbitrarily small measure. Hence,

lim
ε→0

∫
Mε

Fs(p∗)dḠ(s) = 0.

On the other hand,
∫
M Fs(p∗)dḠ(s) > 0. Hence, there exist ε > 0 such that

∫
M
Fs(p∗)dḠ(s)−

∫
Mε

Fs(p∗)dḠ(s)
(

1 + p∗

δ

)
> 0.

For such ε > 0, by (A.39), the probability of trade at p∗ is Q > 1− F (p∗).

Proof of Proposition 6. Consider any weakly extensionproof information structure

(S, (Gv)) that induces buyer payoff U , which means trade with probability one at price

Π∗. Then, the CDF of posterior valuations H satisfies H(w) = 0 for all w < Π∗ and so
∫ p∗

0
wdH(w) ≥ H(p∗)Π∗.

By Lemma 6, this inequality can be restated as
∫
{s∈S:Fs(p∗)=1}

∫ 1

0
vdFs(v)dḠ(s) ≥

∫
{s∈S:Fs(p∗)=1}

∫ 1

0
dFs(v)dḠ(s)Π∗

⇐⇒
∫
S

∫ p∗

0
vdFs(v)dḠ(s) ≥

∫
S

∫ p∗

0
dFs(v)dḠ(s)Π∗.

Using the definition of the posterior in (1), this is equivalent to
∫ p∗

0
vdF (v) ≥ F (p∗)Π∗ ⇐⇒ E[v|v ≤ p∗] ≥ Π∗.
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Proof of Proposition 7. According to Roesler and Szentes (2017, Corollary 1), pRS ≤

Π∗. Our proof consists in showing that this inequality is strict. Consequently, any

information structure that is buyer optimal in the setting of Roesler and Szentes is

not weakly extensionproof: the seller can increase her payoff from pRS < Π∗ to Π∗ by

independently extending to a perfect information structure.

We start with an auxiliary result. According to Roesler and Szentes (2017, Lemma

1), there is a unique B∗ ∈ [Π∗, 1] such that F is a mean-preserving spread of HB∗
Π∗ . With

the following claim, we strengthen this to B∗ ∈ (Π∗, 1).

Claim A5. There is a unique B∗ ∈ (Π∗, 1) such that F and HB∗
Π∗ have the same mean.

Proof. Note that Π∗ = maxp[1− F (p)]p implies 0 < Π∗ <
∫ 1

0 vdF (v).

As [1 − F (w)]w ≤ Π∗, we have 1 − Π∗
w
≤ F (w). Hence H1

Π∗(w) ≤ F (w) for all

w ∈ [0, 1], that is, H1
Π∗ first-order stochastically dominates F . The dominance is strict

since H1
Π∗(w) = 0 < F (w) for all w ∈ (0,Π∗]. Therefore

∫ 1

0
wdH1

Π∗(w) >
∫ 1

0
vdF (v) > Π∗ =

∫ 1

0
wdHΠ∗

Π∗ (w).

As
∫ 1

0 wdH
B
Π∗(w) is continuous and strictly increasing in B, there must be a unique

B∗ ∈ (Π∗, 1) such that F and HB∗
Π∗ have the same mean,

∫ 1
0 wdH

B∗
Π∗ (w) =

∫ 1
0 vdF (v).

Now, since F is a mean-preserving spread of HB∗
Π∗ ,∫ w

0
F (z)dz ≥

∫ w

0
HB∗

Π∗ (z)dz for all w ∈ [0, 1], with equality for w = 1.

We next show that the above inequality is strict for all w ∈ (0, 1).

Claim A6.
∫ w

0 F (z)dz >
∫ w

0 HB∗
Π∗ (z)dz for all w ∈ (0, 1).

Proof. Define Γ(w) :=
∫ w
0 [F (z) − HB∗

Π∗ (z)]dz. We have to prove that Γ(w) > 0 for all

w ∈ (0, 1). For w ∈ (0,Π∗], Γ(w) =
∫ w

0 F (z)dz > 0. For w ∈ [Π∗, B∗), F (w) −HB∗
Π∗ (w)

is continuous, and so we can differentiate Γ to get

Γ′(w) = F (w)−HB∗

Π∗ (w) = Π∗ − w[1− F (w)]
w

≥ 0,
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where the inequality holds since Π∗ = maxp[1 − F (p)]p. Therefore, Γ(w) > 0 also for

w ∈ (Π∗, B∗). For w ∈ [B∗, 1),

Γ(w) =
∫ w

0
[F (z)−HB∗

Π∗ (z)]dz = −
∫ 1

w
[F (z)−HB∗

Π∗ (z)]dz =
∫ 1

w
[1− F (z)]dz > 0,

where the second equality holds because F and HB∗
Π∗ have the same mean.

Recall that pRS is the smallest price q for which there exists B ∈ [q, 1] such that

F is a mean-preserving spread of HB
q . The following claim implies pRS < Π∗, which

completes the proof of the proposition.

Claim A7. There exist q < Π∗ and B ∈ [q, 1] such that F is a mean-preserving spread

of HB
q

Proof. Take any B ∈ (B∗, 1], which exists by Claim A5. For q ≤ Π∗,
∫ 1

0 H
B
q (w)dw

is strictly decreasing in q. By the Dominated Convergence Theorem,
∫ 1

0 H
B
q (w)dw is

furthermore continuous in q. As
∫ 1

0 H
B
0 (w)dw = 1 >

∫ 1
0 H

B∗
Π∗ (w)dw and

∫ 1
0 H

B
Π∗(w)dw <∫ 1

0 H
B∗
Π∗ (w)dw, it follows that there is a unique q(B) ∈ (0,Π∗) such that

∫ 1

0
HB
q(B)(w)dw =

∫ 1

0
HB∗

Π∗ (w)dw =
∫ 1

0
F (w)dw. (A.40)

For every w ∈ [0, 1] and every sequence of values B ∈ (B∗, 1], since limB→B∗ q(B) =

Π∗, the Dominated Convergence Theorem gives

lim
B→B∗

∫ w

0
HB
q(B)(z)dz =

∫ w

0
HB∗

Π∗ (z)dz.

Choose B′, B′′ ∈ (B∗, 1] such that B′ < B′′. Since q(B′) > q(B′′), we have for w ∈ [0, B′),
∫ w

0
HB′

q(B′)(z)dz ≤
∫ w

0
HB′′

q(B′′)(z)dz.

Similarly, for w ∈ [B′, 1]
∫ w

0
[HB′

q(B′)(z)−HB′′

q(B′′)(z)]dz =
∫ 1

w
[HB′′

q(B′′)(z)−HB′

q(B′)(z)]dz =
∫ 1

w
[HB′′

q(B′′)(z)− 1]dz ≤ 0.

So for every w ∈ [0, 1], the sequence of integrals
∫ w
0 HB

q(B)(z)dz is increasing. By Dini’s

Theorem, the convergence of
∫ w

0 HB
q(B)(z)dz to

∫ w
0 HB∗

Π∗ (z)dz is thus uniform across w.
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Claim A6 and the uniform convergence imply that there exists B̂ ∈ (B∗, 1] such that
∫ w

0
HB̂
q(B̂)(z)dz −

∫ w

0
HB∗

Π∗ (z)dz <
∫ w

0
F (z)dz −

∫ w

0
HB∗

Π∗ (z)dz for all w ∈ (0, 1).

By (A.40), F is thus a mean-preserving spread of HB̂
q(B̂)

, and q(B̂) < Π∗.

Proof of Proposition 8. According to Roesler and Szentes (2017, Lemma 1), there

exists a unique B∗ such that F is a mean-preserving spread of HB∗
Π∗ . The information

structures in the RS class that induce buyer payoff U are thus all (S, (Gv)) that induce

the CDF of posterior valuations HB∗
Π∗ . Consider any such (S, (Gv)). We will show

that
∫
{s∈S:Fs(p∗)∈(0,1)} dḠ(s) > 0. By Lemma 6, this implies that (S, (Gv)) is not weakly

extensionproof and, accordingly, also not extensionproof.

By contradiction, suppose
∫
{s∈S:Fs(p∗)∈(0,1)} dḠ(s) = 0. Then,

∫ 1

p∗
wdHB∗

Π∗ (w) =
∫
{s∈S:Fs(p∗)=0}

∫ 1

0
vdFs(v)dḠ(s)

=
∫
S

∫ 1

p∗
vdFs(v)dḠ(s) =

∫ 1

p∗
vdF (v),

(A.41)

where the last equality follows from the definition of the posterior in (1). We consider

two cases. First, suppose B∗ ≤ p∗. As HB∗
Π∗ (w) = 1 for all w ≥ B∗, we have a

contradiction to (A.41). Second, suppose B∗ > p∗. By the definition of the RS class,

[1 − HB∗
Π∗ (p)]p = Π∗ for all p ∈ [Π∗, B∗]. On the other hand, [1 − F (p)]p < Π∗ for all

p < p∗. Consequently, HB∗
Π∗ (p) < F (p) for all p ∈ (0, p∗), whereas HB∗

Π∗ (p∗) = F (p∗).

We thus have
∫ p∗

0 wdHB∗
Π∗ (w) >

∫ p∗
0 vdF (v). Given (A.41), this implies that F is not a

mean-preserving spread of HB∗
Π∗ ; a contradiction.

Proof of Lemma 7. Let (Sa, (Ga
v)) be a buyer-extensionproof information structure

that induces price p and a seller payoff weakly greater than Π∗. We proceed as in

the proof of Lemma 1 and extend (Sa, (Ga
v)) to the p-pairwise information structure

(Sabc, (Gabc
v )). Compared with those under (Sa, (Ga

v)), the buyer payoff and the seller

payoff at price p under (Sabc, (Gabc
v )) either both remain unchanged or both strictly

increase. (They remain unchanged if and only if
∫
{v∈[0,1]:v>p}

∫
{sa∈Sa:E[v|sa]<p}

dGa
v(sa)dF (v) = 0,
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that is, if and only if under (Sa, (Ga
v)) no valuations v > p are pooled into posterior

valuations E[v|sa] < p.) Because (Sa, (Ga
v)) is buyer extensionproof, we can rule out,

first, that (Sabc, (Gabc
v )) induces price p and the payoffs strictly increase, and, second,

that (Sabc, (Gabc
v )) induces some price q < p. Now, under every p-pairwise information

structure, H(q) ≥ F (q) and thus [1 − H(q)]q ≤ [1 − F (q)]q ≤ Π∗ for all q > p. Since

under (Sa, (Ga
v)) the seller payoff at price p is weakly greater than Π∗ by assumption, it

follows that (Sabc, (Gabc
v )) induces price p.

Proof of Proposition 9. In the main text.
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