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1 Introduction

In Switzerland, mobility accounts for around 40% of domestic energy con-
sumption and CO2 emissions (Bundesamt für Statistik 2016). Thereof,
individual mobility accounts for three quarters of the consumed energy
and the transport of goods for one quarter. Transport policy hence has
potentially great leverage on energy consumption and the internalization
of related externalities. Being able to make a prediction of the change
in energy use as a consequence to such a policy intervention is therefore
of great relevance if the costs and bene�ts of an intervention are to be
assessed. The cost bene�t analysis is the most basic economic concept
brought forward when policy decisions are prepared. They are of partic-
ular relevance in the context of the preservation of public goods like a
clean environment. With regard to the current climate crisis, many pol-
icy measures which are discussed today target individual behavior and
thereby are expected to a�ect energy consumption. If the consequences
of these prospective policies are to be assessed quantitatively (for possible
inclusion in a cost-bene�t analysis), this requires the prediction of this
speci�c outcome measure.

In this thesis, I derive a prediction model that serves the end to improve
the evaluation of the e�ects of possible prospective policy measures on
individual energy use. In the empirical application, I draw on data from
a mobility study in Switzerland, i.e., the MOBIS �eld experiment (Ax-
hausen et al. 2021). This prediction data allows me to connect accurately
measured energy use of individuals' mobility behavior with numerous
personal characteristics. The observed personal characteristics include
values and beliefs, which are potentially important predictors of energy
use next to people's endowment (Enzler and Diekmann 2019). On this
basis, I train di�erent prediction models making use of regression forests
and lasso, two popular machine learning algorithms (see Athey and Im-
bens 2019 for an introduction to machine learning in economics). The
model showing the best cross validation performance is then applied to
impute energy use into a (prospective) stated choice experiment, which
is not part of this thesis.

The imputation application relies on a restricted number of predictor
variables. This is the case because the predictor variables for the impu-
tation task in the target data set have to be surveyed. The number of
questions a survey sustains is, however, limited and thus they have to be
wisely chosen. To minimize the adverse e�ect of this restriction on pre-
diction accuracy, I develop a variable selection procedure. The selection
procedure is based on the two prediction algorithms mentioned above
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and identi�es the most promising predictors which the �eld experiment
makes available to predict individual energy use. This variable selection
procedure could be extended to other methods and also applied to other
data sets.

In addition to the imputation of the level of energy use, the model can
also be applied for the prediction of di�erentials in energy use. This refers
to the second application, when the prediction model is combined with
recorded intentions of behavioral change in a stated choice experiment.
The prospective stated choice experiment is designed such that it records
how participants rearrange their mobility toolbox in hypothetical scenar-
ios of the future. The mobility toolbox summarizes all available mobility
tools people own such as bicycles, cars, and public transport passes (for a
description of recent developments in Switzerland see Kowald et al. 2017).
From a change at the extensive margin like, for example, no longer own-
ing a car, the prediction model allows for an estimation of the impact on
the intensive margin in terms of energy use.

The remainder of the present thesis is structured as follows. Section 2
provides the theoretical economic framework for the prediction analy-
sis. In Section 3, the empirical application is embedded in its broader
context by a description of the �eld experiment that provides the predic-
tion data and some explanations regarding the prospective stated choice
experiment. The prediction data is described in Section 4. Section 5
introduces the prediction algorithms. This section also comments on the
methodological reasoning behind the variable and model selection proce-
dure. Section 6 then presents the application of these procedures to the
prediction of individual energy use from mobility. Section 7 concludes.

2 Theory on mobility behavior

2.1 Microeconomic foundation

For approaching any prediction problem one should have some theory
about the emergence of the response, the dependent variable. A good
theory allows to isolate promising predictors in the abundance of available
data. It also allows checking for the plausibility of the results and helps
interpreting them. I inform the prediction of energy use by a microe-
conomic theory on an individual's mobility behavior (see, e.g., Button
2010).
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From a microeconomic perspective, an individual's behavior results from
the interplay of preferences and restrictions. A person, for example,
prefers not to get wet on the way to work and therefore looks for an
alternative mode of transport to the bicycle on a rainy day. Another
person likes fast sports cars, but does not possess one because her own
wealth and income does not allow it.

Besides the weather, income and wealth many other factors restrict a
person's behavior by a�ecting the relative attractiveness or prices of the
options in the choice set. One group of restrictions that is often distin-
guished from the others are institutions like state laws. In the focus of
this thesis are transport policies that co-determine energy use. Given
today's political goals towards sustainability transport policies which in-
centivize energy e�ciency and transition to renewable energy sources are
of high interest. Against this background, there is a focus on policy in-
terventions that increase the relative price of energy intensive transport
modes which rely on fossil fuels. It is an attempt to price in accruing ex-
ternalities. The behavioral reaction to such a restriction depends on the
expected permanence of the intervention (see, e.g., Button 2010, p. 88).
For a restriction which is perceived to persist the adaptation is more far
reaching. This adaptation includes all substitution e�ects and unfolds
over time.

When the transport mode car becomes relatively more expensive due to
an intervention the immediate, adaptation of a car owner which com-
mutes into town is limited. In the short-run many choices are �x and
little margin is left for adjustment. In the medium-run this same person
has more possibilities to adapt and may acquire a public transport pass
and sell his or her car. In the long-run even more choices may be re-
considered taking into account the change in relative prices. Perhaps the
person in our example no longer commutes and lives in town now, next to
his or her workplace. Thereby the behavioral reactions may well depend
on a person's (environmental) attitudes (see, e.g., Enzler and Diekmann
2019).

The preceding example not only underlines that e�ects take time to real-
ize, but also serves as an illustration for how di�erent parameters become
choice variables over time. In the short-run, it is possible to make small
changes as, for example, using the car less often for leisure activities and
to walk shorter distances, when the mode car becomes relatively more
expensive. In the medium-run, greater rearrangements of the mobility
toolbox, which summarizes the di�erent modes of transport that are
available to a person, are possible. The rearrangement of the mobility
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toolbox can consist of buying a public transport pass, change the own car
for a more eco-friendly one or abandoning the car completely. Another
adaptation that might arise in the medium-run is the formation of a new
habit such as to buy local or to organize home-o�ce. In the long-run,
many more parameters become choice variables. New employment con-
tracts can be negotiated, the place of work and the place where people
live are no longer �x.

2.2 Necessary assumptions for the prediction of dif-

ferentials in energy use

An observer interested to learn about which choices people make to adapt
to a policy intervention can �nd him- or herself in two possible settings.
In the �rst setting both, the state of the world with and without the policy
regime of interest, are observed. In this case, a skillful comparison of the
two states can attribute behavioral di�erences to the two policy regimes
under relatively weak assumptions. In the second setting, the regime
change relates to a prospective policy. In this case, many assumptions
are needed to make a prediction about the e�ect of the regime change.
The econometirc prediction study as pursued in the application of this
thesis �ts the second setting with a focus on the prediction of medium-
run adaptation to a policy change. A more extensive motivation for this
focus is derived in the next section devoted to the empirical setting.

In the medium-run, the optimization of the mobility behavior within
new boundaries is mainly re�ected by the rearrangement of the mobility
toolbox. To evaluate the e�ect of a policy within this time horizon, it
is therefore crucial to form a well informed expectation on how a�ected
individuals adapt their mobility toolbox. The strategy followed here is
to ask people how they intend to adapt their mobility toolbox in case
of the realization of the regime change of interest. The concrete survey
type used to collect this information is a stated choice experiment. In
the survey of this type it is hypothetically asked: would you sell your car
or extend your public transport pass? Based on the answers to questions
like this and two assumptions I can make a prediction to approximate the
resulting change in energy use. The �rst assumption is that the individ-
ual maintains his or her endowment, attitudes and behavioral patterns
that are part of the prediction data apart from the stated change in the
mobility toolbox. The second assumption is that the individual adapts in
all the unobserved patterns to match the people with the same mobility
toolbox after the stated change which are part of the (training) data set
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used to �t the prediction model.

2.3 Exemplary application: The motor-vehicle regis-

tration tax

The annual motor-vehicle registration tax is a policy tool available to
the Cantons in Switzerland which is increasingly used to incentivize the
purchase of cars generating low emissions (Alberini and Bareit 2019).
Through out the thesis, I refer to this tax as an illustration to make
some of the abstract considerations more concrete.

A �rst application can, for example, illustrate how a policy change can
lead to predictable changes in energy use. Imagine a rise in the registra-
tion tax for cars with powerful engines. This regime change brings some
people to a point where heavy cars are no longer their optimal choice
because of the incentive to substitute and the income e�ect they expe-
rience. It can therefore be expected that the tax change has an e�ect
on the mobility tool box that manifests in the medium-run. In their
respective studies Alberini and Bareit (2019) con�rm this expectation
for Switzerland and Yan and Eskeland (2018) for Norway. In Section 6,
we will be able to go one step further and predict what a corresponding
change could mean in terms of energy consumption.

3 Empirical setting

3.1 The MOBIS experiment

The data I use in my thesis are from the MOBIS experiment.1 This is a
�eld experiment, which was conducted between August 2019 and January
2020 in Switzerland as the timeline in Figure 1 indicates. The experi-
ment is designed to elicit the e�ect mobility pricing on people's short-run
mobility behavior. For this end, the sample population is randomly split
into three groups: the control group and two treatment groups named
information and pricing. After four weeks of the 8 week experiment the

1The MOBIS experiment is funded by Innosuisse and the Federal Department of
the Environment, Transport, Energy and Communications (DETEC). The experi-
ment is executed by the Swiss Federal Institute of Technology Zurich (ETH), the
University of Basel and the University of Applied Sciences Zurich (zhaw). The �nal
report of the experiment provides a detailed overview of the entire study (Axhausen
et al. 2021).
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treatment sets in. In the information treatment, subjects are informed
about the externalities created by their mobility behavior. In the pric-
ing treatment, subjects are additionally charged for the netto monetary
value of the generated externalities. Having the two treatment groups
allows the researchers to assess the relative importance of the change in
price and the information provision for the observed average treatment
e�ect of mobility pricing. A smartphone application tracks the subjects
movements during the experiment and delivers the treatment.

Intro Survey Tracking study with
experiment Final Survey

Start: Aug. 2019 End: Jan. 2020

Figure 1: Elements of the MOBIS study

The observed average treatment e�ect of the pricing treatment is a 5%
reduction in the external costs of travel (Axhausen et al. 2021). The
e�ect is statistically signi�cantly di�erent from zero at a level of 0.1%.
They decompose the observed treatment e�ect in their analysis and �nd,
among other things that mobility pricing reduces speci�cally CO2 emis-
sions, suggesting that people's mobility becomes less energy consuming.
Energy consumption creates externalities as the transport sector still re-
lies heavily on fossil fuels.

The results of the �eld experiment are informative for assessing mobility
pricing as a policy tool to reduce negative externalities from transporta-
tion. An important limitation to the insights that can be derived from
the experiment is that from observing subjects during a one month in-
tervention, one can make little assertions about the persistence of the
observed e�ects in the medium to long-run. As discussed in the theory
section, this is mainly due to the fact that some mobility-related invest-
ments and habits are �x in the short-run and not part of the choice set.
A conceivable example to illustrate this argument is a person who keeps
hold of her car during the experiment while she would sell it if the policy
were actually put in place. In this speci�c case, it is likely that the ef-
fect in the short-run, measured in an experiment, stays behind the fully
evolved e�ect of mobility pricing.

3.2 Stated choice experiment

The research group involved with the MOBIS experiment plans to com-
plement their investigation of mobility behavior with a stated choice ex-
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periment (SCE) to also shed some light on the medium-run e�ect of
policy changes. For this purpose, a sample population di�erent from the
MOBIS experiment is recruited. The SCE is a one-time survey interro-
gation with no tracking component. In the survey, the subjects will be
asked to imagine a scenario and report how they would in response re-
arrange their mobility toolbox. As the decisions are hypothetical, stated
preferences or stated choices are observed. The hypothetical scenarios
the participants are confronted with can describe conditions such as the
introduction of mobility pricing, the improvement of transport infras-
tructure, the outbreak of a pandemic, or the increase of a motor-vehicle
registration tax.

The latter condition is used for an illustrative SCE. The participant of
such a SCE is, for example, asked to choose from two Volkswagen car
models, a high and a low emitter. The described attribute for both cars
is the associated registration tax. For the high emitter the attribute can
take two levels. Either CHF 570 in the status quo or CHF 970 in the case
of a tax increase for high emitters. Based on this setup, two vignettes
can be constructed.

Vignette 1:
Imagine you have the choice between a VW Golf for which
you pay a yearly registration tax of CHF 450 and a VW
Tiguan for which you pay CHF 570 in taxes annually.
Which car do you prefer?

Vignette 2:
Imagine you have the choice between a VW Golf for which
you pay a yearly registration tax of CHF 450 and a VW
Tiguan for which you pay CHF 970 in taxes annually.
Which car do you prefer?

The random allocation of one of the two vignettes to the participants of
the survey makes it an experiment, a SCE. The participants who answer
the �rst vignette can be interpreted as the control group, while the ones
answering the second vignette receive the treatment of a tax increase. If
the stated choices between the two groups di�er, we can tell that there
is a causal e�ect of the registration tax on hypothetical car purchases.

Of course, a more sophisticated design of the SCE is required to elicit
valuable information about the rearrangement of the mobility toolbox as
a reaction to a speci�c condition.2

2For more conceptual information on stated choice experiments please refer to
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3.3 Imputation

The SCE for the mobility toolbox provides information on the extensive
margin of a person's mobility behavior. We can �nd out whether the
person chooses to own a car and/or a public transport pass. The inten-
sive margin, however, remains hidden. In order to nevertheless get an
approximation of how much the available mobility tools are used, the
imputation of such information o�ers a solution.

Many aspects of an individual's mobility behavior at the intensive mar-
gin can be subject to imputation. Along the lines of the motivation for
my thesis, which lies in transport policies that relate to energy e�ciency
considerations, I envisage the imputation of energy consumption. For
this purpose I propose a concrete imputation process to enrich the ob-
servations from the SCE with a prediction of the subjects' energy use for
mobility. The prediction model for this imputation application is selected
in Section 6.

The input variables that are to be considered in the prediction model for
a subject's energy use have to satisfy two conditions. First, the variables
have to be part of the data set from which we draw the information for
the imputation. I call this data set the source data set. Second, the
variables have to be part of the data set for which we want to increase
the information value by the imputation (for example, of a measure for
energy use). I call this the target data set.

In the usual imputation setting, the source and the target data set exist
from the beginning. The intersecting set of variables then represents
the candidate input variables for the prediction algorithm. The present
thesis covers a di�erent setting. It is peculiar in the sense that ex ante
only the source data set exists.

With regard to the planed extension of the MOBIS study, the source data
refers to the data gathered within the MOBIS experiment. The target
data refers to the data that are yet to be collected in a SCE. Importantly,
so far in the MOBIS study, each participant has �lled out two surveys.
This leaves a wealth of over 100 surveyed variables that can serve as po-
tential candidate predictors for the imputation. Incorporating questions
for all these variables into the SCE would not be feasible. It would make
the related survey to exceed a reasonable length. To nevertheless allow
for the best possible imputation within the SCE those variables from the
source data set should be surveyed which are most predictive for energy

chapter 6 of Hensher et al. (2005, pp. 189). Two recent applications of the method to
mobility undertake Ho et al. (2020) and Stoiber et al. (2019).
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use. In the present thesis we analyze a procedure which o�ers a possible
solution to identify the promising predictors.

 Variable Selection

Stage 1

 Model Selection

Stage 2

 Prediction

Stage 3

Figure 2: Imputation process

I refer to the procedure to determine the relevant predictor variables as
variable selection. The variable selection is considered the �rst stage in
the imputation process depicted in Figure 2. The second stage is then the
conventional model selection to �nd an e�ective algorithm for predicting
energy use based on the pre-selected variables. The third stage completes
the imputation task with the application of the trained prediction model
to the target data set. The third stage cannot be performed in this
thesis as no SCE is undertaken. However, I present the prediction for a
hypothetical behavioral reaction as an illustration.

4 Data

4.1 Sample

The data for the current analysis were compiled within the MOBIS ex-
periment. I refer to them as the source data. Stage one and two of
the imputation procedure are based on variables from this source data
set. Throughout my thesis I use the original names of the variables from
this data set if possible. The dependent variable, or response of inter-
est, is the energy use of a person. It is computed from the participants'
tracked movements via a smartphone application. The potential pre-
dictors o�ered in the source data set were collected in two surveys that
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accompanied the tracking study. After the initial data cleaning3, the to-
tal data set consists of observations from 3,373 individuals and includes
118 candidate predictors. These individuals are from di�erent groups of
the experiment as shown in Table 1. As all of them �lled in the survey
and were tracked, they can all be considered in this study.

Table 1� Experimental sample structure

Number of participants
Total treatmenet group 2,232
Information treatment 1,125
Pricing treatment 1,107

Control group 1,141
Overall total 3,373

An individual eligible to participate in the MOBIS experiment lives in a
metropolitan area in the German- or French-speaking part of Switzerland
and travels by car at least on two days per week. Another criterion to
qualify for the study is to be between 18 and 65 years old in 2018.4

4.2 Response: Energy use

The energy use of a person's mobility behavior is approximated by the
CO2 emissions it generates. It is thus an indicator of energy use that
captures the relevant aspect for climate policy. Moreover, it is a reason-
able approximation because emissions develop in direct proportion to a
persons energy consumption. The CO2 emissions were imputed based
on the tracking data of the MOBIS experiment (and assess the external
costs of a person's mobility behavior). The emission factors applied to
the imputation are taken from the HBEFA database and are available
for di�erent vehicle types and tra�c situations (Axhausen et al. 2021).
The mobility tracking of the MOBIS experiment di�erentiates between
16 di�erent modes of transport which are listed in Table 2. Each mode
is associated with a di�erent emission factor given the observed travel
speed (Axhausen et al. 2021). The modes walk and bicycle are, for
example, associated with zero emissions. For the mode car additional
information is available regarding the participant's car which allows for
a more exact determination of emissions. The surveyed characteristics of

3Appendix A.4 provides more information on the data cleaning procedure.
4A list of all seven inclusion criteria is provided in Appendix A.1.
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a participant's car are its size, fuel type and year of manufacture.5 The
more precise measurement of car emissions should also be re�ected in a
greater standard deviation of the imputed emissions compared to other
mode choices.

Table 2� Average CO2 emissions by km and mode

Mode Mean Max Std. dev. n
Taxi, Uber 0.026969 0.1427 0.0142 842
Car 0.026092 4.9025 0.0264 380,983
Carsharing, mobility 0.023533 0.1501 0.0104 736
Motorbike, scooter 0.022471 0.4616 0.0197 4,957
Bus 0.014407 0.2307 0.0013 48,030
Boat 0.002042 0.2017 0.0156 649
Airplane 0.001262 0.0265 0.0058 986
Subway 0.000141 0.0941 0.0025 4,757
Regional train 0.000094 0.0922 0.0012 12,612
Train 0.000072 0.0356 0.0004 18,699
Tram 0.000036 0.0746 0.0011 21,592
Light rail 0.000024 0.0647 0.0009 25,164
Bicycle 0 28,541
Walk 0 50,0016
Aerialway 0 6
Ferry 0 5
Total 1,048,575

Note: n is the number of times a tracked distance is attributed to the respective
mode. Aerialway and ferry are neglected because of few observations.

The mobility of a person is understood as the trips a person undertakes
between activities. Within one trip to get from one activity to another,
the person can rely on one mode or a series of di�erent transport modes.
For a person who tracks his or her mobility on a given day 4.16 trips are
registered, on average. Each participant in the tracking study is observed
on 44.79 days on average.

For a member of the control group, the tracking information gathered
over the entire experiment is considered in the prediction task. For par-
ticipants who are allocated to one of the treatment groups only the �rst
four weeks are considered. This is because after the fourth week in the

5Five car sizes are distinguished: luxury car or sports coupé, medium to large car,
minivan or van, o�-road vehicle, small car. Five fuel types are distinguished: diesel,
electric, gasoline, hybrid (gasoline/diesel + electric), other. Seven time periods are
distinguished for the year of manufacture.
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experiment the treatment sets in which systematically in�uences their
mobility behavior. For example, in the pricing treatment among other
things, energy use becomes more expensive. Consequently the tracking
information which is potentially a�ected by the treatment is removed
from the data. This leaves us with an average of 45.23 observed days for
a member of the control group and with 22.36 days for the members of
the two treatment groups.

The CO2 emitted by an individual's mobility on a given day is approxi-
mated by the sum of emissions accumulated over all trips on that day. I
refrain from using the panel structure of the data because we cannot learn
from the variation in individual's CO2 emissions over time in this study.
This is due to the fact that the available predictors are time invariant as
they are collected in a one-time survey, the SCE.

The information which is available on an individual's emissions can be
condensed in several ways. I take the average over all the days which
are on record for the individual.6 The histogram on the left in Figure 3
describes the distribution of the average CO2 emissions per day for the
3,373 individuals in the sample. Reported are monetized emissions. For
each emitted ton of CO2, climate costs of CHF 138.9 are charged (Ax-
hausen et al. 2021). The measurement unit of the response is therefore
CHF.

The histogram on the left in Figure 3 also manifests that the distribution
of the response is right skewed. The skewness of the distribution has an
adverse implication on the prediction accuracy of linear models such as
the lasso or the common linear regression. Predictions from these models
are asymptotically normally distributed and therefore perform better to
predict a response which follows a similar symmetric distribution. An
attempt to bring the response in a more favorable shape is the logarithmic
transformation. The transformed responses are depicted in the histogram
on the right in Figure 3. It turns out that the transformed response
is more left skewed than the untransformed response was right skewed
(initial skewness of the response 1.734, skewness of the response in natural
logarithms −3.924). I therefore refrain from transforming the response
which I refer to as the approximated energy use of individuals' mobility
in the task at hand.

6Another more sophisticated way of condensing the information is to reconstruct
typical weekly emissions of an individual. This more complex way of aggregation
would have the advantage that it could mitigate a potential selection bias resulting
from an individual's choice of the days of the week she or he tracks her- or himself.
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Figure 3: Distribution of the dependent variable average monetized CO2

emissions per day

Notes: The �gure on the left shows the distribution for the untransformed depen-

dent variable. The one on the right for the dependent variable in logarithms.

4.3 Predictors

As candidates for a predictor variable qualify all variables from the source
data set which are also available in the target data set. The target data
set is restrained to variables which can be surveyed in the SCE. This
leaves us with 118 candidates. Among these available candidates I dis-
tinguish two groups: the core variables and the supplementary variables.

The core variables are anyway collected in the SCE and hence part of
the target data set. This includes general socio-economic variables, as
for example, gender, education, income and age, and the employment
status with the associated workload. Variables capturing the ownership
of mobility tools and the use thereof belong to the core variables as well.
A complete list of the 53 core predictors can be found in Table A.1 in
the Appendix A.2.

The supplementary variables are the 65 remaining candidate predictors
which we only want to survey if they help the imputation, i.e., they im-
prove the prediction of energy use. The variable selection procedure for
the survey which is presented in Subsection 5.6 only applies to this group
of supplementary variables. The bulk of the supplementary variables
covers transport and transport policy related attitudes. They contain
information on whether the person thinks that public transport is too
crowded or whether they consider phone use while driving a problem.
Another subgroup of variables refers to comparisons of the car to public
transport. Then there are four variables capturing a person's personality
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in the dimensions hedonic, egoistic, altruistic and biospheric. They need
to be separately mentioned because they are not directly surveyed. The
variables are constructed following the Schwartz Value Survey from 26
variables capturing values, lifestyle and leisure choices as described in
Bouman et al. (2018). Section A.2 of the Appendix lists all supplemen-
tary variables in Table A.2 and Section A.3 provides an example of a
survey question.

4.4 Data pre-processing

The necessary data pre-processing depends on the data structure as well
as the method one wants to apply to the data. Of the 118 predictor
candidates, 75 are ordinal variables, 33 are nominal variables and 10
follow a numerical scale. Both the lasso and regression forests require
the data in numerical form. There are several ways that o�er themselves
to recode the categorical variables.

Even though the regression forests have a reputation to be insensitive
to the characteristics of the training data and the encoding of categor-
ical variables (Hastie et al. 2009, Kuhn and Johnson 2013), Tibshirani
et al. (n.d.) emphasizes the importance of meaningful encoding. Which
data representation is meaningful depends on the empirical task and can
signi�cantly improve the quality of predictions.

For the regression forest, I therefore translate the ordinal variables such
that the integer assigned to a category respects the underlying ordering.
For the nominal variables, I construct as many dummy variables as there
are categories and remove one dummy variable which is then the reference
category. This is also the recommended solution for the ordinal variables
when they serve as input for lasso.

Missing values for the predictor variables require no special treatment
beforehand when applying regression forests. The decision trees in the
forest incorporate the missing values meaningfully in each split (Tibshi-
rani et al. n.d.). For lasso, missing values are taken care of by assigning
an own dummy variable.

Outliers are of no concern regarding the categorical predictors which
are limited to prede�ned levels. Table 3 supports that the numerical
predictors are contained in reasonable ranges as well. The dependent
variable ext_co2_t, on the contrary, has a few very large values. These
values, however, do not contradict the self-stated mobility behavior in
the survey. For example, all of the extreme emitters report that they
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drive a car on 3 or more days per week. A look at the surveyed mobility
behavior also indicates that the values for the six participants which
allegedly emit no CO2 are not measurement errors. The zero emitters
report all to drive their car on 3 or more days per week but own an
electric car with one exception. The exception is a retired woman which
owns a car with combustion engine. Given that the extreme values are
traceable I refrain from removing them as outliers and conclude that the
distribution of the response is skewed.

Table 3� Summary statistics for the numerical variables

Mean Median Min. Max. Std. dev. n
ext_co2_t 0.91 0.77 0.00 5.58 0.64 3,373

age 41.05 41.00 19.00 66.00 13.62 3373
workload_jobs_main 86.81 100.00 5.00 100.00 22.12 2,673
workload_jobs_second. 21.45 20.00 1.81 80.00 13.92 120
gen_accessibility 1.15 1.23 -8.31 7.25 2.44 3,373
miv_accessibility 0.06 0.10 -0.86 0.82 0.27 3,373
oev_accessibility 0.41 0.48 -2.79 2.31 0.75 3,373
hedonic 3.89 4.00 1.00 5.00 0.70 3,373
egoistic 2.71 2.60 1.00 5.00 0.65 3,373
biospheric 4.01 4.00 1.00 5.00 0.67 3,373
altruistic 3.97 4.00 1.00 5.00 0.63 3,373

While I do not eliminate any participant from the cleaned sample, I
eliminate seven predictors. The variables homeoffice_do_days, home-
office_can_yes, homeoffice_can_days and own_vehicles_motorbike
are eliminated because they are observed for less than 100 subjects. For
this few observations it is improbable that they allow for meaningful
model estimation especially after sub-sampling.

The seven eliminated predictors also contain the area codes of the home,
the main workplace and the secondary workplace. There are too few
observations per area code for these nominal variables to convey any
systematic information about emissions. It is more likely that the vari-
ables contribute to the prediction as sort of an individual �xed e�ect.
However, it would still make sense to survey the area code of the home.
It allows to create the three meaningful accessibility variables listed in
Table 3. Based on the area code of the home, its general accessibility
as well as its access by public transport and motorized individual tra�c
is assigned. Another variable with many categories that count low fre-
quencies is citizen_1. I do not eliminate this predictor but transform it
such that only two categories remain. After transformation citizen_1
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conveys the information whether a person is Swiss or not. I refrain from
further transformation and do not construct any interaction terms be-
tween variables. I rather rely on the regression forest to detect important
interactions.

5 Methodology

5.1 Prediction

For the imputation task at hand, I want to estimate a suitable model for
predicting individual energy use for mobility. I refer to energy use as the
response of the model. One way to think about a prediction problem is
to imagine a system which receives input variables and generates the re-
sponse variable as output. The system which relates the input variables
to the response is unknown, a black box. Supervised learning uses a
known sample of input and output variables to illuminate the dependen-
cies between input and output. This is done without assuming causality
running along the emerging input-output dependencies.

I follow an approach to statistical learning which is based on the function
approximation framework (for an introduction see Hastie et al. 2009 and
James et al. 2013). In this framework, learning consists of approximat-
ing the function f(X) that describes the `true' relationship between the
observed inputs x and the response y up to a random error term ε. The
error term is assumed to be independent of X and has mean zero.

Y = f(X) + ε (1)

For real valued responses, such as energy use, estimating f(X) from a
�nite sample is referred to as regression problem. The methods which
exist for tackling the regression problem di�er in the way they restrict
the set of possible functions. Only these restrictions render it feasible to
�t a model to a �nite sample. The data set used to �t the model is also
referred to as the training set.

5.2 Model selection

Model selection implies the comparison of di�erent models. In order to
do so a measure is required which captures how well a model predicts the
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response for a given set of inputs. The mean squared error (MSE), or the
square root thereof, is a common measure for prediction performance in
the regression setting.

MSE =
1

n

n∑
i=1

(yi − f̂(xi))2 (2)

, where f̂(xi) is the predicted response for the observation {xi, yi}.

The prediction performance of interest is how well the trained model
predicts the response of observations which were not used to �t the model,
they were thus not part of the training set. This prediction accuracy
is also called out-of-sample performance. The focus lies on the out-of-
sample performance to prevent the selection of an over�tted model for
the prediction task. We speak of model over�t when the model does
very well in predicting in-sample (training set) but not out-of-sample.
This phenomenon arises when the estimated model is too complex for
the limited information in the training set.

Many learning methods allow for calibration of model complexity along
one or several so called tuning parameters. The appropriate setting of
these parameters is found by minimizing the average out-of-sample error.
With limited data available, the average is computed over samples which
are from the same data set and are generated by a resampling algorithm.
The resampling algorithm I use in this thesis for model selection is k-fold
cross validation.

5.3 Model selection procedure

The selection procedure is set up to �nd the best model among the avail-
able models given the considered methods. I propose here a double re-
sampling procedure which follows Friedman (1994, cited in Cherkassky
and Mulier 2007, pp. 79). The double resampling consists of two steps:

Step 1: The available data is split into a training and a test set.

Step 2: The training set is then resampled by cross validation.

For each of the considered methods the cross validation samples from
step 2 serve to determine optimal model complexity via the adjustment
of the method speci�c tuning parameters. The selection of one method
over the others is based on the mean cross validation error received for
the optimally tuned models. The tuned model with the lowest cross
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validation error is selected for prediction.

The selected model is then �t to the whole training set and applied to
predict the responses of the test set. The deviance between the prediction
and the actual response values is summarized in the MSE and can be
interpreted as the generalization error. The generalization error indicates
how well a model generalizes to unseen data, i.e., independent data. This
error is not consulted for model selection because from that point onward
the test set ceases to be independent and the selection is potentially
biased in favor of models which predict well the responses in the test
sample.

5.4 Generalized random forests

This subsection provides a general introduction to decision trees and
how they are aggregated to random forests. The introduction is based
on Hastie et al. (2009) and James et al. (2013) and should allow to more
easily understand generalized random forests. General random forests is
applied to the regression problem constituted by the imputation task in
Section 6.

Decision trees is a non-parametric method, which is based on a recursive
monothetic algorithm for model �tting. The algorithm starts out from
what is called the initial node. At the initial node, the training sample is
split into two subgroups constituting nodes on their own. The variable
along which the split is performed at the node and the corresponding
split value is determined in such a way that the created subgroups are
as heterogeneous to each other as possible regarding the response. The
binary partitioning is continued like this at each node until the halting
criterion is met. A typical halting criterion is to �x a minimum number
of observations that have to reach a node.

A tree which is grown by this greedy algorithm has a �nite number of
terminal nodes that are not further split. These nodes are represented
by mutually exclusive regions in the predictor space framed by the deter-
mined monothetic splitting rules. In a region, the response is modeled by
averaging over the residing training observations' response. It has to be
noted that this averaging can only be applied to a continuous response
variable. When the response is continuous, we also speak of a regres-
sion tree, and averaging the response has the property to minimize the
squared error loss.

The complexity of a regression tree is determined over the tree size. Tree
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size is the number of terminal nodes and can be adjusted in a model selec-
tion procedure. Nevertheless, single trees stay very sensitive to sampling.
They exhibit high model variance meaning that already slight changes in
training data leads to di�erent splits and hence predictions. A possible
way to reduce variance is to grow multiple trees on bootstrapped samples
from the training set and estimate the �nal prediction by averaging over
the grown multiple.7

The bootstrap based approach to grow a forest of decision trees was cru-
cially improved by Breiman (2001). His idea is to restrict the available
splitting variables at each node to a random subsample of the entire set
of predictors. Thus, the optimal splitting variable might not be available
at a given node for some tree. This makes trees additionally more in-
dependent from each other than they already are through the bootstrap
sampling. The independence between trees is desirable as only under this
condition averaging reduces model variance and hence improves on the
generalization of the model. This decision tree based method is called
random forests.

Athey et al. (2019) developed random forests further to general random
forests (GRF). Broadly speaking, not much changes conceptually with
this new development for my application of the method to the regression
problem. One generalizing extension is the adaption of the quality mea-
sure for the split such that the method can accommodate di�erent prob-
lem settings.8 For the regression problem, the algorithm based on the
new measure still maximizes heterogeneity in the response when split-
ting the training sample. Another change I want to mention concerns
prediction. With GRF, the response is predicted based on a weighted
list of neighbors which in case of the regression forest, i.e., the applica-
tion of GRF to a regression problem, amounts to the same prediction as
averaging over the prediction of each tree for a given observation.

A property of regression forests is that non-informative predictors do not
impair the estimation because they do not have to be considered in any
split. The feature that at each node the most promising variable can be
chosen from the available set, implies intrinsic variable selection. The
information on the number of times a variable is chosen for performing a
split and by how much this split reduced the sum of the squared residual
is condensed into the variable importance statistic.

Regression forests is an intuitive method to capture non-linear dependen-

7Bootstrap based aggregation is an ensemble method referred to as bagging.
8Possible applications are quantile regression, heterogeneous treatment e�ect esti-

mation, instrumental variable regression or panel data analysis.
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cies in data. However, the method is limited in approximating additive
and linear structures due to a lack of smoothness of the prediction sur-
face.

5.5 Lasso regression

The second method considered in the regression problem is lasso. Lasso
is a parametric method which restricts the approximation f̂(X) to be
linear in X. Tibshirani (1996) proposes to �t the linear regression model
yi = x′iβ + ui solving the following convex program

min
β0,β

{
n∑
i=1

(yi − β0 − x′iβ)2
}

(3)

subject to

p∑
j=1

|βj| ≤ t .

A convenient alternative to write down the same optimization problem
is the Lagrangian form (Hastie et al. 2009). In this form, the Lagrange
multiplier λ presents itself as ideal parameter for tuning model complex-
ity.

(
β̂0
β̂

)
:= argmin

β0,β

1

2

n∑
i=1

(yi − β0 − x′iβ)2︸ ︷︷ ︸
Loss function

+λ

p∑
j=1

|βj|︸ ︷︷ ︸
Penalty

(4)

The objective function can be read as the composition of a loss function
and a penalty. The impact of the penalty is adjusted via the tuning
parameter λ. For λ = 0 the problem is reduced to minimizing the sum
of the squared errors which implies that we receive the OLS estimates
of the regression coe�cients. Increasing λ above zero leads to shrinkage
of the coe�cients because the penalty term penalizes the model for the
absolute value of its coe�cients. Due to the nature of this penalty that
constrains the minimization, the lasso coe�cients do not only approach
zero but are actually set exactly zero. This last point makes lasso a
popular learning method because it performs intrinsic subset selection.

From the point of view of model selection, λ is determined in order to
optimize out-of-sample prediction accuracy. However, the error resulting
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from the possibility of trying to approximate a non-linear functional form
with a linear model stays.

5.6 Variable selection

Variable importance

Variable subset selection is a built in feature of the two presented meth-
ods. In both cases, the selection is a byproduct of the algorithm's op-
timizing procedure and can inform the analyst over a variable's relative
quality as a predictor. For the GRF implementation of regression forests,
this information is reported as variable importance. For the lasso, I con-
struct a variable importance measure myself. To do so, I start out from
a strongly penalized model where all coe�cients are set to zero and then
gradually reduce the impact of the penalty by a decreasing sequence of
λ. The variable which is associated with the �rst non-zero coe�cient
is considered the most important predictor. The variable which is the
last one to be considered in the model is the least important predictor.
According to this logic all variables can be ranked by this lasso based
variable importance measure.

Decision rule for variable selection

On the basis of the two variable importance measures for the considered
methods I determine the variables to survey in the SCE, which serve the
imputation of energy use.9 For illustration let us assume that the survey
only allows for the inclusion of k additional variables (or questions).

In the model selection process, both methods are evaluated including the
additional k most important variables in the training set according to
the method speci�c variable importance measure. This is a necessary
condition for a fair comparison between methods when they produce
di�erent variable importance rankings.

When the quality of the available candidate predictors is low, it might
arise that not even k of them carry valuable information to enhance
prediction. To prevent in such a case that potentially worthless variables
are surveyed, the decision rule is extended around a random variable
benchmark. The random variable benchmark consists of the variable
importance that a constructed random variable achieves when added to

9For regression forests I average the variable importance over several runs be-
fore the application to variable selection because of the stochastic component of the
method and its non exhaustive optimization algorithm.
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the set of candidate predictors. The extended decision rule of the variable
selection is as follows: an additional predictor is chosen if its importance
is above the random variable benchmark and the capacity k is not yet
exhausted.

Correlation-based variable pre-selection

While the correlation among predictors does not negatively a�ect the
quality of a prediction as long as the correlation persists also outside of
the training data (Harrell Jr. 2015), the respective correlation potentially
has an impact on variable importance. Imagine two variables which are
highly positively correlated because they measure the same underlying
information. When only one of the two variables serves as predictor to
�t a regression forest, the variable is considered in a certain number of
splits and reaches a level of importance accordingly. If now both variables
are considered in the model �tting they share the number of splits that
belonged before to only one of the two. As a consequence they also score
lower regarding variable importance relative to the model where only
one of the two correlated variables is included. Variable selection that
is based on variable importance can therefore overlook good predictors
due to joint correlation. To prevent this, I propose to eliminate one of
two correlated variables from the set of candidates before computing the
variable importance.

I remove the predictors following a heuristic approach tailored to survey
data. The algorithm follows in large parts the one proposed by Kuhn
and Johnson (2013, p.47) and proceeds as follows:

1. Compute the correlation matrix between the predictors.

2. Determine the two predictors with the largest absolute pairwise
correlation (call them predictors A and B).

3. Determine the number of non-responses for A and B.

4. If A has more non-responses than B, remove it; otherwise, remove
predictor B.

5. Repeat steps 2 to 4 until no absolute correlations are above the
threshold.

In step four, the number of non-responses is proposed as criterion for
elimination. This proposal is based on the idea that questions are selected
for the survey that subjects feel able and comfortable to answer.
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This approach to predictor elimination is heuristic rather than theoretical
as the choice of the threshold is somehow arbitrary. A possibility to learn
about what might be a reasonable threshold is to conduct a sensitivity
analysis comparing variable importance ranks for alternative choices of
the threshold.

6 Application

6.1 Variable selection

A challenge everyone faces who undertakes a survey study is to keep the
subjects by good humor during the questioning. With limited budget
to pay participants for their answers, restricting the survey in length is
important to prevent the quality of the answers to deteriorate or even
an attrition of subjects. In this respect, the planned SCE is no di�er-
ent from any other survey, and a reduction to the essential questions
is pursued to foster cooperation. For the imputation or prediction task
of energy use, this motivation suggests not to blindly survey all candi-
date predictors from the source data set. The variable selection in this
section restricts the set of candidate predictors such that only the most
promising predictors are retained. For this purpose I take a closer look at
the supplementary variables following the considerations about variable
selection in Section 5 on methodology.

The 65 supplementary variables are subject to variable selection. A par-
ticularity of these variables we came across in Section 4 is that they all �
except for two � capture di�erent attitudes an individual holds regarding
transport and transport policy.10 Some of the attitudes may, however, be
driven by common core values and beliefs the individual holds. In this
case, di�erent variables can carry the same information. Such circum-
stances would manifest themselves in a strong correlation between the
corresponding variables. In the following variable selection, each single
variable of them might then turn out to be of limited importance if jointly
considered, even though that these correlated variables turn out to be of
high importance if only single ones of them are considered. This consid-
eration motivates to perform a correlation-based variable pre-selection.
For this purpose I compute the correlation matrix based on Spearman's
rank order correlation because most variables are ordinal. The nominal
variables are transformed into dummy variables prior to computing the

10Please consider Appendix A.2 for a list of the supplementary variables.
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correlation. The set of supplementary predictors therefore extends to 76.

Indeed, the variables correlate up to 0.69 with each other. I apply the
algorithm described in Subsection 5.6 to the correlation matrix to elimi-
nate one of two predictors which are correlated more then 0.5 in absolute
value. My decision rule removes 16 variables which are listed in Table 4.11

The non-response criteria for selecting the variable to be excluded from
a pair associated with a correlation above the threshold is a reasonable
choice with regard to the high variance of non-responses. Among the
pairs with high correlation, the number of missing values varies between
0 and 3,270.

Table 4� Excluded supplementary variables in pre-selection process

Variable name
ext_costs_exam_r
transport_policies_extra_lanes
transport_statements_exp_capacit
attitudes_car_pt_5
transport_problems_emissions
transport_policies_red_pub_parki
transport_factors_mobility_price
worktime_No �exibility (�xed start and end time)
attitudes_car_pt_4
return_household_Lowering public transport fares
attitudes_car_pt_6
transport_policies_noise_reg_bik
attitudes_car_pt_7
satis�ed_1
transport_policies_car_free_zone
transport_statements_equal_cost_

After the pre-selection, the set of predictors counts 60 supplementary
and 46 core predictors. Based on this reduced data set we can compute
the variable importance measure without the risk of an unforeseen bias
caused by the correlation between the supplementary variables.

Figure 4 shows the top ranked candidate predictors by variable impor-
tance based on regression forests. The last predictor on the list is the
variable rand_constructed. This variable capturing a random vector is
exclusively added as benchmark. Every predictor which does not pass

11A more detailed table in Appendix A.5 lists additionally the correlated variables
which remain in the data set and the size of the correlation.
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Figure 4: Regression forests variable importance
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the benchmark therefore adds less information than a random variable
given the source data set. The complete regression forest based ranking
and a similar �gure for the lasso based variable importance are provided
in Appendix A.5.

Based on the rankings according to the two methods, I propose to in-
clude k of the supplementary predictors into the survey. For illustration
of the remaining steps in the imputation task I assume that another ten
variables can be surveyed (k = 10). The ten most promising supple-
mentary predictors are listed in Table 5. This short list con�rms that
the variable importance of a predictor varies with respect to the applied
method. When the selected model is based on lasso then four of the ten
selected variables are di�erent then when the selected model is based on
regression forests.

Table 5� Supplementary variables ranked by variable importance

Regression forest Lasso
1 return_transport return_transport
2 transport_factors_road_capacity transport_problems_health
3 attitudes_car_pt_1 attitudes_car_pt_8
4 transport_problems_health satis�ed_2
5 attitudes_car_pt_8 transport_factors_road_capacity
6 transport_policies_spec_mob_pric transport_factors_pt_price
7 transport_problems_noise_motor revenue
8 attitudes_car_pt_9 transport_policies_overtake_righ
9 satis�ed_2 transport_problems_speeding
10 transport_statements_keep_capaci transport_problems_noise_motor

A closer look at the selected supplementary variables raises the question
of whether it is possible to survey them in stand alone questions. For
example, the most promising predictor return_transport holds the an-
swer to the question in what kind of transport infrastructure the revenue
generated by a mobility pricing scheme should be invested. In the �-
nal survey of the MOBIS experiment this question follows another one
that introduces the subject to the hypothetical situation where a mobil-
ity pricing scheme is in place and asks more generally where the money
should go. Transport related projects are one choice option among three.

In this regard it, is important to be aware of the original context of
the questions when the selected variables are surveyed in the SCE. A
change of a question's context might lead to a di�erent understanding
of it or can activate di�erent associations which then are re�ected in
subjects' answers. As the variables vary in sophistication with respect
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to the context they require, it might be of interest to substitute more
sophisticated variables. Some suitable substitutes have potentially been
eliminated from the data set in the pre-selection.

The correlation of return_transport with another supplementary vari-
able did not lead to the exclusion of the latter in the pre-selection. This
can be concluded from the comparison of Table 5 to Table A.3. Overall
led the correlation with six of the 14 di�erent selected supplementary
variables to an exclusion in the pre-selection.

6.2 Model selection

The model selection follows the plan rolled out in Section 5.3. First,
the data is split into a training and a test set. Second, the lasso and
regression forests are tuned making use of resampling from the training
set. Third, the calibrated models from both methods are compared by
their mean cross validation error (MCVE).

Of the total observations, I put a random selection of one fourth aside as
the test set. The test set thus counts 843 observations. The remaining
2,530 observations constitute the training set.

The GRF implementation of regression forests is accompanied by a tun-
ing function. The function determines �ve of the method's parameters by
cross validation (Tibshirani et al. n.d.). The tuning output is presented
in Appendix A.7. Additional parameters of a regression forest can be
subject to tuning once you allow for honest trees. I disable the option to
grow honest trees because it requires a further sample split of the already
small training sample.12

The cross validation procedure that determines optimal model complex-
ity of the lasso can easily be traced as only one parameter is tuned.
For large values of that one tuning parameter λ, the coe�cient space is
strongly constrained. With diminishing values of λ the coe�cient space
is opened up and the predictor coe�cients approach the value they would
take in an unconstrained linear regression. This fact is also re�ected by
the horizontal lines in Figure 5. On the x-axis, λ increases from left to
right which leads to ever sparser models. The sparsity of the estimated
models is re�ected in the upper horizontal line which indicates the num-
ber of non-zero coe�cients associated with the predictors. The sequence

12For the data set at hand, a model with honest trees and otherwise equal setting
is dominated by a regression forest based on conventional trees with regard to the
validation error. The corresponding results are available on request.
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of λ for which a MCVE is computed based on 10-fold cross validation
is selected by GLMNET, an R implementation of lasso (Friedman et al.
n.d.). The proposed sequence counts 100 di�erent values for λ and for
each value are ten models �tted for cross-validation. The information
of the altogether 1,000 �tted models is summarized in the mean-squared
cross validation error which is plotted in Figure 5 with bands indicating
plus minus one standard deviation.
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Figure 5: Optimal model complexity for lasso: Mean cross-validation
error

The optimal value of λ according to this procedure is indicated by the
�rst dashed line from the left in Figure 5. The indicated λ is around 0.002
and minimizes the validation error with a model that counts 148 non-zero
coe�cients.13 The more to the left from this point, the poorer the models
perform due to over�tting. The more to the right from the minimum, the
poorer the models perform because they fall short to capture important
dependencies due to the enforced simplicity.

Both methods are now calibrated so that they deliver accurate out-of-
sample predictions. I take the tuned parameters and compute for both
methods again the MCVE by 10-fold cross validation. This way I can, on
the one hand, guarantee that the cross validation is based on the same
ten folds from the training set. On the other hand, it additionally allows
controlling the formula which is used to compute the MCVE. The com-

13The GLMNET summary output of the cross validation procedure is presented in
Appendix A.7.
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parability of model performance across methods that is thereby achieved,
renders model selection between methods possible. The obtained cross
validation results are listed in Table 6.

A direct comparison of MCVEs favors the lasso model over regression
forests. I select on this ground the lasso model for the prediction task.
However, the null hypothesis that there is no di�erence in the MCVE
cannot be rejected according to a two sample t-test.

Table 6� Model selection between methods

Regression forests Lasso
MCVE 0.297 0.268
Std. dev. 0.016 0.012
CI lower bound 0.261 0.242
CI upper bound 0.333 0.295

Generalization error 0.319 0.305
In-sample error 0.244 0.239

N ote: The con�dence intervals CI are constructed for a
5% signi�cance level assuming that the MCVE follows a
Student-distribution with 9 degrees of freedom.

After the tuning by cross validation I �t a model for both methods to
the entire training data set. These models are then applied to predict
the responses of the training set and the test set. The �rst application
is used to compute the in-sample error. The second application to the
test data is, in a sense, the operationalization of the models. They are
used to predict responses which were not used to train the model. The
prediction error over an independent test sample is for this reason also
called the generalization error. It indicates how well a model generalizes
to unseen data. For both methods the comparison of the generalization
error to the in-sample error indicates that the models over�t.

The model selection statistics also suggest that the linear model maps
the dependencies between the predictors and energy use better than the
non-linear model does. This is surprising as the predictions with lasso are
forced to be symmetric around the mean, while the predictions from the
regression forest are more �exible to capture the skewness in the distri-
bution of the response. However, it is conceivable that more observations
would have turned the selection in favor of regression forests. The addi-
tional information would have admitted to utilize more of GRF's features
that reduce over�tting such as honest trees.

If additional methods were considered in the model selection, MARS
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would have o�ered itself.14 This non-linear regression method is better
suited to model additive structures than regression trees and thus allows
for a smoother mapping of the underlying function.

6.3 Prediction model

To get familiar with the selected prediction model I look at two distinct
aspects of it, which are important in the MOBIS setting. The �rst aspect
is the imputation of the level of energy use in the SCE. The second
aspect is the prediction of di�erences in energy use based on the answers
subjects give in the SCE. The second aspect is illustrated by means of
the registration tax example introduced in the theory section.

The imputation task is the prediction of energy use over an indepen-
dent target data set. The most honest indicator for the prediction ac-
curacy of this application provides the generalization error. To get a
better understanding for the generalization error I take the square root
of it. The transformed error then has the same unit as energy use. In
our application, the square root of the generalization error amounts to√
0.305 = 0.52. It thus adds up to around one half of the average daily

energy use of 0.91. Table 7 puts this performance in perspective. The
table lists three other linear prediction models that can be adopted to
impute energy use in the SCE.

Table 7� Comparison of prediction models

LR0 LR10 Core lasso Lasso
Generalization error 0.428 0.341 0.307 0.305
In-sample error 0.401 0.302 0.247 0.239
No. non-zero coe�s 0 10 109 148

The �rst model LR0 in Table 7 approximates an individual's energy use
simply by the same constant for everyone, which amounts to the average
daily energy use when the response is regressed on a constant. The next
model LR10 in Table 7 is an OLS regression including ten predictors. The
�rst �ve predictors are the top ranked according to the variable impor-
tance derived from lasso. The remaining �ve predictors are the dummy
variables capturing the information regarding the size of an individual's
car. The model core lasso is the optimally tuned lasso model when only
the core predictors are considered. A comparison of the generalization

14Hastie et al. (2009) give an introduction to multivariate adaptive regression splines
(MARS).
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errors between the core lasso and the selected lasso model presented in
the fourth column shows that ten additionally surveyed variables improve
the prediction but not by much. It is not surprising however, that the im-
provement of the prediction through the inclusion of the predominately
attitudinal variables is modest. The core values and beliefs behind these
attitudes are in mutual dependency with the preference for the mobility
tools and the intensity with which they are used. Both, the mobility
tools and the frequency of their use are already considered in the set of
core predictors.

Before going over to the analysis of the potential e�ect of a rise in the
registration tax on energy use, we have a look on the existing car �eet. In
the �eet �ve groups of cars are distinguished by size. The categories are
listed in Table 8 together with the number of respondents that own a car
from this category and the lasso coe�cient associated with the category.
The coe�cients indicate for each group by how much the energy use
deviates from the reference group which accounts for the energy use of
an owner of a small car. The magnitudes of the coe�cients match the
expectation one would form based on the weight and horse power that
is normally associated with each group. However, the coe�cients also
convey information on the mobility behavior of a typical exponent of the
respective group. For example, there might exist a link that people who
drive longer distances in their car are also more likely to buy a larger
car that provides more comfort. It can be thought of many more such
examples that suggest endogeneity of the coe�cient estimates caused by
omitted variables. While this fact does not limit the predictive power of
the model in any way, it has to be kept in mind when interpreting the
coe�cients.

Table 8� Car size and predicted energy use for the existing �eet

Car size n Lasso coef.
Small car 843 -
Medium to large car 1,349 0.187
Minivan or van 226 0.427
Luxury car or sports coupé 85 0.451
O�-road vehicle 456 0.442
No own car 414 0.002

Starting from the existing �eet, the average energy use is at 0.91. Imagine
that this is the state for a given level of the registration tax. Now, after a
policy change, the world enters a state where heavier and more powerful
cars are costlier due to a rise in the registration tax. For simplicity,
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we assume that in the new state everyone switches to own a small car
as a reaction to the tax increase. All else equal, the predicted energy
use for individual mobility drops by 20%, on average, for the sample
at hand. The average energy use in this new equilibrium is 0.73. The
light blue bar in the center of Figure 6 depicts the predicted lower level
of energy consumption and sets it in relation to the observed sample
average represented by the red line.

A similar thought experiment in the same context is to assume that an
otherwise average respondent owns a luxury car previous to the rise in
the registration tax. The model predicts for this individual's mobility
behavior an average daily energy consumption of 1.19. This level is
indicated by the bar in dark blue in the center of Figure 6. Now the
two bars can be compared. They re�ect a scenario in which � after the
increase in the registration tax � the respondent adjusts his mobility
toolbox in the direction of the tax incentive, and changes to a small car.
The prediction model puts the energy use accordingly down to the level
indicated by the light blue bar of 0.73. The predicted change in energy
use by the model amounts to 1.185 − 0.734 = 0.451. Not surprisingly,
this is exactly the magnitude of the lasso coe�cient associated with the
category luxury car.

LR10 Lasso Reg. Forest
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Figure 6: Prediction of energy use

The last line of the thought experiment exposes the weakness of the model
application to predict di�erentials in energy use. With the prediction of
energy di�erentials we enter the realm of causal inference. Unlike the
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imputation of the level of energy use in an environment with given and
stable restrictions, the endogeneity of the coe�cient estimate limits the
explanatory power of predictions when alternative regimes of restrictions
are assumed. The predicted change is only valid under the two condi-
tions derived in the theory section. The �rst condition is that all other
attributes of the mean respondent that �gure in the prediction model
apart from the car size remain constant. The second condition is that
the mean respondent adopts all the unobserved behavioral patterns (or
omitted variables) that are typical for a small car owner and are cap-
tured by the car size variable. To what extent these conditions hold has
to be carefully assessed in every application of this imputation/prediction
strategy.
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7 Conclusion

In this thesis, an imputation setting is examined in the context of the
prediction of individual energy use for mobility. It has led to the de-
velopment of a variable subset selection procedure which precedes the
conventional model selection. In addition to the imputation of energy
use, the selected model can be applied to predict di�erences in energy
use with regard to adaptation of individual endowments, for example, in
the mobility tools.

The results indicate that the developed variable selection procedure serves
its end. It allows making an informed choice on the predictors to include.
For this purpose, the proposed procedure can also be generalized to other
applications. However, the procedure is no substitute for a good under-
standing of the prediction data. It cannot be pursued in a mechanical
way. Moreover, the added value of the procedure is still to be explored
further. In particular, sensitivity checks would allow statements about
the extent to which the procedure can enhance prediction performance.

In the current study, lasso provides the relatively best prediction model
according to the conducted model selection. Of course, this statement
is not conclusive for the modeling of individual energy use for mobility.
The statement is made based on the prediction data of the application
and with regard to the considered methods. Within the selected model,
self-stated travel behavior is most predictive for energy use. This might
not come as a surprise. In contrast, and more surprising, attitudinal
variables improve the prediction by relatively little. This �nding has to
be treated with caution though as the model has a limited prediction
capacity for changes in energy use. Attitudes can potentially predict
more when individuals' adaptation to a regime change is observed.

Overall, the analysis suggests that data based avenue with machine learn-
ing holds a large potential for imputation tasks across di�erent research
designs.
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Appendix

A.1 MOBIS study inclusion criteria

The inclusion criteria for the MOBIS experiment out of the study's �nal

report by Axhausen, Hintermann, Castro, Dubernet, Götschi, Molloy,

Schoeman, Tschervenkov and Tomic (2021): "...identify subjects who

quali�ed for the main study based on the following inclusion criteria:

� To be the recipient of the personal invitation letter (the invitation

was not transferable to other persons)

� To live in a metropolitan area in the German- or French-speaking

part of Switzerland (the lists of addresses included only people liv-

ing in these areas but the survey doublechecked the post code)

� To be between 18 and 65 years old in 2018 (the list of addresses

provided by the BFS was pre-�ltered by age at this year)

� To travel by car at least two weekdays per week (including their

own car, car-sharing as a driver, or with a taxi and App-based

services such as Uber as passenger)

� To use of a smartphone that can install the tracking app

� To be able to walk 200 meter without assistance (to ensure that

participants have free mode choice)

� To not work as a professional driver (to ensure that participants

have free mode choice)"

i



A.2 List of predictors

Table A.1� Core predictors from the source data set

Core predictors
Postcode based pt_pass_other
postcode_home pt_pass_no_pass
postcode_jobs_main Car characteristics
postcode_jobs_secondary car_fuel
gen_accessibility car_year
oev_accessibility car_size
miv_accessibility Work related
Use of mobility tools work_status_employed
freq_cardriver_own_car work_status_self_employed
freq_cardriver_shared_car main_employment
freq_carpass_car_in_hh work_status_unemployed
freq_carpass_car_pooling work_status_apprentice
freq_carpass_taxi work_status_student
freq_carpass_app_based work_status_retired
freq_pt_train work_status_other
freq_pt_local_pt workload_jobs_main
freq_bike_own_bike workload_jobs_secondary
freq_bike_own_ebike homeo�ce_do_yes
freq_bike_bike_sharing homeo�ce_do_days
Ownership of mobility tools homeo�ce_can_yes
own_vehicles_motorbike homeo�ce_can_days
own_vehicles_bicycle Socio economic
own_vehicles_car language
bike_type_regular gender
bike_type_ebike_45 education
bike_type_ebike_25 income
pt_pass_ga household_size
pt_pass_half_fare citizen_1
pt_pass_regional_pass age
pt_pass_track_7
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Table A.2� Supplementary predictors from the source data set

Supplementary predictors
Transport related attitudes transport_problems_crowding_pt
transport_policies_spec_mob_pric transport_problems_speeding
transport_policies_red_speed transport_problems_dui
transport_policies_dyn_limits transport_problems_distracted_dr
transport_policies_extra_lanes transport_problems_risk_ped
transport_policies_bus_lanes transport_problems_risk_cyc
transport_policies_exp_cyc transport_problems_risk_dri
transport_policies_car_free_zone Trade-o� car vs. public transport
transport_policies_incr_park_cos attitudes_car_pt_1
transport_policies_subs_etra�c attitudes_car_pt_2
transport_policies_overtake_righ attitudes_car_pt_3
transport_policies_noise_reg_bik attitudes_car_pt_4
transport_policies_red_min_age attitudes_car_pt_5
transport_policies_red_pub_parki attitudes_car_pt_6
transport_statements_exp_capacit attitudes_car_pt_7
transport_statements_social_cost attitudes_car_pt_8
transport_statements_gov_pt attitudes_car_pt_9
transport_statements_pt_dyn_pric attitudes_car_pt_10
transport_statements_equal_cost_r attitudes_car_pt_11
transport_statements_equal_cost_i attitudes_car_pt_12
transport_statements_no_public_f attitudes_car_pt_13
transport_statements_red_gov_int Diverse
transport_statements_no_tax_dedu satis�ed_1
transport_statements_keep_capaci satis�ed_2
transport_factors_mobility_price ext_costs_exam
transport_factors_road_capacity revenue
transport_factors_pt_capacity return_household
transport_factors_fuel_price return_transport
transport_factors_pt_price worktime
transport_problems_congestion Value framework Bouman et al. 2018
transport_problems_emissions hedonic
transport_problems_health egoistic
transport_problems_too_much_trav altruistic
transport_problems_noise_motor biospheric
transport_problems_noise_pt
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A.3 Example of a survey question

For the variable transport_policies_spec_mob_pric the correspond-

ing survey question is listed with the possible answers.

Please indicate whether you agree or disagree with the policy.

Time- and route-speci�c mobility pricing, made revenue-neutral by

lowering other taxes.

Possible answers:

� Strongly disagree

� Disagree

� Neither disagree nor agree

� Agree

� Strongly agree

A.4 Data cleaning

The data cleaning procedure follows these �ve brie�y described steps:

1. Merge di�erent data �les.

2. Identify the response and variables that can serve as predictor (are

suitable for survey study).

3. Check variable types.

4. Bring the categories of the ordinal variables in the order that the

information they hold implies.

5. Aggregate the observations by individual.

A.5 Variable pre-selection output
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A.6 Variable importance

car_fuel_Gasoline

oev_accessibility

transport_factors_pt_price_Much too high

household_size_4

transport_factors_road_capacity_Neither too low nor too high

age

car_year_1997 – 2000

car_year_2011 − 2014

freq_bike_own_bike_3 or more days per week

pt_pass_regional_pass_TRUE

car_size_Luxury car or sports coupé (e.g. Mercedes−Benz E−Class, BMW 7 Series or Porsche 911)

freq_cardriver_shared_car_3 or more days per week

satisfied_2_Very satisfied

attitudes_car_pt_8_Very much agree

transport_problems_health_Much more attention

car_size_Minivan or van (e.g. Opel Zafira)

wl_job_main_NA

car_size_Off−road vehicle (e.g. Landrover Discovery)

gen_accessibility

gender_Male

return_transport_Projects related to motorized transport

freq_pt_local_pt_3 or more days per week

freq_cardriver_own_car_3 or more days per week

intercept

0.00 0.25 0.50 0.75 1.00
Variabele Importance
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e 
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e

Figure A.1: Lasso variable importance
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Table A.4� Predictors ranked by regression forest variable importance

Variable Importance
Part I
freq_cardriver_own_car 1.00
freq_pt_local_pt 0.70
car_size 0.50
workload_jobs_main 0.33
gen_accessibility 0.25
car_fuel 0.22
return_transport_Projects related to motorized trans-
port

0.19

gender 0.13
freq_pt_train 0.13
pt_pass_regional_pass 0.08
freq_cardriver_shared_car 0.06
main_employment 0.03
transport_factors_road_capacity 0.03
attitudes_car_pt_1 0.02
transport_problems_health 0.02
attitudes_car_pt_8 0.02
pt_pass_no_pass 0.02
language 0.02
car_year 0.02
freq_carpass_car_in_hh 0.01
own_vehicles_car 0.01
miv_accessibility 0.01
age 0.01
transport_policies_spec_mob_pric 0.01
freq_bike_own_bike 0.01
work_status_student 0.01
transport_problems_noise_motor 0.01
N ote: The importance values are normalized such that the highest ranked variable
has an importance of 1.

The variable importance ranking according to lasso can be provided on

request.

vii



Variable Importance
Part II
attitudes_car_pt_9 0.01
oev_accessibility 0.01
satis�ed_2 0.01
transport_statements_keep_capaci 0.01
transport_policies_overtake_righ 0.01
transport_statements_no_tax_dedu 0.01
rand_constructed 0.01
household_size 0.01
transport_statements_no_public_f 0.01
egoistic 0.01
transport_factors_pt_capacity 0.00
transport_policies_bus_lanes 0.00
freq_carpass_car_pooling 0.00
freq_carpass_app_based 0.00
biospheric 0.00
education 0.00
transport_statements_social_cost 0.00
transport_policies_subs_etra�c 0.00
work_status_employed 0.00
transport_factors_fuel_price 0.00
attitudes_car_pt_3 0.00
transport_problems_speeding 0.00
transport_policies_red_speed 0.00
altruistic 0.00
transport_statements_pt_dyn_pric 0.00
freq_bike_bike_sharing 0.00
attitudes_car_pt_10 0.00
transport_problems_dui 0.00
transport_policies_exp_cyc 0.00
transport_statements_red_gov_int 0.00
transport_problems_risk_cyc 0.00
attitudes_car_pt_2 0.00
transport_problems_congestion 0.00
return_transport_Projects related to public transport 0.00
transport_factors_pt_price 0.00
transport_problems_distracted_dr 0.00
pt_pass_ga 0.00
transport_problems_too_much_trav 0.00
transport_problems_noise_pt 0.00
transport_problems_risk_dri 0.00
transport_policies_red_min_age 0.00
transport_policies_incr_park_cos 0.00

viii



Variable Importance
Part III
hedonic 0.00
income 0.00
revenue_The money should be returned to households 0.00
freq_carpass_taxi 0.00
transport_statements_gov_pt 0.00
attitudes_car_pt_12 0.00
v92 0.00
transport_problems_crowding_pt 0.00
transport_policies_dyn_limits 0.00
return_transport_Projects related to bicycling 0.00
transport_problems_risk_ped 0.00
freq_bike_own_ebike 0.00
attitudes_car_pt_13 0.00
work_status_self_employed 0.00
attitudes_car_pt_11 0.00
return_household_Returning the same amount to ev-
eryone (e.g., by lowering health insurance premia)

0.00

pt_pass_half_fare 0.00
pt_pass_other 0.00
own_vehicles_bicycle 0.00
workload_jobs_secondary 0.00
work_status_apprentice 0.00
work_status_other 0.00
ext_costs_exam_w 0.00
revenue_The money should be used to fund new
transport-related projects

0.00

bike_type_ebike_45 0.00
bike_type_regular 0.00
homeo�ce_do_yes 0.00
worktime_Some �exibility (�exible start and/or end
time, but completing a set number of hours per day)

0.00

worktime_NA 0.00
bike_type_ebike_25 0.00
work_status_unemployed 0.00
revenue_Other (please specify) 0.00
return_household_Lowering existing taxes that are un-
related to transport (e.g., value added tax)

0.00

work_status_retired 0.00
return_household_Other (please specify) 0.00
citizen_1 0.00
pt_pass_track_7 0.00
return_transport_Projects related to walking 0.00

ix



A.7 Tuning output regression methods

The lasso tuning parameter which optimizes out-of-sample performance

of the model is found by cross validation which is implemented in the

cv.glmnet function of the glmnet package (Friedman et al. n.d.). The

function output summary below provides the λ which minimizes the mean

cross validation error.

--------------------------------------------

Call: cv.glmnet(x = xs, y = y, alpha = 1)

Measure: Mean-Squared Error

Lambda Measure SE Nonzero

min 0.002076 0.2681 0.01464 148

1se 0.011080 0.2825 0.01527 81

--------------------------------------------

The function tune_regression_forest tunes �ve parameters of the re-

gression forests model from the grf package (Tibshirani et al. n.d.). The

�ve parameters are listed in the following shortened tuning output sum-

mary.

--------------------------------------------

Tuning status: tuned.

This indicates tuning found parameters that

are expected to perform better than default.

Predicted debiased error: 0.275325005596998

Tuned parameters:

sample.fraction: 0.416843527555466

mtry: 13

min.node.size: 2

x



alpha: 0.0110047467169352

imbalance.penalty: 0.923230990276616

Average error by 5-quantile:

[...]

--------------------------------------------
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