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Abstract

In this thesis we construct a general equilibrium monetary model for pricing gov-

ernment zero bonds when agents are cash constrained. The following results emerge

from our analysis. For any positive inflation rate, bonds are essential to economies in

improving the allocation. The efficiency improvement results from the possibility that

some agents can deposit their idle money and earn positive interest. The main driving

forces of the price development of the bonds are the relative number of consumers and

producers in the economy and the efficiency of trades. We offer the results of differ-

ent techniques used to check our approach and observe that the price development

explained by our model proves competent in providing some forecasting capacity.

Furthermore, we offer advice on the practical implementation of our results.

1 Introduction

Lagos and Wright [24] develop a divisible money model that provides a microfounda-

tion for money demand and enables the introduction of heterogeneous preferences for

consumption and production while still keeping the distribution of money balances an-

alytically tractable. Berentsen, Camera and Waller [3] show that credit (or inside bonds)

can improve the monetary allocation in the Lagos and Wright [24] framework since it

allows agents to borrow or lend money depending on their liquidity needs. In a later

paper Berentsen and Waller [7] show that under the best policies the allocation with

outside bonds strictly dominates the allocation with inside bonds since a government

can always print money to repay its loans, implying that there is no counterparty default

risk. In both models the source of the efficiency improvement results from the possibility

that some agents can deposit their idle money and earn positive interest.

We use these results and construct a general equilibrium model where we extend the

basic framework in Berentsen and Waller [7] with zero bonds. Zero bonds are offered

by the government and have different maturities. This allows us to model the term

structure of interest rates when agents are budget constrained. As in Kocherlakota [21],

we assume that the outside bonds are illiquid in the sense that they cannot be used as a

medium of exchange in the goods market. We assume additionally that the government

has restricted collection power so that it cannot impose taxes or run a deflation since this

requires the lump-sum taxation of money balances.

We show that for any positive inflation rate, bonds are essential and improve the al-

location by providing the possibility that some agents can deposit their idle money and

earn positive interest. We analyze two possible cases: one where consumers and pro-

ducers carry both money and bonds into the second market; the other where consumers

carry only money and producers carry only bonds. In the first case trades are efficient

and the optimal policy is the Friedman rule, implying that bonds are useless. In the
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second case consumers are budget-constrained. Here the price of bonds is a decreasing

function of maturity and the real interest rate. Further the price of bonds depends on the

efficiency of trades and the relative number of consumers and producers in the economy.

The economics underlying this finding is quite intuitive. First, the less efficient an econ-

omy is, causing marginal utility to be greater than marginal cost, the more expensive

bonds are. This follows from the higher value for the producer of depositing a marginal

unit of an idle balance. That is because the inflation protecting role of bonds increases

and so the price rises. Second, the more consumers there are in the economy, the more

the bond price increases. This is due to the greater production of producers which im-

plies more idle money balances for investment, in turn, resulting in a higher demand for

bonds.

This approach allows us to explain a flat yield curve of the term structure of inter-

est rates and the shifts which occur. Further we include no-arbitrage conditions in the

pricing of bonds with different maturities and show how to express the bond price as a

function of all endogenous as well as exogenous variables.

The literature on the term structure of interest rates is vast and dates back at least

as far as Lutz [26]. He describes the no-arbitrage conditions that have to hold under

the assumption of forecasting and no investment costs. We include these no-arbitrage

conditions in our approach. Lutz further explains how the term structure behaves in dif-

ferent environments and describes graphically the equilibrium of demand for long and

short-term bonds under the assumption that different market participants have different

expectations. He finds that the more elastic the demand curves for these bonds are, the

smaller the term spread is. As a consequence of our environment, we are not able to

explain the term spread since we can only model a flat yield curve of the term structure.

Cox, Ingersoll and Ross [12] develop an intertemporal general equilibrium asset pric-

ing model to study the term structure of interest rates (CIR-model, hereafter). In their

CIR-model they include many traditionally mentioned factors influencing the term struc-

ture of interest rates. In the CIR-model time is continuous, while in our model it is

discrete. With their single factor model they gain similar results to ours; namely, the

description of the bond price as a decreasing function of the interest rate and of matu-

rity. The less efficient an economy is, the higher risk-averse investors value the guaran-

teed redemption of a bond and the higher its price is driven. While we are only able to

construct a flat-shaped term structure, they can also construct rising, falling and hump-

shaped term structures. The factors they use are based on the current yield curve, since

they assume that all the information that is currently known about future movements of

interest rates is already embodied in the actual term structure. As a consequence the cur-

rent bond price is derived endogenously; however, we are able to derive it exogenously

as well.
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In a later paper Duffie and Kan [14] extend the CIR-model to a multivariate approach

and use an arbitrage-free multifactor model to price zero bonds. They still derive the

bond price endogenously.

Nelson and Siegel [28] use a parsimonious model that is flexible enough to represent

the range of shapes generally associated with yield curves. In their approach they fit

observed yield curves using a second-order model with factors composed of the slope

and the maturity of the examined yield curve. They are not able to deliver a cause-and-

effect relationship.

Campbell and Shiller [10] find that a high term spread forecasts rising short-term in-

terest rates over the long term, but declining long-term interest rates over the short term.

They find that the variations in the term spread are due primarily to sudden movements

in short rates and that long rates react too slowly. Hence, the movements of the term

spread are too large to accord with the expectations theory of the term structure. Their

results are too complex to introduce in our framework.

Our approach differs from all previous literature in that we provide a microfounda-

tion of the term structure of interest rate in a general equilitbrium monetary model.

The remainder of this thesis is organized as follows. In Section 2 we describe the

environment. We report and discuss the empirical results in Section 3 and Section 4

concludes.

2 The Environment

Our environment is based on the framework of the divisible money model in Lagos and

Wright [24]. There is a [0, 1] continuum of infinitely lived agents. Time is discrete and

the model is basically extended as in Berentsen and Waller [7]. In each period there are

three perfectly competitive markets which open sequentially.

The first market is an asset market where agents trade money for bonds as in Berentsen,

Camera and Waller [3]. The second market is a goods market where agents trade money

for market 2 goods. In the third market all agents consume and produce and readjust

their portfolios.

At the beginning of the first market agents receive a preference shock that determines

whether they can produce or consume in the second market. With probability (1� n) an

agent can consume and cannot produce. With probability n an agent can produce and

cannot consume. We refer to consumers as buyers and to producers as sellers. Buyers

learn that they will get utility u (q) from q consumption in the second market, where

u0 (q) > 0, u00 (q) < 0, u0 (0) = ∞, and u0 (∞) = 0. Sellers in the second market incur

a utility cost c(q) = q from producing q units of output. To motivate a role for fiat

money, we assume that all goods trades in market 2 and 3 are subject to anonymity

which means that agents cannot identify their trading partners. Consequently, trading
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histories of agents are private information and sellers require immediate compensation

so buyers must pay with money.

In the third market all agents produce and consume in a centralized market, getting

U (x) from x consumption of a general good, with U0 (x) > 0, U0 (0) = ∞, U0 (+∞) = 0

and U00 (x) � 0. The difference in preferences over the good sold in the last market

allows us to impose technical conditions such that the distribution of money holdings is

degenerate at the beginning of a period. Agents can produce one unit of the consumption

good x with one unit of labor h which generates one unit of disutility. This implies that

all agents will choose to carry the same amount of money out of market 3, independent

of their trading history. The discount factor across periods is β = 1/(1 + r), where

β 2 (0, 1) and r represents the real interest rate across periods.

At the beginning of period t, agents learn whether they will be sellers or buyers in

market 2. Sellers might want to buy bonds since they have idle money, while buyers

might want to sell bonds since they need money. There are k-types of bonds in the econ-

omy, where k denotes the maturity. These bonds are nominal government debt obliga-

tions that are sold at a price discount ρk,t � 1 in market 3 and mature after k periods. We

assume that the government has a record-keeping technology over bond trades, and acts

as the intermediary in the bond market. Bond holdings are book-keeping entries, so no

physical object exists. This makes these instruments incapable of being used as media

of exchange in market 2: They are illiquid. The government has no record-keeping tech-

nology over good trades. Since agents are anonymous in market 2, a buyer’s promise

to deliver outside bonds to a seller in market 3 is not credible. Consequently, money is

essential for trade in market 2.

In what follows we study a model for discount bonds with a maturity of one and

two periods, that is k = 1, 2. As in Berentsen and Waller [7], we assume that a govern-

ment exists that controls the supply of fiat currency and issues zero bonds. These bonds

are perfectly divisible, payable to the bearer and default free since the government can

always repay its bonds by printing money at no cost. One bond pays off one unit of

currency at maturity. Denote Mt as the end-of-period stock of money supply in period

t, and Bk,t the end-of-period stock of bonds with maturity k issued at time t. Hence the

change in the money supply in period t is described as follows:

Mt � Mt�1 = τt Mt�1 + B1,t�1 + B2,t�2 � ρ1,tB1,t � ρ2,tB2,t + PtGt,

where PtGt is the period-t nominal amount of government spending in market 3, and

Pt is the price of goods in market 3. The total change in the money supply is given by

three components: first, a lump-sum transfer of cash τt Mt�1; second, the net difference

between the cash created to redeem bonds Bk,t�k, and the net cash withdrawal from

selling Bk,t units of bonds at the price ρk,t for any k; and thirdly, the cash printed to

pay for government goods. We assume that there are positive initial stocks of money
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and outside bonds M0, B1,0 and B2,0. For τt < 0 the government must be able to extract

money via lump-sum taxes from the economy. Throughout the paper we assume limited

enforcement so that τt < 0 is not feasible.

To simplify the analysis, we assume Gt = 0 for all t. This implies that all money

creation comes from paying off net nominal bond obligations and the lump-sum gifts of

money τt Mt�1. Consequently the government budget constraint reduces to

Mt � Mt�1 = τt Mt�1 + B1,t�1 + B2,t�2 � ρ1,tB1,t � ρ2,tB2,t. (1)

Divide (1) by Mt�1 and get

γt � 1 = τt +
1

Mt�1

�
B1,t�1 + B2,t�2 � ρ1,tB1,t � ρ2,tB2,t

�
.

Let ηk,t = Bk,t/Bk,t�k be the gross growth rate of bonds with maturity k and γt =

Mt/Mt�1 the gross growth rate of the money supply in period t. Replacing the last

two terms, B1,t and B2,t, and rearranging, the last equation can be rewritten as

γt � 1� τt =
B1,t�1

Mt�1

��
1� ρ1,tη1,t

�
+

B2,t�2

B1,t�1

�
1� ρ2,tη2,t

��
This equation relates the gross growth rate of money γt to the lump-sum gifts of money

τt and the gross growth rate of bonds ηk,t.

In period t, let φt = 1/Pt be the real price of money in market 3. For notational

ease, variables corresponding to the next period are indexed by +1, and variables cor-

responding to the previous period are indexed by �1. We focus on symmetric and sta-

tionary monetary equilibria where all agents follow identical strategies and where real

allocations are constant over time. In a stationary equilibrium, end-of-period real money

balances are time-invariant

φM = φ+1M+1. (2)

Moreover, we restrict our attention to equilibria where γ is time invariant which implies

that γ = φ/φ+1 = M+1/M.

As mentioned before, we analyze an economy with zero bonds with a maturity of one

and two periods. Let V(m, bk) denote the expected value from entering a market with

m units of money and bk units of bonds, where k denotes the maturity. For notational

simplicity, we suppress the dependence of the value function on the time index t. In

what follows, we look at a representative period t and work backwards, from the third

to the first market.
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The settlement market

In the third market agents produce h units of goods using h hours of labor, consume

x units of goods, receive repayment of the maturing zero bonds, adjust their money bal-

ances by trading money for bonds and receive the lump-sum gifts of money τ from the

government. Since in this market the government issues new zero bonds, the agents

have the possibility to buy new bonds or to trade earlier issued bonds between them-

selves. For arbitrage opportunities the price of a bond with a maturity of two periods,

issued one period ago, has to be equal to the price of a newly issued bond with a ma-

turity of one period. An agent entering market 3 with a portfolio (m, b0, b1) solves the

following optimization problem

V3(m, b0, b1) = max
x,h,m+1,b1,+1,b2,+1

[U(x)� h+ βV1(m+1, b1,+1, b2,+1)] (3)

s.t.

x+ φm+1 + φρ1b1,+1 + φρ2b2,+1 = h+ φm+ φb0 + φρ1b1 + τ, (4)

where ρk is the third-market money price of bonds with maturity k, m+1 the units of

money taken into the next period, and bk,+1 the units of type-k bonds taken into the next

period.

Using (4) to eliminate h in (3), one obtains

V3(m, b0, b1) = φ [m+ b0 + ρ1b1 + τ]

+ max
x,m+1,b1,+1,b2,+1

"
U(x)� x� φm+1 � φρ1b1,+1

�φρ2b2,+1 + βV1(m+1, b1,+1, b2,+1)

#
.

The first-order conditions with respect to x, m+1, b1,+1,and b2,+1 are

U0(x) = 1, (5)
β∂V1

∂m+1
= φ, (6)

β∂V1

∂b1,+1
= φρ1, and (7)

β∂V1

∂b2,+1
= φρ2 (8)

where the term β∂V1(m+1, b1,+1, b2,+1)/∂m+1 in (6) is the marginal benefit of taking

money out of market 3 in the next period, and φ is its marginal cost. In competitive mar-

kets, the uniqueness of m+1 is a direct consequence of u00 (q) < 0, therefore all agents

in the third market choose the same m+1. Note that due to the quasi-linearity of the

consumption function b1,+1, b2,+1 and m+1 are independent of b0, b1 and m. As a re-

sult, the distribution of money holdings is degenerate at the beginning of the following

period. Agents who bring too much cash into the third market spend some by buying

goods, while those with too little cash sell goods. From (5) we see that the quantity of
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goods x consumed by every agent is equal to the efficient level x�, where x� is such that

U0(x�) = 1. From (7) and (8) we see that the marginal value of taking a type-k bond into

the next period equals its real price, φρk. Envelope conditions in market 3 are

∂V3

∂m
= φ,

∂V3

∂b0
= φ, and

∂V3

∂b1
= φρ1. (9)

The goods market

Let qB and qS respectively denote the quantities consumed by a buyer and produced

by a seller in market 2. Let p be the nominal price of goods in market 1.

A seller entering market 2 with a portfolio (m, b0, b1) has the expected lifetime utility

VS
2 (m, b0, b1) = max

qS
[�qS +V3(m+ pqS, b0, b1)] . (10)

Using (9), the first order condition is

pφ = 1. (11)

If (11) holds, sellers are indifferent on how much they produce in market 2. Since we

focus on symmetric equilibria, we assume that they all produce the same quantity qS.

A buyer has expected lifetime utility

VB
2 (m, b0, b1) = max

qB
[u(qB) +V3(m� pqB, b0, b1)] (12)

s.t.

pqB � m. (13)

Using (9) and (11), the buyer’s first order condition in market 2 is

u0(qB) = 1+
λq

φ
, (14)

where λq is the multiplier of the buyer’s cash constraint. If the cash constraint is not

binding, trade is efficient (λq = 0). If it is binding, then u0(qB) > 1, which means that

trades are inefficient. In this case, the buyer spends all his money.

Using the envelope theorem, (9), and (14), the marginal values of bonds and the mar-

ginal values of money for buyers and sellers at the beginning of the second market are

∂VB
2

∂b0
=

∂VS
2

∂b0
= φ, (15)

∂VB
2

∂b1
=

∂VS
2

∂b1
= ρ1φ (16)

∂VB
2

∂m
= φu0(qB), and

∂VS
2

∂m
= φ. (17)

Finally, market clearing satisfies

(1� n)qB = nqS. (18)
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The asset market

Let ϕk be the price of a type-k bond in market 1. Note that there are three short-selling

constraints that must be satisfied in market 1; that is, agents cannot sell more bonds or

spend more money than the amount they carry with them from the previous period.

An agent with a portfolio (m, b0, b1) at the opening of the first market has expected

the lifetime utility

V1(m, b0, b1) = (1� n)

"
maxbm, bb0, bb1

VB
2 ( bm, bb0, bb1)

#
+ n

"
maxbm, bb0, bb1

VS
2 ( bm, bb0, bb1)

#
(19)

subject to the budget constraint

φm+ ϕ0φb0 + ϕ1φb1 � φ bm+ ϕ0φ bb0 + ϕ1φ bb1 (20)

and subject to the short-selling constraints

bm � 0, bb0 � 0, and bb1 � 0. (21)

where “ˆ” denotes market 2 variables, λj the Lagrange multiplier on (20), and λ
j
m, λ

j
0 and

λ
j
1 the Lagrange multipliers on (21) for j = B, S. The first order conditions in market 1

are

∂V j
2

∂ bm � φλj + λ
j
m = 0,

∂V j
2

∂ bb0
� ϕ0φλj + λ

j
0 = 0, and (22)

∂V j
2

∂ bb1
� ϕ1φλj + λ

j
1 = 0

where j = B, S indicates the agent’s type.

Now, apply the envelope theorem to (19), and get

∂V1

∂m
= (1� n) φλB + nφλS (23)

∂V1

∂b0
= (1� n) φϕ0λB + nφϕ0λS, and (24)

∂V1

∂b1
= (1� n) φϕ1λB + nφϕ1λS. (25)

Consider a seller first. If i < 0, then bbk = �bk, and he wants to sell all his bonds for

money in market 1. A buyer also wants to sell all his bonds for money since he needs

cash for consumption. This obviously cannot be an equilibrium. Hence a seller always

carries bonds into market 2, that is λS
k = 0 for any k when i � 0. Consider now a buyer.

Since the Inada conditions are assumed on u(q), he will always carry some money into

market 2, that is λB
m = 0.

9



Now we can have two possible cases: one where buyers and sellers carry both money

and bonds into the second market; the other where buyers carry only money and sellers

carry only bonds. Let us now analyze the two cases separately.

The asset market. Unconstrained case

Sellers carry a strictly positive amount of money into market 2, that is m̂ > 0 which

implies λS
m = 0. Buyers carry strictly positive amounts of bonds into market 2, that is

b̂0 > 0 and b̂1 > 0 which implies λB
0 = λB

1 = 0.

Using (15)-(17), for a seller (22) becomes

λS = 1, ϕ0λS = 1, and ϕ1λS = ρ1. (26)

From the first and second condition we have ϕ0 = 1, while from the second and third

condition we have ϕ1 = ρ1.

Analogously, for a buyer (22) becomes

λB = u0(qB), ϕ0λB = 1, and ϕ1λB = ρ1. (27)

Note from the second equation in (26) and (27) that λB = λS. From the first equation in

(26) and (27) this implies u0(qB) = 1.

Using λB = λS = 1 into (23), one gets ∂V1/∂m = φ. Now, replace ∂V1/∂m using (6)

lagged one period to get the Friedman rule

γ

β
= 1 (28)

where we have also used γ to eliminate φ�1 and φ. Similarly, use λB = λS = 1 in (24), to

get ∂V1/∂b0 = φϕ0. Now, replace ∂V1/∂b0 using (7) lagged one period to get

γ

β
=

ϕ0
ρ1,�1

=
1

ρ1,�1
(29)

where we have used (26) to replace ϕ0. From comparison of (28) and (29), we have

ρ1,�1 = 1. Similarly, use λB = λS = 1 in (25), to get ∂V1/∂b1 = φϕ1. Now, replace

∂V1/∂b1 using (8) lagged one period to get

γ

β
=

ϕ1
ρ2,�1

=
ρ1

ρ1,�1
(30)

where we have used (26) to replace ϕ1. From comparison of (28) and (30), we have ρ1 =

ρ1,�1 = 1. These results are straightforward. With the Friedman rule1 (γ = β) agents do

1“According to the logic of the Friedman rule, the opportunity cost of holding money faced by private

agents should equal the social cost of creating additional fiat money. Therefore, nominal rates of interest

should be zero. In practice, this means that the central bank should seek a rate of deflation equal to the

real interest rate on government bonds and other safe assets, in order to make the nominal interest rate

zero.”(http://en.wikipedia.org/wiki/Friedman_rule [01.12.2009])
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not need to protect themselves against the inflation tax, hence bonds are inessential. If

γ = β, bonds and money are perfect substitutes, and therefore the price of bonds is 1.

With the Friedman rule, efficiency is achieved and buyers consume the efficient quantity

q�B where q�B satisfies u0(q�B) = 1.

The asset market. Constrained case

We now analyze the case where sellers spend all their money acquiring bonds and

buyers are constrained in the asset market. This means that buyers sell all their bonds,

that is b̂0 = 0 and b̂1 = 0, which implies λB
0 > 0 and λB

1 > 0, respectively.

Sellers invest all their money in bonds, that is m̂ = 0 which implies λS
m > 0. Now,

using (15)-(17) to replace ∂VS
2 /∂ bm, ∂VS

2 /∂ bb0 and ∂VS
2 /∂ bb1 we can rewrite (22) as

1 = λS � λS
m

φ
, 1 = ϕ0λS, and ρ1 = ϕ1λS. (31)

From the second and third equation in (31) we get the no-arbitrage condition for one-

period and two-period bonds

ϕ0ρ1 = ϕ1. (32)

Consider now, an agent who will be a buyer in market 2. Using (15)-(17) to replace

∂VB
2 /∂ bm, ∂VB

2 /∂ bb0 and ∂VB
2 /∂ bb1 we can rewrite (22) as

λB = 1+
λq

φ
, 1 = ϕ0λB � λB

0
φ

, and ρ1 = ϕ1λB � λB
1

φ
. (33)

Replace the right-hand side of the first equation in (33) using (14) to get

λB = u0(qB) (34)

then replace λB using the second equation in (33) to get

φ =
λB

0
ϕ0u0(qB)� 1

. (35)

Finally, clearing conditions in market 1 are

m = (1� n) m̂B + nm̂S

b1 = (1� n) b̂B
1 + nb̂S

1 , and (36)

b2 = (1� n) b̂B
2 + nb̂S

2 .

A symmetric stationary equilibrium consists of the agents’ decisions which meet the

following requirements: (i) The decisions solve the maximization problems specified

above; (ii) The decisions are symmetric across all agents; (iii) The bond market and the

goods market clear.

We now derive the symmetric stationary equilibrium allocation. In any symmetric

equilibrium, where money and bonds have positive values m = M�1 and b = B�1.
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Use (6) lagged one-period to replace ∂V1/∂m in (23) and eliminate φ�1 and φ using γ =

φ�1/φ to get

γ

β
= (1� n) λB + nλS.

Replacing λB using (34), and eliminating λS using the second equation in (31), we can

rewrite the last expression as

γ

β
= (1� n) u0(qB) +

n
ϕ0

(37)

The right-hand side measures the value of bringing one extra unit of money into the first

market. The first term reflects the marginal utility of spending one unit of money in the

goods market for the buyer, and the second term is the marginal utility of investing an

extra unit of idle balances for the seller. The effect of zero bonds on the marginal value

of money is positive since sellers can deposit their idle money and earn positive interest.

Now, replace λB from (34) and λS from the second equation in (31) to rewrite (24) as

∂V1

∂b0
= (1� n) φϕ0u0(qB) + nφ

then replace ∂V1/∂b0 using (7) lagged one period to get

φ�1ρ1,�1

β
= (1� n) φϕ0u0(qB) + nφ

then, eliminate φ�1 and φ using γ = φ�1/φ and divide by ϕ0 to get

γ

β

ρ1,�1

ϕ0
= (1� n) u0(qB) +

n
ϕ0

. (38)

Comparing (37) and (38) implies the following no arbitrage condition for one-period

bonds,

ρ1,�1 = ϕ0. (39)

The economics underlying (39) is quite intuitive. (39)means that the price of one-period

bonds in market 1, ϕ0, must be equal to the price of one-period bonds in the previous-

period market 3, ρ1,�1. This is because there is no aggregate uncertainty on how many

buyers and sellers there are in market 1. Using (32) to replace ϕ0, we can rewrite (39) as

ρ1ρ1,�1 = ϕ1. (40)

Next, replace λB from (34) and λS from the third equation in (31) to rewrite (25) as

∂V1

∂b1
= (1� n) φϕ1u0(qB) + nφρ1.

Using (32) to replace ρ1, and (7) lagged one period to replace ∂V1/∂b1, we can rewrite the

last equation as
φ�1ρ2,�1

β
= (1� n) φϕ1u0(qB) + nφ

ϕ1
ϕ0

.

12



Then eliminate φ�1 and φ using γ = φ�1/φ and divide by ϕ1 to get

γ

β

ρ2,�1

ϕ1
= (1� n) u0(qB) +

n
ϕ0

. (41)

Comparing (41) and (38) yields the no-arbitrage condition for two-period bonds

ρ2,�1 = ϕ1 (42)

Using (32) to eliminate ϕ1, the last expression can be rewritten recursively as

ρ2,�1 = ρ1ρ1,�1.

The meaning of (42) is similar to the one underlying (39), that is the current-period price

of two-period bonds in market 1, ϕ1, must be equal to the previous-period market 3 price

of two period bonds, ρ2,�1.

Lemma 1 In a steady state, ϕ0, ϕ1, ρ1 and ρ2 are constant.

Proof. Solve (37) for ϕ0 and get

ϕ0 =
nβ

γ� β (1� n) u0(qB)
(43)

Since γ, qB, β, and n are constant in a steady state, then ϕ0 must also be constant in a

steady state. Now, solve (38) for ρ1,�1 and get

ρ1,�1 =
β

γ

�
ϕ0 (1� n) u0(qB) + n

�
Since ϕ0, γ, qB, β, and n are constant in a steady state, it follows that ρ1,�1 is also constant,

which implies ρ1,�1 = ρ1. Since ρ1 and ϕ0 are constant in a steady state, (32) implies that

ϕ1 is also constant. Since ϕ1 is constant it follows from (42) that ρ2,�1 must also be

constant in a steady state, which implies ρ2,�1 = ρ2.

Since bond prices are constant in a steady state, (39) can be rewritten as ρ1 = ϕ0.

Then replacing ϕ0 with ρ1 in (43), we derive the first equilibrium equation

ρ1 =
nβ

γ� β (1� n) u0(qB)
. (44)

In a steady state, (42) can be rewritten as ρ2 = ϕ1. Replacing ϕ1 from (32), this implies

ρ2 = ϕ0ρ1 = ρ2
1. Finally, replacing ρ1 from (44) we have

ρ2 =

�
nβ

γ� β (1� n) u0(qB)

�2
.2 (45)

2We also extended the model to k-types of bonds in the economy, where k denotes the maturity. These

bonds are, as before, nominal government debt obligations that are sold at a price discount ρk,t � 1 in market

3 and mature after k = 1, 2, ..., K periods.

We can derive the price of a k-period bond as ρk = ϕ0ρk�1 = ρk
1. Using (44) we have

ρk =

�
nβ

γ� β (1� n) u0(qB)

�k
.
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The economics underlying (44) are straightforward. First, the less efficient an economy

is, such that that u0(qB) becomes bigger, the more expensive bonds are. This follows from

the higher value to a seller of depositing an extra unit of idle balances. The explanation

for this result is that higher inflation reduces the efficiency of an economy, so that the

inflation protecting role of bonds increases and their price rises. Second, the more buyers

(1� n) there are in the economy, the more the bond price increases. This is due to the

higher production of sellers which implies more idle money balances being available for

investment. The higher the demand for bonds, the higher their price is.

Since (44) is restricted to the interval between zero and one, (45) implies that the price

of a zero bond with a maturity of two periods has to be strictly lower than the price of a

one-period zero bond. That is, the bond price is a decreasing function of maturity as well

as of the real interest rate. Equation (45) implies a flat-shaped curve for the term structure

of interest rates as well. As a consequence, we are not able to explain the term spread

between bonds with different maturities. Shocks in the relative quantity of buyers and

sellers and/or the efficiency of trades in the economy cause shifts in the current term

structure.

For bonds to be essential ρk,t < 1 has to hold. Using this constraint in (44) and

rearranging for γ to get

γ > nβ+ β (1� n) u0(qB) > β (46)

For any ρk,t < 1 is γ > β.

We now derive the second equilibrium condition from the government budget con-

straint which we rewrite here for convenience

γ� 1� τ =
B1,�1

M�1

�
(1� ρ1η1) +

B2,�2

B1,�1
(1� ρ2η2)

�
(47)

where γ = M/M�1, η1 = B1/B1,�1, and η2 = B2/B2,�2. In a steady state, real one-

period-bond holdings are constant; i.e., φρ1B1 = φ�1ρ1,�1B1,�1 or

φB1 = φ�1B1,�1 (48)

Similarly, real two-period bond holdings are constant; i.e., φρ2B2 = φ�1ρ2,�1B2,�1 =

φ�2ρ2,�2B2,�2 or

φB2 = φ�1B2,�1 = φ�2B2,�2 (49)

Using (2) and (48), we have η1 = γ or M/M�1 = B1/B1,�1, which implies

M
B1
=

M�1

B1,�1
=

M�2

B1,�2
= ... =

M0

B1,0
(50)

Using (2) and (49), we have B2,�1/B2,�2 = η1 = γ, which implies

B2,�1

B1,�1
=

B2,�2

B1,�2
=

B2,�3

B1,�3
= ... =

B2,0

B1,0
(51)
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Replacing B2,�1 with γB2,�2, the last expression can be rewritten as B2,�2/B1,�1 = B2,0/γB1,0.

Note that (49) also implies η2 = η2
1 = γ2, where we have replaced φ�1/φ by γ. Replac-

ing B1,�1/M�1 with B1,0/M0, B2,�2/B1,�1 with B2,0/γB1,0, η1 = γ and η2 = γ2, we can

rewrite (47) as

γ� 1� τ =
B1,0

M0
(1� ρ1γ) +

B2,0

M0γ

�
1� ρ2γ2

�
(52)

Definition 2 A steady-state symmetric monetary equilibrium is a triplet (ρ1, ρ2, qB) satisfying

(44), (45), and (52), given preference parameters (n, β), policy decisions (γ, τ), and initial

values (M0, B1,0, B2,0).

2.1 Quantitative exercise

Replace ρ2 with ρ2
1 in (52) and rearrange terms to get

ρ2
1 +

B1,0

B2,0
ρ1 +

M0 (γ� 1� τ)� B1,0

B2,0γ
� 1

γ2 = 0

Let b1 = B1,0/M0 = B1/M and b2 = B2,0/M0 = B2/M, then the last expression can be

rewritten as

ρ2
1 +

b1

b2
ρ1 +

γ� 1� τ � b1

b2γ
� 1

γ2 = 0. (53)

Solve for ρ1 and get the positive solution

ρ1 =
� b1

b2
+

r�
b1
b2

�2
� 4

h
γ�1�τ�b1

b2γ � 1
γ2

i
2

.3 (54)

We use the following functional form for the utility function u (q) = ln q. Using this

functional form to replace u0 (qB) into (44) we get

ρ1 =
nβqB

γqB � β (1� n)

Solve the last equation for qB and we get

qB =
ρ1β (1� n)
ρ1γ� nβ

(55)

Once we know ρ1, which is a function of all exogenous parameters, we can derive qB

using this last equation. As in Berentsen and Waller [7] there is an extensive margin in-

efficiency. Due to the time-cost of holding money, the quantities consumed by all buyers

3Extending the model to k-types of bonds, where k = 1, 2, ..., K denotes the maturity, we can rearrange (52)

to get

K

∑
k=1

Bk,0γρk
1 =

K

∑
k=1

Bk,0

γk�1 � M0 (γ� 1� τ)

It is well known that there exists a general analytical solution for ρ1 for K � 4 otherwise one cannot expect an

expression for its zeros by radicals to exist.
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are inefficiently low if γ > β. When efficiency is achieved u0(q�B) = 1, q�B = 1 and the

following equation has to hold

γ� 1� τ = b1

�
1� γnβ

γ� β (1� n)

�
+

b2

γ

 
1�

�
γnβ

γ� β (1� n)

�2
!

where we replaced ρ1 with (44) in (52). Set u0(q�B) = 1, b1 = B1,0/M0 = B1/M and

b2 = B2,0/M0 = B2/M. The only way this equation can hold is to let bk �! 0, so that

γ = 1+ τ. As a consequence, efficiency can never be achieved for given positive values

of b1 and b2 and qB < 1 < γ. Using this result in (46) to get γ > 1 � β. Only when

γ > 1 � β holds are bonds essential and thus improve the allocation.

3 Empirical results

The data set used here has been downloaded from Bloomberg and the U.S. Department

of Commerce, the statistical program used is R4. All R-outputs and the used data set can

be found in the Appendix.

3.1 Testing equation (45),

Here we use quarterly data from the second quarter of 1991 to the second quarter of 2009,

implying 73 data points. We use the result of (45), ρ2 = ρ2
1 and take the logarithms to get

ln ρ2 = 2 ln ρ1. (56)

Where ρ1 represents a government zero bond with a maturity of three months. For ln ρ1

we use the approximation

ln ρ1 = ln
�

1
(1+ i)1/4

�
= �1

4
ln(1+ i) � �i/4,

since i is small enough. For i we use the Bloomberg index C0793M which consists of U.S.

Treasury STRIPS5 with a maturity of three months. The yield i at each maturity point

represents the composite yearly return of securities around this maturity. For the return

on ρ2 we use the Bloomberg index C0796M and the approximation

4Source: http://www.r-project.org
5“STRIPS stands for Separate Trading of Registered Interest and Principal of Securities. With

these securities, interest and principal payments from U.S. Treasury securities are registered sepa-

rately through the Federal Reserve. Each interest payment and the principal amount can then

be sold to investors as a zero coupon bond maturing on the date of the scheduled payment.”

(http://dictionary.reference.com/browse/separate+trading+of+registered+interest+and+principal+of

+securities+%28strips%29 [26.11.2009])
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ln ρ2 = ln
�

1
(1+ i)1/2

�
= �1

2
ln(1+ i) � �i/2.

We first have a look at the time series of ln ρ1 and ln ρ2 which are shown in Figure 1.

Figure 1: Time series of ln ρ1 and ln ρ2

Before we estimate equation (56) we first have to find out whether ln ρ1 and ln ρ2 are

stationary. For this purpose we use the Augmented-Dicky-Fuller-Test and the KPSS-Test

out of the package tseries of R. Both tests come to the result that the two time series are

not stationary. Taking this result into consideration, we use the Phillips-Ouliaris Cointe-

gration Test to check whether the two time series are cointegrated. The null hypothesis,

which states that there is no cointegration between the two variables, is rejected. We test

the relation explained in (56) with

ln ρ2,t = β1 + β2 ln ρ1,t and H0 : β1 = 0, β2 = 2. (57)
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We estimate (57) with the package dynlm of R and get the results shown in Table 1:

ln ρ2,t � β1 + β2 ln ρ1,t

Coefficients Estimate Std. Error t value Pr(> jtj)
β1 -0.000575 0.000259 -2.22 0.0296

β2 2.017670 0.025162 80.19 0.0000

Adjusted R-squared 0.9889

Table 1: Estimation of (57), sample period: 1991:Q2 to 2009:Q2

Table 1 shows that the null hypothesis in (57) cannot be rejected at the 99%-significance

level since β1 = 0 and β2 = 2 are within the 99%-confidence interval (99% CI, hereafter)

99% CI f or β1 : [�0.000575� 2.36 � 0.000259] = [�0.001, 0.000] and

99% CI f or β2 : [2.017670� 2.36 � 0.025162] = [1.958, 2.077] .

To see whether (57) is legitimated, we further analyze the residuals out of the regression

shown in Table 1. The result of the Phillips-Ouliaris Cointegration Test already showed

that the time series of the residuals is stationary. We test the null hypothesis that the first

24 autocorrelations of the residuals are zero using the Box-Pierce Test out of the package

tseries. We test them as well for heteroscedasticity with the Breusch-Pagan Test out of the

package lmtest. It appears that we are confronted with homoscedastic and autocorrelated

residuals. Homoscedasticity and stationarity of the residuals mean that our specified

cointegration relation is a good way to explain the long-run relation between ln(ρ1) and

ln(ρ2), autocorrelation indicates that it has shortcomings in the short run.

3.2 Testing equation (44)

Here we use quarterly data from the second quarter of 1991 to the third quarter of 2008,

implying 70 data points. We rewrite (44) for convenience

ρ1 =
nβ

γ� β (1� n) u0(qB)
.

We use the following data set: For γ � 1 = πt, we use the quarterly growth rate of

the “U.S. Consumer Price Index for all urban consumers: all items”6. We assume that

the discount factor across periods, β, is constant and set it to β = 1/(1 + r) = 0.997,

representing a real quarterly interest rate of r = 0.003. Out of the theoretic part, we

6Source: CPI index in Bloomberg
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know that qB is the quantity consumed by buyers in the decentralized market. We set

qB = (1+ gt) /(1+ gmax) where gt represents the calculated quarterly changes in the

U.S. Personal Consumption Expenditures7. Since qB < 1 has to hold, we divide all

values of (1+ gt) by (1+ gmax), where gmax is the biggest growth rate observed in the

data set rounded up to the second decimal point. We observe gmax = 0.0251 � 0.03

in the first quarter of 1992. Therefore we set gmax = 0.03 so that every value of qB =

(1+ gt) /(1+ gmax) < 1. As before we first take the logarithms in (44) to get

ln ρ1 = ln nβ� ln
�
γ� β (1� n) u0(qB

�
and use the simplifying approximation

ln ρ1 � �nβ� πt + β (1� n) u0(qB). (58)

How can we justify the above approximation? First, we assume that trades in the econ-

omy are maximized so that n � 0.5. Since ln x � x � 1 for x close to 1, it follows for

ln(0.5) � 0.5� 1 � �0.5 and

ln nβ � nβ� 1 � �nβ. (59)

Second, we have to ensure that u0(qB) is small enough so that

ln
�
γ� β (1� n) u0(qB

�
= ln

�
1+ πt � β (1� n) u0(qB

�
� πt � β (1� n) u0(qB).

Due to the fact that in our data sample qB � 1 we use a utility function where u0(1) � 0.

Hence, we take the following functional form for the utility function

u (q) = q ln(1/q) + q and u0 (q) = ln(1/q), for q 2 ]0, 1[ .

This utility function implies decreasing relative risk aversion and is not part of the HARA

class8. For u0 (qB) = ln(1/qB)we use the approximation ln(1/qB) = ln((1+ gmax)/ (1+ gt)) =

ln(1+ gmax)� ln (1+ gt) � gmax � gt. So (58) reduces to

ln ρ1,t � �nβ� πt + β (1� n) (gmax � gt). (60)

7Source: U.S. Department of Commerce: Bureau of Economic Analysis, Series ID: PCEC,

http://research.stlouisfed.org/fred2/series/PCEC?cid=100 [16.10.2009]
8A HARA utility function implies linear risk tolerance. For further details see Lengwiler [25], page 84ff.
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As explained in Hyndman [17], we smooth the data of πt and gt using a two-sided

moving average of degree q,

fytg !
(

1
2q+ 1

q

∑
j=�q

yt�j

)
,

where we use q = 1, 2. We make this adjustment since we observe too great variation

in the unfiltered data of πt and gt to provide useful results. Using a moving average

transformation reduces our sample period by q periods at the beginning and the end.

We finally test the relation explained in (60) with

ln ρ1,t = β1 + β2πt + β3(gmax � gt) and (61)

H0 : β1 = �nβ, β2 = �1, β3 = β (1� n) .

We first show the results for q = 2 in the moving average transformation of πt and gt

since we get the best results with this adjustment. Later we show the results for q = 1 as

well.

Testing (61) with q = 2

Please keep in mind that we do not smooth the data of ln ρ1,t. The moving average

transformation of πt and gt reduces our sample period from the fourth quarter of 1991 to

the first quarter of 2008. We estimate (61) with the package dynlm of R and get the results

shown in Table 2:

ln ρ1,t � β1 + β2πt + β3(gmax � gt)

Coefficients Estimate Std. Error t value Pr(> jtj)
β1 -0.014978 0.003366 -4.450 0.0000

β2 -0.163492 0.276283 -0.592 0.5561

β2 0.394691 0.184572 2.138 0.0364

Adjusted R-squared 0.03985

Table 2: Estimation of (61), sample period: 1991:Q4 to 2008:Q1

To get the optimal value of n, we rearrange the conditions for β1 and β3 under the

null hypothesis in (61) for n and so gain n = β1/β and n = 1� β3/β. Hence, we get a

95%-confidence interval (95% CI, hereafter) for n with

95% CIβ1
f or n : [(�β1 � 1.96 � 0.003366) /β] = [0.008, 0.022] and

95% CIβ3
f or n : [1� (β3 � 1.96 � 0.184572) /β] = [0.241, 0.967] .
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In the two above confidence intervals we do not get an intersection for the optimal value

of n. That is why we show the time series of ln ρ1,t and (�nβ� πt + β (1� n) (gmax � gt))

in Figure 2, where we use the value of n = 0.0189. We get a correlation of 0.25 between

the two time series.

Figure 2: Time series of ln ρ1,t and the model

(�nβ� πt + β (1� n) (gmax � gt)), where n = 0.018

In reality people do not act perfectly rationally. That is why the time series of ln ρ1,t in

Figure 2 seems to be delayed compared to the rational behaviour of the agents in our

model. To further investigate this result, and to get the best fit in the augmentation

periods of the two time series, we try different time lags of πt and gt. With a time lag of

three quarters we get the most appropriate results. This adjustment shifts our data set of

πt and gt three quarters into the future, and it is now confined from the third quarter of

1992 to the fourth quarter of 2008.

Figure 2 shows as well that the main problem of the indicated model price lies in the

time period from the first quarter of 1994 to the fourth quarter of 1999. An explanation

for this result could be the beginning boom in the stock market and the implied danger

of inflation. That is why in February 1994 the U.S. Federal Reserve System (US-Fed, here-

9Since we do not get an intersection for the optimal value of n, we only consider the condition under the

null hypothesis for β1 in (61). So we choose a value of n 2 (0.008, 0.022) that best fits our data set.
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after) unexpectedly increased the federal funds rate by 25 basis points. Within the twelve

following months the US-Fed intervened six times and increased the federal funds rate

from three to six percent. In hindsight this reaction was far too extreme and cannot be

explained with our approach. After 1999, the US-Fed changed its course of action from a

tightened monetary policy to a neutral one which is in line with our theory. That is why

we observe the period from the first quarter of 2000 to the fourth quarter of 2008 in more

detail, where we lag the time series of πt and gt by three quarters. We estimate equation

(61) again with ln ρ1,t , πt�3 and gt�3 and get the results shown in Table 3:

ln ρ1,t � β1 + β2πt�3 + β3(gmax � gt�3)

Coefficients Estimate Std. Error t value Pr(> jtj)
β1 -0.01870 0.00328 -5.703 0.0000

β2 -0.63649 0.25044 -2.541 0.0159

β2 0.95313 0.15705 6.069 0.0000

Adjusted R-squared 0.5488

Table 3: Estimation of (61), sample period: 2000:Q1 to 2008:Q4

Again we rearrange the conditions for β1 and β3 under the null hypothesis in (61) to

get a 95%-confidence interval for the optimal value of n with

95% CIβ1
f or n : [(�β1 � 1.96 � 0.00328) /β] = [0.012, 0.025] and

95% CIβ3
f or n : [1� (β3 � 1.96 � 0.15705) /β] = [�0.265, 0.353] .

We have an intersection for the optimal value of n, n 2 (0.012, 0.025) and use the value

in between n = (0.012+ 0.025)/2 = 0.0185. The null hypothesis in (61),

H0 : β1 = �nβ = �0.0184, β2 = �1 and β3 = β (1� n) = 0.979,

cannot be rejected at the 95% significance level since the specified values are within the

95% confidence interval

95% CI f or β1 : [�0.01870� 1.96 � 0.00328] = [�0.251,�0.012] ,

95% CI f or β2 : [�0.63649� 1.96 � 0.25044] = [�1.127,�0.146] and

95% CI f or β3 : [0.95313� 1.96 � 0.15705] = [1.261, 0.645] .

We test ln ρ1,t, πt�3 and (gmax � gt�3) with the Augmented-Dicky-Fuller-Test and the

KPSS-Test for stationarity. We get a clear result for stationarity of ln ρ1,t, non-stationarity

of πt�3 and an ambiguous result for (gmax � gt�3) . Due to the non-stationarity of πt�3
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our results in Table 3 cannot be interpreted directly, since normal test statistics are only

correct under the assumption of stationarity. The adjusted R-Squared has a value of 0.55,

indicating that our proposed relation between ln ρ1,t, πt�3 and (gmax � gt�3) is adequate

in the long run. We further analyze the residuals out of the regression shown in Ta-

ble 3. We see that we are confronted with homoscedastic and autocorrelated residuals,

whilst we get an ambiguous result for stationarity. The observed autocorrelation in the

residuals tells us that our approach has shortcomings in the short run.

One might ask if we can use these results to forecast the price development of ln ρ1,t.

In the above analysis we used the value q = 2 for the moving average transformation of

πt and gt and afterwards lagged these two time series by three quarters. Using q = 2

reduces our time series of πt and gt by two quarters at the beginning and the end of the

sample period, whilst the lagging shifts the two time series by three quarters into the

future. It follows that the last quarter is the forecasted value of ln ρ1,t. When we consider

that the actual values of πt and gt are usually available with a delay of about one quarter,

we do not have any forecasting power anymore. In Figure 3 we show the time series of

ln ρ1,t and (�nβ� πt�3 + β (1� n) (gmax � gt�3)) where the value of n = 0.0185. We

highlight the last quarter of our model price in green and the realization of ln ρ1,t in blue.

Figure 3: Time series of ln ρ1,t and the model

(�nβ� πt + β (1� n) (gmax � gt)), where n = 0.0185
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We observe a correlation of 0.75 between the two time series in Figure 3. The standard de-

viaton of ln ρ1,t is 4.5% and of (�nβ� πt�3 + β (1� n) (gmax � gt�3)) it is 3.8%. Accord-

ing to the lower standard deviation of (�nβ� πt�3 + β (1� n) (gmax � gt�3)) compared

to ln ρ1,t a moving average transformation with q < 2 of πt and gt seems to provide ac-

curate results.

Testing (61) with q = 1:

Again we do not smooth the data of ln ρ1,t. After the moving average transformation

of πt and gt with q = 1, we directly lag these two time series by three quarters. We

analyze the sample period from the first quarter of 2000 to the first quarter of 2009. We

estimate (61) and get the results shown in Table 4:

ln ρ1,t � β1 + β2πt�3 + β3(gmax � gt�3)

Coefficients Estimate Std. Error t value Pr(> jtj)
β1 -0.01716 0.00261 -6.575 0.0000

β2 -0.43798 0.20694 -2.116 0.0417

β2 0.77970 0.13160 5.925 0.0000

Adjusted R-squared 0.4945

Table 4: Estimation of (61), sample period: 2000:Q1 to 2009:Q1

As before we get a 95%-confidence interval for the optimal value of n with

95% CIβ1
f or n : [(�β1 � 1.96 � 0.00261) /β] = [0.012, 0.022] ,

95% CIβ3
f or n : [1� (β3 � 1.96 � 0.13160) /β] = [�0.041, 0.477] .

We have an intersection for the optimal value of n, n 2 (0.012, 0.022) and use the value

in between n = (0.012+ 0.022)/2 = 0.017. In contrast to the estimation with q = 2, the

null hypothesis in (61),

H0 : β1 = �nβ = �0.017, β2 = �1 and β3 = β (1� n) = 0.98,

is still rejected at the 95% significance level since β2 = �1 is not within the 95% confi-

dence interval

95% CI f or β2 : [�0.43798� 1.96 � 0.20694] = [�0.844,�0.032] .

In Figure 4 we show the time series of ln ρ1,t and (�nβ� πt�3 + β (1� n) (gmax � gt�3))

for q = 1, where the value of n = 0.017. Out of the adjustment with q = 1 and the lagging

24



of πt and gt by three quarters, it follows that the last two quarters are the forecasted val-

ues of ln ρ1,t. When we consider that the actual values of πt and gt are usually available

with a delay of about one quarter, only the last quarter is the feasible forecast. In Figure

4 we highlight the last two quarters of our model price in green and the realization of

ln ρ1,t in blue.

Figure 4: Time series of ln ρ1,t and the model

(�nβ� πt + β (1� n) (gmax � gt)), where n = 0.017.

In Figure 4 we see that our forecasted price path is useful when sharp price movements

are observed. We still have a correlation of 0.70 between the two time series. The stan-

dard deviaton of ln ρ1,t and (�nβ� πt�3 + β (1� n) (gmax � gt�3)) is in each case 4.5%.

Using a moving average transformation with q = 1 of πt and gt seems to be appropriate

when our theory is used to forecast ln ρ1,t.

The main problem of our empirical approach is that assumption (59) is critical for

such small values of n. The fact that the optimized values of n are so small indicates

that the price would be much lower if trades in the economy were maximized and n �
0.5. As a consequence of these small values of n, the main driving forces in the price

development of ln ρ1,t are caused by gt and πt.
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4 Conclusion

In this thesis we analyzed the factors that determine the prices of government zero bonds

when agents are cash constrained. The following results emerged from our analysis. For

any positive inflation rate, bonds are essential and thus improve the allocation. The

efficiency improvement results from the possibility that some agents can deposit their

idle money and earn positive interest. The main driving forces in the price development

of the zero bonds are the relative quantity of consumers and producers in the economy

and the efficiency of trades. With our approach we showed how to derive the bond price

as a function of all endogenous as well as exogenous variables. We were able to explain

a flat yield curve of the term structure of interest rates and the shifts which occur. As a

consequence of our environment, we were not able to deliver an explanation for the term

spread between zero bonds of different maturities.

We offered the results of different techniques used to check our approach and ob-

served that the price development explained by our model proves competent in provid-

ing some forecasting capacity. This is due to the fact that in reality people do not act

perfectly rationally. Furthermore, we offered advice on the practical implementation of

our results in forecasting the price development of government zero bonds with a matu-

rity of three months.
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Appendix

R-outputs

3.1 Testing equation (45)
Sample period: From the the second quarter of 1991 to the second quarter of 2009.

Augmented-Dicky-Fuller-Test and KPSS-Test for ln ρ1,t

Augmented-Dicky-Fuller-Test and KPSS-Test for ln ρ2,t

Phillips-Ouliaris Cointegration Test for ln ρ1,t and ln ρ2,t
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Estimation of (57), source of Table 1

Box-Pierce Test and Breusch-Pagan Test for the residuals out of the regression shown

in Table 1
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3.2 Testing equation (44)

Testing (61) with q = 2

Sample period: From the the fourth quarter of 1991 to the first quarter of 2008.

Estimation of (61), source of Table 2

Sample period: From the the first quarter of 2000 to the fourth quarter of 2008.

Augmented-Dicky-Fuller-Test and KPSS-Test for ln ρ1,t

Augmented-Dicky-Fuller-Test and KPSS-Test for πt�3 with q = 2 in the moving

average transformation
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Augmented-Dicky-Fuller-Test and KPSS-Test for (gmax � gt�3) with q = 2 in the moving

average transformation

Estimation of (61), source of Table 3

Augmented-Dicky-Fuller-Test and KPSS-Test for the residuals out of the regression shown

in Table 3
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Box-Pierce Test and Breusch-Pagan Test for the residuals out of the regression shown

in Table 3

Testing (61) with q = 1:

Sample period: From the the first quarter of 2000 to the first quarter of 2009

Estimation of (61), source of Table 4
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Data set

Date C0793M Index C0796M Index CPI Index PCEC

29.03.1991 134.8 3963.3

28.06.1991 0.0583 0.0603 136.0 4008.7

30.09.1991 0.0535 0.0537 137.0 4038.6

31.12.1991 0.0404 0.0419 138.2 4140.1

31.03.1992 0.0407 0.0436 139.1 4193.5

30.06.1992 0.0356 0.0376 140.1 4267.7

30.09.1992 0.0272 0.0298 141.1 4346.2

31.12.1992 0.0324 0.0345 142.3 4384.9

31.03.1993 0.0304 0.0312 143.3 4452.1

30.06.1993 0.0320 0.0335 144.3 4516.3

30.09.1993 0.0305 0.0321 145.0 4581.1

31.12.1993 0.0317 0.0341 146.3 4650.4

31.03.1994 0.0354 0.0395 147.1 4709.8

30.06.1994 0.0425 0.0484 147.9 4786.3

30.09.1994 0.0487 0.0553 149.3 4856.7

30.12.1994 0.0578 0.0654 150.1 4888.7

31.03.1995 0.0593 0.0613 151.2 4957.5

30.06.1995 0.0566 0.0568 152.4 5022.9

29.09.1995 0.0547 0.0566 153.1 5080.1

29.12.1995 0.0515 0.0524 153.9 5156.5

29.03.1996 0.0544 0.0530 155.5 5248.8

28.06.1996 0.0540 0.0538 156.7 5304.4

30.09.1996 0.0515 0.0533 157.7 5384.7

31.12.1996 0.0531 0.0536 159.1 5467.1

31.03.1997 0.0543 0.0573 159.8 5504.0

30.06.1997 0.0534 0.0554 160.2 5613.3

30.09.1997 0.0544 0.0556 161.2 5698.1

31.12.1997 0.0546 0.0561 161.8 5757.5

31.03.1998 0.0545 0.0559 162.0 5870.2

30.06.1998 0.0543 0.0540 162.8 5968.0

30.09.1998 0.0474 0.0468 163.5 6078.2

31.12.1998 0.0460 0.0456 164.4 6157.4

31.03.1999 0.0467 0.0472 164.8 6290.0

30.06.1999 0.0500 0.0504 166.0 6398.9

30.09.1999 0.0529 0.0514 167.8 6524.9

31.12.1999 0.0544 0.0575 168.8 6683.0
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Date C0793M Index C0796M Index CPI Index PCEC

31.03.2000 0.0587 0.0609 171.0 6775.7

30.06.2000 0.0527 0.0596 172.2 6881.7

29.09.2000 0.0580 0.0603 173.6 6981.1

29.12.2000 0.0625 0.0606 174.6 7058.1

30.03.2001 0.0424 0.0421 176.1 7118.7

29.06.2001 0.0378 0.0365 177.7 7151.2

28.09.2001 0.0262 0.0240 178.1 7267.2

31.12.2001 0.0161 0.0181 177.4 7309.0

29.03.2002 0.0179 0.0171 178.5 7403.4

28.06.2002 0.0139 0.0127 179.6 7491.2

30.09.2002 0.0144 0.0135 180.8 7553.2

31.12.2002 0.0109 0.0117 181.8 7646.9

31.03.2003 0.0113 0.0112 183.9 7723.8

30.06.2003 0.0089 0.0099 183.1 7882.5

30.09.2003 0.0093 0.0099 185.1 7962.8

31.12.2003 0.0095 0.0106 185.5 8105.3

31.03.2004 0.0095 0.0100 187.1 8209.4

30.06.2004 0.0141 0.0159 188.9 8330.7

30.09.2004 0.0166 0.0176 189.8 8494.9

31.12.2004 0.0221 0.0247 191.7 8609.6

31.03.2005 0.0272 0.0310 193.1 8747.2

30.06.2005 0.0298 0.0331 193.6 8908.8

30.09.2005 0.0347 0.0384 198.7 9010.3

30.12.2005 0.0413 0.0443 198.3 9148.2

31.03.2006 0.0460 0.0473 199.8 9266.6

30.06.2006 0.0497 0.0521 201.7 9391.8

29.09.2006 0.0491 0.0500 202.8 9484.1

29.12.2006 0.0500 0.0504 203.3 9658.5

30.03.2007 0.0500 0.0504 205.3 9762.5

29.06.2007 0.0494 0.0497 207.0 9865.6

28.09.2007 0.0400 0.0420 208.4 10019.2

31.12.2007 0.0327 0.0341 211.7 10095.1

31.03.2008 0.0126 0.0153 213.7 10194.7

30.06.2008 0.0194 0.0214 217.0 10220.1

30.09.2008 0.0118 0.0139 218.7 10009.8

31.12.2008 0.0023 0.0035 211.6 9987.7

31.03.2009 0.0024 0.0047

30.06.2009 0.0024 0.0038
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