
Master’s Thesis

Scaling Bitcoin
Chair of Economic Theory

Universität Basel

Supervised by:
Professor Dr. Aleksander Berentsen

Author:
Remo Nyffenegger
Submission Date: August 09, 2018

Abstract

In our paper, we aim to give a detailed insight into the Bitcoin scaling
debate and discuss some of the most relevant proposals. If Bitcoin shall
become a wide-spread method of payment, the basic protocol introduced
by Satoshi Nakamoto in 2008 has to be enhanced with new technical
concepts. We focus on a block size increase, Segwit, payment channels
and the corresponding payment channel networks. These topics are by
far not the only concepts that aim to improve Bit-coin’s scalability. To
our knowledge, however, they are the most advanced ones which have
played a dominant role in the scaling debate.

1

Plagiatserklärung

Ich bezeuge mit meiner Unterschrift, dass meine Angaben über die bei der Ab-

fassung meiner Arbeit benützten Hilfsmittel sowie über die mir zuteil gewordene

Hilfe in jeder Hinsicht der Wahrheit entsprechen und vollständig sind. Ich habe

das Merkblatt zu Plagiat und Betrug vom 23.11.05 gelesen und bin mir der Kon-

sequenzen eines solchen Handelns bewusst.

Basel, August 06, 2018

Remo Nyffenegger

I

Contents

1 Introduction 1

2 Historical Background 5

3 Block Size Increase 15

3.1 Block Structure . 16

3.2 Proposals to Increase the Block Size 18

3.3 Discussion . 22

4 Segwit 24

4.1 Transaction Structure . 24

4.2 P2PKH and P2SH Transactions 27

4.3 Transaction Malleability . 29

4.4 Technical Analysis . 32

4.5 Road to Segwit Activation . 42

4.6 Discussion . 45

5 Payment Channels 48

5.1 Unidirectional Payment Channels 48

5.2 Basic Bidirectional Payment Channels 51

5.3 Poon-Dryja Payment Channels 56

5.4 Duplex Payment Channels . 58

5.5 Discussion . 60

6 Lightning Network 60

II

6.1 Hashed Time Lock Contract (HTLC) 61

6.2 Technical Explanation . 63

6.3 Key Generation . 67

6.4 Network . 67

6.5 Routing . 69

6.6 eltoo . 70

6.7 Scalable Funding . 72

6.8 Discussion . 74

7 Other Concepts to Improve Scaling in Bitcoin 76

8 Conclusion 80

References i

III

1 Introduction

With the increasing public interest in the blockchain technology and Bitcoin spe-

cifically, the use of the Bitcoin network itself has risen. Figure 1 depicts the

increase in transactions per day in (a) and the development of the estimated US-

Dollar transaction value in (b). The upper graph clearly shows a growing number

Time

Tr
an

sa
ct

io
ns

 p
er

 d
ay

 (
in

 th
ou

sa
nd

s)

2010 2012 2014 2016 2018

0
10

0
30

0
50

0

(a) Average number of confirmed transactions per day (in thousands).

Time

Tr
an

sa
ct

io
n

va
lu

e
in

 U
S

D
 (

in
 m

io
.)

2010 2012 2014 2016 2018

0
50

10
0

15
0

20
0

(b) Estimated transaction value in US-Dollar per day (in mio.).

Figure 1: Transactions in the Bitcoin network (Source: https://charts.

bitcoin.com/).

of transactions that has been sent over the network per day, peaking at the end

of 2017. There was a drop of almost 50% at the beginning of 2018. For the past

few months, however, the number of transactions has been relatively constant at

around 200’000 transactions per day. The estimated US-Dollar transaction value

1

https://charts.bitcoin.com/
https://charts.bitcoin.com/

per day developed more or less similarly. The extremely high transaction volumes

in late 2017 may have been driven by the skyrocketing prizes in December.1

If more people regularly use Bitcoin, it is crucial that the network is able to scale

to a high transaction throughput such that it can cope with an increasing traffic.

This is, however, limited by several factors such as bandwidth, storage capacity

for full nodes or transaction validation. Additionally, a hard-coded restriction in

the Bitcoin code exists that limits the size of a block in the Bitcoin blockchain to

one megabyte. This line of code was added only in July 20102 and not included

in the original implementation of Bitcoin. According to a bitcointalk.org user

called Cryddit, Hal Finney3 was the first developer to propose a block size limit

in a conversation with Satoshi Nakamoto and Cryddit.[44] The main motivation

to add a limit were concerns about denial-of-service attacks or spam transactions

abusing the capacity of the blockchain which could be prevented by artificially

limiting the number of transactions that can be included in a block. However,

they were aware that at some point in time scaling issues may emerge. Cryddit

claimed that they agreed on implementing the limit only temporarily. This is in

line with statements by Satoshi Nakamoto on bitcointalk.org where he4 suggested

how the block size may be raised at a later point in time.[95] The limit, however,

has never been changed since 2010 which is the starting point of the Bitcoin

scaling debate.

To get an idea about the implied limitations of the Bitcoin network, we set it

in comparison to other payment networks. As illustrated in figure 1, Bitcoin

processes around 100’000 to 400’000 transaction per day, which comes down to one

to five transactions per second on average. The maximum transaction capacity

per second can be approximately calculated using the one megabyte limit and the

average size of a transaction, which is plotted in figure 2. We see that the average

1Griffin and Shams (2018) claim that the price surge was strongly driven by manipulating
Tether purchases.[59]

2https://github.com/bitcoin/bitcoin/commit/a30b56ebe76ffff9f9cc8a6667186179413c6349#

diff-23cfe05393c8433e384d2c385f06ab93R18
3Hal Finney was a computer scientist, software developer, one of the first Bitcoin users and

the recipient of the first Bitcoin transaction.[9]
4We use the pronoun “he” due to the masculine pseudonym. It is, however, unknown, who

(gender/group) is behind Satoshi Nakamoto.

2

https://github.com/bitcoin/bitcoin/commit/a30b56ebe76ffff9f9cc8a6667186179413c6349#diff-23cfe05393c8433e384d2c385f06ab93R18
https://github.com/bitcoin/bitcoin/commit/a30b56ebe76ffff9f9cc8a6667186179413c6349#diff-23cfe05393c8433e384d2c385f06ab93R18

Time

A
ve

ra
ge

 tr
an

sa
ct

io
n

si
ze

 in
 b

yt
es

2010 2012 2014 2016 2018

20
0

40
0

60
0

80
0

10
00

Figure 2: Average transaction size in bytes (Source: https://blockchain.info).
Note: The red trend line is calculated by applying a two-sided simple moving
average filter of order 15.

transaction size has been between 400 to 600 bytes over the last four years. Using

these numbers results in around 1600 to 2500 transactions per block5, i.e. about

three to four transactions per second on average.6

Comparing these three to four transactions per second to other payment net-

works like PayPal or Visa clarifies the dimensions of these numbers. In 2016,

PayPal processed 7.6 billion payment transactions, which comes down to about

240 transactions per second.[87] Visa scales even more as it transferred over 111.2

billion transactions over its network in 2017, which is about 3500 transactions per

second.[113] According to a Visa report, the maximum capacity of their network

is even 65’000 transactions per second.[114] To reach this number without any

other improvement but raising the block size, around 20 gigabyte blocks would

5This rough calculation does not take Segwit into account. For further details, see section
4.

6The number of processed transactions can fluctuate in the short-term depending on the
realized block interval. The difficulty to mine a block is adjusted every 2016 blocks (i.e. ≈ two
weeks) such that it takes the miners ten minutes on average to find a valid block. However,
if in a certain period the provided mining power strongly increases, blocks are mined more
frequently than every ten minutes and the number of transactions would increase temporarily.

3

https://blockchain.info

be required. Fixing such a big block size is complicated by physical restrictions

like bandwidth, storage and transaction verification limitations.

To be precise, we have to highlight that a transaction in Bitcoin is not directly

comparable to a transaction in conventional payment networks. In the Visa or

PayPal network, each transaction sends exactly one single transfer of money from

A to B. In Bitcoin, however, a transaction can have several inputs and outputs

and thus can contain much more single money transfers (i.e. payments). As

Time

P
ay

m
en

ts
 a

nd
 tr

an
sa

ct
io

ns
 p

er
 b

lo
ck

2017 2018

10
00

20
00

30
00

40
00

50
00

Figure 3: Payments (red) and transactions (blue) per block (Source: https:

//transactionfee.info/). Note: Payments is defined as the number of outputs
in a transactions minus one, to control for the output that goes back to the sender.
The series is smoothed with a moving average.

illustrated in figure 3, however, the number of payments is not much larger than

the number of transactions. On average, there are about 1.6 times more payments

than transactions in a block. In theory, a transaction could include much more

payments which means that the potential is far form being exhausted.

The comparisons presented above show the current dimensions and highlight the

need for solutions to scale Bitcoin, if it aims to become a relevant alternative in

the world-wide payment and transaction system. Our paper aims to give a deeper

4

https://transactionfee.info/
https://transactionfee.info/

insight into scaling Bitcoin. We define scaling as every proposal, mechanism or

concept that aims to increase transaction throughput or, in other words, enables

to process more payments over the Bitcoin network. We especially look at a

block size increase, Segwit, payment channels, the corresponding payment channel

networks and discuss these concepts in more detail. To our point of view, these

proposals are currently the most relevant ones since they have been heatedly

discussed in the network and are mostly well developed.

To our knowledge, there is no extensive paper that provides a detailed description

of the aforementioned concepts. A vast number of blogs, threads in forums,

articles in online magazines, explanations in Github repositories and few papers

(e.g. Croman et al., 2016) discuss the Bitcoin scaling debate, but the interested

user has to arduously collect the information from many different sources. Hence,

our main contribution is to provide a detailed overview of the Bitcoin scaling

debate and discuss the different concepts. Our goal is to make the scaling debate

comprehensible for the average Bitcoin user. We, therefore, try to provide a good

mixture between technical details and intuition. Since the scaling debate is a very

controversial topic, we abstain from subjectively assessing the applicability of the

proposals. We only present arguments of different interest groups that are used

in the context of the scaling debate.

The paper proceeds as follows. In section 2 we give a historical background of

the whole scaling debate and how it developed. Section 3 discusses a block size

increase and section 4 details Segwit. Payment channels are described in section

5 and the Lightning network in section 6. Section 7 presents other concepts that

may help to scale Bitcoin, while section 8 concludes.

2 Historical Background

Before discussing the technical details, we want to provide a historical background

of the scaling debate. Analogous to the following parts of the paper the focus

will be on a block size increase, Segregated Witness, payment channels and the

5

Lightning network.

To ensure that a non-informed reader has an idea about the content of these

proposals, we start by giving a quick and intuitive explanation. A block size

increase deals with a simple raise of the hard-coded one megabyte limit which

allows to include more transactions in a block. Segregated Witness (Segwit) aims

to solve transaction malleability (see section 4.3) and comes with an indirect block

size increase due to the way it was implemented. Upon spending some Bitcoin

units, a user has to prove that he or she is the rightful owner of the respective

Bitcoins. This is cryptographically proven by using a private and public key pair

and a respective signature. These signatures need a lot of space but are only used

at the time of validation. Thus, Segwit aims to disregard them whenever possible.

The main point is that the signatures are removed from their original field in the

transaction and appended at the end of it. Hence, the base transaction data is

separated from the witness data. In doing so, signatures are not included in the

one megabyte block size limit anymore.

Payment channels make use of 2-of-2 multisignature addresses7 to raise the num-

ber of transactions in the network. A transaction processed in a payment channel

adjusts the balances in the multisig address but is not added to the blockchain.

Only two transactions enter the blockchain: the channel’s opening transaction,

which funds the multisig address and the closing transaction, which pays out the

current balances to the two parties. Depending on the set up, an arbitrary num-

ber of transactions can be sent over the channel. The Lightning network makes

use of these payment channels. A payment can be routed through the network

from A to B without the requirement that these parties maintain a payment chan-

nel with each other. The burden on the blockchain is considerably reduced with

payment channels or the Lightning network, because the transactions are moved

away from the blockchain. This is why these proposals are said to be off-chain or

second layer solutions.8

7Funds in a 2-of-2 multisignature address can only be spent if the corresponding transaction
is signed by two out of two signatures of two pre-defined keys. Normally, this is achieved
by using a Pay-to-Script-Hash (P2SH) transaction type. The public keys and signatures are
provided in the redeemScript of the scriptSig/witness field.

8The first layer being the blockchain and the second layer being mechanisms that increase

6

Subsequently, we start with the historical background. The scaling debate goes

back to 2010. Originally, users in the network mainly debated about scaling

Bitcoin through a block size increase. When Satoshi Nakamoto left the Bitcoin

network in late 2010, he handed over the position of Bitcoin Core’s9 lead de-

veloper to Gavin Andresen who worked closely together with Satoshi from the

beginning. Andresen decided to give four other developers commit access to the

Bitcoin Core source code, namely Jeff Garzik, Gregory Maxwell, Pieter Wuille

and Wladimir van der Laan who became lead developer after Gavin Andresen

stepped back in 2014.[126] Gavin Andresen and Jeff Garzik were in favour of a

block size increase, the other three, however, were opposing it. This disagreement

on the lead developer level combined with a huge discrepancy of opinions in the

network made it nearly impossible in the early years to reach a consensus on

how Bitcoin should be scaled.10 Additionally, the one megabyte block size limit

became only really relevant in 2016 when the average block size approached the

one megabyte limit as shown in figure 4. Before, there was no urgent need for a

quick solution and hence, finding a consensus on how to scale Bitcoin was even

harder.

Nevertheless, there have been several different proposals since 2010. As aforemen-

tioned, the discussion was originally about a block size increase, but also payment

channels were discussed on an early stage already. A very preliminary draft of a

payment channel was included in the first software release Bitcoin 0.1 by Satoshi

Nakamoto.[120] The idea was developed further over the years. Originally, re-

search was mostly conducted in terms of unidirectional payment channels.11 The

first unidirectional payment channel implemented was the Spillman channel in

the BitcoinJ client in 2013.[18] In 2014, Alex Akselrod proposed for the first time

a bidirectional payment channel.[27] Also other projects were developed which

never really took off such as the concept of a hub-and-spoke system first proposed

the number of transactions in the network off-chain.
9By that time, the reference client was actually called Bitcoin but renamed to Bitcoin Core

in 2014 to reduce confusion.[12]
10We want to highlight that Bitcoin is not directly dependent on the Bitcoin Core client

which is the reference software. A large majority of the network could decide to follow different
rules that the ones implemented by Bitcoin Core.

11See section 5 for an explanation of unidirectional and bidirectional payment channels.

7

Time

B
lo

ck
 s

iz
e

in
 M

B

2010 2012 2014 2016 2018

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4: Average block size in megabytes (Source: https://charts.bitcoin.

com/).

by Meni Rosenfeld in 2012,[106] inter-channel payments described by BitPay in

January 2015[66] or AmikoPay, a Bitcoin-based Ripple system that would have

implied far-reaching alterations to the Bitcoin protocol.[120]

In 2014, Mike Hearn published a Bitcoin Improvement Proposal (BIP), called

BIP64, which became the basis of his work on an alternative client called Bitcoin

XT. He was not satisfied with the missing progress in the scaling debate and

an advocate of an increased block size. In mid 2015, several BIPs were formu-

lated that dealt with a block size increase. For example, there was Jeff Garzik’s

BIP100 which would abolish the static block size limit and introduce a dynamic

maximum block size dependent on miner vote or Gavin Andresen’s BIP101 which

intended to introduce a predictable growth rate of the block size. When it be-

came clear in August 2015 that BIP101 would not be implemented in the Bitcoin

Core client, Mike Hearn and others decided to implement it in Bitcoin XT. There

was a notable disagreement between different players of the network. Some large

Chinese mining pools like F2Pool, BTCChina Pool and Huobi Pool opposed a

8

https://charts.bitcoin.com/
https://charts.bitcoin.com/

switch to Bitcoin XT 12 [116] while other large Bitcoin companies like BitPay or

Blockchain.info approved it[85]. The user numbers in Bitcoin XT were eventually

very small, though. On January 11, 2016, which was the first possible date on

which Bitcoin miners could convert to the Bitcoin XT protocol, only 10% did

adopt it.[86] Over the following months, the number of nodes declined to a neg-

lectable number[80]. Consequently, the Bitcoin XT project could be regarded as

failed.13

Perhaps due to increased disagreement in the network about how to scale Bit-

coin, two Scaling Bitcoin Workshops were organized in 2015 and repeated in the

following years.14

In the same year, the Lightning network with the corresponding Poon-Dryja pay-

ment channels and Segwit were presented for the first time. At the San Francisco

Bitcoin Developer Seminar in February, Joseph Poon and Thaddeus Dryja presen-

ted a first draft of the Lightning network, which was supposed to be a powerful

solution for solving the scalability problem in Bitcoin.[75] Blockstream was the

first company to place a large focus on the Lightning network. They started

developing a Lightning implementation called c-lightning. Soon other compan-

ies began working on a Lightning network implementation, such as ACINQ or

Lightning Labs. Moreover, Christian Decker and Roger Wattenhofer proposed an

alternative payment network with duplex payment channels in August 2015.[46]

However, their proposal has not been as successful as the Lightning network so

far.

The idea of separating the base transaction data from the witness data in a block

was first publicly proposed in June 2015 as a feature of the Blockstream sidechain

12At the same time, they published a statement together with AntPool and BW Mining to
support a block size increase to eight megabytes in general. However, they opposed an even
larger raise to 20 megabytes mostly because of the Great Firewall of China and a not sufficiently
developed internet infrastructure.[117]

13Mike Hearn stated that Bitcoin XT was not given a fair chance.[65] For example, some
users claimed that discussion about Bitcoin XT was censored in the /r/Bitcoin subreddit[105]

and that Distributed Denial of Service (DDoS) attacks were executed which led to a collapse
of computers running an XT node.[40]

14The workshops took place in Montreal (12th-13th September 2015), Hong Kong (6th-7th
December 2015), Milan (8th-9th October 2016), Stanford (4th-5th November 2017) and Tokyo
(6th-7th October 2018).

9

project elements. Pieter Wuille was the main researcher of the proposal which

was called Segregated Witness (Segwit).[50] The original intention of Segwit was

not to raise the block size and to increase the number of transactions but to find

a solution for transaction malleability.15 It was not clear whether Segwit could

be implemented as a soft fork16 until Peter Wuille presented Segregated Witness

- as a soft fork at the Scaling Bitcoin - Hong Kong workshop.[129] Many users,

however, criticized Segwit to be a non-sufficient short-term scaling solution[57] or

“ugly and awkward”if implemented as a soft fork.[92] The proposal was formalized

in December 2015 as BIP141 by Eric Lombrozo, Johnson Lau and Pieter Wuille.

Following the Scaling Bitcoin - Hong Kong workshop, Bitcoin Core published a

roadmap describing which projects they aimed to implement to scale Bitcoin.[11]

Especially the importance of Segregated Witness, second layer solutions like the

Lightning network or a more efficient block relay were highlighted. Missing was

a remark about a block size increase.

Nevertheless, advocates of a block size increase developed new proposals. Gavin

Andresen created BIP109 in January 2016 which should double the block size to

two megabytes. This proposal was rejected. In early 2016, there was a further

attempt to build a client with an increased block size called Bitcoin Classic.17 At

the beginning, the Bitcoin Classic developers promoted an increase of the block

size to two megabytes. In November 2016, however, they decided to adopt a

solution in which miners and nodes determine a dynamic block size limit. Bitcoin

Classic was never really successful and ceased operation when Bitcoin Cash forked

out of Bitcoin in August 2017.

In February 2016, there was another meeting in Hong Kong, where Bitcoin Core

contributors, mining pool operators and other Bitcoin industry members dis-

cussed the scaling debate. They agreed on working on a block size increase pro-

15Transaction malleability means that it is possible to modify the signature in a transaction
which is not included in the blockchain yet without invalidating it. As a result, the transaction
ID changes which can break the link between two transactions. This is especially a problem for
second layer protocols such as the Lightning network.

16There have never been specific intentions to implement Segwit as a hard fork due to fears
of a network split.

17Furthermore, Bitcoin Classic suggested to use Flexible transactions (Flextrans) instead of
Segwit to deal with transaction malleability.[41]

10

posal and a concrete Segwit release. It became known as the Bitcoin Roundtable

Consensus or Hong Kong Agreement.[17]

Shortly after Scaling Bitcoin - Milan took place in October 2016, contributors

to the Lightning network18 came together for the first Lightning network sum-

mit. They worked out a basic implementation called BOLT (Basis of Lightning

Technology) that was interoperable for all the implementations developed so far.

BOLT is the basis of the Lightning network as it is known today. In January

2017, the first alpha version of the Lightning network was released called lnd. [120]

Also in October 2016, Segwit was officially introduced in Bitcoin Core version

0.13.1. Because Segwit was implemented using BIP919, 95% of the miners had

to signal support for Segwit in order for it to be activated on the network. Des-

pite the Hong Kong Agreement, several big mining pools were either opposing

Segwit (e.g. Antpool[108]) or only approving it under the condition that it was

followed by a block size increase (e.g. ViaBTC[125]). Consequently, Segwit was

not successfully activated at that point in time.

In early 2017, almost all blocks were very close to the one megabyte limit, as

illustrated in figure 4. This increased pressure to find a consensus on scaling and

let the memory pool (mempool) of unconfirmed transactions rise considerably, as

shown in figure 5.20 Moreover, another interesting development could be observed

during this time. Figure 6 compares the fraction of Bitcoin’s market capitalization

compared to ten of the most relevant alternative cryptocurrencies.21 The share

of Bitcoin’s market capitalization was relatively stable until early 2017 but then

decreased at about the same time the scaling issue became acute. Perhaps, this

was a main driver for the loss in market share. However, there may be other

18ACINQ, Amiko Pay, BitFury, Blockstream, Lightning Labs and Purse.[115]
19BIP9 is a mechanism that defines how soft forks and especially several parallel soft forks

can be implemented. The nVersion field in the block header is interpreted as a bit vector,
where each bit can be used for signalling purposes.

20A transaction that is propagated to the network is first verified by different nodes. If the
verification is successful, the transaction will be stored in a node’s memory pool until a miner
includes it in a block whereby it is confirmed. If the amount of newly generated transactions is
higher than the maximum amount that can be included in a block, the number of unconfirmed
transactions and thereby the mempool size will increase.

21Namely: Dash, Digibyte, Dogecoin, Ethereum, Litecoin, Vertcoin, Stellar, Monero, Ripple,
Verge.

11

Time

M
em

po
ol

 s
iz

e
in

 M
B

2017 2018

0
20

40
60

80
10

0
12

0
14

0

Figure 5: Mempool size in megabytes (Source: https://blockchain.info).

factors as well, such as a general increasing interest in cryptocurrencies, a move

to smart-contract compatible currencies or diversification of investors.

In February 2017, a pseudonymous developer called Shaolinfry suggested a user

activated soft fork mechanism (UASF) to implement Segwit which he (or she)

motivated by a list of shortcomings of the usually applied hash-rate based soft

fork activation mechanism under BIP9.[96] In a UASF, all users in the Bitcoin

community running a full node enforce the new rules of the soft fork, whereas

under BIP9 it is activated by the miners. At a pre-defined date, the so-called

flag day activation, the soft fork is implemented and all upgraded full nodes

would start to reject blocks that are mined under the old rules. Miners are

incentivised to follow the new rules as well, since they may loose their reward

from mining the block if it is not considered valid by a majority of nodes, which

would be the case if they followed the old rules. The proposal attracted wide

support in the community. Shaolinfry worked out a proper proposal by March

17 (BIP148). The flag day activation was chosen for August 01, 2017. The

question arose, however, how to ensure that a large majority of users upgraded

to the new rules. If some nodes had followed the old and some the new rules,

12

https://blockchain.info

Time

P
er

ce
nt

ag
e

of
 m

ar
ke

t c
ap

ita
liz

at
io

n

2015 2016 2017 2018

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bitcoin
Altcoins

Figure 6: Percentage of Bitcoin’s (blue) and selected Altcoins’ (red) added mar-
ket capitalization (Source: https://coinmetrics.io/). Note: Altcoins: Dash,
Digibyte, Dogecoin, Ethereum, Litecoin, Vertcoin, Stellar, Monero, Ripple, Verge.

the network would have split. Serious criticism emerged[79] which is why other

implementation mechanisms were developed.

Further controversial discussions and the introduction of another software cli-

ent called Bitcoin Unlimited, aiming to raise the block size limit per hard fork,

triggered the need to hold another conference in New York. Several import-

ant companies, people and miners attended it. However, no Bitcoin Core con-

tributor was participating.[121] Based on a proposal of Sergio Demian Lerner[74],

they agreed to support a combined upgrade of a Segwit soft fork and a following

hard fork to increase the block size to two megabytes. The proposals was called

Segwit2Mb or Segwit2x[49] and the agreement became known as the New York

Agreement.

Three ways to activate Segwit existed at that point in time: The Bitcoin Core

13

https://coinmetrics.io/

miner-sided activation under BIP9, the UASF user-sided activation and Segwit2x.

The UASF, however, was not compatible with the New York Agreement which

again was not compatible with the way Bitcoin Core wanted to implement Segwit.

In consequence, James Hilliard created BIP91, also called segsignal (see section

4.5 for more details). The Bitcoin community started to signal BIP91 which

locked in on July 20, 2017, whereby Segwit locked in on August 9, 2017. After

another two weeks grace period, Segwit was officially activated within the Bitcoin

network.[121] In February 2018, Bitcoin Core introduced default wallet support

for Segregated Witness in version 0.16.0.

At about the same time, another important process was ongoing that had started

in mid-June 2017 with a blog post by Bitmain.[25] They criticized that no Bitcoin

Core representatives were attending the conference in New York and rejected the

UASF since it did not include a block size increase as agreed on in the New

York Agreement. Instead, they proposed a user activated hard fork (UAHF) as

a “contingency plan” for BIP148. They advocated a block size increase to eight

megabyte, twelve hours and 20 minutes after the Segwit UASF activation. A first

software implementation called Bitcoin ABC 22 was designed by Amaury Sechét

who presented it at the Future of Bitcoin conference in Arnhem, Netherlands, at

the end of June 2017.[119] In July 2017, the Chinese mining pool ViaBTC stated

in a blog post that they supported the project described by Bitcoin ABC and

gave it the name Bitcoin Cash.[112] After further development of the project, it

was announced on July 22, 2017 that Bitcoin Cash would fork from Bitcoin on

August 01. Many participants in the Bitcoin community thought that the split

would only occur if BIP148 was triggered. However, the disagreement between

the users supporting on-chain to the ones approving off-chain scaling solutions

was so large that the hard fork eventually took place and the Bitcoin blockchain

split into two chains. As a consequence, many long-term advocates of a block size

increase switched to Bitcoin Cash (e.g. Gavin Andresen[60]).

Despite the implementation of Segwit, the average transaction fees continued

to increase on the Bitcoin network. Historically, fees have been very small but

22Bitcoin ABC is still providing a full node implementation of Bitcoin Cash.

14

started to rise in mid-2017 to a few US-Dollars per transaction. In December

2017, transaction fees skyrocketed up to even 50 US-Dollars.[24] This was highly

related to the fact that block space became scarce since most of the blocks were

almost one megabyte in size.23 Also the transaction confirmation time increased

considerably.[35] Average transaction fees declined again in 2018 and fluctuate

around one US-Dollar per transaction at the moment (July 2018).[24]

The activation of Segwit in August 2017 was crucial for the further development

of the Lightning network. In December 2017, the Lightning developers announced

that the first Lightning payments were processed in the ACINQ, Blockstream and

Lightning Labs implementations.[76] Also other users started to use the alpha

implementation and a growing number of Lightning channels were opened. In

mid-March 2018, Lightning Labs released lnd in beta on the mainnet and only

shortly after, also ACINQ’s eclair was released in beta. By August 04, 2018, there

are about 2000 nodes which opened up over 11’000 payment channels[1].[120]

3 Block Size Increase

We start our technical analysis with the discussion of a block size increase. The

idea of a simple adjustment of the hard-coded limit is technically the simplest

improvement, since it requires only minimal code alterations. However, it is also

a very controversial idea which triggered a heated debate between advocates and

opponents lasting for years. This section first shortly describes what a block

in the Bitcoin blockchain is actually composed of, then details several different

proposals of how to increase the block size limit and lastly discusses advantages

and disadvantages of such a block size increase.

23We find a correlation between transaction fees and block size of 0.67.

15

3.1 Block Structure

We visualize the structure of a block in the Bitcoin blockchain in figure 7.24 A

block does not only consist of transactions but is composed of different compon-

ents which we call fields. As mentioned above, the hard-coded maximum block

size limit is one megabyte of which the largest part is available for transactions.

We discuss all components of a Bitcoin block below.[9,15,19,20,111]

Block (1′000′000 Bytes)

Magic Number (4 Bytes)

Block Size (4 Bytes)

Block Header (80 Bytes)
• nVersion (4 Bytes)

• hashPrevBlock (32 Bytes)

• Timestamp (4 Bytes)

• Difficulty Bits (4 Bytes)

• Nonce (4 Bytes)

• hashMerkleRoot (32 Bytes)

Transactions (< 999′911 Bytes)

Transaction counter (1-9 Bytes)

Figure 7: Structure of a block.[9] Note: The numbers in brackets show the size
of the respective fields.

Magic Number: Identifies the blockchain network and the start of the block.

A Bitcoin block has always the value 0xD9B4BEF9.

Block Size: Size of the block.

Block Header: Crucial for the consensus of the system since it links a block to

its predecessor.

24The order of the different fields of the block is not exactly correct. We slightly adapted the
order for the sake of simplicity.

16

nVersion: The protocol version that was in place when the block was

mined. Relevant to know the set of block validation rules that were

followed. Sometimes used for voting purposes on BIPs. It is a number

consisting of 32 bits.

Hash Previous Block: This field links the new block to the old block and

builds the foundation of the chain structure of the blockchain. It is

the hash value (double SHA-256) of all fields of the previous block’s

block header. It ensures that content in old blocks cannot be altered

without changing this value and consequently the hash of this block

header.

Timestamp: The timestamp adds information about the point in time a

block is mined. The consensus rules in Bitcoin do not mandate strict

ordering of block timestamps. For example, block B which is mined

after block A can still have an earlier timestamp than block A. This

follows from the issue that without a central authority it is not possible

to know the exact current network time. Thus, the protocol accepts

blocks with a timestamp not later than two hours after current network

time and not earlier than the median timestamp of the previous eleven

mined blocks.25 Miners can use this flexibility to introduce additional

variation for solving the cryptographic puzzle.

Difficulty Bits: The difficulty bits describe the maximum threshold the

hash value of the block header must be less or equal to in order to be

accepted by the network.

Nonce: The nonce is a 32-bit number of arbitrary data. Miner may change

the data in the nonce to eventually produce a hash value of the block

header which is smaller or equal to the difficulty target. For instance, a

miner can start at a pre-defined number and incrementally try different

numbers until the target is undercut.

Merkle Root Hash: The Merkle Root hash is a compact 256-bit hash

25An example are blocks 180966 and 180967. Both were mined on May 20, 2012, but the
first one’s timestamp is 23:02:53 and the second one’s 23:02:13. Even though the first one was
mined before the second one, it has a later timestamp.

17

value of all transactions included in the block. It is calculated by

using a Merkle tree, in which transactions are always arranged in pairs

and then hashed together until only one number is left, i.e. the Merkle

root.

Transactions: Lists all transactions included in a block. The first transaction

listed is always the coinbase transaction which has to be part of a block

and creates new Bitcoin units. Theoretically, miners can send the coinbase

transaction to whomever they want. In practise, however, they send the

newly created Bitcoin units to themselves as a remuneration for mining the

block.

Transaction counter: Counts the number of transactions included in the block.

3.2 Proposals to Increase the Block Size

Over the years, there have been many different proposals how the block size could

be increased. Already in 2010, Satoshi Nakamoto suggested that a larger block

size could be phased in over a certain time period as soon as the network is closer

to needing it.[95] Eight BIPs between BIP100 and BIP109 and numerous other

proposals in forums, mailing lists, conferences etc. deal with a block size increase.

Discussing all of them would be beyond the scope of this paper, which is why we

focus on the most relevant ones in our view.

Each proposal suggests either a one-time increase or a dynamic limit, where the

limit changes over time depending on some pre-definable factors. All proposals

discussed below would have required a hard fork to be implemented. None of

them, however, was included in the Bitcoin Core source code.

BIP100[58]

Jeff Garzik, Tom Harding and Dagur Valberg created BIP100 on June 11, 2015.

The proposal suggests that the one megabyte block size limit should be replaced

with a variable limit set by coinbase vote. A 75% supermajority can trigger a

change of the maximum block size. The in- or decrease must not exceed 5% of

18

the previous block size limit.

Miners can vote about altering the block size during a 2016 blocks retargeting

period which equals about two weeks. The vote is encoded within the scriptSig

of the coinbase transaction where a megabyte value is proposed using the BIP100

pattern. For instance, /BIP100/B8/ is a vote for a eight megabyte block size

limit.

Votes are ordered at the end of a retargeting period. If there is no vote in a coin-

base transaction, it is counted as a vote for keeping the current block size limit.

Subsequently, the first and the third quartile are analysed. We define the new

block size limit prevailing at the first quartile as the raise value and the one

at the third quartile as the lower value. At the first quartile (i.e. the 1512th

highest block), 75% of the votes are in favour of the raise value or a larger

one. Thus, if the raise value is larger than the current value but smaller than

the current value plus 5%, the raise value is set as the new block size limit for

the subsequent 2016 blocks. If the raise value exceeds the current value plus

5%, the new value is set at raise value plus 5%. The process of decreasing the

block size is analogous to raising the block size. If the lower value is less than

the current value, but greater than the current value minus 5%, the block size

is reduced to the lower value for the next period. If it is even lower than the

current value minus 5%, the new block size limit is set to lower value minus

5%. If the raise value is lower and the lower value greater than the current

value, there is no change of the block size limit.

For the sake of understanding the proposal, we give a quick example. Assume

for now that the current block size is five megabytes and that there are six coin-

base votes. One of them voted for a block size of four megabytes, another one

for six megabytes, three for seven megabytes and one for eight megabytes (i.e.

4,6,7,7,7,8). The raise value equals the first quartile which is six megabytes

and the lower value equals the third quartile which is seven megabytes. On the

one hand, the lower value is not smaller than the current value which is why

the block size is not decreased. On the other hand, the raise value is larger

than the current block size which means that more than 75% of the votes are

in favour of an increased block size and the limit is raised. However, the raise

19

value exceeds the current block size plus 5% (i.e. 5.25 megabytes). Hence, the

new limit for the subsequent retargeting period is set to 5.25 megabytes.

A point of criticism of this proposal is that it gives too much power to the miners,

since only they are able to vote about the block size limit while users cannot dir-

ectly influence it.

BIP101[2]

On June 22, 2015, Gavin Andresen proposed BIP101. The idea was to introduce

a predictable growth rate of the block size limit.

BIP101 would be deployed if miners signal their support in at least 750 of 1000

consecutive blocks. They do so by setting the first, second, third and thirtieth

bit in the version number of the block header equal to 0x20000007 in hex. If at

least 750 blocks are in favour, BIP101 would be activated after a two weeks grace

period.

When activated, the block size increases directly from one megabyte to eight

megabytes. Afterwards, it doubles every two years for ten periods. After 20 years,

a maximum block size limit of 8.192 gigabytes would be reached. In between the

doubling periods, the block size limit increases linearly based on the timestamp

in the block header.

According to Andresen, the initial jump to eight megabyte was mainly chosen in

regards to miners on bandwidth-constrained networks. The two years doubling

interval was chosen based on long-term growth trends for CPU power, storage

and internet bandwidth.

Elastic Block Cap with Rollover Penalties[93]

Also in June 2015, Meni Rosenfeld proposed an elastic limit with a rollover fee

pool and a penalty for large blocks. Miners are free to chose an arbitrarily large

block size. However, there is a penalty for producing larger blocks where the

penalty is a convex function of the block size. The penalty is deducted from the

transaction fees a miner receives upon mining a valid block and is paid into a

rollover fee pool.

A miner’s earnings are composed of the block reward, the transaction fees and a

20

share of the rollover fee pool minus the possible penalty, i.e.

Earnings = block reward + fees + fraction of fee pool︸ ︷︷ ︸
Income

−penalty ≥ 0

The block is invalid, if the penalty is larger than the income. Thus, a miner faces

a trade-off between larger blocks with the disadvantage of a penalty and smaller

blocks with the disadvantage of fewer transaction fees.

BIP103[127]

On July 21, 2015, Pieter Wuille proposed BIP103 which intends to connect block

size growth to technological growth. Wuille stated that a large block size is only

problematic if it increases faster than technological progress. If BIP103 had been

accepted, the first step would have occurred only in January 2017 to give the

network enough time to prepare for the hard fork. Afterwards, the block size

limit would increase by 4.4% every 223 seconds (around 97 days). This results

in an annual growth rate of 17.7% which is consistent with the average growth

rate of bandwidth over the years before 2015. The last step would occur in July

2063, when the block size limit would reach about 1.87 GB. If the growth rate of

technological progress would shrink at some point in the future, the growth rate

of the block size limit could be reduced with a soft fork.

BIP 102 & 109[5,56]

Jeff Garzik in BIP102 and Gavin Andresen in BIP109 both intended to change

the maximum block size limit in a one-time increase to two megabytes.

Bitcoin Cash

As discussed in section 2, Bitcoin split into Bitcoin and Bitcoin Cash on August

01, 2017. Bitcoin Cash is identical to Bitcoin up to block 478’558 and maintains

a separate blockchain from block 478’559 on.[90] Every user who owned Bitcoin

units at that point in time received the same amount of Bitcoin Cash units.

Moreover, Bitcoin Cash had mainly three new features. Firstly, it exhibited

a block size of eight megabytes.26 Secondly, the transaction signature hashing

algorithm was slightly adapted to verify its distinction from Bitcoin. Lastly,

26Bitcoin Cash increased the block size to 32 megabytes in May 2018.

21

if the hash power in the network is low, the difficulty may adjust faster than

the regular 2016 blocks, which was called the Emergency Difficulty Adjustment

(EDA).[99] The EDA was mainly implemented to deal with a dramatically lower

hash rate after the split. Because it failed to stabilize the block interval to ten

minutes afterwards, Bitcoin Cash had to perform another hard fork in November

2017 to adjust the algorithm.

3.3 Discussion

A simple increase of the block size limit is probably the most controversial pro-

posal in the Bitcoin scaling debate, which triggered a heated debate between

advocates and opponents lasting for years. Below, we present some important

arguments of both sides.

An increase of the block size limit is technically very easy to implement and

achieves the objective of rising the maximal number of transactions that can be

processed in the network. On the other hand, opponents of an increase state that

a simple increase is not enough, if Bitcoin wants to be on a par with payment net-

works like Visa or PayPal. If blocks become very large, other physical limitations

like bandwidth, storage capacities for a bigger blockchain or the time used to

verify the transactions limit the number of possible transactions on the network.

Therefore, the block size cannot be increased arbitrarily and other solutions be-

sides simple block size increases are needed to scale Bitcoin successfully.[23,43,46]

Regarding these increased costs for storing a bigger blockchain, the concept of

blockchain pruning is introduced. With pruning, a full node only stores the latest

blocks - e.g. the last 550 - but still maintains the UTXO set27 on a local stor-

age space to validate transactions. Obviously, it is critical for network security

reasons that there are still enough nodes storing the whole blockchain.[38]

Furthermore, sceptics of a block size increase claim that the increased costs of

running a full node will reduce the number of nodes in the network and thus is

27Unspent transaction outputs (UTXO) are outputs of transactions that have not been spent
in another transaction yet.

22

detrimental to decentralization in the Bitcoin network. On the contrary, advoc-

ates state that running a full node is not as expensive as often claimed. Even

with an increased block size up to 20 megabytes, running a full node should not

cost more than five to ten US-Dollars per month based on some calculations by

Andresen (2015)[6] and Bevand (2017)[10].

An often used counter-argument is that a block size increase had to be implemen-

ted through a hard fork. The Bitcoin network has no experience in an organized

hard fork and many users fear another split. Proponents answer that hard forks

have occurred in other networks without any negative consequences. Monero,

for instance, successfully performed hard forks about every six months. Only re-

cently, a hard fork about a change in the CryptoNight Proof-of-Work algorithm,

which makes it impossible to mine with ASICs, led to a network split in April

2018.[118] Also Bitcoin Cash managed to increase the block size from eight to 32

megabytes through a hard fork in May 2018.

Moreover, larger blocks may ease the creation of malicious blocks which take

longer to verify and can be abused in Denial of Service (DoS) attacks. Further-

more, more spam or useless transactions in general might be added to the block-

chain, since the cost of including them is lower with bigger blocks. This would

inflate the blockchain unnecessarily. In contrast, proponents argue that there is

no critical risk of DoS attacks in the current Bitcoin network, because the costs

of mining have increased tremendously over the last years. In early stages, the

reward for mining a block was only a few US-Dollars and the costs were negli-

gible. Hence, there was a serious risk of DoS attacks on the network. Nowadays,

however, with a Bitcoin price of a few thousand US-Dollars and the current coin-

base reward of 12.5 Bitcoin units, a miner gains several tens of thousands of

US-Dollars for mining a block. Consequently, the costs of mining have increased

as well which makes creating a poisonous block very expensive.[4] Moreover, Ser-

gio Lerner showed already in 2013 that even with a one megabyte block size limit

attackers could produce blocks which are very expensive to verify.[73] The fact

that nobody has ever attacked Bitcoin in such a way shows that DoS attacks are

probably not worthwhile and that it may be more profitable to just invest the

23

resources needed for such an attack into mining itself.

Another notable point of discussion are transaction fees. If the block size is not

increased and block space becomes a scarce resource, transaction fees are going

to rise which makes the network less attractive as a payment network. On the

contrary, opponents of a block size increase highlight the relevance of a healthy

fee market, such that miners are still incentivised to provide computing power as

soon as the block reward approaches zero. This fee market could only emerge, if

the block space is limited artificially.

Lastly, larger blocks are relayed slower over the network due to natural physical

limitations. This would be disadvantageous for some miners. For instance, if

Chinese mining pools hold the majority of the network’s mining power and thus

create most of the blocks, US and European miners would be disadvantaged, since

there exists some latency until the block is broadcast over the network.28

4 Segwit

In this section, we are going to discuss Segregated Witness (Segwit). Segwit

was first presented at the Scaling Bitcoin - Hong Kong workshop. Its original

purpose was not to allow for more transactions on the network but to solve

the transaction malleability issue. Subsequently, we first provide some technical

background to understand Segwit. The structure of a transaction and the most

relevant transaction types are discussed and transaction malleability is explained.

Afterwards, we explain Segwit’s technical details and lastly illustrate the steps to

Segwit’s activation in August 2017.

4.1 Transaction Structure

A Bitcoin transaction (without Segwit) has a general serialization which is illus-

trated in figure 8. The only exception is the coinbase transaction, which we are

28The Great Firewall of China would amplify this effect even more.

24

Transaction (varies)

Version (4 Bytes)

TxIn Count (1-9 Bytes)

TxIn (varies)
• outpoint (36 Bytes)

• script bytes (1-9 Bytes)

• signature script (varies)

• sequence (4 Bytes)

TxOut Count (1-9 Bytes)

TxOut (varies)
• value (8 Bytes)

• pk script bytes (1-9 Bytes)

• pk script (varies)

nLockTime (4 Bytes)

Figure 8: Serialization of a Bitcoin transaction without Segwit. Note: The num-
bers in brackets show the size of the respective fields.

not going to discuss in more detail due to lack of relevance for the scaling debate.

We quickly present the original serialization and show the differences to a Segwit

transaction in section 4.4. [9,15,22,47]

Version: The transaction version number indicates the consensus rules under

which the transaction was created.

TxIn Count: The number of inputs.

TxIn: The transaction inputs. There are several inputs in a transaction if Bitcoin

units are spent from various outputs.

Outpoint: Links the transaction to a previous output. It is composed of a

32-byte transaction ID (TXID)29, i.e. the SHA256d hash value of the

29The transaction ID is the critical part for transaction malleability described in section 4.3.

25

previous signed transaction and a 4-byte index that indicates which

output of the specific transaction is referenced.

Script Bytes: The number of bytes in the signature script. The maximum

is 10’000 bytes.

Signature Script: A script, also called scriptSig, which has to satisfy the

conditions stated in the public key script (see TxOut). It contains

several parameters depending on the transaction type. In the case

of a pay-to-address transaction for example, it includes a secp256k1

signature and a public key. The public key hash (i.e., the Bitcoin

address) has to be equal to the public key hash stated in the public

key script in the transaction output. The signature is used to prove

that someone controls the private key that corresponds to the public

key and can hence rightfully spend the Bitcoin units connected to the

specific output.

Sequence Number: Part of all transactions which mostly is 0xffffffff.

It is used for the implementation of relative lock time under BIP68

(see section 5.2).

TxOut Count: The number of outputs.

TxOut: The transaction outputs. There are several outputs in a transaction if

Bitcoin units are sent to several addresses.

Value: The number of Satoshis30 to spend. The total value of all outputs

must not exceed the total amount of all inputs.

Public Key Script Bytes: The number of bytes in the public key script.

The maximum is 10’000 bytes.

Public Key Script: The public key script or scriptPubKey defines condi-

tions that have to be satisfied such that someone can use this output

as a subsequent input (see TxIn). In a pay-to-address transaction, it

includes the public-key-hash (i.e. the Bitcoin address) such that the

30A Satoshi is currently the smallest unit of the Bitcoin currency and equals 0.00000001 BTC.

26

network knows who is allowed to spend the Bitcoin units in the next

transaction.

nLockTime: The nLockTime field states the earliest point in time a transaction

can be included in a block of the blockchain. It can be either defined as

block height or as block time. Originally, nLockTime was always set to zero

such that a transaction could be included in any block. Since Bitcoin Core

version 0.11.0., nLockTime is set to a recent block number by default.[21]

4.2 P2PKH and P2SH Transactions

To understand the new Segwit transaction types in section 4.4, we quickly review

how Pay-to-public-key-hash (P2PKH) and Pay-to-script-hash (P2SH) transac-

tions work.

Imagine Emily wants to send some Bitcoin units to Bob with a P2PKH transac-

tion. Bob takes his private key, generates a corresponding public key via Elliptic

Curve Digital Signature Algorithm (ECDSA), double hashes it and encodes it

with base58check to get his Bitcoin address. A P2PKH address always has a

prefix of 1 as an identifier. He then sends the Bitcoin address to Emily. In the

scriptPubKey, she includes both Bob’s decoded address and conditions Bob has to

meet to spend the Bitcoin units (see figure 9). Emily propagates the transaction

to the network, whereby it is added to the blockchain and the output is stored in

the unspent transaction output (UTXO) set of full nodes. If Bob wants to spend

the UTXO, he creates a new transaction and references the specific output with

the transaction ID of Emily’s transaction and the index number. Furthermore,

he includes his public key and a signature in the scriptSig to satisfy the condi-

tions defined in the scriptPubKey. Bob can now propagate the transaction to the

network. The verification procedure requires evaluation of the scriptPubKey and

the scriptSig. Each item of the scriptSig and the scriptPubKey is executed one

at a time. First, the signature and the public key of the scriptSig are put on the

stack. Then, the operations (i.e. the aforementioned conditions) defined in the

scriptPubKey are executed. A copy of the public key is created with OP_DUB and

27

Emily’s transaction

Input

Output

scriptPubKey:

OP_DUP OP_HASH160

<pubKeyHash>

OP_EQUALVERIFY OP_CHECKSIG

Bob’s transaction

Input

scriptSig:

<sig> <pubkey>

Output

Figure 9: Pay-to-public-key-hash (P2PKH) transaction.

then hashed with OP_HASH160. Next, the public key hash Bob gave to Emily is

pushed on the stack such that two copies of the public key hash are on top of it.

OP_EQUALVERIFY verifies whether they are equal. Lastly, OP_CHECKSIG checks the

signature against the public key. If everything runs successfully, a single TRUE

is pushed on top of the stack.

A Pay-to-script-hash (P2SH) transaction allows flexible payout conditions. Any

arbitrary conditions can be defined in the redeemScript.31 P2SH is often used

for multi signature payout conditions. For instance, Bob could state in the re-

deemScript that he cannot spend the Bitcoin units he received from Emily with

only one key but two out of three private keys have to sign the transaction. Bob

can generate a base58check encoded Bitcoin address corresponding to the spe-

cific script, such that Emily knows where to send the Bitcoin units to. These

addresses always start with a prefix of value 3.32 When she wants to send Bitcoin

units to Bob’s redeemScript, she creates a transaction and includes the hash of

the redeemScript and the conditions Bob has to meet in the scriptPubKey and

31The redeemScript is the script in which the payout conditions are defined. It is included
in the scriptPubKey and has to be provided in the scriptSig if someone intends to spend the
respective output.

32The prefix of an address became very relevant with the introduction of Segwit addresses
which also have a prefix of value 3. We further discuss the details below.

28

Emily’s transaction

Input

Output

scriptPubKey:

OP_HASH160

<Hash160(redeemScript)>

OP_EQUAL

Bob’s transaction

Input

scriptSig:

<sig> [sig...]

<redeemScript>

Output

Figure 10: Pay-to-script-hash (P2SH) transaction.

propagates the transaction. If Bob wants to spend the output in a following trans-

action, he includes the redeem script and the required signatures in the scriptSig

(see figure 10). The network will verify if Bob’s transaction is valid in a similar

manner as before. First, the redeemScript in the scriptSig is put on the stack.

Afterwards, the operations in the scriptPubKey are executed. The redeemScript

is hashed with OP_HASH160 and compared to the hash of the redeemScript in the

scriptPubKey with OP_EQUAL. If both scripts are equal, the redeemScript provided

in the scriptSig is analysed and verified. If the script is valid, the transaction can

be considered valid.

4.3 Transaction Malleability

As aforementioned, Segregated Witness was originally developed to solve trans-

action malleability. Therefore, before detailing Segwit we want to explain what

transaction malleability is and how it has been exploited. The basic Bitcoin con-

sensus and payment mechanism is not endangered by transaction malleability,

but depending on the set up it can affect services built on top of it.[102]

Transaction malleability is related to the transaction ID. As described in section

29

4.1, the information in a transaction including the signature is hashed to get the

transaction ID. To ensure that this ID is unique and distinct, applying the hash

function on a transaction has to result in the same ID every time this operation

is performed. Unfortunately, it is possible to slightly adapt the signature in a

transaction without making it invalid, which leads to a different transaction ID.

A user can choose which parts of a transaction are signed by the signature. There

are three options available called signature hash types or sighash flags.

� SIGHASH_ALL is the default sighash type and signs all inputs and outputs

except the signature script.

� SIGHASH_NONE signs all inputs, but none of the outputs.

� SIGHASH_SINGLE signs only the output corresponding to a specific input.

The parts of the transaction that are not signed by the signature are modifi-

able. The signature script is not protected by any of the signature hash types,

since it contains the secp256k1 signature which cannot sign itself. Hence, it is

possible to slightly modify the signature in the signature script. This, however,

results in a different hash value of the transaction, i.e. a different transaction

ID. Very simplified, one can imagine the numbers “32” and “032” to be identical

in various applications.33 However, the additional “0” would change the hash

value.[122] Furthermore, additional information can be included in the scriptSig.

For example, an OP_NOP operation could be added that does not do anything or a

combination of OP_DUP OP_DROP that first duplicates the signature on the stack

and then removes it again.[70] These operations would change the hash value

without invalidating the transaction. Transaction malleability is not problematic

if a transaction is already included in the blockchain, however, it becomes an issue

if the transaction ID is changed before the transaction is added to the blockchain.

33More technically speaking, there are two main options to exploit transaction malleability.
First, the verification of the signatures relies on OpenSSL. OpenSSL, however, would accept
various deviations from the DER standard applied on the signatures. This was fixed in BIP66.
Secondly, the Elliptic Curve Signature Algorithm (ECDSA) Bitcoin uses can be abused. Given
a signature (r,s), it is possible to derive the complementary signature (r, −s mod n) without
knowing the private key. The complementary signature would still be valid, produces, however,
a different hash.[69]

30

There are several ways, how transaction malleability can be exploited. For ex-

ample, a Bitcoin user could request Bitcoin units from an exchange or wallet ser-

vice and then alter the signature before it enters the blockchain. Consequently,

two transactions co-exist which spend the same in- and outputs. Both are valid

but both have a unique transaction ID. In case the second transaction enters

the blockchain first, the Bitcoin user could contact the exchange or wallet ser-

vice claiming that the transaction did not succeed. If the wallet service checks

the blockchain it will not find the transaction ID of the original transaction and

might resend the Bitcoin units. Hence, transaction malleability enables to alter

the transaction such that it looks like Bitcoin units have not been sent to a Bitcoin

wallet, even though they have.

This is exactly what was claimed to have happened when transaction malleability

became very relevant for the first time in the Bitcoin network in February 2014.

Users of the Bitcoin exchange platform Mt. Gox repeatedly faced problems with

the outpayment of their Bitcoin units. On February 07, 2014, Mt. Gox released a

statement that they halt all Bitcoin withdrawals to better work on the technical

issues faced.[101] Three days later, they released another statement in which they

made a bug in the Bitcoin code (i.e. transaction malleability) responsible for

their problems, even though this issue has been known for a significant amount

of time.[51,61] In a nutshell, users were able to withdraw more money then they

actually owned, since it seemed like transactions were often not confirmed and Mt.

Gox re-sent Bitcoin units based on transaction IDs. It is important to highlight

that this issue could have been avoided, if Mt. Gox had dealt properly with the

issue.

A further example how transaction malleability can be exploited are DDoS at-

tacks. An attacker could create mutant transactions and propagate them to sev-

eral exchanges. If this happens in a high intensity, exchanges might face logistical

problems.[34]

Lastly, transaction malleability strongly hinders the use of unconfirmed trans-

action dependency chains. Theoretically, it is possible to use an output of a

31

transaction A as an input of transaction B before transaction A is included in the

blockchain. If, however, the signature of transaction A is modified, the TXID will

change and as a consequence, transaction B cannot successfully reference trans-

action A anymore. This is a problem especially for payment channels as applied,

for example, in the Lightning network (see section 6).

4.4 Technical Analysis

In this section we explain the technical details of Segregated Witness. Not only

does Segwit solve transaction malleability, but also does it help to increase the

number of transactions that can be processed over the network. By solving trans-

action malleability, Segwit served as an important building block for the further

development of second layer solutions like the Lightning network. The way Seg-

wit was implemented enabled also further upgrades, described at the end of this

section.

Transaction w/o Segwit

Input
• Previous Output:

• TXID: f5d8ee39 . . . 4470b9a6

• Index: 0

• scriptSig: 30450220 . . . 6b241501

Output
• Value: 100000000

• scriptPubKey: OP_DUP . . . OP_CHECKSIG

Transaction w/ Segwit

Input
• Previous Output:

• TXID: f5d8ee39 . . . 4470b9a6

• Index: 0

• scriptSig: (empty)

Output
• Value: 100000000

• scriptPubKey: OP_DUP . . . OP_CHECKSIG

Witness Data
• Input 0 scriptSig: 3045 . . . 1501

txid

wtxid

Figure 11: Simplified structure of a transaction with and without Segwit. The
transaction consists of one input and one output and sends one Bitcoin unit.

The basic idea of Segwit is that the content of the scriptSig is taken out of the old

data field and included in an additional data field called witness as illustrated in

figure 11. The witness contains the data required to check the transaction validity

32

but does not have an influence on transaction effects (i.e. it has no effect on inputs

and outputs). The transaction ID is still calculated by the same data fields as

before, but the scriptSig consists of an empty string under the new serialization.

Thus, if someone modifies the signature, the transaction ID will not change. Since

the witness data is only used at the time of validation, there is no need to store it

on the blockchain. This reduces the total storage requirements of the blockchain

considerably.

4.4.1 Serialization of a Segwit Transaction

The serialization of a Segwit transaction is defined in BIP144, as illustrated in

figure 12. The data fields are equal to a non-Segwit transaction, except for the

Marker, Flag and the Witness Script which are added. The marker field ensures

Transaction (varies)

Version (4 Bytes)

Marker (1 Byte)

Flag (1 Byte)

TxIn Count (1+ Bytes)

TxIn (41+ Bytes)

TxOut Count (1+ Bytes)

TxOut (9+ Bytes)

Witness Script (1+ Bytes)

nLockTime (4 Bytes)

Figure 12: Serialization of a Segwit transaction. Note: The numbers in brackets
show the size of the respective fields.

33

that a node running the old software is not validating a transaction using the

new serialization. It must be a 1-byte zero value (0x00). The flag field can be

interpreted as a bit vector and allows to add more extra non-committed (i.e. not

signed) data to a transaction. It contains a 1-byte non-zero value (currently this

must be 0x01).

4.4.2 Commitment to the Signatures

For the consensus protocol it is crucial that the blocks commit to the signatures

of the transactions. In other words, a malicious node must not be able to easily

modify a signature in a block and relay the modified one. With the old transaction

serialization, this is prevented by building a Merkle tree where the transaction

IDs of all transactions serve as Merkle leaves. The Merkle root is included in the

block header in the hashMerkleRoot field as illustrated in figure 7. If someone

alters the signature in any transaction, its ID would change which leads to a

different Merkle root. Consequently, the block header’s hash value is modified as

well. With Segwit, the signature is not included in the transaction ID and hence

this prevention mechanism fails. Instead, two Merkle trees are built for Segwit

transactions.

The first one is the same as in the old serialization. The txid used for the leaves

of the tree is calculated by applying a double SHA256 hash function on [nVer-

sion][txins][txouts][nLockTime]34. The second Merkle tree’s leaves are rep-

resented by the witness transaction IDs (wtxid) of all transactions except the

coinbase. The wtxid is calculated by applying the double SHA256 hash on the

new serialization format, i.e.

[nVersion][marker][flag][txins][txouts][witness][nLockTime] (see fig-

ure 12). wtxid thus commits to the signatures. The Merkle root of the second

tree is encoded in the scriptPubKey of the coinbase transaction. The coinbase

again is included in the first Merkle tree whereby a block successfully commits to

34The TxIn Count and TxOut Count fields depicted in figure 8 are here included in [txins]

and [txouts].

34

Previous transaction

Input

Output

scriptPubKey:

0 <20-byte-key-hash>

Subsequent transaction

Input

scriptSig:

(empty)

Output

Witness:

<signature> <pubkey>

Figure 13: Pay-to-witness-public-key-hash (P2WPKH) transaction.

the signatures of the transactions.[78]

4.4.3 Segwit Transaction Types

The content of the scriptPubKey in a Segwit transaction differs compared to a

conventional transaction. It starts with a 1-byte push opcode which can take

values from 0 to 16 (version byte) and is followed by a data push byte vector

between byte 2 and 40 (witness program). Each value of the version byte has

a different meaning and can activate a different operation. Witness validation

is triggered depending on pre-defined requirements. Specifically, we distinguish

between two cases, native witness programs and P2SH witness programs.

Fist, witness validation is triggered if the scriptPubKey consists exactly of a

version byte and a witness program. Additionally, the scriptSig must be empty.

This is called a native witness program. We illustrate this on the basis of a pay-

to-witness-public-key-hash (P2WPKH) transaction in figure 13. In this case, the

scriptPubKey must consist of a version byte taking value 0 and a 20 bytes witness

program. If this requirements are fulfilled and the scriptSig is empty, the witness

is checked and validated. For a P2WPKH transaction, the witness program equals

35

Previous transaction

Input

Output

scriptPubKey:

0 <32-byte-key-hash>

Subsequent transaction

Input

scriptSig:

(empty)

Output

Witness:
0 <signature1> <1
<pubkey1> <pubkey2>

2 CHECKMULTISIG>

Figure 14: 1-of-2 multisig Pay-to-witness-script-hash (P2WSH) transaction.

the double hash of a compressed public key.35 The witness field consists exactly

of a signature and a public key (each ≤ 520 bytes). For the transaction to be

valid, the hashed public key in the witness field must match the witness program

and the signature must be valid when verified against the public key.

The case of a Pay-to-witness-script-hash (P2WSH) transaction is similar to a

P2WPKH transaction. The version byte has value 0 as well, but the witness

program consists of 32 bytes, as illustrated in figure 14. The witness program is

the SHA256 hash36 of the serialized witness script.37 To validate the transaction,

the hash of the witness script must match the 32 byte witness program. If this is

true, the witness script is examined and validated. Only if everything succeeds,

the transaction is valid.

The content used in the scriptPubKey (i.e. either the double hash of the public

35RIPEMD160(SHA256(ECDSA_publicKey)).
36Before Segwit, the P2SH was secured by the HASH160 algorithm. There are, however,

security issues if for example one of the signers aims to steal the funds. Using the SHA256
algorithm for P2WSH should resolve this.[13]

37The witness script is the counterpart of the redeemScript in case of a Segwit transaction.

36

key or the hash of the witness script both prefixed with the version byte taking

value 0) can be interpreted as native Segwit address. If a user sends this address to

someone, support for Segwit and the ability to receive native Segwit transactions

is signalled.

If the version byte in the scriptPubKey is 0, but the witness program is neither

20 nor 32 bytes, the script must fail. If it is a number between 1 and 16, no

further examination of the witness field takes place. These numbers are reserved

for future extensions.

The above described native Segwit transactions are more efficient and use less

space than the P2SH witness programs we discuss below. However, they only

work if the sender and the receiver support Segwit. Since Segwit is implemented

as a soft fork, not all users will run Segwit compatible clients from the beginning,

wherefore a backwards compatible transaction format has to be implemented.

P2SH witness programs provide backward compatibility. Witness validation is

triggered if the scriptPubKey is a P2SH output (without a version byte) and the

redeemScript in the scriptSig consists exactly of a version byte and a witness

program. There a two forms, P2SH-P2WPKH and P2SH-P2WSH.

The case of a P2SH-P2WPKH is illustrated in figure 15. The redeemScript in the

scriptSig is composed of a 0 version byte and the double hash of a compressed

public key.38 The scriptPubKey consists of a 20 byte HASH160 of the redeem-

Script and the conditions to spend the coins again. This 20 byte hash is used

for creating a PS2H-P2WPKH address.39 It has a prefix of value 3 and is indis-

tinguishable from a non-Segwit P2SH address until the output is spent and the

redeem script exposed which makes it backwards compatible.

To validate the transaction, the HASH160 function is applied on the redeemScript

and then compared to the 20 byte script hash in the scriptPubKey. If successful

the public key and the signature are verified. Compared to the native P2WPKH

transaction, more space is used because the scriptSig is not empty. However,

38RIPEMD160(SHA256(ECDSA_publicKey)).
39Under base58check encoding this is: [one-byte version][20-byte hash][4-byte

checksum].

37

Previous transaction

Input

Output

scriptPubKey:

HASH160

<20-byte-script-hash>

EQUAL

Subsequent transaction

Input

scriptSig:

<0 <20-byte-key-hash>>

Output

Witness:

<signature> <pubkey>

Figure 15: P2SH-P2WPKH transaction.

this transaction type is backwards compatible for all clients since Bitcoin Core

version 0.6.0. Furthermore, the transaction size of this type is still smaller than

a conventional Bitcoin transaction, since the scriptSig only contains a hash value

and the signature and public key are part of the witness field.

Moreover, there are P2SH-P2WSH transactions. The scriptPubKey is equal to

the P2SH-P2WPKH case. The redeemScript in the scriptSig is composed of

a version byte taking value 0 followed by a 32 bytes single SHA256 hash of a

witness script. The corresponding address is created using the 20-byte hash in

the scriptPubKey with an additional prefix of value 3 and a checksum at the end.

As above, the address is indistinguishable from a basic P2SH address until the

UTXO is spent. To validate the transaction, the HASH160 function is applied

on the redeemScript and the hash value compared to the 20 bytes hash in the

scriptPubKey. If they are equal, the witness script is checked. The detailed

content of a 1-of-2 multi-signature P2SH-P2WSH script is listed below.

38

scriptPubKey: HASH160 <20-byte-hash> EQUAL

scriptSig: <0 <32-byte-hash>>

witness: 0 <signature1> <1 <pubkey1> <pubkey2> 2 CHECKMULTISIG>

4.4.4 Anyone-can-spend Output

Since Segwit was implemented as a soft fork, some nodes in the network will be

Segwit compatible and others will not. The nodes running old software will not

be able to read the Segwit outputs and thus interpret it as an anyone-can-spend

output. This leads to several problems we discuss further below.

An upgraded node has the possibility to signal support for Segwit while a non-

upgraded node has not. Consequently, Segwit transactions cannot be sent to all

nodes. A non-upgraded node normally uses either a P2PKH or a P2SH address

(see section 4.2). A P2PKH address has a prefix of value 1 and can therefore

be distinguished from a Segwit transaction. A Segwit transaction must never

be sent to a node using an address with prefix 1. If an address has a prefix of

value 3 things become more confusing. It could be either a P2SH address of a

non-upgraded node or a P2SH witness program.

A non-upgraded node receiving a Segwit transaction cannot interpret the script-

PubKey and reads it as an anyone-can-spend output, i.e. every user would be

able to spend the anyone-can-spend output without using a signature. This is

prevented by the miners who ensure that the network participants’ actions are

in line with the consensus protocol. Thus, it is crucial that miners are Segwit

compatible and can read the Segwit transactions to ensure that only a respective

owner spends a Segwit UTXO.40

4.4.5 Indirect Block Size Increase

Segwit transactions need less space in a block compared to conventional trans-

actions since the signatures are included in the witness field and hence, are not

40The anyone-can-spend outputs were a side effect of Segwit’s implementation as a soft fork.

39

considered for the one megabyte block size limit. Consequently, a block can

include more Segwit transactions than conventional ones.

The one megabyte block size limit is changed to a new block cost limit rule

including a block weight. It is defined as

Block Weight = Base Size ∗ 3 + Total Size ≤ 4′000′000 bytes (1)

where base size is the block size in bytes without any witness related data under

the original serialization and total size is the block size in bytes including base

and witness data under the Segwit transaction serialization illustrated in figure

12. In other words, witness data is counted as one unit of cost and the transaction

without the signatures as four units of cost. Practically speaking, the limit for the

base size is still one megabyte, the limit for the witness part is three megabytes.

Protocol Tx Size Witness Size Number of Base Size Total Size Block Limit Rate
(bytes) (bytes) Tx (bytes) (bytes) Weight (bytes) (tx/s)

Standard 500 0 2’000 - 1’000’000 - 1’000’000 3.3

Segwit 250 250 3’200 2’400’000 1’600’000 4’000’000 4’000’000 5.3

Table 1: Transaction capacity comparison between a standard transaction before
Segwit and a transaction using Segwit.

To see the effect on the transaction capacity, we illustrate a quick comparison

between a conventional transaction and a Segwit transaction in table 1. We

assume homogeneous transactions in a block and a transaction size of 500 bytes

of which 250 bytes is witness data. Without Segwit, 2’000 transactions can be

included in a block which results in a transaction capacity of 3.3 transactions

per second. With Segwit, the new limit is a block weight limit of 4’000’000

bytes. A block that consists solely of Segwit transactions can theoretically include

3200 transactions. This results in a 3200 · 250 · 3 = 2′400′000 bytes base size

and a 500 · 3200 = 1′600′000 bytes total size, which exactly satisfies the block

weight limit. The number of transactions per block has therefore increased by

60% and the transaction capacity to 5.3 transactions per second. Depending

on the size, type and the fraction of witness data, the number of transactions

40

that can be included in a block may increase between 60% to 100% compared

to a block including only conventional transactions.[13] For instance, the block

weight of a block including only standard single signature P2PKH transactions is

about 1.6 megabytes. If only 2-of-2 multisig transactions are included, the block

weight is about two megabytes. In both cases the hard-coded block limit is not

exceeded.[109]

Nodes that did not upgrade their software will always see blocks that are within

the one megabyte limit since they do not know about the witness data. In our

example, the block size measured by an old node would be 250 · 3200 = 750′000

bytes which well fits in the one megabyte limit.

4.4.6 Other Upgrades Implemented with the Segwit Soft Fork

Since Segwit implied large modifications to the Bitcoin source code, many other

upgrades were integrated in the Segwit soft fork as well. For example, BIP143

defines a new transaction digest algorithm for signature verification under Segwit.

Originally, the time used to verify the signatures in a block grew quadratically

(O(n2)) in the number of signature operations (sigops). Doubling the size of a

transaction doubled the number of signature operations and the amount of data to

be hashed to verify the signatures. A malicious user could exploit this and create

a transaction that takes over three minutes to verify.[13] The new transaction

digest algorithm allows for linear signature verification (O(n)) because each byte

of a transaction is hashed at most twice. It is, however, only applicable in witness

programs with a version byte taking value 0.[72]

Furthermore, the Segwit related BIP173 was introduced in Bitcoin Core version

0.16.0. in February 2018. It defines a new address format for native witness

outputs. A Bitcoin address is originally encoded in base58check format which

has several shortcomings, e.g. it needs a lot of space in QR codes, decoding it

is relatively slow and complicated and the double SHA256 checksum is slow and

has no error detection mechanism. With BIP173, Bech32 is introduced which is a

41

checksummed base32 format.41 A Bech32 string is maximally 90 characters long.

It consists of (i) a human-readable part which conveys everything of importance

for the reader, (ii) a separator which is always 1 and (iii) a data part. The data

part only consists of alphanumeric characters, excluding 1, b, i and o. The last

six characters form a checksum. The new address format is only compatible with

updated software.[130]

4.5 Road to Segwit Activation

Because the path to Segwit’s activation was very complicated, we give an overview

of the different steps below. As mentioned in section 2, the BIP141 proposal

describing Segwit was formalized in December 2015. BIP141 was released under

the BIP9 soft fork implementation method. Between November 15, 2016 and

November 15, 2017, miners were able to support Segwit through signalling bit 1

in the nVersion field of the block header. The one year timespan contained 26

periods consisting of 2016 blocks each. If in any of these periods, at least 95% of

the blocks mined (i.e. 1916 blocks) or in other words 95% of the hashing power

signalled bit 1, Segwit would have become LOCKED_IN and activated 2016 blocks

later. Every node running at least Bitcoin Core 0.13.1. would have been able

to run Segwit. If the threshold had not been reached in any of these 26 periods,

BIP141 would have obtained the status FAILED.

Because no real progress was made in the activation of Segwit, the User Activated

Soft Fork (UASF) approach was proposed (BIP148) in March 2017. From August

01, 2017 on, all blocks that did not signal bit 1 would have been rejected by all

nodes running BIP148. Nodes that did not run BIP148 would have accepted

both blocks mined under the new and under the old rules. Hence, if several nodes

had run BIP148 and a miner had produced a block not signalling bit 1 a chain

split would have been triggered. Consequently, in the chain where BIP148 would

have been applied by the users, 100% of the blocks had signalled readiness for

Segwit whereby the 95% threshold would have been reached and Segwit would

41Bech32 is also used for a QR-ready protocol for requesting payments over the Lightning
network.[30]

42

have locked in. In other words, if by August 01, 2017, Segwit had not locked

in or been activated yet, any node running the BIP148 code would have started

rejecting blocks that did not signal bit 1. Because the new rules would have been

enforced by the users and not by the miners, it was called a user activated soft

fork.

Also in March 2017, Sergio Demian Lerner proposed Segwit2Mb.[74] If and only

if Segwit was activated, a block size increase to two megabytes should have fol-

lowed. He stated that the single aim of this proposal was to reunite the Bitcoin

community. The proposal was further known as Segwit2x. Lerner suggested a

signalling period of four months from April 29 to August 29, 2017. Miners could

signal either for deploying Segwit and two megabytes blocks together (signal bit

2) or for deploying Segwit only (signal bit 1). If at least 95% of the hashing power

in the network had signalled support for the combined deployment and the Segwit

soft fork had been activated, the two megabytes hard fork would have occurred

on December 14, 2017.

Jeff Garzik, who already wanted to raise the block size to two megabytes in

BIP102, was the lead developer of Segwit2x. A software implementation was

developed on the Github repository btc1, which differed from the implementation

suggested by Demian Lerner. The mechanism to reach 100% support for Segwit

was adopted from BIP91 (Segsignal). First, miner publicly stated support by

including NYA (New York Agreement) in the coinbase. The actual signalling

period was planned to take place between July 21 and August 01, 2017. At least

80% of the blocks had to signal bit 4 in a 336 blocks period (i.e. ∼ 2.3 days).

Hence, there were five periods in which Segwit could lock in. If successful, blocks

not signalling support for Segwit in bit 1 had been orphaned after a 336 blocks

grace period. In the Segwit2x case, 90 days (144*90 blocks) after Segwit had

activated a hard fork raising the block size to two megabytes would have occurred.

Since Bitcoin Core publicly opposed a block size increase to two megabytes, all

nodes that wanted to support Segwit2x had to switch to an alternative client

within these 90 days. Probably due to the upcoming UASF on August 01, 2017,

miners already started to signal bit 4 before July 21, 2017. As a consequence, bit

43

Segwit2x BIP91 BIP 148

Pre-signalling
period

> 80% signal bit 4 > 80% signal bit 4 -

Signalling
period

> 95% signal bit 1 > 95% signal bit 1 > 95% signal bit 1
Start August 01

Activation
Process

• Nodes update
to btc1
• > 80% signal
bit 4
• BIP91 activates
• Reject non-bit 1
blocks

• Nodes update
to BIP91
• > 80% signal
bit 4
• BIP91 activates
• Reject non-bit 1
blocks

• Nodes update
to BIP148

• On August 01
BIP148 activates
• Reject non-bit 1
blocks

Outcome • 100% of blocks signal bit 1
• Segwit locks in when 95% reached
• Segwit activates after 2016 blocks grace period

Secondary
Purpose

Hard fork 90
days later

None None

Table 2: Overview of three Segwit activation mechanisms. Namely, Segwit2x,
BIP91 Segsignal and BIP148 UASF.[64]

4 already locked in on July 20, 2017 at block height 476768. Up to 90% of all

hash power in the network signalled support.[64] The activation of bit 4 made the

UASF irrelevant, since miners started to signal bit 1 after the 336 grace period.

On August 08, 2017, the necessary threshold required in BIP141 was reached

and Segwit locked in. For another 2016 blocks grace period, users had time to

upgrade their software. Segwit was finally activated on August 24, 2017.

Furthermore, with bit 4 locking in, Segsignal (BIP91) itself became relevant again.

Since Segsignal was implemented in the Segwit2x code, it was not possible to

differentiate, whether miners signalled support for Segwit2x, including Segsignal,

or only for Segsignal. In other words, it was not clear, whether miners are in favour

for Segwit with a block size increase or only for Segwit. On August 16, 2017, the

developers of Segwit2x announced that the two megabytes hard fork should take

place in mid-November at block height 494’784. However, on November 08, 2017,

they stated in a mail to the Segwit2x mailing list that the plans to upgrade to

Segwit2x are suspended due to lack of consensus in the Bitcoin community.[8]

44

More probably, however, is that the suspension of the project was caused by

several bugs in the code.[100]

The usage of Segwit transactions steadily increased over time. In July 2018,

around 35 to 40% of all transactions were Segwit transactions.[84]

4.6 Discussion

Similar to a block size increase, either Segwit itself or the fact that is was imple-

mented as a soft fork, which for example caused the anyone-can-spend outputs,

was heavily debated in the network. We present some arguments that show the

benefits of Segwit and others that emphasize the shortcomings.

Without Segwit, signatures accounted for about 50% of the blockchain’s storage

requirements.[129] However, they are only used at the time of validation and af-

terwards put unnecessary load on the chain. With Segwit, signatures are omitted

whenever possible to reduce the burden on the system. For most nodes there is

no need to store the entire history of signatures. Also the transmission of the

witness data could be made optional depending on the kind of node a signature is

sent to. For example, SPV clients normally download the signatures, even though

they are not validating them. Not only do these examples imply a significant cost

reduction for storage requirements but also for bandwidth.

With Bitcoin becoming more popular, the unspent transaction output (UTXO)

set, which is stored by each full node, continues to grow. With Segwit, a user

can validate the transaction when it is received and then store it in the UTXO

set without the signatures. This should slow down the increasing storage require-

ments of the UTXO set.

Furthermore, excluding witness data from the base block size allows for an indir-

ect increase of the block size limit. This results in an effective new limit between

1.6 and 2 megabytes. However, even though not common in practice, Segwit the-

oretically enables blocks of almost four megabytes in size.42 Miners and full nodes

42For instance, a block that only contains P2WPKH transactions with only 1 input and 1

45

have to ensure that they can handle these four megabytes blocks. Otherwise, a

malicious attacker may disrupt parts of the network.

As aforementioned, all forms of non-intentional malleability become impossible.

We have to emphasize, however, that malleability can only be prevented if all

inputs of a transaction are Segwit UTXOs. By solving transaction malleability,

Segwit allows the creation of unconfirmed transaction dependency chains without

counterparty risk. This is critical for second layer protocols such as the Lightning

network (see section 6 for a detailed explanation). However, due to the imple-

mentation as a soft fork, Segwit and non-Segwit transactions are co-existing in

the network which is why all improvements are only applicable to the subset

of Segwit transactions. For example, transaction malleability is only prevented

for Segwit UTXOs. If Segwit had been implemented as a hard fork, the whole

network would have benefited from all improvements.

Something that is often criticised are the anyone-can-spend outputs. Nodes that

did not upgrade their software are not able to interpret the meaning of the script-

PubKey in a Segwit transaction and read it as an anyone-can-spend output.

Furthermore, old software is not aware of the new witness field and cannot valid-

ate it. Theoretically, anyone in the network could spend these anyone-can-spend

outputs without providing a corresponding signature. Old software would al-

ways consider such a transaction as valid. This is only prevented by the miners

who validate the witness data and ensure that the users’ actions are in line with

the rules. According to Rizun (2017), situations may emerge where miners are

incentivised to deviate which would result in security issues.[91]

Another problem that anyone-can-spend outputs entail are zero confirmation (0-

conf) double spends. Imagine Emily buys a coffee in Jack’s coffee house and

pays with Bitcoin units. Emily, as a tech affine girl, has already upgraded her

wallet to the new software that supports Segwit transactions. Jack, however, is

still running the old software that does not support Segwit transactions. Emily

realizes this and plans to exploit the situation. She buys a coffee and pays Jack

output would have a very small base size.

46

with a Segwit transaction but does not include a signature. Jack will read the

output as an anyone-can-spend output and will thus validate the transaction.

Emily takes her coffee and propagates another transaction to the network where

she references the same UTXO but sends it back to her address. Jack’s node will

ignore the second transaction since it re-spends the UTXO. However, a miner

running a Segwit-compatible software will include the second transaction in a

block because the first one is obviously invalid. This scenario is only possible

because Jack has not upgraded his software. Thus, all users actively using the

Bitcoin network are encouraged to update their software.[26]

The problem above could also concern miners if they do not properly upgrade to

Segwit. A miner might accept an under the new rules invalid transaction, like

the 0-conf transaction above, and include it in a block. Other miners who did not

upgrade to the new rules as well or did not perform a proper validation might

continue mining on top of the invalid block. However, miners who create blocks

under the new rules will ignore these invalid blocks whereby a fork results in the

network. As long as non-Segwit compatible miners do not represent the majority

of hash power in the network, the fork will resolve. For the erroneous miner,

however, this is tantamount to a waste of resources.

Lastly, the implementation of Segwit is accompanied by some other improve-

ments. BIP143, for instance, replaces quadratic scaling in signature operations

with linear scaling. Large transactions and blocks can be generated without po-

tential problems due to signature hashing. Furthermore, the version byte pushed

before a witness program enables new script systems. For example, Merkelized

abstract syntax trees (MAST), Schnorr signatures (see section 7) or Lamport

signatures which enable quantum computing resistance could be implemented

through a soft fork using the version byte.

47

5 Payment Channels

Payment channels allow two people to send transactions to each other with min-

imal impact on the Bitcoin blockchain. They can transmit transactions off-chain

and only add the final balances to the blockchain. In other words, payment chan-

nels are Bitcoin balances between two users, where the rest of the network does

not care about their transactions until the final balances are added to the block-

chain. If the balance of one user increases, the balance of the other user will

decrease by the same amount. Payment channel transactions are both cheaper

and faster than on-chain transactions. Cheaper, because no transaction fees have

to be paid and the network is not burdened with all transaction data. Faster,

because they do not require blockchain confirmation.[120]

Payment channels are especially beneficial for transactions that transfer only a

small US-Dollar amount of Bitcoin units. A payment worth less than 25 US-

Dollars can be called a micropayment.[77] If block space is scarce, it is rather

unlikely that micropayments are included in a block due to lower transaction

fees compared to transactions processing Bitcoin units worth several thousands

of US-Dollars. With payment channels, a user can send as many transactions as

desired without having to pay high fees.

Therefore, the main use case for payment channels are micropayments and not

transactions sending large amounts. A payment channel always requires the de-

posit of the amount that is going to be transferred, which is why it is more efficient

to just include a transaction sending large amounts of Bitcoin units directly in

the blockchain.

5.1 Unidirectional Payment Channels

Unidirectional payment channels were first implemented in the BitcoinJ client in

2013 and became known as Spillman channels.[18] Unidirectional channels only

allow for sending transactions in one direction, from A to B but not back. This

limits their applicability considerably.

48

To make our description more intuitive and not too technical we give an example

of an unidirectional payment channel between Emily and Jack, illustrated in figure

16. Jack is an art dealer and repeatedly sells expensive paintings to Emily.43

To ease the payment process, Emily opens up an unidirectional channel. The

first step is to create a 2-of-2 multisignature address. Next, Emily sets up a

funding transaction where she deposits 10 BTC in the address. However, before

broadcasting the funding transaction she creates a refund transaction. This is

relevant for the case that Jack is unresponsive and does not sign any transaction

spending from the multisig, whereby Emily’s funds would be locked. The refund

transaction is time locked, references the funding transaction and sends back the

funds to Emily at a future point in time, defined as block height in the nTimeLock

field. Emily sends the refund transaction to Jack who signs it and sends it back

to her.44 She can now broadcast the funding and the refund transaction whereby

the channel is opened. In case Jack does not sign the refund transaction the

channel creation fails and Emily can use the funds for another purpose.

If the set up has been successful, Emily can start to use the deposit to send

payments over the channel until either the deposit is exhausted or the time lock

of the refund transaction is reached and the channel closed. Emily buys a first

painting from Jack and pays him 5 BTC. She creates a transaction using the

multisig as input and includes two outputs, one where she sends 5 BTC to Jack

and the other one where she sends 5 BTC to herself. Jack does not sign and

broadcast this transaction. Thus, it is not added to the blockchain yet. At some

later point in time, Emily purchases a second painting which costs 2 BTC. In

total she has spent 7 BTC. She updates the payment channel by creating a new

transaction where she sends 3 BTC to herself and 7 BTC to Jack, which reflect

the current balances in the payment channel. Lastly, Emily buys a third painting

43Obviously, this example is contradictory to the remark above that payment channels are
mostly meaningful for small payments. However, for the sake of clarity, we decided to show an
example with few payments and integer Bitcoin amounts. The basic mechanism is equivalent
for smaller and more frequent payments. A more accurate real life example would be a music
streaming service where you pay a small amount of Bitcoin units for each song you listen to.

44It is crucial that Jack does only see the hash of the funding transaction - which is referenced
as input of the refund transaction - but has no knowledge about other parts of the transaction.
Otherwise, he could exploit transaction malleability to harm Emily through breaking the link
between the funding and the refund transaction whereby Emily’s fund would be locked.

49

Create
2-of-2 multisig

address.

Funding
transaction

10 BTC (not
broadcast).

Emily creates
and sends
refund tx
to Jack.

Jack signs
refund.

Tx broadcast.
Channel is open.

TX 1:
Purchase

for 5 BTC.

t

TX 2:
Purchase

for 2 BTC.

TX 3:
Purchase

for 3 BTC.

Jack signs
last tx and

propagates it.
Channel closed.

Time-lock
transaction
end date.

If Jack is
unresponsive,

Emily will
get refund.

TX 1:
Emily sends
• 5 BTC to Emily
• 5 BTC to Jack

TX 2:
Emily sends
• 3 BTC to Emily
• 7 BTC to Jack

TX 3:
Emily sends
• 0 BTC to Emily
• 10 BTC to Jack

Figure 16: Timeline of an unidirectional payment channel between Emily and
Jack.

and has to pay another 3 BTC to Jack. In total, she has now purchased paintings

worth 10 BTC. She updates the payment channel a last time and sends 10 BTC to

Jack but nothing to herself. Jack can now sign the last transaction and propagate

it to the network, whereby it is added to the blockchain.

Only one of these transactions can be added to the blockchain, since Emily always

references the same input. If Jack acts rationally, he will always sign the last

transaction in which he receives the highest amount of Bitcoin units. If Jack is

unresponsive and does not sign any transaction, Emily will get the deposit back

through the refund transaction.

As most conventional payment channels, also unidirectional channels are prone to

transaction malleability. If Jack receives the funding transaction Emily broadcasts

quickly, he could alter Emily’s signature and propagate a modified transaction

with a different transaction ID to the network. If Jack’s transaction is included

into the blockchain before Emily’s, the link between the funding transaction and

the refund transaction is broken. Due to the different transaction ID of the fund-

ing transaction, the refund transaction does not correctly reference the funding

50

transaction anymore. As a consequence, Emily could not use the refund transac-

tion to get her money back and her funds would be locked in the 2-of-2 multisig

address.[48]

This was improved by the implementation of BIP65 at the end of 2015 which

introduced CheckLockTimeVerify (CLTV).[107] CLTV allows to include an if/else

condition into the scriptPubKey.

5.2 Basic Bidirectional Payment Channels

In contrast to an unidirectional payment channel, a bidirectional channel allows

to send Bitcoin units in both directions. There are several different proposals of

bidirectional channels. We first describe a basic mechanism how a bidirectional

channel works and then present some concrete examples.

5.2.1 Basic Mechanism

Imagine Emily and Jack got to know each other better and rented an apartment

together. They are afraid that one of the two might do much more of the house

work and therefore decide to pay each other whenever someone did some work

at home. Both agree to pay each other in Bitcoin units. Since there are many

transactions going to be sent between the two, it would be inefficient to add

every single transaction to the blockchain, which is why they decide to create a

bidirectional payment channel.

The procedure to set up the channel is the same as above. Figure 17 illustrates a

basic example. Emily creates a 2-of-2 multisig address, where she sends a funding

transaction to and creates a refund transaction that Jack signs. We define the

absolute lock time of the refund transaction to be 20 days. Again, Emily deposits

10 BTC.45

The channel is now set up and they begin with the house work. Jack washes the

45Emily and Jack can also fund the channel together. For understanding the basic mechanism,
this is a negligible detail, though.

51

Emily
10 BTC

Emily’s and Jack’s
2-of-2 multisig address
10 BTC

Funding tx

Ref
und

tx (20d time lock)

TX 1

19
d

Emily
9 BTC

Jack
1 BTC

TX 2
19d

Emily
8 BTC

Jack
2 BTC

TX 3

18d

Emily
9 BTC

Jack
1 BTC

Time lock

t

...

...

Figure 17: Basic mechanism of a bidirectional payment channel.

dishes after lunch for what Emily sends 1 BTC to him. Emily creates the first

transaction in the channel where she sends 9 BTC to herself and 1 BTC to Jack.

Additionally, she time locks the transaction through setting the absolute lock time

to 19 days. She signs it and sends it to Jack. In the afternoon, Jack vacuum-

cleans and gets another Bitcoin. Emily creates another time lock transaction

where she sends 8 BTC to herself and 2 BTC to Jack and sets the absolute lock

time to 19 days again. In the evening, Emily cooks dinner wherefore she is owed

1 BTC by Jack. He creates a transaction in which he sends 9 BTC to Emily and

1 BTC to himself including a time lock of only 18 days.

The rationale of applying the time locks is the following: the most current state

of the channel is described by the third transaction. Thus it is crucial that this

state can be included in the blockchain before transactions one and two. With

the time locks, the first two transactions can only be included after 19 days, the

third one already after 18 days. As soon as the third transaction is included in the

blockchain the others become invalid, since they spend the same outputs. Hence,

every time a payment is sent in the opposite direction than the payment before,

the time lock is reduced. It can be hold equal for payments going in the same

52

direction, since a rationale counterparty will always prefer to sign and broadcast

the latest transaction in which the highest amount of Bitcoin units is received,

i.e. Jack prefers transaction two over transaction one.

This channel set up does not allow for infinitely open channels. Every switch

of direction will bring the absolute lock time closer to the present. Even if the

forward shift of the time lock is minimized to an interval that is still secure, only

a certain maximal amount of transactions can be processed depending on the

initial time lock chosen for the refund transaction.

Emily and Jack can close the channel in two ways. First, the latest state of the

channel can be propagated, whereby they receive their channel balances after the

time lock period expired. If they are inpatient, they can also cooperatively close

it through creating a new transaction without a time lock sending the respective

balances to the two parties.

5.2.2 BIP68, 112 and 113

For the development of (bidirectional) payment channels, BIP68, 112 and 113

were of great importance. The implementation took place in Bitcoin Core version

0.12.1. in April 2016. Together the proposals allow payment channels to be open

as long as the parties want, which should increase the efficiency of bidirectional

channels tremendously.[11]

BIP68 introduces relative lock time contrary to the absolute lock time described

above. Each Bitcoin transaction has a sequence number field for each input as

illustrated in figure 8. BIP68 repurposed this field such that mining an input

can be prevented until the referenced output has achieved a certain age in the

blockchain. This can be defined in either a number of blocks or a timespan. In

other words, with absolute lock time a user can only define a fixed date in the

future when the transaction can be included in the blockchain whereas with BIP68

the validity of a transaction depends on a specific output’s age in the chain. The

bits of the sequence number are set according to some prerequisites such that a

user can signal whether a corresponding transaction can be included in any block

53

or whether it is locked by a relative lock time.[36]

BIP112 replaces the NOP3 opcode46 with OP_CHECKSEQUENCEVERIFY (CSV). CSV

checks whether the age of a referenced output is reached. It will either validate or

fail the transaction. If it fails, the transaction cannot be included in a block.[37]

Lastly, there is BIP113. The consensus rules in Bitcoin do not mandate strict

ordering of block timestamps. For example, block B which is mined after block

A can still have an earlier timestamp than block A (see section 3.1). This may

become problematic for the relative lock time implementation. A transaction that

includes an input with a specific time lock would be valid under the timestamp

in block A, but would be invalid under the timestamp in block B, even though

B is mined after A. Furthermore, miners could be incentivised to manipulate the

timestamp in a block such that they can include transactions which by network

time have not yet matured. With BIP113 the relative lock time of an input is

compared against the median timestamp of the previous eleven blocks and not

against the timestamp of the respective block. The consensus rules guarantee

this value to monotonically increase.[68]

5.2.3 Bilateral Channels with Relative Lock Time

The relative lock time can be applied on the above described bidirectional chan-

nel. In this example, Emily and Jack both fund the 2-of-2 multisig address with

5 BTC each as depicted in figure 18. Before starting to send transactions to

each other they create an additional kick-off transaction that sends the balances

to a multisig. It reflects the opening of the channel but is not broadcast to the

blockchain. The kick-off transaction’s output is referenced as input of the micro-

transactions47. The microtransactions are only valid, if the kick-off transaction

is included in the blockchain and is confirmed by a pre-defined number of other

blocks, i.e. it has achieved the age defined in the relative lock time.

In our example, Emily owes Jack 2 BTC and creates the first microtransaction,

46Opcodes are “operation codes from the Bitcoin Script language which push data or perform
functions within a pubkey script or signature script”.[16]

47We define microtransactions as transactions sent in the payment channel.

54

Emily

Jack

multisig

5

5

multisig
kick-off

Emily

Jack

Emily

Jack

multisig

Time Period 1

kick-off

3

7

2d

4

6

1d

Emily

Jack

Emily

Jack

multisig

Time Period 2

2

8

2d

3

7

1d

kick-off . . .

t
= time lock

Figure 18: Bidirectional payment channel using relative lock time.

where she sends 3 BTC to herself and 7 BTC to Jack. The transaction is locked

by a relative lock time of two days, i.e. both can only claim the funds if they

propagate the kick-off transaction and then wait for another two days. Next,

Jack wants to send Emily 1 BTC and creates another microtransaction where

he sends 6 BTC to himself and 4 BTC to her. The direction of the channel

switches and the time lock is preponed by one day. For now they cannot switch

the channel direction again since the relative lock time would be reduced to

zero days. Thus, they create another kick-off transaction spending the current

balances and referencing the output of the previous kick-off transaction. Both

sign but do not broadcast it to the network. The channel is now open for another

two days. In time period 2, Emily owes Jack 2 additional BTC which is why she

creates a microtransaction that sends 2 BTC to Emily and 8 BTC to Jack. She

references the new kick-off transaction which serves as the new reference point for

the relative lock time. Whenever it is not possible anymore to create additional

microtransactions in a specific time period, Emily and Jack create a new kick-off

transaction and can thereby leave the channel open as long as they want.

Since Emily receives more Bitcoin units in the first time period, she might try

to cheat on Jack and propagate the kick-off transaction corresponding to time

period 1. However, she has to wait for one day until she can claim the 4 BTC. In

the meantime, Jack can propagate the subsequent kick-off transaction and thus

invalidates the microtransactions of the first time period.

55

The channel can be closed either unilaterally or bilaterally. Emily and Jack can

agree on a closing transaction that spends the funds immediately back to them.

If one party intends to close the channel unilaterally, he or she broadcasts the

kick-off transactions and the latest microtransaction of the respective time period

and will receive the funds after the relative lock time period.[104]

5.3 Poon-Dryja Payment Channels

Poon-Dryja payment channels were presented by Joseph Poon and Thaddeus

Dryja in their paper about the Lightning network.[88] We illustrate the creation

of such a channel in figure 19. As before, Emily and Jack agree on a funding

transaction they do not sign yet. Emily deposits 4 BTC and Jack 6 BTC in a 2-

of-2 multisig address. Next, they both create their first commitment transactions.

Emily

Jack

multisig

4

6

fancy multisig

Emily

Commitment
tx Emily

6

4

fancy multisig

Jack

Commitment
tx Jack

4

6

Emily Jack

Penalty tx After time lock

Jack Emily

Penalty tx After time lock

Figure 19: Creation of a Poon-Dryja payment channel.

Emily deposited 4 BTC in the channel and thus includes an output that sends 4

BTC to herself and another output that sends 6 BTC (Jack’s deposit) to a multisig

address that we call a fancy multisig address. The funds in the fancy multisig

can be claimed through a penalty transaction we discuss below or by Jack after a

CSV-time lock period (e.g. 1000 blocks), which means that the child transaction

56

(i.e. the payout to Jack) is only valid when the parent transaction (i.e. Emily’s

commitment transaction) has reached a specific age in the blockchain. Jack’s

commitment transaction is the same but mirrored. He sends 6 BTC to himself

and 4 BTC to the fancy multisig address. Emily can unlock the funds in the

fancy multisig as soon as Jack’s commitment transaction reached the blockchain

age defined by the CSV-time lock. Both sign their own commitment transaction,

send it to each other but do not broadcast it. Lastly, they both sign the funding

transaction and propagate it to the network. After the funding transactions are

included in the blockchain and secured by a certain number of other blocks the

channel is officially opened.

If Jack signs and broadcasts Emily’s commitment transaction, she immediately

receives 4 BTC whereas Jack has to wait for another 1000 blocks until he could

claim the 6 BTC from the fancy multisig address. Analogously, Emily could sign

and broadcast Jack’s commitment transaction.

If Jack wants to send 1 BTC to Emily they have to update the channel. New com-

mitment transactions are created, where both send 5 BTC to the fancy multisig

and 5 BTC to themselves. Jack, however, has an incentive to broadcast the old

commitment transaction where he receives 6 BTC. To prevent this, a penalty

transaction is created right before the new commitment transactions are shared

with each other. Emily adds a penalty transaction, that sends the funds from her

old commitment transaction’s fancy multisig to herself and Jack adds a penalty

transaction that sends the funds from his old commitment transaction’s fancy

multisig to himself. First, they both share the signed penalty transactions with

each other and only afterwards the new commitment transactions.

Assuming Jack broadcasts Emily’s old commitment transaction within the new

set up, Emily receives 4 BTC immediately while Jack had to wait for the CSV-

time lock period to end until he receives the Bitcoin units. Emily sees the old

commitment transaction in the blockchain and can claim the funds in the fancy

multisig output before Jack can by broadcasting the penalty transaction. She

receives all the funds in the channel as a punishment for Jack since he broadcast

57

an old channel state. If, on the other hand, Emily signed Jack’s old commitment

transaction and broadcast it, Jack could claim all funds in the channel by broad-

casting the penalty transaction. Consequently, it is suboptimal for a rational

party to deviate from the consensus protocol. [123]

The channel can be kept open as long as there are enough funds available. Closing

it is possible unilaterally or bilaterally. If Jack and Emily cooperate on closing the

channel, they create a closing transaction which both sign and then broadcast it

to the network. In this case it is indistinguishable from a regular 2-of-2 on-chain

multisig address spend. If for example Jack wants to close the channel unilaterally,

he can sign Emily’s latest commitment transaction. Emily will receive her balance

immediately and Jack after the time lock period. In contrast to broadcasting an

old commitment transaction, Emily is not able to claim all the funds in the

channel for herself since they have not created the penalty transactions yet.

5.4 Duplex Payment Channels

Lastly, we present Duplex payment channels developed by Christian Decker and

Roger Wattenhofer in 2015.[46]

Duplex channels are established through creating pairs of unidirectional micro-

payment channels, one for each direction. Additionally, time locks are applied to

make previous states invalid similar as illustrated in figure 18. Normally, there

is a trade-off between a large time lock such that the channel can be kept open

longer and a small one to reduce the risk that the funds are locked in the channel

for a long period of time. Duplex payment channels propose the use of an in-

validation tree to hold the single time locks small but still allow for long opened

channels. The top of the tree is represented by the channel set up, the nodes are

multisig outputs and the leafs a pair of unidirectional micropayment channels.

We give a short example of Emily and Jack who use a Duplex payment channel.

They create two funding transactions where both agree to send 5 BTC each to

a 2-of-2 multisig. Before signing them, they create valid refund transactions and

58

send them to each other. As soon as the set up is completed, the first branch

or subtree in the invalidation tree is created by sending a reset request and a

reset response message to each other. This establishes a pair of unidirectional

micropayment channels. One going from Jack to Emily that includes 5 BTC

Jack can spend and the other one going from Emily to Jack that includes 5 BTC

Emily can spend. The subtree has an implicit time lock of ten days.48 Both

can now start sending transactions to each other in the respective channels as

described in section 5.1. They use the existing channels until no funds are left in

one of the two channels. For example, Jack has transferred 5 BTC to Emily and

Emily 3 BTC to Jack. In total, Jack’s balance in the channel now adds up to 3

BTC and Emily’s to 7 BTC. To further use the Duplex channel, Jack sends a reset

request message to Emily. Emily stops performing updates to her unidirectional

channel and sends a reset response message back. They create a new subtree and

transmit the balances from the last state of the first branch. The new subtree

has an implicit time lock of nine days. Thus, it can be broadcast before the first

subtree, whereby the first branch is successfully invalidated.

This process can be repeated until the channel reaches its lifetime, i.e. it is not

possible to further prepone the time lock to invalidate another subtree. In this

case, a channel can be cooperatively extended by a refresh process. Refresh request

and refresh response messages are sent between the two parties. This transmits

the funds to new channels, creates a new invalidation tree and invalidates the old

invalidation tree by making use of an atomic multiparty opt-in transaction that

is committed to the blockchain. The opt-in transaction spends the latest multisig

output of the old tree and creates a new multisig output, called root output. All

transactions in the new invalidation tree are only valid if the opt-in transaction

is valid, i.e. all parties have signed it.

Closing the channel works similar as in the other bidirectional channels. Both

parties can agree on a teardown transaction that can be broadcast immediately

and sends the latest channel balances to them. If a party closes the channel

unilaterally, the latest branch including all transactions of this branch is broadcast

48The time lock can be arbitrarily chosen and does not have to be ten days.

59

and committed to the blockchain. Consequently, the blockchain is burdened much

more in case of an uncooperative closing.

Decker and Wattenhofer also proposed to implement Duplex micropayment chan-

nels in an off-chain payment network. However, this has not been established so

far.

5.5 Discussion

Although payment channels themselves are not very controversial and the ad-

vantages seem to outweigh the disadvantages, there are still some shortcomings.

For example, if a user maintains many open channels, a lot of funds are locked

which cannot be used for other purposes. Furthermore, a node has to create a

new channel with each user it wants to transfer payments.

On the other hand, there are many advantages of payment channels. Firstly, they

are cheap, since transaction fees have to be paid only for the opening and closing

transactions. Secondly, they are fast. For an on-chain transaction to be confirmed,

one has to wait until it is included in the blockchain.49 In a payment channel,

there is instant confirmation, or to be more precise, transaction confirmation is

as fast as internet speed allows. Thirdly, payment channels enable to send as

many transactions as internet bandwidth capacity allows. And lastly, privacy

is enhanced. Since transactions are processed off-chain, they are not publicly

visible. Only the final balances can be seen in the blockchain.

6 Lightning Network

In the following section, we present the Lightning network which consists of many

different bidirectional payment channels. Additionally, Hashed Time Locked Con-

tracts (HTLC) allow to route a payment through the network from node A to

49To increase security, a user preferably waits until two or three additional blocks are mined
on top.

60

B without the requirement that the two nodes maintain a payment channel with

each other.

The Bitcoin blockchain is a so called gossip protocol, in which all transactions

are broadcast to all participants. The necessity that every participant is informed

about each transaction in the network is, however, questionable. The tremendous

amount of required resources to process all transactions on-chain might severely

limit the ability of Bitcoin to become a prevalent method of payment. The Light-

ning network aims to scale Bitcoin in processing many transactions off-chain and

thus to reduce the burden on the blockchain.[88]

There are several teams working on implementations of the Lightning network

(see also section 2). Our explanation is mostly based on the Basis of Lightning

Technology (BOLT)[31] consensus, but sometimes simplified.

6.1 Hashed Time Lock Contract (HTLC)

Before we discuss the Lightning network, we describe a further important building

block of payment channel networks called hashed time lock contracts (HTLC).

HTLCs were initially intended to enable atomic swaps50 between different crypto-

currencies or blockchains,[82] but they can also be used to route a payment

through a payment channel network.

Imagine there is Jack who wants to send 1 BTC to Emily. They do not have

a direct payment channel between each other but they both maintain a channel

to Bob, as illustrated in figure 20. Using a HTLC allows that Jack can send

some Bitcoin units to Emily via Bob. First, Emily creates a secret string of

numbers R, called pre-image, calculates the SHA256 hash value H(R) of it and

sends it to Jack (step 1). The pre-image R is only known by Emily. Jack then

creates a transaction including a 1 BTC payment to Bob and adds the condition

that Bob can only claim the funds if he is able to provide the pre-image R, i.e.

applying the hash function on R must match the hash value H(R) Jack received

50With atomic swaps, nodes can process a transaction between two different blockchains as
long as there exists a similar hash function across the chains.

61

1

Jack
1 BTC

Bob
0 BTC

Emily
0 BTC

H(R)← RH(R)

2a

Jack
1 BTC

Bob
0 BTC

Emily
0 BTC

1 BTC +

H(R)

1 BTC +

H(R)

2b

Jack
1 BTC

Bob
0 BTC

Emily
0 BTC

Timelock

days x

Timelock

days x− 1

3

Jack
0 BTC

Bob
0 BTC

Emily
1 BTC

R R

Figure 20: Illustration of Hashed Timelock Contracts.

from Emily (step 2a). Additionally, Jack includes a time locked refund option

to the transaction (step 2b). If the Bitcoin units are not claimed by Bob in a

certain period of time x, Jack will receive the Bitcoins back. Bob sends a similar

transaction with the same payout condition to Emily. Emily knows the pre-image

R and can thus finalize the transaction and claim the Bitcoin units from Bob (step

3). In doing so, she discloses the secret whereby Bob can claim the funds from

Jack as well and Jack’s payment has successfully reached Emily.

The question may arise, why Bob should provide the service of forwarding the

Bitcoin units without having an advantage in doing so. In a payment channel

network, nodes that forward transactions can be compensated by receiving a small

transaction fee that the sender or receiver pay.

In our example, only one hub exists, i.e. there is only one intermediary between

Jack and Emily. Theoretically, HTLCs work with an arbitrarily large number of

hubs.

62

6.2 Technical Explanation

The Lightning network combines Poon-Dryja payment channels described in sec-

tion 5.3 with hash time lock contracts from section 6.1. In our example, Jack

wants to send 1 BTC to Emily. Even though he does not maintain a payment

channel with her, he can send her a payment via existing channels making use of

the Lightning network. In our example, Jack transmits his payment through the

open channels between him and Bob, Bob and Carol and lastly Carol and Emily

(see figure 22 on page 65).

The single payment channels are based on Poon-Dryja channels with an additional

hashed time lock contract (HTLC) output. We examine the channel between

Jack and Bob in more detail. If Jack and Bob do not have an open channel

yet, they establish it by initializing a connection and subsequently sending an

open channel and an accept channel message to each other. They create the

funding transactions - 5 BTC each in our example - and both versions of the

commitment transactions. Jack then sends the funding transaction’s outpoint

and the signature for his commitment transaction to Bob via a funding created

message. Bob will sign his commitment transaction and the funding transaction

and sends it back to Jack via a funding signed message. Jack signs the funding

transaction as well and broadcasts it to the network. They wait until the funding

transaction is added to the blockchain and has reached a pre-defined number of

confirmations (block depth) before the channel is officially opened. They confirm

this by sending a funding locked message to each other.[33]

Assume for now that they already processed some transactions between each other

and the balances are 4 BTC to Jack and 6 BTC to Bob. As aforementioned, Jack

wants to send 1 BTC to Emily over the Lightning network via a HTLC. Hence, he

has to set up a HTLC between himself and Bob, too. The respective commitment

transactions contain a third, HTLC like output. We illustrate Jack’s commitment

transaction in figure 21.

The first two outputs are analogous to the Poon-Dryja channel in figure 19. There

is a regular output that sends 3 BTC back to Jack himself and reflects the current

63

Jack’s
commitment
transaction

10 BTC

Funky
multisig
6 BTC

Jack
3 BTC

HTLC
output
1 BTC

Jack
penalty transaction

Bob
if CSV-time lock reached

Bob
if Bob includes Emily’s pre-image

Jack
if CLTV time lock reached

Jack
penalty transaction

Figure 21: Jack’s commitment transaction in his payment channel with Bob in
the Lightning network.

balances Jack possesses in the channel minus the HTLC output. Furthermore, 6

BTC are sent to the fancy multisig output which represents Bob’s current balance

in the channel.[29]

Lastly, there is a new output worth 1 BTC which is essentially the hashed time

lock contract. There are three ways how this output can be unlocked. (1) The

output can be claimed by Bob if the signatures and the pre-image that Emily

produced as described in section 6.1 are provided. (2) There is a regular CLTV

time lock. If Bob does not provide the pre-image - maybe because he did not

receive it from Emily - Jack gets his funds back at a pre-defined date, e.g. in

two weeks. (3) There is a penalty transaction in case a user broadcasts an old

channel state to get more Bitcoin units. It is similar to the penalty transaction in

the Poon-Dryja channel as illustrated in section 5.3. Before Jack and Bob share

their new commitment transactions, a HTLC penalty transaction is created and

shared to invalidate the old HTLC states. Therefore, the HTLC output’s Bitcoin

units can be “stolen” in case the other party tries to broadcast an old state.[124]

Closing a payment channel is initiated by a shutdown message sent by either

node. It includes a scriptPubKey that states where the funds should be sent to.

If the channel is empty of HTLCs and the shutdown was successful, they send

closing singed messages to each other. These messages include a proposal for the

64

Jack

Bob Carol

Emily

H(R)← RH(R)

1 BTC +

H(R) (3d)

1 BTC +

H(R) (2d)

1 BTC +

H(R) (1d)

R

R

R

Figure 22: Basic Structure of a subset of the Lightning network. Note: The term
in brackets shows the respective time lock in days.

blockchain transaction fee each pays and the signatures needed for the closing

transaction. If they agree on a closing transaction, both parties can spend the

Bitcoin units immediately. If a party does not agree, they send new closing signed

messages to each other until they cooperate or one party fails the channel. It

is also possible to close the channel unilaterally. In this case, one party just

broadcasts the latest commitment transaction whereby the other party receives

the funds immediately and the closing party after the time lock period. [33]

All of this works off-chain. Consensus is achieved through the threat of on-chain

enforcement. Transactions only hit the blockchain if a new channel is opened, an

existing one closed or a participant is uncooperative.

So far we only looked at the payment channel between Jack and Bob and presented

the HTLC within the channel. The HTLC is responsible that a transaction can be

transferred over the network without maintaining a direct channel to the receiving

party. Below, we discuss how this basically works.

Emily creates a HTLC by sending Jack an update add htlc message. She produces

a random string of numbers R called pre-image and sends its hash value H(R)

to Jack via secure off-chain communication. Jack then sends an update add htlc

message to Bob and creates a transaction in which he sends 1 BTC to Bob,

including H(R) and a refund transaction with a time lock of three days.51 Thus,

if Bob does not claim the funds from Jack, Jack can reclaim his Bitcoin unit.

51Although the time lock should be defined in a number of blocks and not in days, we use a
time definition for the sake of simplicity.

65

Subsequently, Bob creates the same transaction with Carol as receiver, but with

a time lock for the refund transaction of two days. Lastly, Carol sends 1 BTC to

Emily including a refund transaction with a time lock of one day. All transaction

outputs have in common that they can only be claimed by the receivers if they

can provide the pre-image R. Emily knows R and provides it to Carol via an

update fulfill htlc message whereby the funds are transferred to Emily. Carol now

knows the pre-image R and therefore pulls the Bitcoin unit from Bob. Lastly, Bob

does the same with Jack. The transfer of the Bitcoin unit has been successfully

completed without hitting the blockchain.[33]

There may be situations, in which a party is uncooperative. For example, Carol

might send the funds to Emily but Bob does not send the funds to Carol. Since

Carol knows R, she can broadcast Bob’s commitment transaction to the block-

chain, whereby Bob has unwillingly sent 1 BTC to Carol through a blockchain

transaction. If Bob realizes that the transaction hit the blockchain he could claim

his funds (off-chain) from Jack since he knows R from the blockchain. However,

if Bob did not pay attention, Jack could get the funds back after three days,

whereby Bob had actually paid Emily. Consequently, participants in the network

are incentivised to be cooperative.

Moreover, Emily might never send the pre-image R. In this case, Carol gets her

payment back after the time lock period, i.e. after one day, Bob after two days

and Jack after three days. The HTLC is then removed via an update fail htlc

message. It becomes clear why the time lock periods of the different nodes have

to differ. Imagine the time lock between Bob and Carol was one day and the

one between Carol and Emily two days. Bob could reclaim the funds from Carol

before Carol can from Emily. If Emily sends the pre-image R between the first

and second day, she could claim the Bitcoin unit from Carol. In such a situation,

Carol would have paid for Jack unintentionally.

66

6.3 Key Generation

If for each commitment transaction the corresponding private and public keys had

to be stored, a massive amount of storage capacity would be required. This can be

enhanced by working with hierarchical deterministic wallets52, where both parties

in a payment channel pre-generate the keys via a merkle tree. For example, both

parties pre-generate one million keys where each key is a child of a previous key.

The use of the keys follows some deterministic process to be defined. Bob could

use the last key in the merkle tree as a master key to generate subkeys which

are only used for the first day. As soon as the first day ended, Bob can share

only his master key such that Jack does not have to store every single key. After

the second day, the first master key is redundant to store as well since it is a

child of the second master key. This process enables to reduce the amount that

needs to be stored for validation purposes to a minimum. Thus, core channels

in the Lightning network can process a tremendous amount of transactions with

negligible storage costs.[88]

6.4 Network

Obviously, if each node in the network opened a channel with each other node,

the scalability problem would not be solved. Scaling Bitcoin can be achieved

successfully by relying on a large network of different nodes who maintain only a

few payment channels with other nodes. If a user intends to send Bitcoin units to

another user, the payment is sent via different hubs without new channels being

created. Thus, sending funds becomes possible off-chain via a multi-hub system

without a central clearing system.

This set up requires that many nodes in the network deposit a certain amount

of redundant Bitcoin units in the channels which can be used in the HTLCs to

process other parties’ payments. These funds may be locked in some payment

channels for a certain amount of time if a party is uncooperative. Since nodes

52See Berentsen and Schär (2017) or BIP32[128] for a detailed description of HD wallets.

67

Figure 23: Illustration of a subset of the Lightning network (Source: https:

//lnmainnet.gaben.win/, 01.07.2018).

probably demand a compensation for the time-value of the locked funds, fees

have to be paid to send transactions. Furthermore the fees reflect other costs like

bandwidth. With a large and interconnected network, these fees might become

very small, especially for micropayments.

If a fee market existed, some hubs may emerge who specialize on high intercon-

nectivity and a 24/7 uptime. They need a lot of capital to meet all obligations but

earn money with the fees paid in the network. If the Lightning network should

scale to billions of transactions per day, centralized hubs are non-negligible. These

centralized hubs, however, are a big point of criticism since the fundamental value

of a decentralized system is challenged. According to some authors, it is even im-

possible for the Lightning network to scale as a peer-to-peer network.[55] For one

payment, each intermediary hub has to lock the same amount of funds. Thus,

the more hubs in a route, the more Bitcoins are locked in the Lightning network.

Consequently, there is a trade-off between more channels per user, more deposited

capital or centralized hubs. What is currently observed in the network is a clear

tendency to central hubs maintaining payment channels to many nodes.53 This

53Poon and Dryja described a network structure with centralized hubs already in their white
paper, where they stated that “eventually [...] the network will look a lot like the correspondent
banking network” and further that “the core [...] routes can be online all the time while nodes
at the edges, such as average users, would be connected intermittently”.[88]

68

https://lnmainnet.gaben.win/
https://lnmainnet.gaben.win/

can nicely be seen in a visualization of the Lightning network in figure 23.

A way to improve this situation is the idea that payments can be split over

multiple routes such that single nodes do not need to deposit as much capital in

the channels. This would be especially helpful for larger payments.

6.5 Routing

To route a payment from an origin node to a final node over multiple hops, onion

routing packets are used.54 Onion routing allows for anonymous communication

through a network of nodes. Hops which receive a packet can verify its integrity

and learn to which node they should forward it. Since the packets are obfuscated

at each hop, a hop cannot learn the length of the route or their position within

it and which other nodes are part of the route except for its predecessor and

successor.[32]

We quickly discuss the basic mechanism of the onion routing protocol. The origin

node first constructs a route through the network. The maximum route length in

the Lightning network is limited to 20 hops. It will then collect the public key of

each node and generate secrets and different decryption keys for each hop. The

origin node has access to all keys whereas the single hops only have access to the

specific keys. The origin node will then create a packet (onion) with different

encryption layers. The innermost layer is related to the last node in the route

and the uttermost layer to the first node. When a packet is forwarded through

the network, a hop can only decrypt its respective layer of the packet, or in

other words, can peel only one layer of the onion, hence the name onion routing.

Therefore, a node has only access to information that is intended for it and cannot

gain any other information about the route and who else is part of the network

(except for the predecessor and the successor). If the final node wants to send a

message back, it uses the same route but each node encrypts the message. The

origin node can decrypt the message again since it has access to all keys.

54Onion routing is especially known from the TOR-browser (“The onion router”), which uses
it for anonymity purposes.

69

With the current onion routing protocol, scaling the Lightning network is limited.

Channel states updates are currently broadcast to every node in the network. This

puts a massive burden on the network and may become problematic if there exist

between 10’000 and 1’000’000 open channels.[94] There are also other routing

proposals that could replace onion routing. One of them is Flare that would

allow scaling to a network size of at least several hundred thousands of nodes.[89]

Otherwise, the issue could be mitigated through centralized hubs. Nodes would

not have to maintain as many payment channels but predominantly have open

channels to the central hubs whereby the total number of channels existing in the

network could be reduced.

6.6 eltoo

Below, we present a proposal of a new update mechanism for the Lightning net-

work called eltoo.55 Due to the Poon-Dryja payment channels used, a lot of data

has to be stored to invalidate old transactions. Furthermore, if a node forgets

about the latest update of a channel and propagates an old transaction without

bad intentions - for example if after a backup the most recent updates are miss-

ing - it loses all the money in the channel. Christian Decker, Rusty Russell

and Olaoluwa Osuntokun used this as a motivation to propose the eltoo update

mechanism in April 2018.56[45]

We quickly sketch the eltoo protocol. As before, there is a funding transaction to

put funds in a 2-of-2 multisig. Additionally, update and settlement transactions

exist. An update transaction is used to update the balances and the settlement

transaction to broadcast them to the network. The update and the settlement

transactions of a current state are always linked to each other through corres-

ponding private and public keys for each state. The funding transaction’s and

each update transaction’s output consists of an if/else condition, i.e. there are

two ways how the output can be spent. On the one hand, a settlement transac-

55The name eltoo is derived from the phonetic spelling of L2 which means layer-two, i.e.
off-chain solutions to process transactions.

56eltoo is not included in any Lightning implementation so far.

70

tion can be created, which comes with a CSV-time lock that defines how long the

output is locked after the funding or the previous update transaction is included

in the blockchain. On the other hand, new update transactions can be created

during the time lock period which are immediately valid to be spent again. A

new update transaction spends either the funding transaction’s or the previous

update transaction’s output and invalidates the old settlement transaction, since

the output of the old update transaction is referenced in the new one and thus

cannot be referenced in the old settlement transaction. Before a new update

transaction is created, the two parties agree on a new settlement transaction.

With each new payment, a new update transaction is generated. Thus, a chain of

update transactions is created where each update transaction’s input references

the preceding update transaction’s output. The latest update and settlement

transaction represent the current state of balances. In this regard, the authors

introduce SIGHASH_NOINPUT that could be implemented with a soft fork.

Normally, it is not possible to modify the inputs of a transaction, since they are

signed by the signature. Hence, any change would make the transaction invalid.

As described in section 4.3, the parts that the signature commits to are defined by

the sighash flag. Introducing the new sighash flag SIGHASH_NOINPUT would allow

to alter the inputs without invalidating the transaction. Without the new sighash

flag, the whole chain of update transactions had to be added to the blockchain if

a user wants to broadcast the final balances. With SIGHASH_NOINPUT, the latest

update transaction’s input can directly reference the funding transaction when

committed to the blockchain. Therefore, only the latest update and settlement

transaction is needed to broadcast the current balances.

Furthermore, they introduce state numbers to provide a transaction order, be-

cause otherwise an older update transaction could be modified to spend a newer

ones’ output. This is implemented by using the CHECKLOCKTIMEVERIFY (CLTV)

opcode in the output script. An update transaction can only spend the output of

another update transaction if it has a higher state number. In general, OP_CLTV

checks if the Unix timestamp defined in nLockTime is larger than a pre-specified

71

time. For the purpose of state numbers, past timestamps are employed which are

not used for regular OP_CLTV anymore. An update transaction is only valid if its

nLockTime is at least by one bigger than the nLockTime of the predecessor. Unix

timestamps start at 500’000’000 and are currently above 1’500’000’000. There-

fore, over 1 billion updates are possible.

SIGHASH_NOINPUT and state numbers enable the enforcement of the latest state

of the channel without taking care of any intermediate transactions, i.e. a node

does not have to store any intermediate update and settlement transactions.

Nothing prevents a party from propagating an old update transaction with dif-

ferent balances. However, only after the update transaction’s CSV-time lock

is achieved, the settlement transaction will be valid and the channel’s Bitcoin

units paid out. In the meantime, the other party could immediately broadcast

a newer update transaction that references the old update transaction and thus

invalidates the old settlement transaction. This is always possible until no other

update transaction is available anymore that is signed by both parties. To close

the channel, the latest update and settlement transaction is committed to the

blockchain.

6.7 Scalable Funding

In October 2017, Conrad Burchert, Christian Decker and Roger Wattenhofer pro-

posed a new mechanism to raise efficiency in existing payment channel networks.[39]

They highlight two shortcomings. First, existing payment channel networks (e.g.

the Lightning network) require to lock a lot of funds in the channels and second,

the limited space in the Bitcoin blockchain does not enable Bitcoin to become a

wide-spread method of payment. In the Lightning network each channel’s opening

and closing transaction enters the blockchain, which, according to the authors,

the Bitcoin blockchain is not capable to deal with in case the user numbers in-

crease largely. They propose a new layer in between the Bitcoin blockchain and

the payment channel network. A three layered system would emerge with the

first and third layer already existing. The first layer locks the funds into a shared

72

Hook Allocation

Commitment

Commitment

Commitment

Channel factory Subchannels

Figure 24: Illustration of a three party channel factory with three subchannels.
(Source: Burchert et al. (2017)) Note: Each colour represents one participant of
the channel factory. A circle with several colours indicates who is involved in the
specific action.

ownership between a group of nodes and enforces off-chain consensus by using

the blockchain. The second layer enables trustless off-chain channel funding by

introducing shared accounts of groups of nodes which would reduce the cost of

opening two-party channels. The third layer performs the transfer of Bitcoin

units in the payment network.57

With the three layers solution, opening and closing transactions of two-party

payment channels do not appear in the blockchain, except in case of disputes.

Only one transaction per user enters the blockchain if one participates in the

system for the first time (and another one if the group is dissolved). Subsequently,

many channels can be opened without hitting the blockchain. According to the

authors up to 90% of blockchain space could be saved for a group of 20 users

with 100 channels in between them and up to 96% if Schnorr signatures are

implemented (see section 7).

The second layer they introduce consists of so called channel factories. These

factories can quickly fund a payment channel between two parties. We show an

illustration of a three party channel factory in figure 24.58 First, the three parties

fund a 3-of-3 multisig through a hook transaction. Before signing and broadcast-

57The three layered system is an extension of the Lightning network but not included in any
Lightning implementation so far.

58This could be analogously extended to a larger group.

73

ing it, an allocation and commitment transactions are created according to the

initial balances to ensure that the funds will not become locked in the multisig if

a party is uncooperative (similar to a refund transaction). The allocation trans-

action distributes the funds in the multisig to the single two-party channels and

effectively replaces on-chain funding transactions. To update the allocation trans-

action, the authors propose an invalidation tree similar to the one used in Duplex

micropayment channels (see section 5.4). The commitment transactions send the

respective balances in a two-party channel back to the owners.

A user’s payment channels might become unbalanced at some point, i.e. there are

lots of funds in some channels but only little in others. The channel factory allows

to rebalance the channels by setting up a new allocation transaction without

hitting the blockchain. Furthermore, old channels can be removed, new ones

created and funds can be transferred between channels.

Moreover, higher order systems can be introduced to include more users in a group

and increase the interconnectivity. Larger groups can be created from several

subgroups such that they overlap and network wide transactions are possible.

If all users in a channel factory agree to cooperatively close the factory, they

can just create and broadcast a closing transaction where each user receives its

respective balance immediately. The channel factory can also be closed unilat-

erally, since each node can broadcast the allocation transaction at any point in

time to the Bitcoin blockchain. In this case, the participants can continue to use

the subchannels, but the option of moving funds between the channels is lost.

However, no user has a personal advantage of propagating the allocation, since

an uncooperative closure requires that the fees of including the transaction into

the blockchain have to be paid by the closing party.

6.8 Discussion

The Lightning network is a promising solution if it comes to scaling Bitcoin. In

theory, it allows to process almost an indefinite amount of transactions off-chain

74

whereas the Bitcoin blockchain is only needed for opening and closing transac-

tions and for enforcing off-chain consensus. Contrary to the blockchain, where

transactions need several minutes up to several hours to be confirmed, if there

is high congestion on the network, instant transaction confirmation is possible

on the Lightning network. This allows to use Bitcoin as a prevalent method of

payment. Due to the use case for micropayments, it is easy to buy a coffee in a

coffee house or pay for an ice cream with Bitcoins. Furthermore, the Lightning

network enables atomic swaps or cross-chain transactions, i.e. nodes can process

a transaction between two different blockchains as long as there exists a similar

hash function across the chains.

There are, however, also some issues that have to be further worked on. On the

one hand, going off-chain prevents the centralization threat that could come with

a block size increase. On the other hand, for the Lightning network to scale as

promised under current conditions, centralized hubs are non-negligible. Thus,

off-chain centralization arises, which is not in line with Bitcoin’s core value of

being a decentralized system.

Moreover, the use of onion routing is a controversially discussed topic. Since only

the first node knows the route through the network, a node within the route

cannot make adjustments to the path if an issue in the route arises (e.g. if a

channel closes or a node goes offline). For a dynamic network in which channel

states are constantly changed and nodes may go online and offline all the time, this

might be problematic if decentralization should be maintained simultaneously.

Furthermore, anonymity on the Lightning network is not equally guaranteed as in

the TOR browser protocol. Contrary to TOR, a node in the Lightning network is

not connected to any other node but only maintains a limited number of payment

channels to other nodes, i.e. the interconnectivity is much smaller. The state of all

these channels is broadcast to the whole network. Thus, a node knows for certain

the subsequent hop of its successor and the preceding hop of its predecessor if the

successor and the predecessor only maintain one additional channel. Nevertheless,

anonymity is still way stronger than on a public ledger like the blockchain. What

75

is more, the onion routing protocol limits the scalability of Bitcoin. Centralized

hubs could serve as a solution, which is, however, criticised by many users.

Also, a node has to be constantly online to monitor the blockchain and make sure

that no old channel state is broadcast. This is not a realistic requirement for all

nodes participating in the Lightning network. As a solution, some authors propose

to outsource this task to third parties.[43] The issue of loosing all funds in case

of broadcasting an old transaction and the requirement to store old transactions

could be solved by the introduction of eltoo.

Lastly, we want to highlight that the main use case of the Lightning network

are micropayments. Large payments should still be processed on the blockchain

directly. As long as payments cannot be split, each node has to deposit a large

amount of Bitcoin units in a channel to enable the transmission of these transac-

tions. On the other hand, sending micropayments directly on the blockchain has

been economically meaningless due to relatively high transaction fees for small

payments.

7 Other Concepts to Improve Scaling in Bitcoin

Above, we discussed in detail some relevant concepts that aim to scale Bitcoin.

They are, however, by far not the only ones with this purpose which is why we

list some other important proposals below. Some of them will probably never be

implemented in the Bitcoin code, but others like Schnorr signatures are supported

by large parts of the community. Not all proposals are directly about increasing

the number of transactions, but help to scale Bitcoin in some way. Since scaling

Bitcoin is not only limited by the network design but also by bandwidth or storage

capacities, these proposals are of similar importance. Below, we list some of them

and give a brief description what they are about.

Schnorr signatures: For creating the private key’s corresponding signature,

Bitcoin uses the Elliptic Curve Digital Signature Algorithm (ECDSA).59

59See Berentsen and Schär (2017) for an intuitive but not too technical explanation.

76

There exist a lot of other algorithms for cryptographic purposes. One of

them using elliptic curves as well is called Schnorr. Schnorr signatures are

compatible with all features of ECDSA in Bitcoin. Moreover, they are non-

malleable. If someone does not have access to a private key, it is not possible

to modify the signature without invalidating it. There are several other ad-

vantages of Schnorr signatures. They can be smaller and faster verifiable

than ECDSA signatures. Furthermore, signature aggregation would be en-

abled. In case of multisig outputs, Schnorr signatures allow to combine n

public keys and n signatures into one overall public key and signature. This

increases for example the efficiency of certain applications used in payment

channel networks.[14]

Sidechains: The concept of sidechains attracted a lot of attention due to a pa-

per about pegged sidechains published in 2014 written by several well known

Bitcoin Core developers.[7] Sidechains intend to provide another blockchain

besides the Bitcoin blockchain. Users could “move” their Bitcoin units to

a sidechain that exhibits different features without having to create a new

coin.60 They can use the coins on the sidechain and enjoy different function-

alities without affecting the main Bitcoin blockchain. Any arbitrary design

could be implemented for a sidechain depending on the use case, e.g. use

of smart contracts, privacy features or using sidechains as a test environ-

ment before a new feature is implemented on the main chain. Moreover, a

sidechain with a higher transaction throughput could be created to improve

scalability of Bitcoin. However, the same restrictions as for any blockchain

design remain, which might be deficient to scale Bitcoin sufficiently. Before

sidechains can be implemented, there are still some security issues to be

solved in order to safely move funds between the chains.

Block interval: The difficulty to create a new block in the Bitcoin blockchain is

60Technically, the coins are not moved. A user who wants to make use of a sidechain sends
some Bitcoin units to a specific address. The funds are then locked in this address and are
out of his control. The user proves in the sidechain that these funds really are locked whereby
the same amount of coins is created on the sidechain. The user can then use the coins in the
sidechain until he wants to transfer them back to the Bitcoin blockchain. He does so in locking
up the funds in the sidechain and proving it to the Bitcoin blockchain, whereby the funds locked
before can be used in the Bitcoin blockchain again.

77

adjusted every 2016 blocks such that the block interval is about ten minutes

on average. If ceteris paribus the interval is reduced, more blocks are gener-

ated and the number of transactions processed can be increased. However,

with a lower block interval, the probability of double spends and orphaned

blocks is increased. Furthermore, storage requirements rise. These problems

have to be taken into account before the interval is shortened.

Block Relay: If Bitcoin scaled by creating larger blocks, block relay has to be

improved as well. Otherwise, less well connected nodes are disadvantaged.

There a several proposals to increase block relay. For instance, the Fast

Internet Bitcoin Relay Engine (FIBRE) is a protocol that promises very fast

block relay with delays close to the physical limit of the speed of light.[54]

BIP152 discusses compact blocks as a more efficient way to relay blocks

over the network and save bandwidth.[42] Some proposals deal with the

problem that transactions are propagated through the network twice, the

first time when someone propagates the transaction itself and the second

time when the block is relayed. This can be improved if nodes only fetch

the transactions of a newly mined block they do not possess yet.[3]

MAST: Merkelized Abstract Syntax Trees (MAST) detailed in BIP114[71] would

besides many other improvements like more privacy or improved smart con-

tracts applicability reduce transaction size. With MAST, a Bitcoin script

can be split up into several separate segments which are placed in a merkle

tree. The merkle tree ensures that a segment belongs to the script without

the need of providing the whole script. Code that is not executed can be

replaced by a simple hash which saves space in a transaction. Thus, Bitcoin

scripts with many complex payout conditions can be created that only use a

small amount of data. MAST could be implemented through the versionbits

enabled by Segwit.[14,63]

Batching: Batching is the idea of combining several separate transactions to a

single one. To give a very simple example, imagine Bob who is in a bar

with some friends and orders some beers. They stay the whole evening and

Bob pays with Bitcoins every time they order a new round. Consequently,

78

several transactions are created. Instead, Bob could just pay at the end of

the evening and create only one single transaction. This puts significantly

less burden on the blockchain. Batching is not only possible if transactions

are sent to the same counterparty, but also if he sends payments to different

recipients. For example, if Bob pays his bills at the end of the month, he

could create single transactions for each bill. However, he could also create

only one transaction with several different outputs. Adding some outputs

to an existing transaction uses much less additional bytes than creating a

whole new transaction.[62] As illustrated in figure 3, there is still a lot of

potential to combine different payments in a single transaction. Every user

is responsible for applying batching and take some burden off the blockchain.

Nevertheless, batching is only a slight improvement to scaling and not the

ultimate remedy.

Sharding: Sharding is about splitting up the tasks of consensus to different

groups of nodes. Each group validates only a fraction of incoming trans-

actions. This reduces the number of transactions that has to be processed

by each individual node and reduces storage requirements for a single node.

Sharding is often referred as horizontal scaling, since the total number of

transactions in the whole network can be increased if the network grows.[67]

In Bitcoin, there is no active debate ongoing about sharding. Contrarily, it

is discussed and developed in Ethereum.[52,103]

Fundamental changes: There are also more radical changes to the protocol

proposed to scale Bitcoin. The probability that they are implemented is

rather small. For example, the GHOST (Greedy Heaviest Observed Sub-

tree) protocol “selects at each fork in the chain the heaviest subtree rooted at

the fork”.[97] This would allow to reduce the block interval without orphan

blocks becoming a serious problem. PHANTOM that is developed by

the same authors like the GHOST protocol intends to replace the block

structure by a blockDAG (directed acyclic graphs of blocks).[98] Moreover,

Bitcoin-NG (Next Generation) proposes a Byzantine fault tolerant block-

chain protocol that could deal with lots of transactions and shares the same

79

trust model as Bitcoin by using a specific form of leader selection and trans-

action serialization.[53] Some of these proposals are rather old and never

gained a lot of attention in the Bitcoin community.

8 Conclusion

In our paper, we aim to give a detailed insight into the Bitcoin scaling debate

and discuss some of the most relevant proposals. If Bitcoin shall become a wide-

spread method of payment, the basic protocol introduced by Satoshi Nakamoto

in 2008[81] has to be enhanced with new technical concepts. We focus on a block

size increase, Segwit, payment channels and the corresponding payment channel

networks. These topics are by far not the only concepts that aim to improve

scaling. In our opinion, however, they are the most advanced ones which have

played a dominant role in the scaling debate.

To our knowledge, there is no extensive paper that provides a detailed description

of the aforementioned concepts. A vast number of blogs, threads in forums,

articles in online magazines, explanations in Github repositories and few papers

discuss the Bitcoin scaling debate, but the interested user has to arduously collect

the information from many different sources. Hence, our main contribution is to

provide a detailed overview of the Bitcoin scaling debate and discuss the different

concepts. Our goal is to make the scaling debate comprehensible for the average

Bitcoin user. We, therefore, try to provide a good mixture between technical

details and intuition. Since the scaling debate is a very controversial topic we

abstain from subjectively assessing the applicability of the proposals. We only

present arguments of different interest groups that are used in the context of the

scaling debate.

We conclude by saying that there is no ultimate answer to the question of how

Bitcoin should be scaled. All proposals have some advantages and disadvantages.

Which arguments outweigh at the end is strongly dependent on what kind of

values a user shares. Most probably there is no best proposal which solves the

80

scaling debate itself, but a combination of different ideas can make the difference.

Consequently, it is crucial that many researchers keep working on Bitcoin and on

the scalability of blockchains in general.

81

References

[1] 1ml. Statistics. url: https://1ml.com/statistics (visited on 15/07/2018).

[2] Gavin Andresen. Increase maximum block size. 2015. url: https : / /

github.com/bitcoin/bips/blob/master/bip-0101.mediawiki (visited

on 16/05/2018).

[3] Gavin Andresen. O(1) Block Propagation. url: https://gist.github.

com/gavinandresen/e20c3b5a1d4b97f79ac2 (visited on 12/07/2018).

[4] Gavin Andresen. One-dollar lulz. 2016. url: http://gavinandresen.

ninja/One-Dollar-Lulz (visited on 30/03/2018).

[5] Gavin Andresen. Two million byte size limit with sigop and sighash limits.

2016. url: https://github.com/bitcoin/bips/blob/master/bip-

0109.mediawiki (visited on 16/05/2018).

[6] Gavin Andresen. Will a 20MB max increase centralization? 2015. url:

http://gavinandresen.ninja/does-more-transactions-necessarily-

mean-more-centralized (visited on 02/04/2018).

[7] Aadam Back et al. Enabling blockchain innovations with pegged sidechains.

2014.

[8] Mike Belshe. Segwit2x Final Steps. 2017. url: https://lists.linuxfoundation.

org/pipermail/bitcoin-segwit2x/2017-November/000685.html (vis-

ited on 30/04/2018).

[9] Aleksander Berentsen and Fabian Schär. Bitcoin, Blockchain und Kryptoassets:

eine umfassende Einführung. 2017.

[10] Marc Bevand. Running a Bitcoin full node on $5 a month. 2017. url:

http://blog.zorinaq.com/full-node-on-5-dollars/ (visited on

18/05/2018).

[11] Bitcoin Core. Bitcoin Capacity Increases FAQ. 2015. url: https : / /

bitcoincore.org/en/2015/12/23/capacity-increases-faq/ (vis-

ited on 05/04/2018).

i

https://1ml.com/statistics
https://github.com/bitcoin/bips/blob/master/bip-0101.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0101.mediawiki
https://gist.github.com/gavinandresen/e20c3b5a1d4b97f79ac2
https://gist.github.com/gavinandresen/e20c3b5a1d4b97f79ac2
http://gavinandresen.ninja/One-Dollar-Lulz
http://gavinandresen.ninja/One-Dollar-Lulz
https://github.com/bitcoin/bips/blob/master/bip-0109.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0109.mediawiki
http://gavinandresen.ninja/does-more-transactions-necessarily-mean-more-centralized
http://gavinandresen.ninja/does-more-transactions-necessarily-mean-more-centralized
https://lists.linuxfoundation.org/pipermail/bitcoin-segwit2x/2017-November/000685.html
https://lists.linuxfoundation.org/pipermail/bitcoin-segwit2x/2017-November/000685.html
http://blog.zorinaq.com/full-node-on-5-dollars/
https://bitcoincore.org/en/2015/12/23/capacity-increases-faq/
https://bitcoincore.org/en/2015/12/23/capacity-increases-faq/

[12] Bitcoin Core. Bitcoin Core version 0.9.0 released. 2014. url: https://

bitcoin.org/en/release/v0.9.0#rebranding- to- bitcoin- core

(visited on 09/05/2018).

[13] Bitcoin Core. Segregated Witness Benefits. 2016. url: https://bitcoincore.

org/en/2016/01/26/segwit-benefits/ (visited on 27/05/2018).

[14] Bitcoin Core. Segregated witness: the next steps. 2016. url: https://

bitcoincore.org/en/2016/06/24/segwit-next-steps/ (visited on

11/07/2018).

[15] Bitcoin Developer Reference. Block Headers. 2018. url: https://bitcoin.

org/en/developer-reference (visited on 02/05/2018).

[16] Bitcoin Glossary. Opcode. url: https://bitcoin.org/en/glossary/op-

code (visited on 16/06/2018).

[17] Bitcoin Roundtable. Bitcoin Roundtable Consensus. 2016. url: https://

medium.com/@bitcoinroundtable/bitcoin-roundtable-consensus-

266d475a61ff (visited on 14/05/2018).

[18] BitcoinJ. Working with micropayment channels. url: https://bitcoinj.

github.io/working-with-micropayments (visited on 12/06/2018).

[19] Bitcoinwiki. Block. 2018. url: https://en.bitcoin.it/wiki/Block

(visited on 02/05/2018).

[20] Bitcoinwiki. Block hashing algorithm. 2015. url: https://en.bitcoin.

it/wiki/Block_hashing_algorithm (visited on 02/05/2018).

[21] Bitcoinwiki. Timelock. 2017. url: https : / / en . bitcoin . it / wiki /

Timelock (visited on 11/06/2018).

[22] Bitcoinwiki. Transaction. 2018. url: https://en.bitcoin.it/wiki/

Transaction (visited on 03/05/2018).

[23] BitFury Group. BitFury Report On Block Size Increase. 2015.

[24] BitInfoCharts. Cryptocurrency statistics. url: https://bitinfocharts.

com/ (visited on 15/07/2018).

ii

https://bitcoin.org/en/release/v0.9.0#rebranding-to-bitcoin-core
https://bitcoin.org/en/release/v0.9.0#rebranding-to-bitcoin-core
https://bitcoincore.org/en/2016/01/26/segwit-benefits/
https://bitcoincore.org/en/2016/01/26/segwit-benefits/
https://bitcoincore.org/en/2016/06/24/segwit-next-steps/
https://bitcoincore.org/en/2016/06/24/segwit-next-steps/
https://bitcoin.org/en/developer-reference
https://bitcoin.org/en/developer-reference
https://bitcoin.org/en/glossary/op-code
https://bitcoin.org/en/glossary/op-code
https://medium.com/@bitcoinroundtable/bitcoin-roundtable-consensus-266d475a61ff
https://medium.com/@bitcoinroundtable/bitcoin-roundtable-consensus-266d475a61ff
https://medium.com/@bitcoinroundtable/bitcoin-roundtable-consensus-266d475a61ff
https://bitcoinj.github.io/working-with-micropayments
https://bitcoinj.github.io/working-with-micropayments
https://en.bitcoin.it/wiki/Block
https://en.bitcoin.it/wiki/Block_hashing_algorithm
https://en.bitcoin.it/wiki/Block_hashing_algorithm
https://en.bitcoin.it/wiki/Timelock
https://en.bitcoin.it/wiki/Timelock
https://en.bitcoin.it/wiki/Transaction
https://en.bitcoin.it/wiki/Transaction
https://bitinfocharts.com/
https://bitinfocharts.com/

[25] Bitmain. UAHF: A contingency plan against UASF (BIP148). 2017. url:

https : // blog . bitmain . com / en / uahf - contingency - plan - uasf -

bip148/ (visited on 13/04/2018).

[26] BitPay. What happens if I don’t upgrade my Bitcoin node for Segwit?

2017. url: https : / / support . bitpay . com / hc / en - us / articles /

115004141766- What- happens- if- I- don- t- upgrade- my- Bitcoin-

node-for-Segwit- (visited on 28/05/2018).

[27] Blueadept. Bi-directional micro payment channels with single party bitcoin

locking? 2014. url: https://bitcointalk.org/index.php?topic=

814770.msg9185225#msg9185225 (visited on 15/05/2018).

[28] BOLT. Base Protocol. url: https://github.com/lightningnetwork/

lightning-rfc/blob/master/01-messaging.md#reference-1 (visited

on 28/06/2018).

[29] BOLT. Bitcoin Transaction and Script Formats. url: https://github.

com/lightningnetwork/lightning-rfc/blob/master/03-transactions.

md#requirements (visited on 30/06/2018).

[30] BOLT. Invoice Protocol for Lightning Payments. url: https://github.

com/lightningnetwork/lightning-rfc/blob/master/11-payment-

encoding.md#examples (visited on 01/07/2018).

[31] BOLT. lightning-rfc. url: https://github.com/lightningnetwork/

lightning-rfc (visited on 03/07/2018).

[32] BOLT. Onion Routing Protocol. url: https://github.com/lightningnetwork/

lightning - rfc / blob / master / 04 - onion - routing . md (visited on

30/06/2018).

[33] BOLT. Peer Protocol for Channel Management. url: https://github.

com / lightningnetwork / lightning - rfc / blob / master / 02 - peer -

protocol.md (visited on 29/06/2018).

[34] Danny Bradbury. What the ’Bitcoin Bug’ Means: A Guide to Transaction

Malleability. 2014. url: https://www.coindesk.com/bitcoin- bug-

guide-transaction-malleability/ (visited on 20/05/2018).

iii

https://blog.bitmain.com/en/uahf-contingency-plan-uasf-bip148/
https://blog.bitmain.com/en/uahf-contingency-plan-uasf-bip148/
https://support.bitpay.com/hc/en-us/articles/115004141766-What-happens-if-I-don-t-upgrade-my-Bitcoin-node-for-Segwit-
https://support.bitpay.com/hc/en-us/articles/115004141766-What-happens-if-I-don-t-upgrade-my-Bitcoin-node-for-Segwit-
https://support.bitpay.com/hc/en-us/articles/115004141766-What-happens-if-I-don-t-upgrade-my-Bitcoin-node-for-Segwit-
https://bitcointalk.org/index.php?topic=814770.msg9185225#msg9185225
https://bitcointalk.org/index.php?topic=814770.msg9185225#msg9185225
https://github.com/lightningnetwork/lightning-rfc/blob/master/01-messaging.md#reference-1
https://github.com/lightningnetwork/lightning-rfc/blob/master/01-messaging.md#reference-1
https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md#requirements
https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md#requirements
https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md#requirements
https://github.com/lightningnetwork/lightning-rfc/blob/master/11-payment-encoding.md#examples
https://github.com/lightningnetwork/lightning-rfc/blob/master/11-payment-encoding.md#examples
https://github.com/lightningnetwork/lightning-rfc/blob/master/11-payment-encoding.md#examples
https://github.com/lightningnetwork/lightning-rfc
https://github.com/lightningnetwork/lightning-rfc
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md
https://www.coindesk.com/bitcoin-bug-guide-transaction-malleability/
https://www.coindesk.com/bitcoin-bug-guide-transaction-malleability/

[35] Ryan Browne. Big transaction fees are a problem for bitcoin — but there

could be a solution. 2017. url: https://www.cnbc.com/2017/12/19/big-

transactions-fees-are-a-problem-for-bitcoin.html (visited on

23/04/2018).

[36] BtcDrak and Mark Friedenbach. Relative lock-time using consensus-enforced

sequence numbers. 2015. url: https://github.com/bitcoin/bips/

blob/master/bip-0068.mediawiki (visited on 15/04/2018).

[37] BtcDrak, Mark Friedenbach and Eric Lombrozo. CHECKSEQUENCEVERIFY.

2015. url: https://github.com/bitcoin/bips/blob/master/bip-

0112.mediawiki (visited on 15/06/2018).

[38] Jean-Pierre Buntinx. Pro’s and Con’s on Bitcoin Block Pruning - Bitcoin

News. 2015. url: https://news.bitcoin.com/pros-and-cons-on-

bitcoin-block-pruning/ (visited on 03/04/2018).

[39] Conrad Burchert, Christian Decker and Roger Wattenhofer.“Scalable Fund-

ing of Bitcoin Micropayment Channel Networks”. In: Stabilization, Safety,

and Security of Distributed Systems. 2017, pp. 361–377.

[40] Celean. UDP flood DDoS attacks against XT nodes. 2016. url: https:

//www.reddit.com/r/bitcoinxt/comments/3iumsr/udp_flood_ddos_

attacks_against_xt_nodes/ (visited on 09/05/2018).

[41] Bitcoin Classic. How do SegWit and FlexTrans compare? url: https:

//bitcoinclassic.com/devel/FlexTrans-vs-SegWit.html (visited on

15/07/2018).

[42] Matt Corallo. Compact Block Relay. 2016. url: https://github.com/

bitcoin/bips/blob/master/bip-0152.mediawiki (visited on 11/07/2018).

[43] Kyle Croman et al. On scaling decentralized blockchains (A position paper).

2016.

[44] Cryddit. Permanently keeping the 1MB (anti-spam) restriction is a great

idea. 2015. url: https://bitcointalk.org/index.php?topic=946236.

msg10388435#msg10388435 (visited on 04/05/2018).

iv

https://www.cnbc.com/2017/12/19/big-transactions-fees-are-a-problem-for-bitcoin.html
https://www.cnbc.com/2017/12/19/big-transactions-fees-are-a-problem-for-bitcoin.html
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
https://news.bitcoin.com/pros-and-cons-on-bitcoin-block-pruning/
https://news.bitcoin.com/pros-and-cons-on-bitcoin-block-pruning/
https://www.reddit.com/r/bitcoinxt/comments/3iumsr/udp_flood_ddos_attacks_against_xt_nodes/
https://www.reddit.com/r/bitcoinxt/comments/3iumsr/udp_flood_ddos_attacks_against_xt_nodes/
https://www.reddit.com/r/bitcoinxt/comments/3iumsr/udp_flood_ddos_attacks_against_xt_nodes/
https://bitcoinclassic.com/devel/FlexTrans-vs-SegWit.html
https://bitcoinclassic.com/devel/FlexTrans-vs-SegWit.html
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://bitcointalk.org/index.php?topic=946236.msg10388435#msg10388435
https://bitcointalk.org/index.php?topic=946236.msg10388435#msg10388435

[45] Christian Decker, Rusty Russell and Olaoluwa Osuntokun. eltoo: A Simple

Layer2 Protocol for Bitcoin. 2018. url: https://blockstream.com/

eltoo.pdf.

[46] Christian Decker and Roger Wattenhofer. A fast and scalable payment

network with bitcoin duplex micropayment channels. 2015.

[47] Developer Guide. Bitcoin Developer Guide. 2018. url: https://bitcoin.

org/en/developer-guide (visited on 03/05/2018).

[48] Developer Guide. Micropayment Channel. url: https://bitcoin.org/

en/developer-guide#micropayment-channel (visited on 12/06/2018).

[49] Digital Currency Group. Bitcoin Scaling Agreement at Consensus 2017.

2017. url: https://medium.com/@DCGco/bitcoin-scaling-agreement-

at-consensus-2017-133521fe9a77 (visited on 09/04/2018).

[50] Elementsproject. Segregated Witness. 2015. url: https://elementsproject.

org/elements/segregated-witness/ (visited on 11/05/2018).

[51] Enochian. New Attack Vector. 2011. url: https://bitcointalk.org/

index.php?topic=8392.msg122410#msg122410 (visited on 21/05/2018).

[52] Ethereum Wiki. On sharding blockchains. url: https://github.com/

ethereum/wiki/wiki/Sharding-FAQs (visited on 12/07/2018).

[53] Ittay Eyal et al. Bitcoin-NG: A Scalable Blockchain Protocol. 2015.

[54] FIBRE. Fast Internet Bitcoin Relay Engine. url: http://bitcoinfibre.

org/ (visited on 11/07/2018).

[55] Jonald Fyookball. Mathematical Proof That the Lightning Network Cannot

Be a Decentralized Bitcoin Scaling Solution. 2017. url: https://medium.

com/@jonaldfyookball/mathematical-proof-that-the-lightning-

network-cannot-be-a-decentralized-bitcoin-scaling-solution-

1b8147650800 (visited on 26/06/2018).

[56] Jeff Garzik. Block size increase to 2 MB. 2015. url: https://github.

com/bitcoin/bips/blob/master/bip- 0102.mediawiki (visited on

16/05/2018).

v

https://blockstream.com/eltoo.pdf
https://blockstream.com/eltoo.pdf
https://bitcoin.org/en/developer-guide
https://bitcoin.org/en/developer-guide
https://bitcoin.org/en/developer-guide#micropayment-channel
https://bitcoin.org/en/developer-guide#micropayment-channel
https://medium.com/@DCGco/bitcoin-scaling-agreement-at-consensus-2017-133521fe9a77
https://medium.com/@DCGco/bitcoin-scaling-agreement-at-consensus-2017-133521fe9a77
https://elementsproject.org/elements/segregated-witness/
https://elementsproject.org/elements/segregated-witness/
https://bitcointalk.org/index.php?topic=8392.msg122410#msg122410
https://bitcointalk.org/index.php?topic=8392.msg122410#msg122410
https://github.com/ethereum/wiki/wiki/Sharding-FAQs
https://github.com/ethereum/wiki/wiki/Sharding-FAQs
http://bitcoinfibre.org/
http://bitcoinfibre.org/
https://medium.com/@jonaldfyookball/mathematical-proof-that-the-lightning-network-cannot-be-a-decentralized-bitcoin-scaling-solution-1b8147650800
https://medium.com/@jonaldfyookball/mathematical-proof-that-the-lightning-network-cannot-be-a-decentralized-bitcoin-scaling-solution-1b8147650800
https://medium.com/@jonaldfyookball/mathematical-proof-that-the-lightning-network-cannot-be-a-decentralized-bitcoin-scaling-solution-1b8147650800
https://medium.com/@jonaldfyookball/mathematical-proof-that-the-lightning-network-cannot-be-a-decentralized-bitcoin-scaling-solution-1b8147650800
https://github.com/bitcoin/bips/blob/master/bip-0102.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0102.mediawiki

[57] Jeff Garzik. Segregated Witness in the context of Scaling Bitcoin. 2015.

url: https://www.mail-archive.com/bitcoin-dev@lists.linuxfoundation.

org/msg03051.html (visited on 11/05/2018).

[58] Jeff Garzik, Tom Harding and Dagur Valberg. Dynamic maximum block

size by miner vote. 2015. url: https://github.com/jgarzik/bip100/

blob/master/bip-0100.mediawiki (visited on 16/05/2018).

[59] John M. Griffin and Amin Shams. Is Bitcoin Really Un-Tethered? 2018.

url: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=

3195066.

[60] Samuel Haig. Satoshi Nakamoto’s Confidant Gavin Andresen Throws Sup-

port Behind Bitcoin Cash. 2017. url: https://news.bitcoin.com/

satoshi-nakamotos-confidant-gavin-andresen-throws-support-

behind-bitcoin-cash/ (visited on 14/05/2018).

[61] Nermin Hajdarbegovic. Price Drops as Mt. Gox Blames Bitcoin Flaw for

Withdrawal Delays. 2014. url: https://www.coindesk.com/price-

drops-mt-gox-blames-bitcoin-flaw-withdrawal-delays/ (visited on

18/05/2018).

[62] David A. Harding. Saving up to 80% on Bitcoin transaction fees by batch-

ing payments. 2017. url: https://bitcointechtalk.com/saving-up-

to - 80 - on - bitcoin - transaction - fees - by - batching - payments -

4147ab7009fb (visited on 22/07/2018).

[63] David A. Harding. What is a Bitcoin Merklized Abstract Syntax Tree

(MAST)? 2017. url: https://bitcointechtalk.com/what- is- a-

bitcoin-merklized-abstract-syntax-tree-mast-33fdf2da5e2f (vis-

ited on 11/07/2018).

[64] Matthew Haywood. All roads lead to Segwit — Segwit2x, BIP 91 Segsignal

and UASF. 2017. url: https://medium.com/@wintercooled/segwit2x-

segsignal-and-the-uasf-all-roads-lead-to-segwit-d66fedf7fba

(visited on 13/04/2018).

vi

https://www.mail-archive.com/bitcoin-dev@lists.linuxfoundation.org/msg03051.html
https://www.mail-archive.com/bitcoin-dev@lists.linuxfoundation.org/msg03051.html
https://github.com/jgarzik/bip100/blob/master/bip-0100.mediawiki
https://github.com/jgarzik/bip100/blob/master/bip-0100.mediawiki
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3195066
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3195066
https://news.bitcoin.com/satoshi-nakamotos-confidant-gavin-andresen-throws-support-behind-bitcoin-cash/
https://news.bitcoin.com/satoshi-nakamotos-confidant-gavin-andresen-throws-support-behind-bitcoin-cash/
https://news.bitcoin.com/satoshi-nakamotos-confidant-gavin-andresen-throws-support-behind-bitcoin-cash/
https://www.coindesk.com/price-drops-mt-gox-blames-bitcoin-flaw-withdrawal-delays/
https://www.coindesk.com/price-drops-mt-gox-blames-bitcoin-flaw-withdrawal-delays/
https://bitcointechtalk.com/saving-up-to-80-on-bitcoin-transaction-fees-by-batching-payments-4147ab7009fb
https://bitcointechtalk.com/saving-up-to-80-on-bitcoin-transaction-fees-by-batching-payments-4147ab7009fb
https://bitcointechtalk.com/saving-up-to-80-on-bitcoin-transaction-fees-by-batching-payments-4147ab7009fb
https://bitcointechtalk.com/what-is-a-bitcoin-merklized-abstract-syntax-tree-mast-33fdf2da5e2f
https://bitcointechtalk.com/what-is-a-bitcoin-merklized-abstract-syntax-tree-mast-33fdf2da5e2f
https://medium.com/@wintercooled/segwit2x-segsignal-and-the-uasf-all-roads-lead-to-segwit-d66fedf7fba
https://medium.com/@wintercooled/segwit2x-segsignal-and-the-uasf-all-roads-lead-to-segwit-d66fedf7fba

[65] Mike Hearn. The Resolution of the Bitcoin Experiment. 2016. url: https:

/ / medium . com / @octskyward / the - resolution - of - the - bitcoin -

experiment-dabb30201f7#.xccfiy7ms (visited on 28/03/2018).

[66] Impulse. Inter-Channel Payments. Tech. rep. 2015.

[67] Yaoqi Jia. Op Ed: The Many Faces of Sharding for Blockchain Scalability.

2018. url: https://bitcoinmagazine.com/articles/op-ed-many-

faces-sharding-blockchain-scalability/ (visited on 12/07/2018).

[68] Thomas Kerin and Mark Friedenbach. Median time-past as endpoint for

lock-time calculations. 2015. url: https://github.com/bitcoin/bips/

blob/master/bip-0113.mediawiki (visited on 15/06/2018).

[69] Evan Klitzke. Bitcoin Transaction Malleability. 2017. url: https : / /

eklitzke.org/bitcoin-transaction-malleability (visited on 21/05/2018).

[70] Dimitry Laptev. Bitcoin: transactions, malleability, SegWit and scaling.

2017. url: https://medium.com/@x0100/bitcoin- transactions-

malleability-segwit-and-scaling-258af8ed9cbf (visited on 24/05/2018).

[71] Johnson Lau. Merkelized Abstract Syntax Tree. 2016. url: https : / /

github.com/bitcoin/bips/blob/master/bip-0114.mediawiki (visited

on 11/07/2018).

[72] Johnson Lau and Pieter Wuille. Transaction Signature Verification for

Version 0 Witness Program. 2016. url: https://github.com/bitcoin/

bips/blob/master/bip-0143.mediawiki#cite_note-wiki_1 (visited

on 26/05/2018).

[73] Sergio Damian Lerner. New Bitcoin vulnerability: A transaction that takes

at least 3 minutes to verify. 2013. url: https://bitcointalk.org/

index.php?topic=140078 (visited on 17/05/2018).

[74] Sergio Damian Lerner. Segwit2Mb - combined soft/hard fork - Request

For Comments. 2017. url: https : / / lists . linuxfoundation . org /

pipermail/bitcoin-dev/2017-March/013921.html (visited on 07/04/2018).

vii

https://medium.com/@octskyward/the-resolution-of-the-bitcoin-experiment-dabb30201f7#.xccfiy7ms
https://medium.com/@octskyward/the-resolution-of-the-bitcoin-experiment-dabb30201f7#.xccfiy7ms
https://medium.com/@octskyward/the-resolution-of-the-bitcoin-experiment-dabb30201f7#.xccfiy7ms
https://bitcoinmagazine.com/articles/op-ed-many-faces-sharding-blockchain-scalability/
https://bitcoinmagazine.com/articles/op-ed-many-faces-sharding-blockchain-scalability/
https://github.com/bitcoin/bips/blob/master/bip-0113.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0113.mediawiki
https://eklitzke.org/bitcoin-transaction-malleability
https://eklitzke.org/bitcoin-transaction-malleability
https://medium.com/@x0100/bitcoin-transactions-malleability-segwit-and-scaling-258af8ed9cbf
https://medium.com/@x0100/bitcoin-transactions-malleability-segwit-and-scaling-258af8ed9cbf
https://github.com/bitcoin/bips/blob/master/bip-0114.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0114.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki#cite_note-wiki_1
https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki#cite_note-wiki_1
https://bitcointalk.org/index.php?topic=140078
https://bitcointalk.org/index.php?topic=140078
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-March/013921.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-March/013921.html

[75] Taariq Lewis. SF Bitcoin Devs Seminar: Scaling Bitcoin to Billions of

Transactions Per Day. 2015. url: https://www.youtube.com/watch?

time_continue=16&v=8zVzw912wPo (visited on 09/05/2018).

[76] Lightning Developers. Lightning Protocol 1.0: Compatibility Achieved. 2017.

url: https://medium.com/@lightning_network/lightning-protocol-

1-0-compatibility-achieved-f9d22b7b19c4 (visited on 15/05/2018).

[77] Liquidity.Network. Understanding off-chain transactions in blockchain for

fun and profit. 2017. url: https://medium.com/@liquidity.network/

understanding-off-chain-transactions-in-blockchain-for-fun-

and-profit-591e7e27ccc0 (visited on 09/06/2018).

[78] Eric Lombrozo, Johnson Lau and Pieter Wuille. Segregated Witness (Con-

sensus layer). 2015. url: https://github.com/bitcoin/bips/blob/

master/bip-0141.mediawiki#cite_note-2 (visited on 25/05/2018).

[79] Gregory Maxwell. I do not support the BIP 148 UASF. 2017. url: https:

/ / lists . linuxfoundation . org / pipermail / bitcoin - dev / 2017 -

April/014152.html (visited on 14/05/2018).

[80] Daniel Morgan. The Great Bitcoin Scaling Debate — A Timeline. 2017.

url: https://hackernoon.com/the-great-bitcoin-scaling-debate-

a-timeline-6108081dbada (visited on 24/03/2018).

[81] Satoshi Nakamoto. Bitcoin : A Peer-to-Peer Electronic Cash System. 2008.

[82] Tier Nolan. Alt chains and atomic transfers. 2013. url: https://bitcointalk.

org/index.php?topic=193281.0.

[83] Pinar A. Ozisik et al. Graphene: A New Protocol for Block Propagation

Using Set Reconciliation. url: https://www.youtube.com/watch?time_

continue=10570&v=BPNs9EVxWrA (visited on 30/07/2018).

[84] P2sh. SegWit Usage. url: https://p2sh.info/dashboard/db/segwit-

usage?orgId=1 (visited on 15/07/2018).

[85] Stephen Pair et al. Industry Letter. 2015. url: https://bitcoinxt.

software/industry-letter.pdf (visited on 09/05/2018).

viii

https://www.youtube.com/watch?time_continue=16&v=8zVzw912wPo
https://www.youtube.com/watch?time_continue=16&v=8zVzw912wPo
https://medium.com/@lightning_network/lightning-protocol-1-0-compatibility-achieved-f9d22b7b19c4
https://medium.com/@lightning_network/lightning-protocol-1-0-compatibility-achieved-f9d22b7b19c4
https://medium.com/@liquidity.network/understanding-off-chain-transactions-in-blockchain-for-fun-and-profit-591e7e27ccc0
https://medium.com/@liquidity.network/understanding-off-chain-transactions-in-blockchain-for-fun-and-profit-591e7e27ccc0
https://medium.com/@liquidity.network/understanding-off-chain-transactions-in-blockchain-for-fun-and-profit-591e7e27ccc0
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki#cite_note-2
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki#cite_note-2
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-April/014152.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-April/014152.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-April/014152.html
https://hackernoon.com/the-great-bitcoin-scaling-debate-a-timeline-6108081dbada
https://hackernoon.com/the-great-bitcoin-scaling-debate-a-timeline-6108081dbada
https://bitcointalk.org/index.php?topic=193281.0
https://bitcointalk.org/index.php?topic=193281.0
https://www.youtube.com/watch?time_continue=10570&v=BPNs9EVxWrA
https://www.youtube.com/watch?time_continue=10570&v=BPNs9EVxWrA
https://p2sh.info/dashboard/db/segwit-usage?orgId=1
https://p2sh.info/dashboard/db/segwit-usage?orgId=1
https://bitcoinxt.software/industry-letter.pdf
https://bitcoinxt.software/industry-letter.pdf

[86] Daniel Palmer. Scalability Debate Continues As Bitcoin XT Proposal Stalls.

2016. url: http://www.coindesk.com/scalability-debate-bitcoin-

xt-proposal-stalls/ (visited on 06/04/2018).

[87] PayPal. PayPal Reports Fourth Quarter and Full Year 2017 Results. 2018.

url: https://www.businesswire.com/news/home/20180131006195/

en/PayPal- Reports- Fourth- Quarter- Full- Year- 2017 (visited on

08/05/2018).

[88] Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning Network: Scal-

able Off-Chain Instant Payments. 2016.

[89] Pavel Prihodko et al. Flare: An Approach to Routing in Lightning Network.

2016.

[90] Jamie Redman. Fork Watch: Block 478558 Initiates ‘Bitcoin Cash’ Split –

First Blocks Now Mined. 2017. url: https://news.bitcoin.com/fork-

watch-first-bitcoin-cash-block-mined/ (visited on 24/04/2018).

[91] Peter Rizun. SegWit Coins are not Bitcoins. 2017. url: https://www.

youtube.com/watch?v=VoFb3mcxluY&t=1723s (visited on 29/05/2018).

[92] Pete Rizzo. Is Segregated Witness the Answer to Bitcoin’s Block Size De-

bate? 2015. url: https://www.coindesk.com/segregated-witness-

bitcoin-block-size-debate/ (visited on 11/05/2018).

[93] Meni Rosenfeld. Elastic block cap with rollover peanlties. 2015. url: https:

//bitcointalk.org/index.php?topic=1078521.0 (visited on 16/05/2018).

[94] RustyReddit. What is the status of the Lightning Network? 2017. url:

https://www.reddit.com/r/Bitcoin/comments/714x2k/what_is_the_

status_of_the_lightning_network/ (visited on 01/07/2018).

[95] Satoshi. Increase block size limit. 2010. url: https://bitcointalk.org/

index.php?topic=1347.msg15366#msg15366 (visited on 04/05/2018).

[96] Shaolinfry. Moving towards a user activated soft fork activation. 2017. url:

https://bitcointalk.org/index.php?topic=1805060.0 (visited on

14/05/2018).

ix

http://www.coindesk.com/scalability-debate-bitcoin-xt-proposal-stalls/
http://www.coindesk.com/scalability-debate-bitcoin-xt-proposal-stalls/
https://www.businesswire.com/news/home/20180131006195/en/PayPal-Reports-Fourth-Quarter-Full-Year-2017
https://www.businesswire.com/news/home/20180131006195/en/PayPal-Reports-Fourth-Quarter-Full-Year-2017
https://news.bitcoin.com/fork-watch-first-bitcoin-cash-block-mined/
https://news.bitcoin.com/fork-watch-first-bitcoin-cash-block-mined/
https://www.youtube.com/watch?v=VoFb3mcxluY&t=1723s
https://www.youtube.com/watch?v=VoFb3mcxluY&t=1723s
https://www.coindesk.com/segregated-witness-bitcoin-block-size-debate/
https://www.coindesk.com/segregated-witness-bitcoin-block-size-debate/
https://bitcointalk.org/index.php?topic=1078521.0
https://bitcointalk.org/index.php?topic=1078521.0
https://www.reddit.com/r/Bitcoin/comments/714x2k/what_is_the_status_of_the_lightning_network/
https://www.reddit.com/r/Bitcoin/comments/714x2k/what_is_the_status_of_the_lightning_network/
https://bitcointalk.org/index.php?topic=1347.msg15366#msg15366
https://bitcointalk.org/index.php?topic=1347.msg15366#msg15366
https://bitcointalk.org/index.php?topic=1805060.0

[97] Yonatan Sompolinsky and Aviv Zohar. Secure High-Rate Transaction Pro-

cessing in. 2013.

[98] Yonatan Sompolinsky, Aviv Zohar and Computer Science. Phantom. 2018.

[99] Jimmy Song. Bitcoin Cash: What You Need to Know. 2017. url: https:

//medium.com/@jimmysong/bitcoin-cash-what-you-need-to-know-

c25df28995cf (visited on 15/04/2018).

[100] Jimmy Song. Segwit2x Bugs Explained. 2017. url: https://bitcointechtalk.

com/segwit2x-bugs-explained-8e0c286124bc (visited on 21/05/2018).

[101] Jon Southurst. Mt. Gox Halts ALL Bitcoin Withdrawals, Price Drop Fol-

lows. 2014. url: https://www.coindesk.com/mt-gox-halts-bitcoin-

withdrawals-price-drop/ (visited on 18/05/2018).

[102] Emily Spaven. Bitcoin Exchanges Under ’Massive and Concerted Attack’.

2014. url: https://www.coindesk.com/massive-concerted-attack-

launched-bitcoin-exchanges/ (visited on 18/05/2018).

[103] William Suberg. Vitalik Buterin: Sharding Scaling Improvement ‘Is Com-

ing’ To Ethereum Network. 2018. url: https://cointelegraph.com/

news/vitalik-buterin-sharding-scaling-improvement-is-coming-

to-ethereum-network (visited on 12/07/2018).

[104] Federico Tenga. Understanding Payment Channels. 2018. url: https://

blog.chainside.net/understanding-payment-channels-4ab018be79d4

(visited on 17/06/2018).

[105] Theymos. It’s time for a break: About the recent mess & temporary new

rules. 2016. url: https://www.reddit.com/r/Bitcoin/comments/

3h9cq4/its_time_for_a_break_about_the_recent_mess/ (visited on

09/05/2018).

[106] Peter Todd. Near-zero fee transactions with hub-and-spoke micropayments.

2014. url: https://lists.linuxfoundation.org/pipermail/bitcoin-

dev/2014-December/006988.html (visited on 15/05/2018).

x

https://medium.com/@jimmysong/bitcoin-cash-what-you-need-to-know-c25df28995cf
https://medium.com/@jimmysong/bitcoin-cash-what-you-need-to-know-c25df28995cf
https://medium.com/@jimmysong/bitcoin-cash-what-you-need-to-know-c25df28995cf
https://bitcointechtalk.com/segwit2x-bugs-explained-8e0c286124bc
https://bitcointechtalk.com/segwit2x-bugs-explained-8e0c286124bc
https://www.coindesk.com/mt-gox-halts-bitcoin-withdrawals-price-drop/
https://www.coindesk.com/mt-gox-halts-bitcoin-withdrawals-price-drop/
https://www.coindesk.com/massive-concerted-attack-launched-bitcoin-exchanges/
https://www.coindesk.com/massive-concerted-attack-launched-bitcoin-exchanges/
https://cointelegraph.com/news/vitalik-buterin-sharding-scaling-improvement-is-coming-to-ethereum-network
https://cointelegraph.com/news/vitalik-buterin-sharding-scaling-improvement-is-coming-to-ethereum-network
https://cointelegraph.com/news/vitalik-buterin-sharding-scaling-improvement-is-coming-to-ethereum-network
https://blog.chainside.net/understanding-payment-channels-4ab018be79d4
https://blog.chainside.net/understanding-payment-channels-4ab018be79d4
https://www.reddit.com/r/Bitcoin/comments/3h9cq4/its_time_for_a_break_about_the_recent_mess/
https://www.reddit.com/r/Bitcoin/comments/3h9cq4/its_time_for_a_break_about_the_recent_mess/
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-December/006988.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-December/006988.html

[107] Peter Todd. OP CHECKLOCKTIMEVERIFY. 2014. url: https://github.

com/bitcoin/bips/blob/master/bip- 0065.mediawiki (visited on

11/06/2018).

[108] Kyle Torpey. Antpool Will Not Run SegWit Without Bitcoin Block Size In-

crease Hard Fork. 2016. url: https://bitcoinmagazine.com/articles/

antpool- will- not- run- segwit- without- block- size- increase-

hard-fork-1464028753/ (visited on 14/05/2018).

[109] Anthony Towns. Capacity increases for the Bitcoin system. 2015. url:

https : / / lists . linuxfoundation . org / pipermail / bitcoin - dev /

2015-December/011869.html (visited on 28/05/2018).

[110] Unicode. Miscellaneous Symbols. url: http://www.unicode.org/charts/

PDF/U2600.pdf (visited on 28/06/2018).

[111] Kiran Vaidya. Bitcoin’s implementation of Blockchain. 2016. url: https:

//medium.com/all-things-ledger/bitcoins-implementation-of-

blockchain-2be713f662c2 (visited on 02/05/2018).

[112] ViaBTC. Statement on Bitcoin User Activated Hard Fork. 2017. url:

https://medium.com/@ViaBTC/statement-on-bitcoin-user-activated-

hard-fork-6e7aebb67e67 (visited on 15/04/2018).

[113] Visa. Annual Report 2017. Tech. rep. 2017. url: https://s1.q4cdn.com/

050606653/files/doc_financials/annual/2017/Visa-2017-Annual-

Report.pdf.

[114] Visa. Visa Inc. Facts & Figures. Tech. rep. 2017. url: https://usa.

visa.com/dam/VCOM/global/about-visa/documents/visa-facts-

figures-jan-2017.pdf.

[115] Aaron van Wirdum. After Scaling Bitcoin, a Lightning Winter Release

Is Now Within Reach. 2016. url: https : / / bitcoinmagazine . com /

articles/after-scaling-bitcoin-a-lightning-winter-release-

is-now-within-reach-1476814566/ (visited on 15/05/2018).

xi

https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://bitcoinmagazine.com/articles/antpool-will-not-run-segwit-without-block-size-increase-hard-fork-1464028753/
https://bitcoinmagazine.com/articles/antpool-will-not-run-segwit-without-block-size-increase-hard-fork-1464028753/
https://bitcoinmagazine.com/articles/antpool-will-not-run-segwit-without-block-size-increase-hard-fork-1464028753/
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-December/011869.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-December/011869.html
http://www.unicode.org/charts/PDF/U2600.pdf
http://www.unicode.org/charts/PDF/U2600.pdf
https://medium.com/all-things-ledger/bitcoins-implementation-of-blockchain-2be713f662c2
https://medium.com/all-things-ledger/bitcoins-implementation-of-blockchain-2be713f662c2
https://medium.com/all-things-ledger/bitcoins-implementation-of-blockchain-2be713f662c2
https://medium.com/@ViaBTC/statement-on-bitcoin-user-activated-hard-fork-6e7aebb67e67
https://medium.com/@ViaBTC/statement-on-bitcoin-user-activated-hard-fork-6e7aebb67e67
https://s1.q4cdn.com/050606653/files/doc_financials/annual/2017/Visa-2017-Annual-Report.pdf
https://s1.q4cdn.com/050606653/files/doc_financials/annual/2017/Visa-2017-Annual-Report.pdf
https://s1.q4cdn.com/050606653/files/doc_financials/annual/2017/Visa-2017-Annual-Report.pdf
https://usa.visa.com/dam/VCOM/global/about-visa/documents/visa-facts-figures-jan-2017.pdf
https://usa.visa.com/dam/VCOM/global/about-visa/documents/visa-facts-figures-jan-2017.pdf
https://usa.visa.com/dam/VCOM/global/about-visa/documents/visa-facts-figures-jan-2017.pdf
https://bitcoinmagazine.com/articles/after-scaling-bitcoin-a-lightning-winter-release-is-now-within-reach-1476814566/
https://bitcoinmagazine.com/articles/after-scaling-bitcoin-a-lightning-winter-release-is-now-within-reach-1476814566/
https://bitcoinmagazine.com/articles/after-scaling-bitcoin-a-lightning-winter-release-is-now-within-reach-1476814566/

[116] Aaron van Wirdum. Chinese Mining Pools Call for Consensus; Refuse

Switch to Bitcoin XT. 2015. url: https://cointelegraph.com/news/

chinese-mining-pools-call-for-consensus-refuse-switch-to-

bitcoin-xt (visited on 04/04/2018).

[117] Aaron van Wirdum. Chinese Mining Pools Propose Alternative 8 MB

Block Size. 2015. url: https://cointelegraph.com/news/chinese-

mining-pools-propose-alternative-8-mb-block-size (visited on

09/05/2018).

[118] Aaron van Wirdum. Monero Just Hard Forked — and It Resulted in Four

New Projects. 2018. url: https://bitcoinmagazine.com/articles/

monero-just-hard-forked-and-it-resulted-four-new-projects/

(visited on 18/05/2018).

[119] Aaron van Wirdum. The Future of “Bitcoin Cash:” An Interview with Bit-

coin ABC lead developer Amaury Séchet. 2017. url: https://bitcoinmagazine.

com/articles/future-bitcoin-cash-interview-bitcoin-abc-lead-

developer-amaury-s~Al’chet/ (visited on 14/04/2018).

[120] Aaron van Wirdum. The History of Lightning: From Brainstorm to Beta.

2018. url: https://bitcoinmagazine.com/articles/history-lightning-

brainstorm-beta/ (visited on 15/05/2018).

[121] Aaron van Wirdum. The Long Road to SegWit: How Bitcoin’s Biggest

Protocol Upgrade Became Reality. 2017. url: https://bitcoinmagazine.

com/articles/long-road-segwit-how-bitcoins-biggest-protocol-

upgrade-became-reality/ (visited on 11/05/2018).

[122] Aaron van Wirdum. The Who, What, Why and How of the Ongoing

Transaction Malleability Attack. 2015. url: https://bitcoinmagazine.

com / articles / the - who - what - why - and - how - of - the - ongoing -

transaction-malleability-attack-1444253640/ (visited on 20/05/2018).

[123] Aaron van Wirdum. Understanding the Lightning Network, Part 1: Build-

ing a Bidirectional Bitcoin Payment Channel. 2016. url: https://bitcoinmagazine.

xii

https://cointelegraph.com/news/chinese-mining-pools-call-for-consensus-refuse-switch-to-bitcoin-xt
https://cointelegraph.com/news/chinese-mining-pools-call-for-consensus-refuse-switch-to-bitcoin-xt
https://cointelegraph.com/news/chinese-mining-pools-call-for-consensus-refuse-switch-to-bitcoin-xt
https://cointelegraph.com/news/chinese-mining-pools-propose-alternative-8-mb-block-size
https://cointelegraph.com/news/chinese-mining-pools-propose-alternative-8-mb-block-size
https://bitcoinmagazine.com/articles/monero-just-hard-forked-and-it-resulted-four-new-projects/
https://bitcoinmagazine.com/articles/monero-just-hard-forked-and-it-resulted-four-new-projects/
https://bitcoinmagazine.com/articles/future-bitcoin-cash-interview-bitcoin-abc-lead-developer-amaury-séchet/
https://bitcoinmagazine.com/articles/future-bitcoin-cash-interview-bitcoin-abc-lead-developer-amaury-séchet/
https://bitcoinmagazine.com/articles/future-bitcoin-cash-interview-bitcoin-abc-lead-developer-amaury-séchet/
https://bitcoinmagazine.com/articles/history-lightning-brainstorm-beta/
https://bitcoinmagazine.com/articles/history-lightning-brainstorm-beta/
https://bitcoinmagazine.com/articles/long-road-segwit-how-bitcoins-biggest-protocol-upgrade-became-reality/
https://bitcoinmagazine.com/articles/long-road-segwit-how-bitcoins-biggest-protocol-upgrade-became-reality/
https://bitcoinmagazine.com/articles/long-road-segwit-how-bitcoins-biggest-protocol-upgrade-became-reality/
https://bitcoinmagazine.com/articles/the-who-what-why-and-how-of-the-ongoing-transaction-malleability-attack-1444253640/
https://bitcoinmagazine.com/articles/the-who-what-why-and-how-of-the-ongoing-transaction-malleability-attack-1444253640/
https://bitcoinmagazine.com/articles/the-who-what-why-and-how-of-the-ongoing-transaction-malleability-attack-1444253640/
https://bitcoinmagazine.com/articles/understanding-the-lightning-network-part-building-a-bidirectional-payment-channel-1464710791/
https://bitcoinmagazine.com/articles/understanding-the-lightning-network-part-building-a-bidirectional-payment-channel-1464710791/

com/articles/understanding-the-lightning-network-part-building-

a-bidirectional-payment-channel-1464710791/ (visited on 17/06/2018).

[124] Aaron van Wirdum. Understanding the Lightning Network, Part 3: Com-

pleting the Puzzle and Closing the Channel. 2016. url: https://bitcoinmagazine.

com/articles/understanding-the-lightning-network-part-completing-

the - puzzle - and - closing - the - channel - 1466178980/ (visited on

21/06/2018).

[125] Aaron van Wirdum. Why ViaBTC Rejects SegWit Soft Fork in Favor of

Block Size Hard Fork: Interview With Haipo Yang. 2016. url: https:

//bitcoinmagazine.com/articles/why- viabtc- rejects- segwit-

soft-fork-in-favor-of-block-size-hard-fork-interview-with-

haipo-yang-1479409475/ (visited on 14/05/2018).

[126] Halle Wittenberg. on Block. 1994. url: https://medium.com/@octskyward/

on-block-sizes-e047bc9f830 (visited on 04/04/2018).

[127] Pieter Wuille. Block size following technological growth. 2015. url: https:

//github.com/bitcoin/bips/blob/master/bip- 0103.mediawiki

(visited on 16/05/2018).

[128] Pieter Wuille. Hierarchical Deterministic Wallets. 2012. url: https://

github.com/bitcoin/bips/blob/master/bip-0032.mediawiki (visited

on 25/06/2018).

[129] Pieter Wuille. Segregated Witness for Bitcoin. 2015. url: https://www.

youtube.com/watch?time_continue=2160&v=fst1IK_mrnghttp://

diyhpl.us/wiki/transcripts/scalingbitcoin/hong-kong/segregated-

witness-and-its-impact-on-scalability/ (visited on 11/05/2018).

[130] Pieter Wuille and Gregory Maxwell. Base32 address format for native v0-

16 witness outputs. 2017. url: https://github.com/bitcoin/bips/

blob/master/bip-0173.mediawiki.

xiii

https://bitcoinmagazine.com/articles/understanding-the-lightning-network-part-building-a-bidirectional-payment-channel-1464710791/
https://bitcoinmagazine.com/articles/understanding-the-lightning-network-part-building-a-bidirectional-payment-channel-1464710791/
https://bitcoinmagazine.com/articles/understanding-the-lightning-network-part-building-a-bidirectional-payment-channel-1464710791/
https://bitcoinmagazine.com/articles/understanding-the-lightning-network-part-completing-the-puzzle-and-closing-the-channel-1466178980/
https://bitcoinmagazine.com/articles/understanding-the-lightning-network-part-completing-the-puzzle-and-closing-the-channel-1466178980/
https://bitcoinmagazine.com/articles/understanding-the-lightning-network-part-completing-the-puzzle-and-closing-the-channel-1466178980/
https://bitcoinmagazine.com/articles/why-viabtc-rejects-segwit-soft-fork-in-favor-of-block-size-hard-fork-interview-with-haipo-yang-1479409475/
https://bitcoinmagazine.com/articles/why-viabtc-rejects-segwit-soft-fork-in-favor-of-block-size-hard-fork-interview-with-haipo-yang-1479409475/
https://bitcoinmagazine.com/articles/why-viabtc-rejects-segwit-soft-fork-in-favor-of-block-size-hard-fork-interview-with-haipo-yang-1479409475/
https://bitcoinmagazine.com/articles/why-viabtc-rejects-segwit-soft-fork-in-favor-of-block-size-hard-fork-interview-with-haipo-yang-1479409475/
https://medium.com/@octskyward/on-block-sizes-e047bc9f830
https://medium.com/@octskyward/on-block-sizes-e047bc9f830
https://github.com/bitcoin/bips/blob/master/bip-0103.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0103.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://www.youtube.com/watch?time_continue=2160&v=fst1IK_mrng http://diyhpl.us/wiki/transcripts/scalingbitcoin/hong-kong/segregated-witness-and-its-impact-on-scalability/
https://www.youtube.com/watch?time_continue=2160&v=fst1IK_mrng http://diyhpl.us/wiki/transcripts/scalingbitcoin/hong-kong/segregated-witness-and-its-impact-on-scalability/
https://www.youtube.com/watch?time_continue=2160&v=fst1IK_mrng http://diyhpl.us/wiki/transcripts/scalingbitcoin/hong-kong/segregated-witness-and-its-impact-on-scalability/
https://www.youtube.com/watch?time_continue=2160&v=fst1IK_mrng http://diyhpl.us/wiki/transcripts/scalingbitcoin/hong-kong/segregated-witness-and-its-impact-on-scalability/
https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki

	Scaling_Bitcoin_Nyffenegger_Titelblatt
	Scaling_Bitcoin_Nyffenegger
	Scaling_Bitcoin_Nyffenegger

