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Abstract

In recent years, carbon price formation was increasingly driven by a var-

ious set of fundamentals from compliance sectors as well as speculative

expectations of longer-term developments. I propose a model that as-

sumes the traded emissions allowance returns to depend on short- and

long-term horizons of price expectations based on supply and demand,

which are composed of the discounted long-term balance and short-run

demand from physical compliance demand and speculative traders’ ex-

pectations. Applying an empirical model which proxies changes in long-

term expectations using sentiment indices constructed on relevant news

headlines and short-term returns from fuel returns and stock returns, I

find statistical evidence that EUA returns depend on a combination of

both time horizons with expected signs of estimated elasticities.
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1. Introduction

The European Union’s Emission Trading Scheme (EU ETS) is widely

recognized as a core instrument of the Union for implementing its emis-

sion reduction targets, namely carbon neutrality by 2050. Introduced in

2005 as a so-called cap-and-trade regulation, it aims to reduce aggregate

emissions within a legally binding framework to reduce overall emissions

from covered sectors at least cost. After years of limited significance in

practice, partly due to issues of (inelastic) oversupply, major revisions

- such as the so-called Market Stability Reserve (MSR) - expressed the

Union’s commitment to more ambitious supply reductions, driving the

price to levels where marginal carbon reductions were incentivized. As

a notable example, the EU ETS periodically incentivized fuel-switching

from coal to less polluting gas in electricity generation. In parallel, re-

lated policy developments implying more strict emission reduction targets

additionally contributed to market participants’ increasing expectation

of expected supply tightenings and started an era of increased credibil-

ity of such measures. With the continuous inflow of speculative money

and new classes of investors, EU ETS allowances (EUAs) increasingly

developed from a compliance tool to a recognized commodity with char-

acteristics of a financial asset [1]. While the effect of power generating

fuels traditionally is an important branch of EUA pricing research and

gained practical relevance under fuel-switching market environments, it

remains a challenge to objectively integrate emerging price drivers, such

as longer-term supply signals, which extend the planning time horizon

of market participants expectations. Recently, new branches of litera-

ture propose concepts from financial market research, e.g. from asset

pricing theory, to the topic, often applying data-driven methods. While

contributing with descriptively valuable observations, these often omit

bottom-up economical explanations. Those remain important for EUAs

being a supply and demand driven asset with characteristics of a com-

modity. From a fundamental view, it is however not a straightforward
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endeavour to model longer-term policy expectations objectively, which

have become highly relevant for price formation.

With this study, I contribute to existing research with an empirical study

on price formation under long- and short-term horizons in recent years,

based on a formal economical framework. By doing so, I empirically

answer the question whether both long- and short-term price expecta-

tions have influenced price formation, as my theoretical model of myopic

and speculative type horizons would predict. Utilizing data of fuel re-

turns, stock returns and news headlines, I estimate the magnitude of

effects on EUA returns as elasticities. By considering both short-term

and long-term price drivers from compliant sectors and financial specu-

lators, I contribute an integrative approach to the increasingly heteroge-

nous landscape. I find empirical evidence that short-term compliance

demand varies with the state of fuel margins and is generally related

to stock returns while some changes in long-term expectations continu-

ously contribute to EUA returns. The result therefore contributes to the

holistic understanding of EUA price formation in times of dynamically

developing drivers.

The remainder is organized as follows. Chapter 2 provides some back-

gound on the EU ETS and market evidence. Chapter 3 derives a theoret-

ical model of short-term and long-term price drivers. Chapter 4 explains

the empirical methodology and presents empirical results. Chapter 5

provides a discussion of results and concludes.
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2. The European Emissions

Market

2.1. Design

The European Union’s Emission Trading Scheme (EU ETS) is the Eu-

ropean Union’s flagship instrument for achieving least-cost reductions

of carbon emissions. Being a cap-and-trade system, it limits the to-

tal volume of greenhouse gas emissions from covered sectors, which cur-

rently respond to approximately 50% of total greenhouse gas emissions

in Europe [2]. It started in 2003, aiming to incentivize the reduction of

greenhouse gases within covered sectors in a cost-effective and economi-

cally efficient manner [3]. Currently covered sectors are energy activities

(electricity generation with capacities exceeding 20 megawatts except

municipal waste installations, mineral oil refineries and coke ovens) and

energy-intensive industrial processes (involving metals, minerals, pulp

and paper). Besides emissions from aluminium production and other

chemical processes, carbon dioxide currently is the main emission cov-

ered, therefore the European emissions trading scheme is often referred

to as a carbon market1. [2]

One allowance within the scheme is called one European Union Allowance

(EUA) and entitles the holder to emit one ton of carbon dioxide in a spec-

ified period [3]. The period in which the producer of the emission has

to comply with the scheme by surrendering the equivalent number of al-

lowances is called the compliance cycle or compliance period, with a one

year duration each and a subsequent, clearly defined phase of reporting

and delivering. The reference product is the front December future.

1Since this study focuses on the (mainly carbon-emitting) energy sector as a primary
driver of demand in the current phase of the scheme, I use the terms emissions
and carbon equivalently for the benefit of simplicity.
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Depending on the phase of the scheme, allowances are distributed to mar-

ket participants via free allocations (based on ”industry benchmarks”,

rewarding emission efficiency) and scheduled national auctions through

energy exchanges. The supply of certificates is per definition inelastic,

since the amount of allowances allocated to the market is externally set

by the EU and not the result of a market mechanism. There is, however,

some flexibility to the amount and distribution of supply, both through

policy innovations, which affected both market characteristics and price

formation in the past. Being temporally divided into ”trading phases”,

the scheme is reviewed and innovated regularly. One of the first major

additions was the introduction of ”banking and borrowing” of certificates

at the start of the second phase in 2008, allowing market participants to

optimize their consumption over time and to increase their planning hori-

zon, thus strengthening market stability [2].

More ambitious reduction targets can, for example, be implemented by

applying a more strict linear reduction factor (i.e. the decreasing amount

of allowances allocated each year), which is legally set. The balance is

also tightened implicitly through the introduction of a major instrument

being the so-called market stability reserve (MSR)[4], which is active

since January 2019 mainly to increase market resilience but also as a

de-facto tool to absorb potential oversupply. After a periodic calcula-

tion of the total number of allowances in circulation, the MSR takes in a

set amount of EUAs above a defined threshold from scheduled auctions.

These are only to be released if the number of certificates in circulation

subsequently falls below another threshold. [5] From 2023 onwards, the

maximum amount of certificates in the MSR will be linked to the pre-

vious year’s auction volumes, with a potential surplus to be removed by

a cancellation mechanism, which is recognized as a policy instrument

to raise carbon prices and to incentivize renewable investment. Being a

multi-dimensional instrument, it is not trivial to estimate the compound

price effect resulting from its different channels of action. It even seems

to produce counter-intuitive effects, such as increasing price volatility. [6]

Noteworthy, alongside the introduction of the MSR, a defined share of

scheduled allocations was conditionally postponed to subsequent years -

but not cancelled - using so-called backloading - arguably being a signal

for a willingness to stabilize prices rather than a result of purely economic

reasoning.
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2.2. Market Data

Changing policy circumstances and demand situations are reflected in

historical prices. Figure 2.1 depicts daily closing price history of rolling

front December futures as the reference product. The left hand sec-

tion depicts the whole history when this paper was written (01.01.2005 -

07.05.2021). The middle section shows price history for the dataset that

was available for baseline regressions (05.01.2010 - 07.05.2021), while the

right hand side reduces the historical time frame to the most restrictive

data in the most comprehensive model (18.03.2018 - 07.05.2021).

Certificates from the first trading phase (TP1, 2005 - 2007) expired prac-

tically worthless since inter-phase banking and associated transfers of

certificates was only allowed from TP2 onwards. TP2 (2008 - 2012) was

characterized by signficant oversupply, resulting in a low-price environ-

ment where carbon abatement incentives hardly existed. TP3 (2013 -

2020) experienced some reforms, including a revised auctioning scheme

for distributing EUAs, postponing some of the auction volume in or-

der to reduce oversupply (”backloading”), defining a ”linear reduction

factor” of supply (-1.74% per year) and the introduction of the MSR.

With increased signalling for a willingness to achieve price levels that

would incentify carbon abatement (initially through low hanging fruit

such as ”fuel switching” from coal to gas in electricity generation), prices

began to react more sensitively to (announced) policy innovations. No-

table landmarks are the EU’s ”green recovery” package [7] after the early

Covid crisis (which itself is visible with a price drop due to demand uncer-

tainties) and general discussions implying strong supply cuts with various

rule changes for the start and during TP4.

After years of limited relevance, the market probably priced increasingly

credible signalling from the EU to utilize the ETS as a core instrument

for achieving her climate targets.

Figure 2.1.: EUA price history. Left: Total data. Middle: Baseline data.
Right: Combined model data. (Own depiction, EEX data)
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In these higher price environments, traders and compliance firms were

forced to consider the EUAs as a serious commodity far more strongly

than before. Figure 2.2 depicts the EUA price together with examplatory

coal, gas and electricity rolling front year futures contracts as well as the

EuroStoxx 50 blue chip stock price index. Intuitively, it sketches how

EUA prices slowly claimed their place within financial market and energy

complex correlations.

Figure 2.2.: EUA price vs. fuels, electricity and stock index prices. (Own
depiction, EEX and Sharecast data)

Figure 2.3 illustrates the emerging impact of EUAs on compliance players

from the electricity sector. Relying on traded energy derivatives screen

prices, the so-called clean dark spread (CDS) and clean spark spread

(CSS) mimic the profit margin of a coal-fired or gas-fired power plant

respectively, based on profits from (forward) sold power minus short-run

marginal cost (fuel and emission certificates). In principle, a unit would

then only produce electricity when its spread is positive. The presented

curves are calculated using baseload contracts for electricity, meaning

that a full hour generation profile is sold - peakload contracts for hours of

peak demand only are usually priced higher. Gas plants (usually tied to

lower fixed cost and higher variable cost, often producing peakload) have

a typical fuel efficency of around 50%, whereas coal plants historically

sold baseload and tend to vary more in this aspect - therefore, I provide

three different levels of efficiencies (35%, 38%, 41%) to illustrate the

variations in modelled profitabilities. The figure provides a graphical

intuition of market evidence regarding EUAs’ developing impact: As

prices began to rise to new levels with increased policy commitment, this

had a direct impact on electricity generation as the main compliance

sector. EUAs periodically drove low-efficiency coal-firing power plants

6



out of the money and allowed efficient gas-firing (and less polluting) gas

plants to generate baseload electricity.

Figure 2.3.: EUA price vs. fuel spreads in EUR (gas: 50% eff., coal: 35, 38,
41% effs.) (Own depiction and calculations, EEX data)

2.3. Previous Research on EU ETS Price

Formation

Explaining EUA price drivers is not straightforward and has motivated

research from different perspectives over time. Initially, there has been

some controversy whether the system - mostly producing prices too low

to incentivize abatement - worked as intended in early phases or not.

In 2010, Hintermann studied price drivers in the pilot phase of the EU

ETS. Focusing on marginal abatement cost as an economical price expla-

nation, he finds that the necessary condition for achieving the ETS’ main

goal (carbon reduction at least cost) was only satisfied towards the end

of the first phase. Since banking was not allowed in the first phase, he

finds that in this environment, weather shocks had a significant impact

on EUA prices since the daily abatement decision was binding instead

of cumulative decisions under banking and borrowing, which is allowed

only since TP2 onwards [8]. Multiple researchers agree that low prices

were a result of general oversupply, since the overall cap in the late first,

second and earlier third phase was not binding [9] [10]. Following up on

the initally low price environment, some focused on discussing market

functioning [11]. Some emphasize policy recommendations, e.g. making

cases for price floors, even recently [12].

Given that the EU ETS is to a large extent still driven by demand from
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electricity generation, many studies focus on energy-related commodi-

ties as price drivers for EUAs. Reviewing the literature during mid -

TP3, Hintermann and Rickels (2016) find that among the studies fo-

cusing on energy system fundamentals in context of EUA pricing, some

results are often confirmed and others tend to vary across time horizons

and methodologies, which may partly be due to oversimplifications of the

energy landscape [9]. For example, the gas price is mostly found to have

a positive impact on allowance prices, while the impact of coal prices

is not clear. Aatola, Ollikainen and Toppinen (2013) run various regres-

sion models on stationary energy time series, including storage levels and

electricity prices and find a negative impact of coal in the years before

2010 [13]. Lutz, Pigorsch and Rotfuß (2013) apply a Markov regime

switching model with an extensive selection of energy related variables

and find a positive relationship during certain states of market volatil-

ity. Koch et al. (2014) with a GARCH model and Fell, Hintermann

and Vollebergh (2015) find no significant relationship between coal and

EUAs [14] [15]. Schumacher et al. (2012) investigate mainly TP2, focus

on short-term price drivers from the energy sector and economic activity

and apply multiple empirical specifications and find signifcant fuel elas-

ticities among mixed results. [16].

While there is no clear opinion on whether EUAs and fuels are cointe-

grated [17] [14] [18], there appears to be a robust cointegrated relationship

between EUAs and electricity prices (and also Nordic hydro reservoir lev-

els), which are tricky to model due to cross-border restrictions within the

European energy system [19] [15].

In a working paper, Bai and Okullo (2020) manually consider major his-

torical information events and find that electricity generators completely

passed through costs of EUAs, which they only partly reduced using cer-

tificate banking, while also finding evidence for the presence of a volatility

premium [20].

Bayer and Aklin (2020) contribute to the literature with a dimension

of future expectations: They employ a method to compute synthetic

controls based on GDP for estimating counterfactual emissions to show

that firms cut emissions already today, even though prices are low, as

long as there is credible signalling for stricter regimes in the future [21].

Quemin (2020) argues that rolling finite planning horizons of compliance

firms can explain past annual prices and that raising ambition through

an indirect supply cut (i.e. the MSR) has under bounded foresight not

the same effect as a direct cut [22]. Deeney et al. (2016) study the ef-
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fect of European Parliament decisions on daily EUA prices from 2010

to 2014, using GARCH style volatility clustering. They find that those

decisions reduced carbon prices and increased volatility during specific

circumstances, such as phases of low market attention, low (broad en-

ergy market and financial market) sentiment or being non-party-political

decisions [23].

Furthermore, Hintermann and Rickels (2016) state that additional to

the literature that focuses on fundamentals-based approaches, a rich lit-

erature emerged that applies methods from analyzing prices of financial

assets on EUAs, often focusing on empirical methodology and data ex-

ploration. While the results are often not easy to interpret conceptually,

this landscape of literature indicates that EUA markets seem to work

similar to other commodity markets, even though certificate scarcity is

policy-induced and artificial [9]. Alongside these recent developments

in the literature, Friedrich et al. (2020) review the literature and find

that EUAs tend to increasingly show characteristics of a ”financial as-

set”. They divide the existing literature into three subcategories (focus-

ing on ”demand-side fundamentals”, ”regulatory intervention” and ”fi-

nance”). Noting that the two latter challenge the widespread view that

EUA prices purely reflect marginal abatement cost, they call for research

that unifies the ”complex interplay” of ”compliance, regulatory uncer-

tainty and financial trading” [1]. By considering aggregate effects from

compliance demand and speculative expectations regarding longer-term

policy changes, I contribute an integrating approach in this direction.
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3. Theory

I model EUA prices and returns to be partly driven from short-term

energy system demand and industrial demand and partly driven from

(mutual) expectations of longer-term supply and demand factors.

Supply and demand determine the price discovery for certificates. While

supply is set by the policy maker, I assume demand to be created by two

types of investors, which are either compliance buyers or speculators.

These types define characteristic behavior and not necessarily individual

restrictions, thus market participants can be a mix of both types.

I assume a sum of profit-maximizing rational market participants in need

for certificates. They are an individually unknown combination of types

(long- and short-term horizons) regarding their assessment of future price

developments. Participants demand certificates either to fulfill their com-

pliance obligations or their speculative demand or both.

In the long run, the EUA price is a function of expected demand, given

that supply is exogenously set by the policy maker and inelastic towards

demand. Assuming that supply depends on rules, an expectation of possi-

ble changes is reflected in the long-term price expectation as well. Among

expected production of goods in the covered sectors, long-term demand

depends on the speed of decarbonization and/or carbon abatement ca-

pacities, thus influencing the long-term equilibrium price expectation.

Main channels of supply and demand for certificates can be thought of as

environments of certainty (historical and current state) and uncertainty

(future developments), see Table 3.1.

Descriptive variables Demand side Supply side

Complete sets of information: Unit margins, industrial activity Current ETS rules

Expectations under uncertainty: Renewables and abatement cost Policy innovations

Table 3.1.: Candidates for desciptive variables.

Expectations regarding near-term supply and demand shocks are re-
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flected in market prices of liquid maturities. Individual planning horizons

may be strongly limited for various reasons. Employing the two types

of behavior, I propose a combined model of short- and long-term price

expectations driving the price and thus, returns. Instead for deriving an-

alytical solutions, the model serves as a theoretical justification for the

devision in short- and long-term horizons and what to expect from it.

3.1. Market Participants

Demand for certificates is created by compliance and speculative types.

In combination, these types form price expectations both with long-term

and short-term time horizons, although reasons are different. Compli-

ance buyers primarily plan their demand based on short- to near-term

signals, which are fuel futures prices for electricity generators and ex-

pected economic activity for industrial producers. This behavior is due

to their hedging horizon (which is usually done for the front 1-5 years in

a decreasing manner), budget planning restrictions and anchoring effects

of currently valid policies (advanced analysis regarding potential policy

changes would be speculation).

Speculators primarily focus on long-term supply and demand balances

in order to buy or sell the scarce commodity against their equilibrium

price expectation for a given time horizon, which they achieve through

comprehensive research.

These types are a stylized separation and overlap in practice, which the

theoretical specification allows for: Compliance buyers try to optimize

their long-term costs through applying a long-term view, although the

horizon is restricted by research cost and balance-sheet restrictions, such

as budget planning horizons which are limiting the possibilities for cer-

tificate banking. Speculators focus on long-term fundamental research,

yet they know that short-term horizons exist among other participants.

Thus, short-term price movements based on short-term demand and fixed

supply are anticipated and considered as well. Therefore the boundaries

of short- and long-term horizons between the types blur: Actually, both

investor classes are a combination of both types. Intermediary institu-

tions, such as broker-dealers, advisors or other kinds of service providers,

bring the types further together by acting as market makers and knowl-

edge transmitters.
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Thus, the consequence is a contiuum of types. In combination, both time

horizons together drive the price in an unknown combination, but with

universally applicable dynamics which are able to theoretically explain

short- and long-term price drivers.

3.2. Long-Term Fundamentals

The total balance of certificates depends on cumulative supply and de-

mand over time.

Demand for certificates is determined by a subset of components. Mainly,

these include:

• the sectors covered, currently and in the future

• the physical demand per sector

• both speculative and hedging demand (financial demand)

Supply, on the other hand, is inelastic in the short run, since its amount

is fixed by the rules of the EU as the law-making institution and the

distribution of additional allowances (such as in auctions) is independent

of market dynamics. However, as fundamental rules can change (and

have changed over time), future supply of certificates is not certain in

the long run and expecations of variation in future supply are possibly

reflected in market prices.

Information regarding these future developments are public knowledge,

although subjective expectations may differ due to individual interpreta-

tions and opinions. For emission markets to achieve emission reductions

at least cost, allowance prices must equal marginal abatement cost [8].

Given unlimited planning horizons with certificate banking and borrow-

ing, market participants should plan their demand based on long-term

expectations, corrected by their cost of capital. When more strict poli-

cies are expected, firms should bank allowances, while they should borrow

when they expect the opposite [24]. Since the long-run equilibrium price

is capped by marginal abatement cost, the long-run equilibrium price de-

pends on marginal abatement cost as well as expected supply and demand

risk, depending on publicly available information sets. In such a situation
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where all participants behave that way and there is no uncertainty (or

all uncertainty is judged identically), prices would instantaneously jump

to their new equilibrium level as new information becomes available.

The amount of available certificates (i.e. the supply and demand bal-

ance) at a long-term future T expected at today’s time t results from

the accumulated supply (sup) and accumulated demand (dem) at time

T :

SDT =
T∑
t=0

supt −
T∑
t=0

demt (3.1)

More generally, at any time t before T, the balance SD is generated as:

SDt =
t∑

t=0

supt −
t∑

t=0

demt (3.2)

The price of an allowance at time t functionally depends on the balance

at time t and a function of the expected future balance, discounted by a

discount rate d :

pt
EUA = f

(
SDt, SDT

-d
)

(3.3)

Since long-term supply depends on policy rules and long-term demand

depends on long-term carbon intensity, long-term marginal abatement

cost, long-term supply rules and covered sectors, the relationship can be

written as:

pt
EUA = f

(
SDt, (ruleT ,MACT , CIFT )-d

)
(3.4)

In equation 3.4, MACT denotes the marginal abatement cost in the long

run (at time T ) and CIFT denotes the carbon intensity factor of both

electricity generation and industrial production at time T, which depend

on renewable capacities and industry efficiency. ruleT stands for the sup-

ply rules and covered sectors at time T. d is the discount rate, reflecting

both cost of capital and the risk that SDT changes.

Applying the discount rate on long-term balance expectations and as-

suming a no-arbitrage condition for the functional link between present

prices and discounted future prices, 3.4 can be expressed as:

pt
EUA = (Et(PT

EUA))-d (3.5)
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The long-term upper cap in the form of marginal abatement cost (MACT)

is not ambiguous, but the state of research on the topic at time t is public

information at time t, so the expected price floats between zero and long-

term marginal abatement cost.

pt
EUA ∈ [0,MACT ] (3.6)

Note that long-term T is not uniquely defined, but marks the (rolling)

end of a given long-term planning horizon.

The allowance price is updated over time within the range in 3.6 over

time as ruleT, MACT or CIFT from 3.4 change. Log returns rt
EUA are

defined by this updating dynamic. The discount rate d in equation 3.7

manifests for every t depending on given uncertainty expectations and

cost of capital. Note that I abbreviate the natural logarithm (ln) as log

throughout this paper for simplicity and readability.

rt
EUA =

log(pt
EUA)− log(pt-1

EUA) =

log[(Et(pT
EUA))-d)]− log[(Et-1(pT

EUA))-d)]

(3.7)

This simple model offers multiple benefits. First, it serves as a straight-

forward link for explaining how future expectations should affect today’s

prices under rational behavior. Second, it allows expectations to con-

tain speculative elements under uncertainty. Third, by relying on supply

and demand fundamentals, it allows for changes in rules, such as cov-

ered sectors or changing proportions of rational expectations and pure

speculation.

3.3. Short-Term Fundamentals

From a short-term perspective, supply is exogenously set by the policy

maker. Short-term demand depends on compliance demand, determined

by fuel prices and expected economic activity and upon speculative de-

mand, which is a function of compliance demand as a result of specula-

tors’ expectations of the compliance type’s behavior.

As research from other financial markets puts it, ”[m]yopic investors fo-
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cus on short-run price changes rather than long-term fundamental value,

resulting in an overweighting of public information and a slow diffusion of

fundamental news” [25]. I apply this concept to explain short-term price

dynamics for both compliance and speculative types of EUA investors.

By proposing short-term compliance demand as an informational anchor,

positive speculative feedback loops reinforce the short-term dynamic in

the fashion of a iterative mutual expectations, creating a component of

temporary momentum as is regularly observed and discussed for assets in

general [26]. Inspired by evidence of market price phenomena, resulting

from limited time horizons of market participants (”myopia”) on other

markets such as equity markets, explained e.g. by principal-agent rela-

tionships [25], I derive a short-term model. Instead of principal-agent

relationships, my model builds on short-term physical demand combined

with speculative anticipation due to EUAs’ nature as a commodity.

3.3.1. Limited Time Horizons: Myopic Compliance

Demand

Given the fact that EUAs are a scarce commodity with returns driven by

(expected) supply and demand, also for the short run, I start by focusing

on short-term demand rather than prices directly.

The demand for certificates from the electricity sector is implicitly

given by the expected generation of fossil fuel technologies, implied through

their expected profit margins. These short-term margins frequently mod-

elled in the energy trading industry imitate a typical unit’s profit by

replicating revenue from the sale of power (for all hours, i.e. ”baseload”)

minus the cost from input fuels. They are called the Clean Spark Spread

(CSS) for gas-fired plants and the Clean Dark Spread (CDS) for coal-

firing plants. Units will typically run when their margin is positive,

covering their short-run marginal cost. Therefore, the spreads are well

suitable for modelling expected bidding behavior based on market prices

and the associated expected fundamental demand for certificates.

CDS = ppower − Ccoal (3.8)

CSS = ppower − Cgas (3.9)
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ppower is the price of one unit of baseload electricity, which, assuming

that bidding plants are price takers, is set by the market, and C coal

and C gas are the short-term cost of coal and gas units, which depend

on individual unit characteristics. How many emissions certificates are

needed for producing one unit of power depends on fuel-specific energy

conversion factors (converting units), fuel efficiency factors (how much

power can be generated with one unit of fuel) and carbon intensity factors

(how much emissions are released from using one unit of the fuel). A

usual specification of the concept therefore is [27]:

CDS = ppower −
(

pcoal

ECF coal ∗ FEF coal

+ (pemissions ∗ CIF coal)

)
(3.10)

with ppower being one unit of the baseload electricity contract (for the

location and time horizon of interest), pcoal being the relevant coal con-

tract price (converted to local currency) and pemissions the relevant con-

tract price for emissions. ECF coal is the energy conversion factor for

coal, FEF coal the (average) fuel efficiency factor for coal and CIF coal the

carbon intensity factor for coal. The CSS for gas units is calculated

equivalently:

CSS = ppower −
(

pgas

ECF gas ∗ FEF gas

+ (pemissions ∗ CIF gas)

)
(3.11)

with corresponding factors and prices for gas, as described for 3.10. Gen-

eration units are incentivized to generate electricity when their margins

are positive. They demand EUAs as an input factor based on fuel effi-

ciency and carbon intensity. Typically, CIFgas < CIFcoal and FEFgas >

FEFcoal, meaning that gas generation units demand less EUAs for one

unit of electricity due to the fuel’s nature. The demand for EUAs from

fossil generation therefore depends on these two measures.

Selecting contract maturities m of the input fuel then allows for comput-

ing a specific time horizon for the CDS and CSS, respectively.

DemandElec
t = f(CDSm

t, CSS
m

t) (3.12)

Electricity price impacts from weather variation should not be relevant

in the long run, as neither power prices nor fuel demand are able to price

in a weather period that far away in the future. Instead, market partici-

pants apply a recurring normal weather pattern for judgement - perhaps

16



with a slightly increasing temperature trend - which is beyond the scope

of this study and its needs for detail.

When considering log returns instead of levels for power, coal and gas,

this affects the fuel spreads as follows when applying the natural log-

arithm and transforming (refer to Appendix A.1 for a comprehensive

calculation):

log CDS = log ppower + log

[
1 +
− pcoal

ECF coal∗FEF coal

ppower

]

+ log

[
1 +

−pemissions ∗ CIF coal

ppower + (ECF coal ∗ FEF coal)

] (3.13)

log CSS = log ppower + log

[
1 +
− pgas

ECFgas∗FEFgas

ppower

]

+ log

[
1 +

−pemissions ∗ CIF gas

ppower + (ECF gas ∗ FEF gas)

] (3.14)

which serves as an illustration how log returns of fuels influence log

changes of short-run profit margins.

Demand also comes from energy-intensive industries. Assuming that

their activity correlates with overall economic activity, the expected in-

dustrial demand for certificates may be approximated as a function of a

broad stock price index, reflecting expected future discounted cash flows

of the industry, under the assumption that demand correlates with these

industry cash flows.

E(DemandInd
t) = g(pstocks

t)

E(∆DemandInd
t) = g(log pstocks

t)
(3.15)

It is important to note that the model does not consider price endo-

geneity, i.e. it considers the effect of fuel prices on EUA prices, but not

a hypothetical vice versa effect. For stock markets, the effect is with

very high probability negligible due to the large difference in trading

volumes.
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3.3.2. Information Processing: Iterated

Expectations

As described in section 3.1, speculative types also have a short-term

planning component. It mainly consists of anticipating the other type’s

myopia and exploiting short-term movements in prices, explained by the

myopic type’s informational inputs (CDS, CSS, stocks).

Allen, Morris and Shin (2006) find for financial markets that asset prices

today depend on the average expectation of tomorrow’s price, given that

traders are risk averse and short lived and prices are noisy [26]. The

associated behavior, where traders form their price expectations based

on their expectation of what the others expect (and so on), is described

as a ”beauty contest” by Keynes (1936) [28].

I use the concepts of iterated mutual expectations as a theoretical ex-

planation how speculators confirm and amplify the short-term price dy-

namics created by myopic compliance types.

Remembering from equations 3.13 and 3.14 that fuel prices feed into

CDSm
t and CSSm

t with negative sign, it must be that:

E

[
∂ DemandElec

t

∂ log coalt
| CDSm

t > 0

]
< 0

E

[
∂ DemandElec

t

∂ log gast

| CSSm
t > 0

]
< 0

(3.16)

where expectations regarding the effect of changes in fuel prices are con-

ditioned on the fuel spread’s current relevance for market demand (i.e.

actively creating demand under positive short-run margins).

When comparing both expectations in 3.16, it is important to note that

the expected difference in effects on returns should depend (among fuel

efficiency factors and energy conversion factors) on carbon intensity fac-

tors of coal and gas, which differ in magnitude. The exact sensitivity

of expectations would then depend on how positive CDSm
t and CSSm

t

exactly are.

Applying iterated expectations, this generalizes among market partici-

pants (and especially speculators) to expectations of expectations, that
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are expected, and so on. This generates momentum and lets the short-

run effect persist aside from long-term price drivers.

By definition, a similar statement is appropriate for changes in expected

industry demand, proxied by stock returns, although it does not need to

be conditioned, since expected industry demand contributes to expected

short-term demand continuously. In this case, the expected effect on

demand is positive, since rising stock prices serve as proxy for higher ex-

pected industrial activity (unlike fuels, which make electricity generation

less profitable).

E

[
∂ DemandInd

t

∂ log pstocks
t

]
> 0 (3.17)

Also here, expectations of expectations stabilize the instant effect, al-

though since stock price themselves are discounted long-term expecta-

tions, the categorization of being a short-term effect is not as clear. Ad-

ditionally, note that pstocks
t serves two functions. First, it is a proxy

for expected industry demand for certificates. Second, it may serve as a

”risk-on” proxy for periods of speculative money inflows in EUA markets

alongside broader asset price appreciation, which is an effect of positive

impact on returns as well.

Remembering demand equations 3.16 and 3.17, expected EUA returns

follow expected changes in demand:

log pt
EUA = f(log CDSm

t, log CSS
m

t, log p
stocks

t) (3.18)

with short-term drivers influencing EUA returns in the following direc-

tions:

∂f

∂ log CDSm
t

< 0

∂f

∂ log CSSm
t

< 0

∂f

∂ log pstocks
t

> 0

(3.19)
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3.4. The Integrated Model: Price

Formation

Using equations 3.7 and 3.18, returns of EUA futures can be written as

a function of the expected discounted future supply and demand balance

along with the short-term effect, where rt
EUA is the return component re-

sulting from changes in long-term expectations derived in equation 3.7:

log pt
EUA = f(rt

EUA, log CDSm
t, log CSS

m
t, log p

stocks
t) (3.20)

While the term structure of EUA futures was found to have quite vary-

ing characteristics in earlier stages [29], more recent market data indicate

that with a more developed EUA futures market, futures prices reflect

expected spot prices plus a convenience yield with a small contango (re-

flecting interest or the opportunity cost of capital) quite as expected.
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4. Analysis

As derived in the previous chapter, long- and short-term dynamics in

combination drive the traded EUA price and daily returns. In order

to test the theoretical predictions, I set up an empirical analysis utiliz-

ing recent market data. I start with estimating effects from short-term

certificate demand from the energy sector and manufacturing industries

with an ordinary least squares (OLS) linear regression. From there, I

gradually start refining the setup. To account for new information sets

regarding long-term supply and demand entering the market and influ-

encing price expectations, I derive sentiment indices from energy news

headlines and include them into the model. Due to data availability,

this narrows the analyzed time frame from >10 years of available market

data down to >3 years, albeit with a relatively high resolution of news

headline data for this subperiod, which is also characterized by strong

price reactions to increasing political commitment.

Near Term Long Term

Supply current rule set (common knowledge) supply rule changes

Demand fuels forward curves, stock returns expected speed of decarbonization

Table 4.1.: Sources of EUA return dynamics. Near term demand is estimated
using a fuels & stocks regression; long term supply and demand
expectations are approximated using sentiment indices.

The direction of the long-term influencing factors are expected to behave

as follows.

Increased renewable generation depresses - ceteris paribus - electricity

returns by increasing (sometimes only partly elastic, since stochastic)

supply. By suppressing fossil margins, this extra supply then should

depress demand for certificates as well. Therefore, the sign of these long-

term effects of renewable capacity increases is expected to be negative

on EUA returns today.
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An expected negative supply shock in form of a rule change reducing to-

tal supply should, on the other hand - ceteris paribus - positively impact

EUA returns by reducing supply, which is priced in today (with vary-

ing degrees of uncertainty). This cost would then be passed through to

electricity returns, too, as long as fossil technologies are, at least period-

ically, price setting. Due to endogeneity concerns, returns of electricity

products are not analyzed in the model, but are implicitly considered

through state-identifying fuel spread dummy variables. For independent

estimates, I analyze fuel coefficients instead of the spreads directly (which

depend directly on the EUA price level). To mitigate collinearity issues,

I do not include temperatures (heating and cooling degree days) and sea-

sonal dummies in this analysis, since both effects should indirectly feed

into the model through fuels returns.

Expected coefficients of the fuels returns are positive for gas and negative

for coal: As a previous study puts it, ”[a]n increase in the price of gas

(coal) leads to a higher (lower) switching price and hence to an increase

(decrease) in coal use and a higher (lower) demand for EUAs” [16].

In contrast, when analyzing fuel returns individually in states of high fuel

significance (in interaction with both fuel spread dummies), the direction

of the fuels’ coefficients is expected to be both negative. Higher fuel re-

turns make units gradually unprofitable, depending on their location in

the efficiency distribution of the power plant park - the more units are

cancelled out of production, the less certificate demand there should be.

Changes in long-term effects are expected to be positive on EUA re-

turns with expected policy-induced certificate supply tightening and neg-

ative on EUA returns with negative changes in expected carbon intensity

through expected renewable capacity increases (see Figure 4.1).

Figure 4.1.: Expected signs of long-term proxies.
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4.1. Empirical Methodology

A crucial decision is whether prices or returns should be considered in

the analysis. Remembering theoretical foundations of the model, the re-

lationships between movements of the EUA price and short-term reflect

changes in input fuel prices, changes in economic activity and changes

in long-term fundamental expectations in the form of news. These types

of relationships call for a relative model in principle, favoring (log) re-

turns over prices as model variables. Such a model would practically be

able to model the relative effect of new information entering the market,

either via changes in prices or new information. A main benefit of this

approach is that a direct interpretability of the index is preserved and a

clear foundation for further specifications is provided, while generally the

coefficients may be intuitively interpreted as return elasticities. A key

difficulty is identifiying when which relative impact is relevant for EUA

returns and to account for that, which I do by definining fuel spread

dummy variables and let the fuel returns interact with them. Another

challenge is to grasp an objective interpretation of new information re-

garding long-term developments, which I estimate using news-based sen-

timent indices.

Remembering that coal and gas substitute each other in fossil-based elec-

tricity generation depending on market prices, a statistical link to rele-

vant price levels is still needed. In failing to do so, one would indirectly

assume that fuel returns are always relevant for EUA returns to the same

extent, which is far from being realistic. To solve this issue, while preserv-

ing the intuitive and technical benefits of a log return model, I integrate

fuel spread dummies into the model in order to identify relevant states

of fuel usage, as the theory would expect.

Additional to economic reasoning, I applied statistical tests to diagnose

the properties of the empirical model from a technical perspective as well.

When using log returns, the Durbin-Watson test finds no substantial

first-order autocorrelation. Additionally, checking for heteroskedasticity

in the comprehensive model residuals using an augmented Dickey-Fuller

test revealed that the null hypothesis of residual heteroskedasticity can

be rejected on a 1 % significance level. Therefore it can be assumed that

the log return series are stationary, which is important for robust results

(since it can be ruled out that the residuals depend on each other, which

would mean that there is an important aspect which the model is missing
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- resulting in an overestimated goodness-of-fit and biased test statistics).

The same hypothesis cannot be rejected for the given price series. Thus,

also statistical properties call for analysing returns instead of prices. Re-

fer to Appendix A.2 for detailed test statistics.

Short term demand originating from the electricity sector is modelled

using generation input fuel price curves and taking log returns. The part

of short-term demand that is created from the energy-intensive industry

sectors covered by the ETS, whose expected activity is aproximated by

the broadly traded European stock index EuroStoxx 50. Future expecta-

tions are, to some degree, reflected in the price data: Stock prices reflect

discounted future cash flows of the companies given current information,

which are affected by their operative activity and thus, correlate with

expected certificate demand. Stock returns then reflect, among other

factors, changes in this expectation. The stock index data is obtained

from Sharecast [30]. Fuel and EUA price series are obtained from EEX

[31].

Fuel returns, as constructed in this study, contain information regarding

the present and nearer future, which is achieved by calculating weighted

averages of futures prices, with decreasing weights for the respective three

front contracts. I chose yearly futures contracts, since they tend to be rel-

atively liquid, roughly match the maturity of the reference EUA futures

and reflect a nuanced compromise of current and near-future information

(see Table 4.2).

Maturity Year +1 Year +2 Year +3

Assigned weight 60% 30% 10%

Table 4.2.: Modelling a weighted price using a weighted futures curve.
Subsequently, log returns are taken from calculated prices.

This is also reflecting common practice since many generators are ”hedged

along the curve”, meaning that a decreasing amount of planned gener-

ation is sold on the forward and future markets in order to lock in profits.

Short-term supply is fixed by EU rules. Both the mode of allocation and

amount of supply over time is common knowledge.

Long-term demand depends on covered sectors and realized emissions.
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Covered sectors are assumed to remain a part of the supply rule set until

public information changes. Realized emissions depend on the degree

of decarbonization (i.e. renewable development) in both the electricity

sector and the industry as well as expected long-term economic growth,

as derived in the theoretical section.

Long-term supply depends on changes in the ETS rule set, which is pe-

riodically reviewed, discussed and updated. Market evidence has proven

that, being a ”political commodity”, news regarding rule changes have

induced movements in prices and trends.

There is existing research constructing sentiment indices based on mar-

ket characteristics, such as various volatility measures, open interest,

and others (including keyword presence in media) [23]. In the interest of

isolating the long-term sentiment against shorter-term market character-

istics, which probably correlate strongly with the short-run elements of

the analysis, I focus purely on energy news media headlines and try to

extract a meaningful sentiment score from the language contents.

To account for such new information (with various degrees of certainty)

regarding these long-term drivers entering the public information set,

I employ publicly visible headlines of Montel News, a key information

provider for European energy markets [32] [33] and derive sentiment

scores using the pre-trained Vader lexicon [34] using the NLTK pack-

age for Python [35].

The CDS and CSS, where emprically needed, are parametrized with as-

sumptions that are common in the industry [27], see Appendix A.3 for

details. I assume the CSS to run on 50% fuel efficiency and the CDS on

35% (low), 38% (mid) and 41% (high) efficiency, reflecting the hetero-

geneity of Europe’s coal plant landscape.

4.1.1. Baseline Regressions: Short-Term Demand

Fundamentals

The observed time span in the baseline regression reaches from 04.01.2010

to 07.05.2021, making maximum use of the available data at the time of

analysis. The baseline is afterwards restricted to the subperiod of subse-

quent refinement.
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The baseline regression model (short-term demand drivers) takes the

following form:

log EUA = α + β1(log coal) + β2(log gas) + β3(log stoxx) + ε (4.1)

where the daily log return of EUA futures is explained by daily log re-

turns of yearly coal futures (API2), natural gas futures (NCG) and the

EuroStoxx 50 index. API2 is the leading European coal price index for

power plant coal with a certain quality (based on the Argus/McCloskey

Coal Price Index Report, pricing coal delivered into the Amsterdam, Rot-

terdam, Antwerp Region) [36]. NCG futures ”are for physical delivery

through the transfer of rights in respect of Natural Gas at the NetCon-

nect Germany (NCG) Virtual Trading Point” [37] and represent the ex-

change reference futures price for the German price area, which I use to

approximate European prices as a historically fossil-heavy location.

4.1.2. Long-Term Fundamentals: Processing of

News Inflow

News headline data was selected using category tags provided by the

source [32]: The tags ’carbon’ and ’carbon policy’ were used as an input

filter for constructing the carbon sentiment index (CSI), which serves

as a proxy for information regarding policy developments. Accordingly,

the tags ’renewables’ and ’renewable policy’ were used to construct the

renewables sentiment index (RSI), which proxies changes in expectations

in long-term renewable capacities (affecting expected carbon intensities).

It is important to note that these indices are time horizon naive, but

include a long-term horizon by definition. Random qualitative checks

ensured that long-term information is strongly represented in the sample

and that the applied lexicon generally interprets sentiment in the ex-

pected direction. To ensure objectivity, no further manual adjustments

were applied to the sample or to the sentiment methodology. Manually

adding industry-specific vocabulary to the lexicon was tested, but did

not substantially better the model precision, so the original lexicon was

26



used in the interest of maximum objectivity. The pre-trained VADER

lexicon together with the NLTK methodology assesses language elements

that are detected to inhibit positive, negative or neutral sentiment and

assigns scores. The result is aggregated and normalized as a compound

score with a possible minimum of -1 (most negative) and a maximum

of 1 (most positive) [34]. I subsequently take daily averages as an input

for regression. Being a subjective score, it is not directly interpretable,

unlike prices or returns. It serves as a relative continuous measure to

proxy a typical interpretation of changes in public information.

The fuel spread dummies (CDS low, CDS mid, CSS low, CSS mid) code days

when medium and low efficiency units (running on each fuel) are in the

money, i.e. generating positive short-run profits. The ”low” subscript

implies that even low-efficiency units are profitable, implying that the

respective fuel spread is strongly positive. This means that in those

cases, most units of the technology are running and the demand for the

respective input fuel and efficiencies is high, which again implies a high

temporary relevance of the fuel for certificate demand. Taking a value

of zero or one, these dummies indicate whether most (”low” efficiency

spread) or some (”mid” efficiency spread) units procuring the respective

fuel are in active demand for certificates.

By letting these dummies interact with the short-term generation fuels, a

specific statement can be made regarding their influence in states when

their respective fuel returns should be relevant for certificate demand.

Put differently, the associated hypothesis is that their coefficients should

be insignificant in other states.

The combined regression model (short-term baseline together with the

sentiment indices and the fuel spread dummies and interaction terms)

takes the following form:

log EUA = α + β1(log coal) + β2(log gas) + β3(log stoxx)

+ β4(CSI) + β5(RSI)

+ β6(CDSlow) + β7(CDSmid) + β8(CSSlow) + β9(CSSmid)

+ β10(CDSlow ∗ log coal) + β11(CDSmid ∗ log coal)

+ β12(CSSlow ∗ log gas) + β13(CSSmid ∗ log gas) + ε

(4.2)
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where CSI and RSI are the sentiment index values for carbon and renew-

ables (on a daily scale from -1 to 1), the CDS and CSS variables are fuel

spread dummy variables for identifying time spans when fuel prices are

relevant and the other variables are daily log returns of fuels.

4.1.3. Data Sample

I use daily price data from the European Energy Exchange [31] for EUA,

coal (API2 price marker) and natural gas (NCG price zone) to derive

returns and for calculating baseload CDS and CSS. Price data available

for this study (05.01.2010 - 07.05.2021) was cleaned to match EUA price

data: In cases when there was no price of a fuel on an EUA trading day,

the previous closing price was considered. In cases of a fuel price signal

on a EUA non-trading day, the interim price change was ignored.

Stock index data (EuroStoxx 50) is taken from the publicly accessible

website ShareCast [30]. The time horizon and frequency of the sample

matches the fuels and EUA data.

Daily news headline data used to construct sentiment indices was ob-

tained from the public news section of Montel News’ website [32] and

filtered applying relevant category tags for the long-term developments

of interest (carbon and renewables). Due to technical limitations and lim-

its to public availability, this data set is significantly shorter (18.03.2018

- 07.05.2021). The number of headlines after filtering is n = 2991. To

account for these differences in available data and to maximize perspec-

tive within the context of TP3, I compute a baseline (short-term only)

regression for both the whole horizon and the headline data restricted

horizon before computing the combined short- and long-term model for

the restricted period only. I rely on this twofold baseline analysis mainly

in order to gain a better understanding of the result, especially since the

restricted subperiod partly coincides with a bullish market environment

on the back of regular inflow of policy innovation. In order to assess the

model’s explanatory power, this indirect comparison of the baseline anal-

ysis is essential. Furthermore, it may serve to deliver interesting insights

how effects may or may not have changed over the years.
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4.2. Results

I compare the empirical results from the (short-term only) baseline model

with the combined model by discussing regression outputs for the differ-

ent data lengths.

4.2.1. Baseline Regression: Short-Term Effects

log EUA
coef. (p-val.) std. err. CI [0.025 0.975]

daily weekly daily weekly daily weekly daily weekly

Intercept
0.0004

(0.414)

0.0004

(0.417)
0.001 0.001 -0.001 -0.001 0.002 0.002

log coal
-0.0065

(0.885)

-0.0411

(0.68)
0.045 0.1 -0.094 -0.237 0.081 0.155

log gas
0.8084***

(<0.001)

0.5326***

(<0.001)
0.05 0.097 0.711 0.343 0.906 0.722

log stoxx
0.2959***

(<0.001)

0.3699***

(<0.001)
0.042 0.093 0.213 0.187 0.378 0.552

Daily / weekly:

Model: OLS / OLS - Observations: 2879 / 592 - adj. R2: 0.12 / 0.09 - Durbin-Watson: 1.95 / 1.96

*** significant at 0.1%, ** significant at 1%, * significant at 5%

green font: sign as expected. yellow font: sign weakly as expected. red font: sign unlike expected

Table 4.3.: Baseline results: Short-term effects.
Daily and weekly data (05.01.2010 - 07.05.2021)

Table 4.3 depicts baseline regression results for short-term effects as a ref-

erence. Considering the data quality of coal prices (which are regularly

moving slower than other commodities in the energy complex), the base-

line regression for short-term demand was run both on daily resolution

and weekly averages. While the weekly analysis confirmed the direction

of coefficients, magnitudes came closer together and the coal coefficient

remained insignificant, there was no increase in robustness from resorting

to weekly data instead of daily data to be found.

Running the baseline regression for the subperiod (i.e. the period where

sentiment data for the main model was available) mainly confirmed the

result of the large time sample.

All short-term demand coefficients show the expected signs for returns:

Coal is insignificant, but a positive gas coefficients hints the trade-off
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between the two polluting generators, with gas in the less-certificate-

demanding role, although no relevant fuel-switching levels are considered

yet. The gas coefficient is much larger on a daily basis, implying intra-

week gas volatility may play a role for certificate returns. Stock returns

drive EUA returns through updated expectations of industrial demand.

log EUA
coef. (p-val.) std. err. CI [0.025 0.975]

daily weekly daily weekly daily weekly daily weekly

Intercept
0.0016

(0.077)

0.0017

(0.073)
0.001 0.001 0 0 0.003 0.004

log coal
-0.0809

(0.236)

-0.0647

(0.716)
0.068 0.177 -0.215 -0.415 0.053 0.285

log gas
0.9059***

(<0.001)

0.4385***

(0.001)
0.067 0.131 0.775 0.181 1.037 0.696

log stoxx
0.4547***

(0.001)

0.4557**

(0.003)
0.07 0.149 0.317 0.162 0.592 0.749

Daily / weekly:

Model: OLS / OLS - Observations: 801 / 165 - adj. R2: 0.28 / 0.15 - Durbin-Watson: 1.95 / 2.22

*** significant at 0.1%, ** significant at 1%, * significant at 5%

green font: sign as expected. yellow font: sign weakly as expected. red font: sign unlike expected

Table 4.4.: Baseline results: Short-term effects. Subperiod.
Daily and weekly data (18.03.2018 - 07.05.2021)

Table 4.4 presents the same baseline results, but for the reduced time

horizon resulting from the data restriction imposed by the long-term

sentiment indices in the comprehensive model. The baseline result for the

subperiod may serve to provide vague confidence that there are no large

structural issues for the validity of the integrated approach in general

outside of the specific subperiod.

4.2.2. Combined Model: Including Long-Term

Expectations

Table 4.5 depicts the comprehensive regression result. Dummy variables

are marked with a light grey background while interaction terms are

marked with a darker grey. Time resolution is kept daily, matching the

resolution of the sentiment indices, the limited time span of the subset
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log EUA
coef. (p-val.) std. err. CI [0.025 0.975]

(1)
sent. sub

(2)
sub

(3)
long

(1)
sent. sub

(2)
sub

(3)
long

(1)
sent. sub

(2)
sub

(3)
long

(1)
sent. sub

(2)
sub

(3)
long

Intercept
0.0007
(0.404)

0.0005
(0.518)

0.0002
(0.912)

0.001 0.001 0.002 -0.001 -0.001 -0.004 0.002 0.002 0.004

log coal
-0.0398
(0.249)

-0.0345
(0.318)

0.1018
(0.441)

0.034 0.035 0.132 -0.107 -0.102 -0.157 0.028 0.033 0.361

log gas
0.9606***
(<0.001)

0.9712***
(<0.001)

0.8397***
(<0.001)

0.11 0.11 0.063 0.746 0.755 0.715 1.176 1.187 0.964

log
stoxx

0.4327***
(<0.001)

0.4423***
(<0.001)

0.2919***
(<0.001)

0.071 0.071 0.042 0.293 0.302 0.209 0.572 0.582 0.375

CSI
0.0127**

(0.003)
0.004 0.004 0.021

RSI
0.0033
(0.574)

0.006 -0.008 0.015

CDSlow
-0.0186
(0.064)

-0.0203*
(0.043)

-0.0016
(0.305)

0.01 0.01 0.002 -0.038 -0.04 -0.005 0.001 -0.001 0.001

CDSmid
0.0007
(0.404)

0.0005
(0.518)

0.0017
(0.231)

0.001 0.001 0.001 -0.001 -0.001 -0.001 0.002 0.002 0.004

CSSlow
-0.0033
(0.448)

-0.0019
(0.657)

0.0017
(0.54)

0.004 0.002 0.002 -0.012 -0.003 -0.003 0.005 0.005 0.003

CSSmid
0.0008
(0.673)

0.0009
(0.628)

0.000
(0.979)

0.002 0.002 0.002 -0.003 -0.003 -0.003 0.005 0.005 0.003

CDSlow :
log coal

-0.9325*
(0.04)

-0.9588*
(0.035)

-0.0558
(0.58)

0.453 0.455 0.101 -1.822 -1.852 -0.253 -0.043 -0.065 0.142

CDSmid :
log coal

-0.0398
(0.249)

-0.0345
(0.318)

-0.1082
(0.345)

0.034 0.035 0.115 -0.107 -0.102 -0.333 0.028 0.033 0.116

CSSlow :
log gas

-0.4794*
(0.038)

-0.4573*
(0.049)

-0.4*
(0.019)

0.231 0.232 0.171 -0.933 -0.912 -0.735 -0.026 -0.002 -0.065

CSSmid :
log gas

-0.058
(0.669)

-0.0357
(0.793)

-0.0264
(0.798)

0.136 0.136 0.103 -0.324 -0.303 -0.176 0.208 0.232 0.229

(1) Model: OLS. Observations: 801. adj. R2 0.29. Durbin-Watson: 1.97
(2) Model: OLS. Observations: 801. adj. R2 0.279. Durbin-Watson: 1.962
(3) Model: OLS. Observations: 2879. adj. R2 0.125. Durbin-Watson: 1.955

*** significant at 0.1%, ** significant at 1%, * significant at 5%

Table 4.5.: Combined results:
(1) Incl. sentiment, daily data, subperiod (18.03.2018 -
07.05.2021)
(2) No sentiment, daily data, subperiod (18.03.2018 - 07.05.2021)
(3) No sentiment, daily data, entire period (05.01.2010 -
07.05.2021)

and the fact that a weekly resolution could not make the coal estimate

more robust in the baseline regression. Estimated coefficients of gas and

stocks over all days of the subperiod are roughly similar to baseline re-

sults, but additional interesting relationships appear.

Comparing the comprehensive analysis of the subperiod including senti-

ment indices (1) with the superiod analysis without sentiment (2) and

the entire period analysis without sentiment (3), three main statements

are to be made.

First, the interaction with the fuel spread dummies works well for the

subperiod with and without sentiment indices, whereas for the entire pe-

riod, the approach delivers significant results only for gas. I interpret this

as an indication that during the relatively low-certificate-price environ-

ment, before fuel switching became relevant and recognized, the majority
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of traders did not consider fuel prices as a major driver for EUA prices

at all, hence the weak relationship.

Second, while always significant, the stock index coefficient is much larger

for the subperiod than for the entire timeframe. I interpret it as a confir-

mation of EUAs’ increasing appeareance on the radar of financial market

participants, attracting speculative money and participating increasingly

in cross-asset ”risk on / risk off” cycles.

Third, the slight contribution of the CSI narrows (increases) the distance

of coal (and gas) coefficients in interaction with fuel spread dummies

roughly in proportion to the respective fuel’s carbon intensity factor.

This is intuitively logical: an expectation of certificate supply tightening

(triggering a price increase, ceteris paribus) controls for some of the ex-

pectation that is priced into coal, while gas suffers a bit in this aspect,

being somewhat less ”meaningful” to carbon policy observators.

The combined result (1) itself offers multiple relevant insights on its own.

First, the coefficient of daily coal returns is still not significant with this

advanced model specification. Unlike coal, the gas coefficient is highly

significant with a positive sign across the subperiod horizon. It is rela-

tively large and positive, implying that a majority of gas returns is fed

through to the emissions return, when controlling for other variables (in-

cluding the direct trade-off versus more emission-intensive coal).

Similarly, but with a relative effect that is almost half in magnitude,

stock returns positively explain the emissions return which is in line with

the theoretical requirement for them to serve as a proxy for expected

industry demand through amounts of production.

When investigating the fuel variables in interaction with the fuel spread

dummies, the picture changes. Remember that the dummy variables code

days when medium and low efficiency units generate positive short-run

profits. The ”low” subscript implies that even low-efficiency units are

profitable, implying that the respective fuel spread is strongly positive,

meaning that most units of the technology are running and the demand

for input fuel and efficiencies is high, which implies a high temporary

relevance of the fuel for certificate demand. Indeed, in interaction with

these states of high market share of the respective fuel, the impact of

their returns on the EUA return is strong and significant, with two im-
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portant details.

First, from this more isolated point of view, the coefficient of gas re-

turns becomes negative. This makes sense since when considered alone,

a higher gas return should lower certificate demand since units become

gradually unprofitable - unlike when analyzed in a trade-off setting with

coal (which is even more hurt in a similar situation due to higher carbon

intensity and then increases the relative demand for gas). Second, the

relative impact of gas returns versus coal returns on EUA returns is lower

proportional to the lower emission intensity of the fuel. This confirms

and specifies the theory, as stated in equations 3.12 and 3.16.

Accordingly, the null hypothesis that fuel returns are not relevant for

EUA returns outside a relevant fuel-switching range can be confirmed:

At times when only a share of the respective fleet is running (medium

efficiency dummy), the effect evaporates. Therefore, the need for a sig-

nificant high-efficiency dummy (only a minor share of the fleet is ”at the

money”) can be ruled out.

It is important to emphasize that, while significant at a 5% level, stan-

dard errors of the estimated interaction terms appear to be high. This

can be intuitively explained by the construction of the dummy variables:

While cutting off low efficiency units sharply, coal unit efficiencies are

more continuously distributed in reality (and the data-generating pro-

cess) than in the simplified assumption that there are three classes of

efficiencies.
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5. Discussion

Following available data, I focused on a late phase of TP3 (Q1 2018 - Q2

2021) with my comprehensive empirical model - a period that is char-

acterized by competition between electricity generation fuels, financial

market volatility (Covid crisis) and expectations for policy innovation

(new rules for EUA supply including the supply-tightening MSR; up-

coming Phase IV) and is therefore well suited for an empirical analysis

of recent developments in EUA price dynamics. I compared this model

to different model specifications and subperiods to obtain some context

of results.

I derived a general theory how certificate prices and associated returns

depend on both short-term and long-term dynamics. Short-term effects

were assumed to include fuel margin competition in electricity genera-

tion as well as expected demand from energy-intensive industries, proxied

by a broad stock market index. On the certificate supply side, I com-

posed longer-term effects as expectations of changes in carbon policy -

which in the European Union is often implemented via the EU ETS as

their flagship instrument for carbon emission mitigation. Longer-term

effects on the demand side I assumed to depend on the expected degree

of decarbonization in Europe, mainly in the form of capacity increases

of renewable electricity generation. Empirically, I approximated changes

of those long-term expectations with headline-based daily sentiment in-

dices, integrated into a regression of daily EUA returns together with

short-term effects (both fuel returns and fuel returns in interaction with

states of high fuel relevance). Assuming efficient processing of public

information and sufficient price signals, I imposed no lag to any variable

and conducted an OLS estimation on returns, dummies and sentiment

indices.

For the short run, the results confirm a strong positive effect of gas in

a general specification, which can be interpreted as an expected tradeoff

versus coal in a fuel-switching setting. Similar to existing research, I did
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not obtain a significant estimate for the effect of coal returns over all

days. However, interactions with relevant fuel spread dummy variables

achieved to raise precision of fuel return coefficient estimates. Specif-

ically, they confirm significant relationships, possibly through demand-

decreasing effects with decreasing plant margins for both coal and gas,

approximately in the magnitude of their carbon intensity of generation,

reflecting marginal demand for EUA certificates.

Changes in long-term supply expecations seem to influence EUA returns,

approximated using relative daily sentiment modelled from specific news

headlines. I did not find a significant relationship for an equivalently

constructed sentiment index of renewable energy policy signals, reflecting

changes in long-term demand reductions through expected decarboniza-

tion. Since it is a large dataset with no manual adjustments to the head-

lines, additional effects, such as covered sectors, may affect the carbon

sentiment index estimate. Similarly, the renewable sentiment index may

contain data which goes too far beyond the scope of carbon markets and

therefore, distorts potential effects into insignificance. While it seems

promising for upcoming research to refine the underlying methodologies,

it should be a priority to ensure the objectivity of the indices, which are

a major benefit for model robustness in comparison to qualitatively ex-

post defined state dummies. In summary, while the estimated effect is

small, I find evidence that changes in long-term supply expectations af-

fect EUA returns through the inflow and processing of new information.

This implies that emission abatement and efficiency increases are incen-

tivized already today under credible signalling of future rule changes by

the EU, an effect which is probably smoothened even further by specu-

lative activity, as derived in the theory section.

A key limitation to note is the data length of the headline sentiment time

series, reducing the length of the comprehensive model to less than what

would have been possible with the rest of the data (as shown in the other

results). Extending the data set could extend the explanatory power and

robustness of the estimated model. Furthermore, together with more

data, further refining the sentiment-constructing methodology could po-

tentially reveal a larger effect of long-term expectations that could be

estimated with the model of this study. Another key area for potential

improvement is the relative unit of the sentiment indices: While other

coefficients can be interpreted as direct return elasticities, there is no

intuitive interpretation of sentiment scores other than relative (positive

and negative) strength to themselves. Further processing of the input,
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even by applying a utility function of agents, could be beneficial for eco-

nomically meaningful results in that respect.

As mentioned, standard errors of interaction term estimates are high,

potentially due to an oversimplified assumption of relevant generation

corridors. Extending the assumption and potentially obtaining demand

sensitivity estimates for a more continuous demand interaction could be

challenging, but insightful.

As another application of results, backtesting trading strategies based on

signals generated in relation to sentiment indices could provide construc-

tive insights for discussing information processing and market efficiency,

which might be especially promising in combination with the develop-

ment of sophisticated sentiment indices.
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price drivers: Phase I versus Phase II equilibrium?” In: Energy

Economics 34.1 (2012), pp. 327–334.

[18] Rickels, Wilfried, Görlich, Dennis, and Peterson, Sonja. “Explain-

ing European emission allowance price dynamics: Evidence from

phase II”. In: German Economic Review 16.2 (2015), pp. 181–202.

38



[19] Fell, Harrison. “EU-ETS and Nordic electricity: a CVAR analysis”.

In: The Energy Journal 31.2 (2010).

[20] Bai, Yiyi and Okullo, Samuel J. “Cutting carbon through fuel-

switching in the EU ETS”. Available at SSRN 3418823. 2020.

[21] Bayer, Patrick and Aklin, Michaël. “The European Union emis-
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A. Appendix

A.1. Deriving Logarithms of Fuel Spreads

Starting from 3.10 and 3.11, I apply natural logarithms as follows:

CDS = ppower −
pcoal

ECF coal ∗ FEF coal

− pemissions ∗ CIF coal

log CDS = log

[
ppower −

pcoal

ECF coal ∗ FEF coal

− pemissions ∗ CIF coal

]

define : x = ppower, y =
pcoal

ECF coal ∗ FEF coal

, z = pemissions ∗ CIF coal

log (x+ y + z) = log

[
(x+ y) ∗

(
1 +

z

x+ y

)]
= log (x+ y) + log

(
1 +

z

x+ y

)
= log

[
x
(

1 +
y

x

)]
+ log

(
1 +

z

x+ y

)
= log x+ log

(
1 +

y

x

)
+ log

(
1 +

z

x+ y

)

then substitute back to obtain :

log CDS = log ppower + log

[
1 +
− pcoal

ECF coal∗FEF coal

ppower

]

+ log

[
1 +

−pemissions ∗ CIF coal

ppower + (ECF coal ∗ FEF coal)

]
(A.1)

The same holds for CSS by replacing CDS with CSS, pcoal with pgas,
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ECFcoal with ECFgas, FEFcoal with FEFgas and CIFcoal with CIFgas.

A.2. Augmented Dickey-Fuller Test

Statistics

ADF statistic for the comprehensive model, logs:

crit. -15.048754199327949

p-value 9.360558470233104e-28

lags 3

obs. 797

t ’1%’: -3.438581476199162, ’5%’: -2.865173218890781, ’10%’: -2.56870466056054

p-value < |crit.|: H0 (series is not stationary) can be rejected.

Reference: ADF statistic for the baseline model (entire period), levels (prices):

crit. 0.6900331651677494

p-value 0.9896368510821241

lags 13

obs. 2866

t ’1%’: -3.4326337287557456, ’5%’: -2.862548995880997, ’10%’: -2.5673071179733613

p-value > |crit.|: H0 (series is not stationary) cannot be rejected.

A.3. CDS and CSS Parametrization

To compute the CDS and CSS, I parametrized the formulas with the

following values based on Platts’ European Power Methodology [27]:

CDS CSS

ECF 6.978 mt/MWh 3.412141 Btu/MWh

CIF 0.34056 mtCO2/MWh 0.18404 mtCO2/MWh

42



Eidesstattliche Erklärung

Ich bezeuge mit meiner Unterschrift, dass meine Angaben über die bei

der Abfassung meiner Arbeit benützten Hilfsmittel sowie über die mir

zuteil gewordene Hilfe in jeder Hinsicht der Wahrheit entsprechen und
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