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Abstract

With overlapping generations and heterogeneous risk aversion there is no unique relation
between aggregate risk aversion and the real rate of interest, and this type of endogenous
�noise� cannot arise in an economy where agents live forever. Our framework accommodates
many agent types and the noise emerges precisely because all (but one) consumption shares
drive the economy. Adding wealth dispersion to aggregate risk aversion su�ciently summa-
rizes the rich dynamics of the model. Consistent with the model, we construct �level� and
�slope� factors that do not require knowledge about agents' risk aversion to predict excess
returns.

Keywords: Heterogeneous Risk Aversion, Overlapping Generations, Consumption Share
Weighted Variance of the Risk-Tolerance
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1 Introduction

People are heterogeneous and risk premium or aggregate risk aversion vary over time. These

two generally accepted observations raise the possibility that changes in the risk premium

and changes in aggregate risk aversion are jointly determined through risk sharing by het-

erogeneous agents. Our point in revisiting this question is that an overlapping generations

(OLG) model with a cross-section in risk aversion di�ers from the standard in�nitely lived

setting but also from an OLG model with two agents. In complete markets with in�nitely

lived agents only the level of aggregate consumption matters. In an OLG model with two

agents, one has to only follow the consumption share of one of the two agents. In our

framework with many types of agents in an OLG setting, one has to essentially follow all

consumption shares, even though markets are complete and there is only one exogenous

shock. Since aggregate risk aversion depends on the entire consumption share distribution

it can take many values for a speci�c value of aggregate consumption. This property is

inherited by all other asset pricing quantities such as the real rates of interest or the risk

premium.

How does heterogeneity in risk aversion matter in such an OLG setting? We show

that even though the entire consumption share distribution drive asset prices, most of the

variation can be explained by aggregate risk aversion and the consumption share weighted

variance of risk tolerance. This contrasts with the in�nitely lived economy where only the

aggregate risk aversion matters and has important implications for the equilibrium real rate

of return and risk premium. Speci�cally, we show that the consumption share weighted

variance of risk tolerance e�ectively ampli�es the precautionary savings term, i.e., in times

of high cross-sectional variance of risk aversion the real rate of return is low. In addition, a

higher cross-sectional variance is associated with a higher stock market risk premium.

Since most of the variation in the asset pricing moments are explained by aggregate risk

aversion and the consumption share weighted variance of risk tolerance it is important to

understand the dynamics of the consumption shares. We show that the consumption shares



of the agents with the highest or lowest risk aversion in the economy are mostly driven by the

aggregate risk aversion in the economy, just like in an economy with in�nitely lived agents

or a two agent economy.1 For agents in the middle of the risk aversion distribution the

consumption share weighted variance of risk tolerance is more important than aggregate risk

aversion. We exploit this heterogeneity of the loadings on risk aversion and variance of the

risk tolerance to construct an empirical measure that does not require the knowledge about

the risk aversion distribution. Speci�cally, we construct a �level� and �slope� factor that

capture the dynamics of our model just as the aggregate risk aversion and the consumption

share weighted variance of the risk-tolerance. With two agent types or in�nitely lived agents

the slope factor is spanned by the aggregate risk aversion and therefore it does not impact

the economy. Consistent with the model, our proxy in the data for the level and slope factor

are the log wealth share of Forbes 400 (the top 400 richest people in Forbes list) and the

wealth share of Forbes 400 plus the wealth share of the top 10% group minus the wealth

share of the top 0.1%, respectively. In bivariate predictive regression, we then regress the

excess return on level and slope. As in the model, the level produces a negative sign whereas

the slope produces a positive sign, where a higher wealth share of the top 0.1% indicates

goods times and low aggregate risk aversion.

On a technical note, the usual approach to solve an economy with heterogeneous agents

in complete markets is to aggregate them using a central planner with �xed Pareto weights.2

In our continuous time OLG model, the Pareto weight of a type depends on the state of

nature at birth and are determined as a part of the equilibrium. Since generally there is

no closed-form solution for the Pareto weights, we solve the model by making the following

assumption. Namely, that the consumption share at birth of each type is time invariant.3 We

construct such an equilibrium by assuming a redistributive shock to the endowment stream

1The cross-sectional variance also impact the consumption shares of the agents on the boundary of the
risk aversion distribution, but relative to the variation driven by the aggregate risk aversion it is small.

2In the economics literature, it is standard to solve heterogeneous agent models with aggregate risk and
idiosyncratic shocks by following agents' consumption or wealth share. See, for instance, Krusell and Smith
(1998).

3See Ehling, Guo, Heyerdahl-Larsen, and Illeditsch (2021) for details.
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of all the agents in the economy. As this shock is the same shock as in aggregate output, there

is no additional risk premium associated with it. A consequence of this is that consumption

shares can be simulated forward. This then allows to use Monte-Carlo simulations, and

in combination with Malliavin calculus,4 we characterize the dynamics of stock prices and

portfolios analytically. Thereby, we can circumvent the curse of dimensionality, and in

principle have even hundreds of agent types, and still follow their consumption shares at

a low computational cost. Without the time invariance, one has to solve for the optimal

consumption-to-wealth ratio and the initial wealth, leading to a system of partial di�erential

equations (PDEs). Even for a small number of types, this becomes quickly infeasible to

solve.

In an OLGmodel such as ours, the per capita consumption of newborns relative to average

consumption impacts the real rate of interest, which was �rst pointed out by Garleanu and

Panageas (2015). Speci�cally, when the average consumption of the newborns are higher

than the average consumption growth of the agents already in the economy this implies

that their consumption growth has to be lower than the aggregate output growth. As the

agents already present in the economy determine the interest rate it then declines due to

their intertemporal smoothing motive. The displacement shock in our economy allows us to

match the real rate of interest even for high levels of risk aversion. From Figure 1, we see

that in our stationary economy the real short rate cannot move much beyond 2.25 percent

while in an otherwise identical non-stationary in�nite life economy the real short rate can

reach levels above of 9.95 percent and this within the stationary range of the OLG model

for aggregate risk aversion. In contrast to the in�nitely lived economy, we can see from

Figure 1 that there are many possible values for the real short rate (r) for a given value of

aggregate risk aversion (R). As we discussed above, this di�erence is mainly captured by

the consumption share weighted variance of the risk tolerance in the economy.

Our paper builds on the broad literature studying asset prices and portfolio policies in

4See Nualart (1995) for an introduction to Malliavin calculus.
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Figure 1: Real Short Rate. The �gure plots the real short rate, r, in our OLG model
(solid blue area) and in the standard model with in�nitely lived agents (dashed red line) as
a function of the aggregate risk aversion, R. In both economies there are 10 agent types,
where we set the lowest risk aversion to the 5th percentile (1.9) and the highest risk aversion
to the 95 percentile (19.5) based on Kimball, Sahm, and Shapiro (2008). Further details are
in Subsection 3.1.

in�nite life economies populated by agents who di�er in their level of risk aversion. We

mention the classical papers by Dumas (1989), using two investors, Wang (1996), using two

speci�c risk aversions that lead to closed form solutions, and Chan and Kogan (2002), using

heterogeneous risk aversion with homogeneous habits.5

Our paper mainly builds on Garleanu and Panageas (2015), who also study a continuous-

time overlapping generations economy.6 Their focus is on the quantitative implications of

heterogeneity with recursive preferences.7 Because they have two classes of agent types, they

5Other more recent contributions to the literature on asset pricing with heterogeneous risk aversion with
in�nite life include Malamud (2008a), Malamud (2008b), Yan (2008), Zapatero and Xiouros (2010), Cvitanic
and Malamud (2011), Cvitanic, Jouini, Malamud, and Napp (2012), Longsta� and Wang (2013), Bhamra
and Uppal (2014), Ehling and Heyerdahl-Larsen (2017), Santos and Veronesi (2018) and Veronesi (2019),
among many others.

6See Ehling, Graniero, and Heyerdahl-Larsen (2018), Garleanu and Panageas (2020a), Garleanu and
Panageas (2020b) and Heyerdahl-Larsen and Illeditsch (2020) for related continuous-time overlapping gen-
erations economies that feature agents with logarithmic preferences.

7However, a working paper version (Garleanu and Panageas (2007)) of their model features heterogeneous
risk aversion in a power utility framework similar to ours. It also produces comparable unconditional asset
pricing moments. Another recent contribution to asset pricing theory using power preferences is Martin
(2013).
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can express the equilibrium problem as a system of ordinary di�erential equations (ODEs)

but already with three levels for risk aversion one would have to solve a system of PDEs.

In our examples, we use ten levels of risk aversion and stress that we could solve the model

with hundreds of agent types.

Finally, we mention Gomez (2019), who studies the implications of heterogeneous risk

aversion in a continuous-time overlapping generations economy for wealth inequality. He

also points out that wealth inequality has predictive power for asset prices.

2 The Model

We consider a continuous-time exchange economy with overlapping generations in the style

of Blanchard (1985). Agents consume a single perishable consumption good and, once born,

they trade in a complete set of securities to share consumption and longevity risks. The

agents are heterogeneous since they di�er not only in when they are born and die but also

in the curvature of their utility functions.

2.1 Populations, Earnings, and Output

To have a constant total population size, which we normalize to 1, agents die and are replaced

at the same rate ν > 0. Hence, at time t, the size of the cohort born at time s < t is simply

νe−ν(t−s)ds.

The agents receive an endowment of earnings yis,t, where y
i
s,t = ωYtGs,t for ω ∈ (0, 1) and

i identi�es the agent type in terms of preferences. The function Gs di�ers for every cohort

and controls the life-cycle pro�le of earnings. We normalize the Gs,t functions such that∫ t
−∞ νe

−ν(t−s)Gs,tds = 1. Here, the variation of Gs,t over time can be thought of as a form of

intergenerational displacement shock.

Besides that, there also exists a representative �rm paying outDt = (1−ω)Yt in dividends.

Thus, aggregate output is given by
∫ t
−∞ νe

−ν(t−s)ωYtGs,tds+Dt = Yt and it evolves over time
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as follows

dYt/Yt = µY dt+ σY dzt, (1)

where zt is a standard Brownian motion.

2.2 Security Markets and Prices

Agents trade an instantaneously risk-free asset, shares in the representative �rm, and annu-

ities that allow hedging mortality risk in frictionless markets. The instantaneously risk-free

asset is in zero net supply and it evolves over time with dynamics given by

dBt/Bt = rtdt, (2)

where rt denotes the real short rate to be determined in equilibrium.

We normalize the supply of shares in the representative �rm to one. It trades at a price

of Pt, where the return process, Rt, evolves according to

dRt = (dPt +Dtdt)/Pt = µR,tdt+ σR,tdzt, (3)

where µR,t and σR,t are to be determined in equilibrium.

As in Yaari (1965), an annuity contract generates an income stream of νW i
s,t per unit

of time, where W i
s,t is the �nancial wealth at time t of an agent with risk aversion i born

at time s. The annuities are supplied by a competitive insurance industry and all agents

purchase an annuity to insure against longevity risk. To break-even, the insurance industry

receives the �nancial wealth of the deceased agents.

It is convenient to summarize the price system in terms of a stochastic discount factor.

Its dynamics follow

dξt/ξt = −rtdt− θtdzt, (4)

where θt is the price of risk.
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2.3 Preferences and the Dynamics of Wealth

We assume that each generation born at time s consists of a continuum of agents di�ering

from each other with respect to the curvature of their utility functions, which is given by

U i
(
ci
)
= Es

[∫ ζ

s

e−ρ(t−s)
(
cis,t
)1−γi

1− γi
dt

]
, (5)

where E denotes the expectation operator, ζ is the stochastic time of death, ρ is the subjective

time preference rate, cs,t is the instantaneous consumption of generation s at time t, γi is

the coe�cient of relative risk aversion of type i with �nite support over i ∈
[
γ, γ
]
with

0 < γ <= γ <∞.

The dynamics of �nancial wealth, W i
s,t, of an agent of type i born at time s entitled to

the endowment stream yis,t, is

dW i
s,t =

(
rtW

i
s,t + πis,t (µR,t − rt) + νW i

s,t + yis,t − cis,t
)
dt+ πis,tσR,tdzt, (6)

where πis,t denotes the dollar amount invested in the risky security. As agents are born

without �nancial wealth, we have that W i
s,s = 0.

2.4 Heterogeneity within a Generation

Agents are heterogeneous in their risk aversion and in each generation a fraction αit exhibits

a coe�cient of relative risk aversion of γi. Assuming that there is a continuum of agents of

each type, we have ∫
i

αitdi = 1. (7)

Speci�cally, we allow there to be a continuum of types as well as a discrete number of types.

In case we consider a discrete number of types, the integral in Equation (7) is replaced by

a sum. Further, we allow αit to be stochastic and, therefore, the distribution of agent types

can change from period to period. When αit is stochastic, we assume that it is adapted to
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zt.

2.5 In�nitely Lived Agents

It is useful to compare our economy with �nitely lived agents with the more standard in-

�nitely lived agents case. To this end, we consider the limit case with ν = 0. Speci�cally, we

know from the welfare theorems that the marginal utilities of the agents are equated with

constant Pareto weights, i.e., λi (cit)
−γi = λj

(
cjt
)−γj

. Imposing market clearing,
∫
i
citdi = Yt,

implies the following standard equilibrium results.

Proposition 1. Consider an economy with in�nitely lived agents, then the optimal con-

sumption of an agent of type i is only a function of aggregate output at that point in time:

cit = ci (Yt) . (8)

Further, aggregate risk aversion and prudence are only a function of aggregate output at that

point in time:

Rt = R (Yt) , (9)

Pt = P (Yt) , (10)

where R is monotonic with following limits: limY→∞ [Rt] = γ and limY→0 [Rt] = γ. Impor-

tantly, aggregate risk aversion can be inverted to serve as state variable, that is,

Yt = (Rt)
−1 , (11)

and aggregate prudence can be expressed as a function of aggregate risk aversion

Pt = P (Rt) . (12)
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In applied work, see for instance the seminal work of Dumas (1989), typically the Pareto

weights are chosen directly and this implies the initial wealth distribution. However, even

for a given initial wealth distribution one can solve a �xed point problem to �nd a set of

corresponding Pareto weights. A consequence of the above is that the consumption share

distribution does not serve as a state variable since aggregate output is su�cient. As we show

below, in the OLG economy the aggregate output is not su�cient to derive the consumption

share distribution anymore.

2.6 Equilibrium

Since after birth, the market is dynamically complete for each single agent, we solve the indi-

vidual optimization problems by martingale methods as in Cox and Huang (1989). Because

death is independent of output and exponentially distributed, we integrate it out to write

an agent's static lifetime maximization problem as

maxEs

[∫ ∞
s

e−(ρ+ν)(t−s)
(
cis,t
)1−γi

1− γi
dt

]
, (13)

s.t.

Es
[∫ ∞

s

e−ν(t−s)
ξt
ξs
cis,tdt

]
= Es

[∫ ∞
s

e−ν(t−s)
ξt
ξs
yis,tdt

]
= H i

s,s, (14)

where H i
s,s is the endogenous present value of lifetime earnings for an agent born at time s

with risk aversion γi.

At time s, the �rst order condition (FOC) from the martingale solution for all agents

born at time s implies

cis,s = [κi,s]
−1/γi , (15)

whereas at time t, the FOC for all agents born at time s implies

cis,t =

[
eρ(t−s)

ξt
ξs
κi,s

]−1/γi
, (16)

9



where κi,s is the Lagrange multiplier of the optimization problem of an agent i born at time

s. The Lagrange multiplier relates to the initial consumption through cis,s = κ
−1/γi
i,s .

In equilibrium, markets must clear and, thus, after integrating over the times of birth

and over agent types, we have that

∫ t

−∞

(∫
i

cis,tα
i
sdi

)
νe−ν(t−s)ds = Yt, (17)

formally stating that the sum of all individuals' consumption equals aggregate output.

To help manipulate the market clearing condition, we de�ne the aggregate consumption

of cohort s, Cs,t, and the aggregate consumption of agent type i, Ci
t , as follows

Cs,t =

∫
i

cis,tα
i
sdi, (18)

Ci
t =

∫ t

−∞
cis,tα

i
sνe
−ν(t−s)ds, (19)

f it =
Ci
t

Yt
, (20)

where f it denotes the share of consumption of agent type i in aggregate consumption at time

t.

De�nition 1. Let τi = 1
γi

denote the risk tolerance of agents of type i. We de�ne the

consumption share weighted moments of order k as

Et
(
τ k
)
=

∫
i

f it τ
k
i di. (21)

The relative risk aversion is given by

Rt = Et (τ)−1 , (22)
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and the relative prudence Pt is given by

Pt =
(
Et (τ 2)
Et (τ)2

+Rt

)
. (23)

Aggregate risk aversion in heterogeneous risk aversion models is bounded between the

risk aversion of the individual agents. This, however, is not the case for aggregate prudence

as discussed for instance in Wang (1996) and Bhamra and Uppal (2014).

The next corollary provides a novel characterization of prudence.

Corollary 1. Aggregate prudence in Equation (23) can be rewritten as

Pt = (1 +Rt) +
Vt (τ)
Et (τ)2

, (24)

where Vt (τ) = Et (τ 2)−Et (τ)2 is the consumption share weighted cross-sectional variance of

the risk tolerance.

Hence, the prudence is higher in the heterogeneous risk aversion economy as long as the

consumption share distribution is not concentrated on one agent type. The characterization

in Corollary 1 is general but we emphasize that only in an OLG framework with more than

two types R and P can move independently.

Next, consider the individual consumption, cis,t, of an agent of type i born at time s. Given

the optimal consumption in Equation (16) and the dynamics of the stochastic discount factor

in Equation (4), we have the following.

Proposition 2. Consider the consumption of an agent of type i born at time s. The dy-

namics of the consumption follows

dcis,t = µci,tc
i
s,tdt+ σci,tc

i
s,tdzt, (25)
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where

µci,t =
Rt

γi
(µY + ν (1− βt)) +

1

2

Rt

γi

(
Rt

γi
− Et (τ

2)

Et (τ)2

)
σ2
Y , (26)

and

σcis,t =
Rt

γi
σY . (27)

According to the proposition, the drift and di�usion coe�cients of the individual con-

sumption growth do not depend on the date of birth. Hence, all agents of same type have

the same consumption dynamics. Moreover, from the consumption dynamics in Proposi-

tion 2, we can see that the volatility of the consumption is decreasing in the risk aversion.

In addition, the expected consumption growth depends on two components. The �rst part,

Rt

γi
(µY + ν (1− βt)), shows that an agent with high risk aversion relative to the consumption

share weighted harmonic mean, Rt, has a lower expected consumption growth. Of course, in

this case, it is actually not the risk aversion per se, but instead the elasticity of intertemporal

substitution that drives this result. We stress that the expected consumption growth is that

of the agents currently alive and, therefore, it will be di�erent from the aggregate endowment

growth unless newborns consume all their endowment.

As all agents of the same type have the same dynamics for their consumption, the total

consumption of all agents of a speci�c type only di�er from the individual dynamics by the

birth and death of agents of that type. This is illustrated in the next corollary.

Corollary 2. The dynamics of the total consumption of agents of type i is

dCi
t =

(
ν
(
αitc

i
t,t − Ci

t

)
+ µci,tC

i
t

)
dt+ σcis,tC

i
tdzt. (28)

Computing the dynamics of the stochastic discount factor requires the consumption

shares of each agent type, f it =
Ci

t

Yt
. Thus, the next proposition characterizes the dynamics

of the consumption shares.
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Proposition 3. The dynamics of consumption share i is

df it = µf i,tdt+ σf i,tdzt, (29)

where

µf i,t = ν
(
αitβ

i
t − f it

)
+ f it

((
Rt

γi
− 1

)
µY + ν

Rt

γi
(1− βt) +

(
1− 1

2

Rt

γi
Pt +

1

2

(
1 +

1

γi

)
R2
t

γi
− Rt

γi

)
σ2
Y

)
, (30)

and

σf i,t = f it

(
Rt

γi
− 1

)
σY , (31)

and where βit =
cit,t
Yt
.

Inserting the FOC at time t into the market clearing at t yields

∫ t

−∞

(∫
i

[
eρ(t−s)

ξt
ξs
κi,s

]−1/γi
αis,tdi

)
νe−ν(t−s)ds = Yt, (32)

which we rewrite as

∫ t

−∞

∫
i

νe−ν(t−s)cise
−ρ(t−s)/γi

[
ξt
ξs

]−1/γi
dids = Yt, (33)

where cis = [κi,s]
−1/γi αis is the initial consumption of agents' of type i at time s, i.e., at the

time of entering the economy. An application of Ito's lemma to both sides of Equation (33)

and equating the drift and di�usion terms yields the dynamics of the stochastic discount

factor.

Proposition 4. The real short rate is

rt = ρ+RtµY −
1

2
RtPtσ2

Y +Rtν (1− βt) , (34)

13



where

βt =
Ct,t
Yt
. (35)

The market price of risk is

θY,t = RtσY . (36)

From Proposition 4, we see that the market price of risk takes the standard form in

economies with heterogeneous risk aversion as discussed in Ehling and Heyerdahl-Larsen

(2017). The risk-free rate also has a similar form as in an economy with heterogeneous

preferences and in�nite life except for the last term, Rtν (1− βt). This term is related to

the birth and death of agents in the economy. From Equation (35), we see that βt is the

ratio of the consumption of the newborn agents to the consumption of the total population.

Hence, when βt > 1 newborns consume on average more than the rest of the population.

Whenever the average consumption of the newborns di�ers from aggregate consumption, then

the interest rate deviates from the interest rate in an in�nitely lived economy. Speci�cally,

when βt > 1, the average consumption of the newborns are higher than the total, implying

that the average consumption growth of the agents already in the economy has to be lower

than the aggregate output growth, µY . As the interest rate is determined by the agents

already present in the economy and not the newborns, the consumption growth is lower and,

therefore, the interest is also lower due to the intertemporal smoothing motive as discussed

in Garleanu and Panageas (2015).

Using the consumption share weighted cross-sectional variance of the risk tolerance, the

next lemma relates the risk-free rate in the homogeneous preferences case to the heteroge-

neous preference case.

Lemma 1. Consider a homogeneous agent economy with a coe�cient of relative risk aversion

of γ. Let the real risk-free rate in this economy be rHt = ρ+γµY − 1
2
γ (1 + γ)σ2

Y +γν
(
1− βHt

)
,

where βH is the average consumption of the newborns relative to the total consumption in

this economy. Consider a heterogeneous agent economy at time t with Rt = γ and real risk

14



free rate of rt, then the di�erence between the real rates in the two economies is

rt − rHt = γ
(
βt − βHt

)
− 1

2
γ
Vt (τ)
Et (τ)2

σ2
Y . (37)

Moreover, the market prices of risk are the same in the two economies.

From Lemma 1, we see that the di�erence in the real rates is due to the overlapping

generations structure and the prudence. Importantly, the real rate in the heterogeneous agent

economy is as if there is a representative agent that has desire to increase the precautionary

savings when the consumption share weighted cross-sectional variance goes up. Hence, for

a �xed level of relative risk aversion, the interest rate is decreasing in the cross-sectional

variance of the risk tolerance.

2.7 Curse of Dimensionality

In Proposition 3, the dynamics depends on βit which is determined through the initial con-

sumption of each agent when born. However, to solve for the initial consumption one has

to solve for the optimal consumption-to-wealth ratio and the initial wealth. To this end,

consider the consumption-to-wealth ratio of an agent born at time s of type i

φis,t =
cis,t

W̃ i
s,t

, (38)

where W̃ i
s,t = Hs,t + W i

s,t denotes the total wealth of the agent. One can show that the

consumption-to-wealth ratio is independent of the time of birth, that is φis,t = φit for all

s ≤ t. Hence, the initial consumption of an agent born at time s of type i can be written as

cit,t = φitHt,t. (39)

One could write down the pricing equation and express the problem as a system of partial

di�erential equations (PDEs). However, this depends on the entire consumption share dis-
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tribution, so an economy with N di�erent agent types i = (1, . . . , N) leads to a system of

PDEs with N−1 independent variables. Even for small N , this becomes quickly infeasible to

solve. This is speci�c to the overlapping generations (OLG) setting as there is a subtle form

of incompleteness in the OLG economy. Agents not born yet cannot hedge against being

born in a bad time. Therefore, the constant Pareto weight representation from an economy

with in�nitely lived agents is not feasible in general. The Pareto weights in the OLG econ-

omy are related to the Lagrange multipliers κis, which themselves depend on the state of the

economy at time s. As discussed, in the in�nitely lived agent economy this state dependency

is not present. Another way to see this is to consider the dynamics of the consumption share

in Proposition 3 when ν approaches 0, which corresponds to the in�nitely lived economy. In

this case, the dependence on βi disappears and the system is only a forward system. Thus,

for a given initial consumption share distribution it can be easily simulated forward. When

ν 6= 0 this is no longer possible as βit depends on the valuation ratios at time t, which again

depend on the entire consumption share distribution in the future.

2.8 A Solution to the Curse of Dimensionality through a Local

Pareto Weight Representation

Once we have ν 6= 0, then the fraction of each type born every period, αit, becomes an

additional state variables. Consider the total consumption of all newborns at time t

Ct,t =

∫
i

αitc
i
t,tdi, (40)

and de�ne the within cohort consumption share among the newborns as

λit =
αitc

i
t,t

Ct,t
. (41)

Therefore,
∫
i
λitdi = 1 for all t. We make two assumptions.
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Assumption 1. We posit that the dynamics of αi and Gs,t for s ≤ t, such that the following

two assumptions hold

1. λit = λi (time invariant within cohort scaled Pareto weight);

2. Ct,t = βYt (time invariant consumption share of newborns).

Assumption 1 greatly simpli�es the solution of the model. The key here is that we use

the α processes to control the intragenerational importance of the di�erent agents and the

Gs function to control the intra-generational allocations. For instance, consider an economy

with N agent types. In this case, we need N − 1 degrees of freedom to match the λi weights

and one degree to match the β. Speci�cally, it implies that αitβ
i
t = αit

cit,t
Yt

= αit
cit,t
Ct,t

Ct,t

Yt
= λiβ.8

When Assumption 1 is satis�ed, we have that the consumption shares in Proposition

3 only depend on Rt and Pt, both known functions of ft, and the consumption shares

themself. A consequence of this is that the dynamics of the consumption shares is only a

forward system and, therefore, one can easily simulate it. Further, the stochastic discount

factor is also easy to simulate forward as it only depends on the consumption shares since

βt = β. This makes it feasible to use Monte-Carlo simulations to solve for valuations such as

individual wealth and stock prices, and numerical analysis will not su�er as much from the

curse of dimensionality. Moreover, as we will show in the next section, in combination with

Malliavin calculus one can explicitly characterize the dynamics of stock prices and portfolios

with low computational cost.

2.9 Stock Price and Return Dynamics

Since the stock market is the claim to the aggregate dividends, Dt, we have that Pt =

Et
[∫∞

t
ξs
ξt
Dsds

]
. As ξtPt +

∫ t
−∞

ξs
ξt
Dsds = Et

[∫∞
−∞

ξs
ξt
Dsds

]
is a local martingale, we can

apply the Clark-Ocone formula to �nd return dynamics.

8Further details including proofs and extensive numerical analysis are available in a companion paper
(Ehling, Guo, Heyerdahl-Larsen, and Illeditsch (2021)).
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Proposition 5. The stock market return process, Rt, evolves as

dRt = µR,tdt+ σR,tdzt, (42)

where

µR,t = rt + θtσR,t, (43)

with

σR,t = σY −
Et
[∫∞
t
ξsDs

∫ u
t
(Dtru + θuDtθu) duds

]
Et
[∫∞
t
ξsDsds

] , (44)

and where DtXu denotes the Malliavin derivative at time t of Xu.

From Proposition 5, we see that the loading on the consumption shock, σR,t, depends as

expected on the output volatility σY . In addition, the second term takes into account how

a consumption shock changes the discount rate through the market price of risk and the

real short rate in the future. This is captured by the Malliavin derivatives.9 Intuitively, if a

consumption shock increases the future real interest rate or the market price of risk, keeping

everything else constant, this will tend to lower the returns. However, as one can see from

Equation (44), it is the product between the discounted cash �ows ξtDt and the Malliavin

derivative that matters and, therefore, if the response of a shock today on the future real

short rate or market price of risk (captured through the Malliavin deriavatives) covaries with

the discounted cash �ows this will impact the loading of the returns. Keeping everything

else �xed, a higher covariance between the discounted cash �ows, ξtDt, and the response in

the discount rate, the lower σR,t, will be. To evaluate the expectation in Equation (44) the

Malliavin derivatives of the interest rate and the market price of risk have to be calculated.

To this end, note that both the risk free rate and the market price of risk are functions of

9Malliavin derivatives, Nualart (1995), were introduced to economics and �nance in Detemple and Zap-
atero (1991).

18



the consumption shares:

Dtru =

∫
i

∂ru
∂f i

Dtf
i
udi, (45)

Dtθu =

∫
i

∂θu
∂f i

Dtf
i
udi. (46)

Hence, as long as we know the dynamics of the Malliavin derivatives of the consumption

shares, the expectations can be easily evaluated by Monte-Carlo simulations.

Proposition 6. Let Lkt,u = Dtf
k
u , we have that

dLkt,u =

(∫
i

∂µf i,u
∂f i

DtL
i
t,udi

)
dt+

(∫
i

∂σf i,u
∂f i

DtL
i
t,udi

)
dzt, (47)

where Lkt,u = σf i,t and the expressions for µf i,t and σf i,t are as in Proposition 3.

From Proposition 6, we can see that the Malliavin derivatives of the consumption shares

form an autonomous system of stochastic di�erential equations. For a �nite number of agent

types, the dynamics of the Malliavin derivatives can then be easily simulated.

3 Numerical Analysis

3.1 Parameters

We present numerical examples with 10 agent types, where we set the lowest risk aversion

to the 5th percentile (1.9) and the highest risk aversion to the 95 percentile (19.5) from the

survey imputed risk aversion in Kimball, Sahm, and Shapiro (2008) and assign equal weight

to each agent type. The percentiles of risk aversion and corresponding weights are shown in

Table 1.

Besides the values for relative risk aversion and the initial Pareto weights, which we

also use for the benchmark case with in�nite life, our model has another six parameters

(ρ, ν, µY , σY , ϕ, β). As in Garleanu and Panageas (2015), we use a time discount factor, ρ,
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of 0.001, and a hazard rate, ν, of 0.02. The drift, µY , and volatility, σY , of aggregate output

are 2% and 3%, respectively. We set the leverage of the consumption claim, ϕ, to 3 where

the aggregate stock market is the claim to Y ϕ
t . The ratio of the consumption of the newborn

agents to the consumption of the total population, β, is 1.65. We employ it to match the

real short rate.

With these parameter values, summarized in Table 2, the equity premium on the lever-

aged claim is 1.4% with a standard deviation of 10.2%. Thus, the model does not match

the equity premium because the average risk aversion in our economy is 4.6. To increase the

equity premium one would have to increase the weight on the more risk averse agents in the

economy. The average real interest rate is matched at 2.1%.

3.2 Consumption Shares
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Figure 2: Consumption Shares. The left, middle and right panel in the �gure plot the
consumption shares for the �rst agent (lowest risk aversion), the �fth agent, and the tenth
agent (highest risk aversion) in our OLG model as a function of the aggregate risk aversion,
R. The red line is a nonlinear regression of the consumption shares on the aggregate risk
aversion to capture the non-monotonic relation for agents in the middle of the risk aversion
distribution.

Figure 2 plots the consumption shares of three of the agents as a function of aggregate

risk aversion. The left (right) plot shows the agent with the lowest (highest) risk aversion.

As expected, the consumption share is decreasing (increasing) as a function of the aggregate

risk aversion just as in an economy without overlapping generations. The middle plot shows

the consumption share of agent �ve. Here we see that the relation between the aggregate
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Table 1: Risk Aversion with Initial Pareto Weights. Percentiles of survey imputed risk
aversion in Kimball, Sahm, and Shapiro (2008) with our uniform initial baseline weight (λ).

Percentile Risk aversion Initial baseline weight (λ)
5 1.9112 0.10
15 2.9716 0.10
25 3.8638 0.10
35 4.7656 0.10
45 5.7534 0.10
55 6.9041 0.10
65 8.3352 0.10
75 10.2806 0.10
85 13.3675 0.10
95 19.4695 0.10

Table 2: Parameters.
Parameter Value Description

ρ 0.001 Time discount factor
ν 0.02 Hazard rate
µY 2% Drift term of aggregate output
σY 3% Di�usion term of aggregate output
ϕ 3 Leverage of consumption claim
β 1.65 Ratio of consumption of the newborn agents to total consumption
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risk aversion and the consumption share is much weaker. There are two reasons for this.

First, the relation is non-monotonic as the consumption volatility is lower than the aggregate

consumption volatility when the aggregate risk aversion is low and higher than aggregate

consumption volatility when the aggregate risk aversion is high. This is also true for an

economy without overlapping generations. However, we see that the consumption share

can take many values for a �xed value of the aggregate risk version. This is unique to the

overlapping generations economy, where there are N − 1 state variables in an economy with

N types of risk aversion.

To illustrate the importance of the additional state variables, Table 3 shows the R2 from

two di�erent regressions. The �rst is based on a non-linear regression of the consumption

shares on the aggregate risk version. This captures the red line in Figure 2, but for all the

10 agents types. As we can see, the risk aversion captures the lion's share for the agents

with either high or low risk aversion. However, for the agents in the middle this is not

the case. Yet, once we also include the consumption share weighted variance of the risk-

tolerance, V (τ), even for agent �ve, the R2 reaches 97.92%. Hence, although there are N−1

state variables, the aggregate risk aversion, R, and the cross-sectional variance of the risk

tolerance, V , capture most of the variation.

Figure 3 shows the loadings of the consumption shares on the aggregate risk aversion,

bR and the cross-sectional consumption share weighted variance of the risk tolerance, bV . In

the regression, we orthogonalize the variance to capture the independent variation in the

cross-sectional variance of the risk tolerance. From the �gure, we can see a positive relation

between the risk aversion of the agents and the aggregate risk aversion. The loading on

the cross-sectional variance is hump-shaped. Independent variations in V (τ) increases the

consumption share of the high and low risk aversion agents while it decreases the consumption

share of agents with an intermediate risk aversion.

The fact that the cross-sectional variance V (τ) is important for the consumption shares

has asset pricing implications. Consider the di�usion coe�cient of the stock market, σR,t.
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Table 3: R2 for Consumption Share Regressions. The table shows the R2 from two
regressions. The �rst is a non-linear regression of the consumption shares on the aggregate
risk aversion, R and the second is from regressing the consumption shares on aggregate risk
aversion and the consumption share weighted variance of the risk tolerance.

Agent Non-linear R R and V (τ)
1 99.96 99.91
2 97.14 99.45
3 92.57 99.35
4 84.76 99.07
5 63.34 97.92
6 78.25 98.40
7 98.93 99.77
8 99.86 99.93
9 99.02 99.93
10 98.00 99.89
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Figure 3: Consumption Share Regression Coe�cients. The �gure shows the relation
between the consumption shares and the aggregate risk aversion R on the left axis and the
(orthogonalized) consumption share weighted cross-sectional variance of the risk tolerance
V (τ) on the right axis.
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Regressing this volatility on aggregate risk aversion using a non-linear regression to capture

non-monotonicity leads to an R2 of 82.79%. This would be 100% in an economy with

in�nitely lived agents. Including the variance V (τ) increases the R2 to 98.25%. The loading

on the independent variation in the variance V (τ) is positive. Hence, as the consumption

shares of the agents with high and low risk aversion increases at the expense of the agents

with intermediate risk version the stock market volatility goes up. As the price of risk is

only driven by the aggregate risk aversion, this implies that expected excess returns are

higher in states with high consumption share weighted variance in the risk tolerance (for

�xed aggregate risk aversion).

3.3 Predictive Regression

The previous subsection shows that the independent variation in the consumption share

weighted cross-sectional variance of the risk tolerance, V (τ), is important for the variation

in the consumption shares. Moreover, given the impact on the expected excess return, an

implication of our model that di�ers from previous models with heterogeneous risk aversion

is that this independent variation should predict returns. Unfortunately, we do not observe

the independent variation in V (τ). To this end, we note that agents with di�erent risk

aversion load di�erently onto the aggregate risk aversion, Rt, and the cross-section variation

V (τ) as illustrated in Figure 3. From this �gure, we see that the most risk tolerant agent,

agent 1, loads negatively on the aggregate risk aversion. Moreover, both the high and the

low risk aversion agent load positively on the cross-sectional variance, while the agents in

the middle of the risk aversion distribution load negatively. Therefore, we can construct a

�level� and �slope� factor. Speci�cally, we de�ne the level factor as the consumption share

of the most risk tolerant agent. This has a correlation with the aggregate risk aversion of

−97.29%. We de�ne the �slope� factor as the sum of the consumption share of the most and

least risk tolerant agents minus the median agent (agent 5) in our model. This measure has

a correlation with the orthogonal component of the cross-sectional variance of 95.25% in our
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simulation using 10, 000 years. Hence, given the model we can closely match the two factors,

Rt and the independent variation in V (τ), by using the level and slope factor. The bene�t

of this is that we do not need to know the actual risk tolerance of the agents.

To �nd a proxy in the data for the level and slope factor, we use for the level the log

wealth share of Forbes 400 (the top 400 richest people in Forbes list) and for the slope the

wealth share of Forbes 400 plus the wealth share of the top 10% group minus the wealth

share of the top 0.1%.10 We use the sample period from 1982 to 2019 because the wealth

share of Forbes 400 is available since 1982.

The level factor is the same as used by Gomez (2019). He uses this to test the implications

of a model with heterogeneous risk aversion, where the di�erence to our paper is that he

considers two agents and, hence, the level factor is su�cient to capture the dynamics of

risk premia in his model. As we showed above, this is no longer su�cient in a multi-agent

overlapping generations model. Thus, we include the slope factor.

In Tables 4 and 5, we run univariate and bivariate regressions, respectively, with annual

excess returns as dependent variable. From the tables, we can see that both the level and

the slope have predictive power. Speci�cally, the higher the level the lower the returns which

is consistent with the model, where a higher wealth share indicates goods times and low

risk aversion. The slope produces a positive sign, also consistent with the model. Further,

the wealth share shows similar economic signi�cance relative to risk aversion: An increase

in the wealth share by one standard deviation raises the annual excess returns by 29.4% of

its standard deviation while an increase in risk aversion by one standard deviation decreases

the annual excess return only by 24.2% of its standard deviation.

10These wealth share data are used in Saez and Zucman (2016). See http://gabriel-zucman.eu/uswealth/
for a detailed construction of the wealth share data.
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4 Conclusion

Investors di�er in their risk tolerance and it is well known that this has implications for asset

prices and trading behavior. The extant literature focuses mainly on the case of in�nitely

lived investors or more recently on agents with �nite life in overlapping generations models.

However, the overlapping generations models in the literature have focused on the two agent

setting. Models with in�nitely lived agents or two-agent type in overlapping generation

models have in common that they can be described by a single state variable � the aggregate

risk aversion. However, once we go beyond two agents in an overlapping generations setting,

the number of state variables is given by N−1 for an economy with N agents. We then show

that even with a very high number of state variables, most of the variation in consumption

shares, and hence asset prices, can be captured by the aggregate risk aversion and the cross-

sectional variance of the risk tolerance. Next, we show that the agent with the highest and

the lowest risk tolerance respond di�erently to this factor than agents with intermediate risk

tolerance. Moreover, variations in the cross-sectional variance impact the excess returns in

the economy, where a higher cross-sectional variance is associated with a higher risk premium

on the aggregate market. We verify this implication of our model by using data on the wealth

distribution and show that not only the level, but also the slope predicts returns.
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Table 4: Univariate Regressions. The table shows the standardized estimated coe�cients,
t-statistics (Newey-West corrected with 12 lags) and R2 for the univariate regression. The
second row is obtain by regressing annual excess return on level while the third row is
obtained by regressing annual excess return on the slope factor. The sample is from 1982 to
2019.

b t-stat R2

level -0.305 -4.556 0.067
slope 0.346 2.939 0.095

Table 5: Bivariate Regressions. The table shows the standardized estimated coe�cients,
t-statistics (Newey-West corrected with 12 lags) and R2 for the joint regression, where we
regress annual excess return on level and on the slope factor. The sample is from 1982 to
2019.

b1 t-stat b2 t-stat R2

level -0.242 -2.816 0.127
slope 0.294 2.146
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