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Abstract 

This work analyses transportation mode choice behaviour in urban agglomerations in 

Switzerland. Based on data from a stated preference experiment and using mixed multinomial 

logit models, it has the form of an exploratory study that collects first insights.   

Results show on the one hand that the inclusion and manipulation of external costs had only 

reduced effect on choice behaviour. The majority of the participants did not consider the 

relatively less expensive public transport or bike alternatives. Preferences for a transportation 

mode seem solidified. Apart from travel time, they can more readily be explained by transport 

means equipment and sentiment on issues of transportation like congestion or CO2 emission. 

Alternative departure times by car were considered more easily.   

On the other hand, this work also notes on the challenges in the process of deriving robust 

random parameter models and the broad range of possible settings. The estimated values of 

travel time savings (VTTS) as well as a high number of iterations until convergence call for 

additional robustness checks and the testing of alternative model specifications.  
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1. Introduction 

1.1. Context and motivation 

Human decision-making processes are inherently complex. Influenced by countless factors 

and often driven by intuition, we make thousands of decisions every day. Some are less, others 

more important on our lives, some are of short-lived nature, others are long-term decisions. 

Our choices, however, reveal information about our subjective preferences which allows for 

subtle influence and nudging. When it comes to designing smart policies in order to react to 

some of the great challenges our societies face today – climate change being an obvious 

example – it is of great importance to understand from a micro-level how individuals make their 

decisions. These can be decisions like which products we buy, which meal we choose at lunch 

in the cafeteria or the choice of our preferred means of transportation to get to our work or 

study place.   

In an aggregate perspective, such decisions can have huge implications. For a developed 

country like Switzerland, the choice of transportation mode is of special importance from a 

societal and ecological perspective. From the year 2000 to 2018, passenger traffic in 

Switzerland increased by 33% to about 136 billion kilometres in 2018 (BFS 2020). In the year 

2015, this meant that the average citizen travelled 37 kilometres each day within Switzerland 

(BFS 2017). This degree of mobility comes at a high price. For the year 2016, the costs for 

accidents have been estimated at about 7.5 billion CHF and environmental and health related 

costs at about 9 billion CHF (including aviation) (BFS 2019). These costs are to a large extent 

not borne by the producer but are externalized to society, as the BFS (2019) writes. Additional 

economic costs, for example from the time people (and goods) spend in traffic jams, must be 

considered as well. Furthermore, in order for Switzerland to be in line with the international 

binding goals of the Paris climate change agreement, the reduction of CO2 output coming from 

individual traffic will play a considerably role.  

These are all facets of a problem which is in part caused by individual choices of how to cover 

daily trips and which makes congruent mobility policies potentially highly fruitful in a number of 

areas. For policy makers it is therefore of great importance to understand how individuals 

decide on their transportation mode and which factors drive their decision: Are people willing 

to pay more in order to switch to a transportation mode which produces fewer external costs? 

How do they price their travel time and potential time savings? Which factors influence the 

decision for a certain transportation mode the most? And is it possible to make people more 

sensitive to the negative consequences they produce with their travel behaviour? These are 

some of the relevant questions this thesis circles around and where the analysis of data from 

choice behaviour helps to find answers. In economics, such questions are classically 
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processed and statistically evaluated using random utility models that allow to quantify 

subjective preferences. Instead of modelling aggregate level data, discrete choice models 

demand data at a disaggregated level, where every data point represents a performed choice 

by an individual. Funded by Swiss Federal authorities, the MOBIS Research Project (2019) 

collected a comprehensive dataset on mobility behaviour in Switzerland. Part of this dataset is 

a stated preference (SP) experiment which collected participants choices for different 

transportation modes and will serve as the starting point of this work. 

1.2. Research objectives and delimitations 

This thesis has the form of an exploratory study on the decision making between transportation 

modes in urban settings. It is based on the data of the SP experiment collected within the 

MOBIS Research Project (2019). The statistical analysis of the data is mainly done using mixed 

multinomial logit (MMNL) models which allow for random taste heterogeneity and are 

considered as state-of-the-art for discrete choice modelling. 

On a content level, we explore different factors that are thought to drive individuals' decision-

making in this context. More specifically, we investigate how people value their travel time 

under different transportation modes. Additionally, the role of external costs on decision-

making is examined. To the best of our knowledge, there is a lack of studies that consider 

external costs in transportation mode choices for Switzerland. In an ideal case, some critical 

factors and implications for transportation policies can be highlighted. On a theoretical-

methodological level, the work collects findings on the feasibility of a mixed logit approach to 

the MOBIS data, and notes on the procedure for creating mixed logit models. As an 

investigatory work, it builds up knowledge and collects best practices for further research on 

the MOBIS data set. The study is limited in the sense that no new data is collected as it fully 

builds on the already conducted experiment and its resulting data which focuses on urban 

agglomerations in Switzerland.  

1.3. Structure of the thesis 

The thesis comprises five chapters. Chapter 2 describes the theoretical and methodological 

foundations this study is based on. Section 2.1 and 2.2 provide a short introduction to choice-

modelling and mixed multinomial logit models whereas Section 2.3 investigates related 

literature and best practices our analysis can profit from. Section 3.1 explains the stated 

preference experiment that was conducted in the MOBIS project and 3.2 summarizes the data 

that is used in this thesis. Chapter 4 contains the empirical parts of this study. Section 4.1 gives 

an insight into the procedure that was followed, and Section 4.2 explains settings to be 

considered in mixed MNL models. In Section 4.3 some descriptive evaluations of the data were 

done, including an analysis of trading behaviour and a descriptive analysis of participants 
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response times. Section 4.4 discusses the model outputs; Section 4.5 mentions the issue of 

correlation and Section 4.6 provides calculations of value-of-travel-time-savings (VTTS). 

Chapter 5 highlights the most important findings, as well as the study’s limitations and ends in 

a discussion of further improvements of the model and possible future research. 
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2. Theoretical and Methodological Foundations 

2.1. Modelling discrete choices 

Disaggregated models of individual behaviour try to model and to predict human decision-

making in (discrete) choice situations. The framework for discrete choice models includes four 

basic ingredients (Ben-Akiva and Bierlaire 1999): (1) a decision-making entity with its 

characteristics, (2) a (mutually exclusive, finite) set of available options, (3) the attributes to the 

alternatives (which can be alternative-specific or generic to each alternatives) and (4) a 

decision rule followed by the decision-maker. For the latter, economists make use of the 

concept of utility. In simple terms, utility theory is based on the belief that a consumer derives 

a benefit from consuming a product or service by satisfying a need. According to the theory, 

this benefit, called utility, is what the consumer tries to maximize in any situation. For discrete 

choices, the preference of the consumer for an alternative depends on his or her own (cardinal) 

utility attached to this alternative. The consumer's utility is not known to any observer but when 

choosing between alternatives, the decision-maker discloses their preferences and makes it 

possible to infer to his or her utility function (Hensher et al. 2015).  

Of course, it is well known that human decisions are not completely deterministic, and we need 

to account for a probabilistic part. Random utility theory adds uncertainty to the deterministic 

decision rule of utility maximizing behaviour. It can be interpreted as either incomplete 

information on part of the researcher or as the intrinsically probabilistic nature of human 

decision-making. In order to model the behaviour, a random distribution with some density 

must be assumed. Following Train (2009), a random utility model (RUM) is derived by defining 

a utility 𝑈𝑛𝑗 of decision-maker 𝑛 for alternative 𝑗 . As mentioned before, this utility is not known 

by the external observer, who can only observe some attributes of the decision-maker and the 

alternatives of the choice situation, which are summarized by 𝑉𝑛𝑗. Factors that are 

unobservable are named 𝜀𝑛𝑗, so that the general utility for alternative 𝑗  consists of 𝑈𝑛𝑗 = 𝑉𝑛𝑗 +

 𝜀𝑛𝑗. The unobserved factors are treated as random with density 𝑓(𝜀𝑛) for the random vector 

𝜀𝑛 = (𝜀𝑛1, … , 𝜀𝑛𝐽) over all alternatives 𝐽. Modelling choices means modelling the probability of 

a particular outcome. With the density 𝑓(𝜀𝑛), the cumulative probability is an integral  

𝑃𝑛𝑖 =  ∫ 𝐼(𝜀𝑛𝑗 − 𝜀𝑛𝑖 < 𝑉𝑛𝑖 − 𝑉𝑛𝑗 ∀ 𝑗 ≠ 𝑖)𝑓(𝜀𝑛)
 

𝜀

𝑑𝜀𝑛 

in which the indicator function 𝐼(. ) is equal to 1 if the random term 𝜀𝑛𝑗 − 𝜀𝑛𝑖 is smaller than the 

observed part 𝑉𝑛𝑖 − 𝑉𝑛𝑗 (and 0 otherwise). Depending on the chosen distribution of the random 

part, the choice probabilities can either be calculated from a closed form formula or must be 

approximated by simulation. While the latter one is applicable to almost any model 

(2.1) 
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specification, a closed form expression only works for some specifications of 𝑓(𝜀𝑛) (Train 

2009). 

For a long time, multinomial logit (MNL) models have been the standard for discrete choice 

modelling. With their closed form expression, they are easily computable. But the computability 

comes at the cost of the strict assumption that the unobserved part of the individual’s decision-

making is independently and identically distributed extreme value (Train 2009). In practice, the 

assumption on independence means that the unobserved portion of utility of one alternative is 

in no way related to the unobserved portion of utility for any other alternative. But as one can 

imagine, the error terms between alternatives often are correlated. Of course, as Train (2009) 

states, the best way is to specify a model such that the question of correlation can be 

minimized, but in many applications, this seems unrealistic. Additional issues arise if one 

expects differences in tastes of the decision-makers that cannot be related to observed 

characteristics. Or if there are substitution patterns of alternatives that are not proportional to 

each other, meaning that the introduction or change of an alternative, changes the ratio of 

probabilities for the existing alternatives (see for example Train 2009, pp. 45-49). In choice 

theory this phenomenon relates to the Independence from Irrelevant Alternatives (IIA) property 

and is one of the shortcomings of the standard logit model.   

Mixed models can overcome these issues, in that the random term is decomposed so that one 

part can be solved analytically, whereas the rest is being simulated. These models bring 

together the advantage of analytical integrals, which are more accurate and easier to calculate, 

and the easing of the constraints of pure closed form models. Mixed multinomial logit (MMNL) 

models are one example of such an application. 

2.2. Mixed multinomial logit models 

The three limitations of standard logit models, the independence assumption of unobserved 

factors over time, the constraint on random taste variation and the restricted substitution 

patterns, can be bypassed using random parameter models like MMNL. The mixed MNL model 

assumes that the beta coefficients vary over the population. Each subject gets their own beta 

and the coefficients show an estimated mean and standard deviation from a predefined 

population distribution. The result is a highly flexible model which allows one to approximate 

any random utility model as closely as one likes to (McFadden and Train, 2000). Of course, it 

is possible to keep some elements of the model fixed and make it standard logit again. The 

mixed logit probability 

𝑃𝑛𝑖 = ∫ (
𝑒𝛽′𝑥𝑛𝑖

∑ 𝑒𝛽′𝑥𝑛𝑖𝑗

) 𝑓(𝛽)𝑑𝛽 (2.2) 
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differs from the logit formula only in that it has a density function 𝑓(𝛽), which creates a weighted 

average from the different values of 𝛽 (Train 2009). The mean and covariance of 𝑓(𝛽) are then 

estimated using maximum likelihood estimation. All possible distributions can be chosen while 

utility maximizing is guaranteed by the approximation process. This results in a highly flexible 

model which, depending on the purpose of the analysis, can take many different specifications. 

More details about the specification of mixed MNL models is provided in Section 4.2 where it 

is applied to our data. 

Viton (2004) argued that the mixed logit model will completely replace standard logit models 

for the study of discrete choices. He asked how this could potentially change some of the policy 

conclusions from older models and investigated it by comparing a set of policy conclusions 

regarding private bus transit provisions in urban settings to a mixed logit model specification. 

Although conclusions and policy recommendations do not change completely, he was able to 

gain additional insights regarding some policies that were not available in the standard logit 

case. We can expect for our study as well to gain more insights when we make the effort of 

following a mixed logit approach. 

2.3. Related literature on transportation choices 

Some of the earliest applications of logit models were in the context of transportation and 

mobility. In the mid-1970s, Daniel McFadden and others (McFadden et al. 1977 in McFadden 

2000) estimated future demand for a new rail system in the San Francisco Bay area. Their 

choice models were able to predict future demand much better than the initial estimations by 

project authorities. Since then many applications of logit, and today mixed logit, models to 

transportation choices have been made. However, it is in the nature of disaggregated level 

data that the decisions belong to a specific context with a specific set of alternatives. Even 

though it is possible to work with pooled data that was collected over several decision contexts 

and then use the decision context as an explanatory variable, inference-making is more difficult 

than for aggregate level data (Hensher et al. 2015, p. 31). Nevertheless, this section mentions 

some applications from which our analysis can profit. 

In the economics discipline among others, a lot of focus is put on willingness to pay (WTP) 

indicators, such as values of travel-time savings (VTTS). In a paper by Axhausen et al. (2008), 

a stated preference study, like the MOBIS study based on observed trips, investigated mode 

and route choices depending on the trip purpose (business, commuting, leisure or shopping). 

The analysis of the VTTS estimates for commuting trips, which are the most relevant for our 

study, results in 28 CHF/h for public transport (PT) and 31 CHF/h for car, while taking account 

of income and trip distance and showing an income effect for PT commuters as well as car 

commuters. A more recent Swiss study (Schmid et al. 2016) found VTTS around 20 CHF/h for 

PT in-vehicle time and around 60 CHF/h for travel time spent on a bike. As their study aimed 
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at gaining insights into how possible future restriction on individual car ownership could 

influence choices for transportation modes, they investigated car-sharing and car-pooling 

modes, where the former showed VTTS of low 11 CHF/h and the latter VTTS of around 25 

CHF/h. In comparison, Schmid et al. (2019) used Austrian data to examine mode and user-

type effects in VTTS. While the income level differs from Austria to Switzerland, the relative 

differences between transportation modes are interesting: the authors found VTTS estimates 

of 12 Euro/h for car, 8 Euro/h for public transport and again about 12 Euro/h for bike rides. 

They further wrote that “characteristics of the mode are more important than characteristics of 

the users and that the travel time spent in PT is valued less than in a car for all investigated 

user groups” (Schmid et al. 2019, p. 262).  

Hess et al. (2005) also investigated implied VTTS calculated from discrete choice models with 

random taste heterogeneity. Their work is special because they explicitly investigated cases 

with non-zero probability of positive travel-time coefficients, which on the first view contradicts 

any theory of rational economic behaviour but nevertheless can arise quite frequently. In 

general, such problems are avoided by using distributions bounded at zero, but as Hess et al. 

(2005) showed, unobserved attributes on travel-experience (for example a not measured 

comfort factor) or conjoint activities (such as for example working while commuting) can bias 

estimations and call for different interpretations. They suggested to nevertheless use bounded 

distributions but to estimate the bounds first to reduce the risk of bias coming from the shape 

of the chosen distribution. Going in a similar direction, Bastin et al. (2010) presented different 

specifications to a mixed logit model and applied it to stated preference data from a survey on 

mobility behaviour in Brussels. Much like our data from the MOBIS Research Project (2019), 

Bastin et al. (2010) followed car users that commute during daily peak hours and presented 

them with alternative transport modes, among them delayed departure times and public 

transportation. Having a somewhat smaller dataset than ours and only taking 7 random 

parameters out of a total of 18 exogenous variables, they tried out different distributions for 

their time and cost coefficients and found that using a basis spline function improved their 

results compared to normal distributions. It is conspicuous however how much variability in 

VTTS exists between their different models and the difference of VTTS between free-float 

driving and congestion is very small compared to other studies. However, it shows again how 

sensitive mixed MNL models can react to distributional assumptions. 

Instead of calculating marginal willingness to pay in a post-estimation process, it is also 

possible to estimate the whole model in a willingness to pay space (see for example Hensher 

et al. 2015). Scarpa et al. (2008) compared the two approaches, preference space versus 

willingness to pay space, using data on site choice in the Alps. Their starting point was the 

issue of counter-intuitive distributions of marginal willingness to pay. As they mention, this 

issue arises regularly when using normal or log-normal distributions for taste coefficients as 
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the cost coefficients, which enter the denominator, are often close to zero and thereby create 

large ratios. As assuming the cost coefficients to be fixed instead of random is not plausible in 

many applications, parameterizing the model in a WTP space is often the better solution. In 

their application, the model estimated in WTP space outperformed the preference space 

specification. Scarpa et al. (2008) stated two other studies which compared the specification 

in the preference space to the WTP space (Train and Sonnier, 2005, and Sonnier et al., 2007, 

cited in Scarpa et al., 2008). In both these studies preference space specifications fitted in-

sample data better. Not so for Scarpa et al. (2008) investigations though, where the model in 

WTP space outperformed. Also, the WTP space specification produced thinner tails of WTP 

distributions in all three studies. 

Based on a broad study about factors influencing the demand for public transportation, Paulley 

et al. (2006) investigated the four most significant attributes, fares, quality of service, car 

ownership and income. As for the quality of service, attributes were obtained by stated 

preference experiments and include access and egress time. These are shown to weigh 

between 1.4 to 2.0 units of in-vehicle time for walking and quite similar for other access/egress 

modes like driving or cycling. Elasticities for attributes like frequency are calculated using the 

number of vehicle kilometres operated as indicator and shows to be positive with a short-run 

elasticity (1-2 years) of 0.38 and a long-run elasticity (12-15 years) of 0.66. Elasticities of in-

vehicle time are not stated by Paulley et al. (2006) as their bus journeys are relatively short. 

However, they state several studies finding values between -0.4 to -0.9 for urban range 

journeys. 

A vast number of additional studies concerning transport mode choices exists. The studies 

mentioned in this section give answers to a broad range of questions and show several 

important factors in modelling discrete choices. However, little has been done yet regarding 

the effect of external costs. To the best of our knowledge, this thesis is the first to attempt an 

investigation into transport mode choice behaviour in Switzerland which include the effect of 

external costs. 
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3. Experiment and Data 

3.1. Experimental design 

The data used in this thesis was collected within the research project «Mobility behaviour in 

Switzerland» (MOBIS). Funded by the Swiss Agency for Innovation Promotion (Innosuisse) 

and the Federal Department for the Environment, Transport, Energy and Communications 

(DETEC), the project aims “to gain new insight into how best to improve transport systems in 

urban agglomerations in Switzerland” (MOBIS 2019). Over 95'000 randomly selected citizens 

of major agglomerations from the German and French speaking part of Switzerland were 

invited to participate in an online survey on their mobility behaviour and their convictions on 

different transport policy measures. About 22’000 people finished the first online survey, out of 

which 5’693 were accepted to participate in a continuative smartphone tracking field 

experiment. Only people out of the working population, defined as age group between 18 and 

65 years old were accepted. A further condition was, that they travel by car at least twice a 

week. Professional drivers were excluded. For the following two months, an app installed on 

their smartphones would automatically register every journey and the used means of 

transportation. Participants were asked to daily check the summary of their mobility behaviour. 

Weekly e-mails were sent to each participant which summarized their behaviour. The content 

of the e-mail depended on which of three groups participants were assigned to: a control group, 

a nudging group, and a pricing group. In the second month of the tracking experiment, the 

latter received real money values if they reduced the external costs of their journey, for 

example by taking the bike instead of the car. The nudging group received information about 

external costs their journeys would produce, but without receiving monetary benefits. The 

control group’s e-mail would not include any of that and just give some summarized information 

about their travel behaviour. 

After the two-month tracking phase, a final online survey was conducted, as part of which 

respondents were asked to fill in a stated preference experiment. Each respondent was 

confronted with twelve binary choice situations that were built on the respondents’ most 

frequent car trip during the two months of tracking. As alternative option to using the car for 

this trip, either public transportation (PT), a bicycle (Bike) or a different (earlier/later) departure 

time by car (Alt) was proposed. Figure 1 shows an excerpt of the stated preference experiment, 

one with public transport, the other with an earlier departure time as alternative. An example 

with bike as alternative is shown in Annex 1. Beside the travel time and reliability of the 

transportation mode, each choice option also includes private costs as well as external costs, 

broken down in three sub-categories. Respondents were asked to state their preferred option 

for regularly recurring journeys and to consider the total costs compared to only the private 

costs they normally have to pay. 
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The public transportation option includes the most additional information like the number of 

changes, occupancy, frequency of the connection and hypothetical weather conditions. The 

bike option states additional health benefits, road conditions (for example whether there is a 

bike lane) and weather conditions. Also, it is stated whether an e-bike or a regular bike is used.  

Figure 1: Choice situation examples of the stated preference experiment 

 

 

 

 

 

Source: MOBIS Research Project (2019) 

The dataset containing the stated preference experiment data is exceptional in two ways. First 

because of its size and amount of information. A representative sample of 3387 persons filled 

out the stated preference experiment. For all of them, socio-economic information as well as 

information regarding their attitudes towards transportation policies and general issues in 

transportation are available. The second reason, which makes this dataset valuable is that 

choice situations are related to a trip the respondent has conducted in real life. This means 

that he or she can relate to the situation and the given information. Also, and very importantly, 

the choice situation captures an emotional relation to this trip, which makes the experiment 

more realistic. As an additional feature of the dataset, the time it took the respondents to make 

their decision was measured. 

3.2. Data structure 

The data from the stated preference experiment comes in form of a panel data set and was 

combined with data from the other online surveys. For the analysis, a total of 30’460 choice 
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situations from more than 2’500 respondents were used. The main variables are the alternative 

specific pieces of information that were listed with each choice situation as seen in Figure 1. 

Table 1 gives an intuition for the three most important numeric variables private costs, external 

costs, and trip duration for all four choice alternatives. 

 

The cost coefficients in Table 1 are in CHF. The private costs of a car trip show a median1 of 

6.80 CHF (or 7.30 CHF for the alternative option) compared to 2.10 CHF for a public transport 

trip or close to 0 CHF for a bike trip. Although calculated, the private costs should be close to 

the real costs respondents need to pay for their journey. The external costs were multiplied by 

0.5, 1, 2, 4 or 8 with the purpose to create more variation and to test for any reaction. The high 

average value of 8.60 CHF of external costs as well as the large standard deviations are a 

result of that. The actual average external costs are in fact only 2.75 CHF. The median car trip 

has a duration of 19 minutes whereas public transport takes more than twice as long (42 

minutes). The median bike journey takes 30 minutes. The numbers underline again that we 

are dealing with trips within agglomerations. Interesting to observe is that the alternative option 

is on average more than 5 minutes faster, as congestion could be bypassed with an earlier or 

later departure time. Regarding the number of observations, we see again that all choice 

situations had car as their baseline option. 

Table 2 lists additional alternative specific variables. The reliability variable for Car, PT and Alt 

states how often the connection is more than 10 minutes late. Pt_mode includes four different 

modes, namely bus (47,0%), train (36,7%), tram (13,9%) and subway (2,4%). Car/PT 

decisions which contained walking as the main mode were excluded, as there are no costs 

 
1 In all instances, the Mean is higher than the Median, and the Standard Deviation is considerable, indicating a skewed distribution 

of the data. Since the Median is less affected by extreme values than the Mean, mostly Median values are discussed. 
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attached to this mode and the sample was relatively small. The variable pt_changes states the 

number of transfers to another public transport that are necessary on this trip and is treated as 

a numeric variable. Finally, alt_time_dep_shift states by how many minutes the departure time 

has been changed. 

 

Table 3 lists additional socio-economic and other variables that were added as controls. The 

age dummy is split at the median age of 42, which showed better results than entering it as 

numeric variable. 

 

The four variables in the third section belong to questions of the final survey in which 

participants were confronted with several potential problems associated with transportation. 

They were asked to rate on a scale of five “whether it should receive more or less attention 

from policy makers, compared to how much attention it currently receives” (MOBIS Research 
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Project 2019). Among others, problems stated were “road congestion”, “greenhouse gas 

emissions from motorized traffic” and “health effects of air pollution from motorized traffic”. 

These are represented in the dummies congestion, emission and health. The fourth dummy of 

this section is the rating to the statement “the price for mobility should reflect the social cost 

(e.g., health, environment, congestion)”. 
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4. Model Formulation, Data Analysis and Results 

For this thesis, a mixed multinomial logit model approach has been followed. This chapter 

presents the analyses that have been conducted and the main results obtained. First, a brief 

introduction to the procedure that was followed is given. Then we look at the settings a 

researcher must choose when specifying mixed MNL models. The third section first discusses 

the results of the basic model and then turns to the extensions that have been made, which all 

aimed at making the models even more meaningful. 

4.1. Iterative process of model formulation 

Specifying mixed logit models can be a laborious undertaking. It is an iterative process of trial 

and error and not many hard facts exist about how a mixed logit model must be specified. For 

this work, dozens of model specifications were tried out. We used the R statistical software for 

the analysis (R Core Team 2015). During the estimation process two different packages were 

applied and evaluated. The “mixl” package is a recently developed package by Molloy et al. 

(2019) which has put focus on improving memory usage and runtime and is successful in doing 

so to a great extent. On the downside, not much experience exists yet and finding online 

instruction proved to be difficult sometimes. A second package, “mlogit”, was utilized as well 

but abandoned later. “Mlogit” is the most common R package for mixed logit models. It brings 

therefore the advantage of having some documentation online, but the estimation process is 

increasingly slow the larger the models get. Also, and this was problematic for our purpose, 

the “mlogit” package needs the dataset in long format. In our case, many choice attributes are 

alternative specific but only available for one option, such as “occupancy” for public transport 

options. For these reasons we turned back to “mixl” for the in-depth analysis. 

In a very first step, simple logit models were investigated. The calculation time of standard logit 

models is insignificant, and it can help to gain first impressions about the data and model 

specifications. The first mixed logit models then focused on the main numeric attributes of the 

experiment, such as travel cost and travel duration. These models already showed two 

interesting things which held also in more comprehensive models later. First, in any 

specification travel as well as access/egress time parameters were highly significant. Private 

costs by contrast changed in its significance much more over different specifications and 

transportation modes and were significant only in some specifications. Yet these simple 

models were already able to produce a good overall fit to the data with a pseudo R2 of up to 

0.3. The second interesting observation concerns the external cost variable. Whether for 

models estimated with the mixl or the mlogit package, this variable often showed insignificant 

results. Splitting up the external costs, we could see that the costs from congestion most likely 
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showed to be significant whereas costs from CO2 pollution and health related costs where 

highly insignificant in most models. 

4.2. Settings for mixed MNL models 

Before turning to the analysis of model outputs, it is important to look at the different settings 

one must choose for mixed MNL models. Unlike for example probit models, mixed logit models 

are not restricted to the normal distribution and any distribution one likes can be chosen. If a 

discrete function with a finite set of values is chosen, the mixed logit model becomes a latent 

class model. With one “mlogit” exception, up to now only normal distributions were used in our 

models, which allow the coefficients to take positive and negative values. But for example, cost 

coefficients, when multiplied with (-1), can receive a distribution bounded at zero, like log-

normal distributions, which then prevents coefficients from turning positive (Train 2009). 

Unfortunately, such specifications could not be tested for our data yet.  

For any model using maximum simulated likelihood, four factors define the parameter 

estimates (beside the data of course) (Gu et al. 2013): the random-number seed, the number 

of draws, the starting values and the optimization method. Setting the starting values right is 

crucial to achieving convergence and for having an efficient model. A lot of time can be 

invested here and Hess and Train (2017) suggest estimating an uncorrelated model first and 

to then use the received estimates as starting values for a model that allows for full covariance 

(cf. section 4.5 for the issue of correlation in MMNL). Alternatively, Bayesian estimations 

proved to be very effective, too (Hess and Train 2017). In our analysis however, the same 

starting values for all coefficients have been taken. Most of the times values of ˗0.1 generated 

the best results compared to values of 0, 0.1, 0.5 or 1. Regarding the random seed, it has been 

shown to be favourable to use quasi-random numbers generated by a Halton sequence instead 

of pseudo-random numbers (Bhat 2001 or Train 2009). Bhat (2001) found that 100 Halton 

draws are similarly accurate as 2000 pseudo-random draws. While on average the estimates 

remained similar, the standard deviations of the estimates were worse when comparing 1000 

random draws to a 100 Halton draws in a study by Train (2009). A more recent study by Zeng 

(2016) confirms these findings and adds that even with an increasing number of observations, 

increasing the number of Halton draws does not necessarily improve estimators. 

A first investigation for our data compares the Car/PT base model with 100, 250 and 500 Halton 

draws. The results are shown in Table 4. Increasing the number of draws from 100 to 250 

raises the log-likelihood by about 7 points and decreases the Akaike Information Criterion (AIC) 

by 13 points. But another increase to 500 Halton draws worsens the metrics, even compared 

to the model with 100 draws. Hensher and Greene (2003) state the appropriate number of 

draws can vary enormously and increases with the number of random parameters and the 

correlation of attributes or alternatives.  
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They recommend estimating models over a range of 25 to 2’000 Halton draws. Restrictions in 

calculation power however limited the possibility to further investigate this issue within the 

scope of this thesis. 

 

The “mixl” package provides the Halton sequence and for all models presented in this thesis, 

a 100 Halton draws have been set. Molloy et al. (2019) showed how estimation time and 

memory usage increases linearly with the number of draws in their “mixl” package. With a 

regular quad-core machine, an estimation with one thousand random draws can be done in 

less than 5 hours. However, the multicore-feature, which requires an additional setup for 

computers running Windows or macOS, caused some issues in our analysis, yet to be solved. 

4.3. Descriptive analysis of choice behaviour 

In 47.5% of all choice situations the respondent was willing to take the proposed alternative 

compared to their car trip. In Car/PT choice situations, the alternative PT was chosen in about 

one third of all cases (34.9%). In Car/Bike situations, the alternative option Bike was chosen 

37,1% of times and Alt was chosen 60.8% of times in Car/Alt choice situations. One could 

expect the participants’ experiences during the Smartphone tracking phase to influence choice 

behaviour but the distribution of choices according to the different experimental groups 

(pricing, nudging and control) of the MOBIS experiment does not change the picture. 

Looking over all three choice sets, about 90% of all respondents switched at least once 

between alternatives over all choice sets. 10% choose the same alternative (i.e. alternative 

Car) in all twelve choice situations. Such behaviour is known as “non-trading” choice behaviour 

and indicates not enough trade-off variation between alternatives (Schmid et al. 2016). Figure 

2 presents a closer look into the different choice situations. 
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Figure 2: Trading and non-trading behaviour within choice types 

 

 

In Car/PT situations, exactly one third of respondents switched their choices at least once. In 

Car/Bike situations it was 41.4% and in Car/Alt situations 49.7%. The limitation of this 

perspective is that not all participants received the same ratio (meaning 4xCar/PT, 4xCar/Bike 

and 4xCar/Alt) of choice situation types. Car/Alt is overrepresented so that trading was even 

higher relative to the number of choices for this situation. 

As mentioned before, our dataset also contains the time it took respondents to make their 

decision. Alós-Ferrer et al. (2018) pointed to an important issue in modelling choices; the fact 

that the distributional assumptions necessary in random utility models influence the results. 

And the problem, that with the right assumptions, results can turn in one or the other direction. 

They show that by including people’s response times to choices into random utility models, 

this issue can be reduced. The idea is, that the faster a respondent can take a decision, the 

bigger is their utility difference of two alternatives, so that the distribution of response times 

contains information about the (unobservable) distribution of utility. The proposal of Alós-Ferrer 

et al. (2018) is very appealing, as response times are observable, and its data is “cheap” to 

receive. Also, unobserved heterogeneity is taken care of, as it allows the utility difference to 

vary between individuals. Even though the MOBIS Study measured the response times of 

respondents in the SP experiment, the theoretical approach of Alós-Ferrer et al. (2018) did not 

fit our data well enough. The participants in our experiment responded all to their own individual 

journey, meaning they did not face the exact same decision. Nevertheless, it is possible to take 

some inferences from the distribution of response times in the experiment. In our data, the 

response time is defined as the total amount of time the respondent spent on the web page, 

that is the time until the respondent clicked the next button at the bottom of the page. It is 

therefore only an approximation on the real response time. There could have been an 

interruption not related to the online questionnaire until the respondent clicked next. For the 

analysis of response times, values below 1.5 seconds and above 90 seconds were excluded 



18 
 

to get a more realistic picture. Figure 3 shows response time distributions depending on the 

choice situation type and the questionnaire mode. 

Figure 3: Response time distributions per choice type and questionnaire mode 

 

 

The median decision-maker had 19.4 seconds for a Car/PT decision, 11.5 seconds for a 

Car/Bike decision and 14.4 seconds for a Car/Alt decision. It is interesting enough to note that 

choosing between public transportation versus car took the median person about 2/3 longer 

than for a decision where the alternative was bike. According to the approach of Alós-Ferrer 

et al. (2018), this would mean that the utility difference between car and bike is much bigger 

than between car and PT. However, we should remember that the PT option had up to 17 lines 

of information, bike options 10 lines and the alternative journey time 11 lines of information 

which the decision maker had to process. If we take the number of information into account, 

the picture changes slightly, and Car/PT choices were even made a little bit faster than the 

other two. However, the experiment was conducted online, meaning under non-ideal 

conditions, and we do not know how thoroughly all the information was processed.  

When designing the online questionnaire, two different presentation modes were implemented. 

If we compare whether the choice situations were sequential (i.e. all the same transportation 

modes in a row) or the choice situations came random, we cannot see any difference between 

the two questionnaire modes. Therefore, people having the same mode (car vs. bike for 

example) four times in a row did not benefit in terms of quicker decision-making than people 

with random order. 
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4.4. Choice model results 

The focus in this thesis is on two model specifications. The base models include only 

alternative specific variables, meaning all variables listed in the choice situation as seen in 

Figure 1 or Annex 1. The cost coefficients are hereby broken down to their smallest entity. 

Compared to the base models, the full models include additional controls (Table 3). These give 

additional insights and the models, especially the cost coefficients, important for later 

willingness to pay calculations, got more realistic. This comes at the price of dropping some 

observations due to non-available values. Nevertheless, it seemed beneficial to work with 

these controls.  

All cost variables are normalised for income. In earlier models without income normalisation 

some cost coefficients like car_priv_cost had positive signs in most specifications which were 

not regarded as realistic. Income, however, is not available as a continuous variable in the 

MOBIS data, so that five groups of income (see Table 3) had to be used. Equation (4.1) shows 

a simplified specification of the utility function for utility 𝑈𝑐𝑎𝑟, where 𝛽𝑗
′ is a vector of parameters 

for attribute 𝑗 (tc = travel cost, aa = additional attributes) and 𝑋𝑗 the value vector for attribute 𝑗. 

All cost parameters have been normalized for income with �̅�𝑖𝑛𝑐 as the sample mean of income 

(in CHF/month) and 𝜆𝑖𝑛𝑐 is an elasticity parameter. 

𝑈𝑐𝑎𝑟 =  𝛽
𝑡𝑐
′ ∗ 𝑋𝑡𝑐 ∗ (

𝑋𝑖𝑛𝑐

�̅�𝑖𝑛𝑐
)

𝜆𝑖𝑛𝑐

+  𝛽
𝑎𝑎
′ ∗  𝑋𝑎𝑎 +  𝜀 

The utility function is specified the same for all the other three alternatives in the base model. 

In the full model however, the individual specific controls have been added to the utility of PT, 

Bike or Alt. 

Tables 6, 8 and 10 show the results of the full model for the three choice-situation Car/PT, 

Car/Bike and Car/Alt. The coefficients of the variation have been suppressed for clarity purpose 

but are listed in Annex 2. Tables 5, 7 and 9 show the related metrics of the estimation and 

compare it to the base model (Annex 3). 

The full choice model for Car/PT, contains a total of 95 estimated parameters (Table 5), where 

all, except for the (non-linear) income elasticity parameter, entered the model as random 

coefficients and were given a normal distribution, which allows them to take either sign. 

Compared to the base model, the full model increases the log-likelihood by 92 points and 

decreases the Akaike Information Criterion, AIC, by 112 points. If the number of observations 

divided by the free parameters falls below 40, it is recommended to use the AICc, which 

includes a correction for finite samples (Wagenmakers and Farrell 2004). In all our models, 

this ratio is between 84 and 198, so that the samples are sufficiently large to focus on the 

general AIC. The McFadden R2 is a pseudo-R2 analogous to the R2 from linear regression 

(4.1) 



20 
 

models. It tries to capture the overall fit of the model based on the log-likelihood values. Its 

level, however, cannot directly be compared to the one of a linear regression model because 

of the non-linearity of the MNL model. Hensher et al. (2015, p. 456) state that “pseudo-R2 

values between the range of 0.3 and 0.4 can be translated as an R2 of between 0.6 and 0.8 

for the linear model equivalent”. In our case, the full model increases the pseudo-R2 from 0.36 

to 0.38. 

 

In the model output in Table 6, we see that for most cost and time coefficients, the signs are 

as expected, where higher costs or longer travel time adds negatively to utility. Car_ext_co2 

gets out of line with a positive coefficient and significance at the 10% level. The time 

parameters are highly significant for both alternatives. For PT the private costs and for Car the 

congestion costs are highly significant as well. Car private costs increased in significance 

compared to the base model (see Annex 3) but remain out of the 10% significance level. 

Beside cost and time parameters, weather conditions are highly significant. Warm_wet and 

warm_dry add positively to PT’s utility compared to the reference category cold_dry. 

Unsurprisingly, owning a car highly increases the chance to choose the Car alternative, 

whereas owning a public transportation pass lets one increasingly choose PT.  

An interesting insight is gained by the two variables congestion and emission; seeing 

congestion as an important issue increases the chance of choosing car, whereas seeing 

greenhouse gas emissions from motorized traffic as an important issue the picture is exactly 

the other way around. This gives a first indication how political convictions are related to the 

choice of transportation modes - with causalities remaining unclear, of course. 
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The next two tables (Table 7 and 8) show the metrics of Car/Bike and Car/Alt models. On the 

first glance, the overall model fit in terms of pseudo-R2 is not as good as for the Car/PT model. 

The full Car/Bike model improves the log-likelihood by 52 points and the AIC decreases by 33 

points. The Bayesian information criterion (BIC) however increases by 218 points, as the BIC 

has a larger penalty term for the number of parameters.  

 

Looking at the model estimates, we see that many of the additional variables that were added 

to the base model are insignificant. The model output suggests for example that owning any 

PT pass does not play a major role in the choice between Car or Bike. Neither does a higher 

education and surprisingly nor does age. The latter however could in a future model be broken 

down into more age categories for Car/Bike decisions, which could make it more meaningful. 

In contrast, owning a bike or e-bike increases the chance to choose the bike option and so 

does having a participant who sees greenhouse gas emissions or negative health effects of 

air pollution from motorized traffic as a major problem that should receive more attention from 

policy makers. Concerning the alternative specific variables, the weather dummies are all 

highly significant and show a utility increase compared to the reference level of cold_dry 

weather conditions. At least for the cold_wet condition (bike_weather2), the intuition would 

however expect negative utility. A future model could try to focus on either wet/dry or cold/warm 

weather dummies to make them easier to interpret. Bike lanes increased the choice of Bike 

compared to no bike lanes. Duration adds negative to utility of both alternatives. 
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The model for Car/Alt choices contains only 28 parameters in the base model and 67 in the 

full model (Table 9). The low amount in the base model is mainly because some variables 

contain the same information for both alternatives, therefore not having any variation and they 

must be included as choice situation specific variable with alternative specific coefficient. This 

is the case for the private, the external CO2 and the health costs. The costs out of congestion 

differ between the options as the main purpose of the Alt option is a change in the departure 

time in order to flatten the peak travel hours. 

The full model however includes the same set of additional controls again. This improves the 

models log-likelihood by 38 points but does not change much on the AIC. It rather increases 

the AIC by 2 points and the stricter BIC increases by 294 points. Many of the additional 

variables in the full model do not lead to a better model. Same as for the Car/Bike model, some 

dummies could be improved with another specification and others could even be left out to 

make the model more efficient. 

 

Most cost coefficients in the Car/Alt model are significant and except for alt_ext_co2 they show 

the expected negative sign. Time departure shifts of +/- 30min increase utility of the Alt option 

compared to leaving 60min earlier. Not totally unexpected, people who state that congestion 

and health issues related to motorized traffic should gain more attention from policy makers 

take a positive utility out of choosing the Alt option. 

Over all three models, the dummies capturing the multiplication of the external costs are with 

one exception not significant at the 10% level, so that we can assume a linear relationship. 

Also, in all three models, gender did not play any significant role and the same holds for being 

over 42 years old or having a tertiary education. The income elasticity for travel costs is 

insignificant at the 10% level in all three models. Normally one could expect decreasing utility 

with higher travel costs and that higher income respondents are less price sensitive. However, 

it could be, that our data on income and the grouping that had to be done is too imprecise.  
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4.5. Correlation in mixed MNL models 

In contrast to a cross-sectional data set, panel data bears the risk of correlation between 

observations. Stated preference (SP) data with multiple choice situations per individual is such 

an example. If one allows variation in parameters across individuals to capture their 

heterogeneity, which is the essence of mixed logit models, there is the possibility of correlation 

between these individual parameters (Hensher and Greene 2003). If two parameters are 

correlated which each other, this simply means that the preference of a consumer for the first 

attribute is related to his preferences for the second attribute (Hess and Train 2017). In our SP 

data, it could for example be, that respondents who are cost sensitive react stronger on private 

as well as on external costs. Or it could be that people giving high value to the health benefit 

of a bike ride are less critical on the weather conditions during their trip.  

A specific “type” of such correlation is called scale heterogeneity and describes the 

phenomenon that one person’s choice might differ by how much it is influenced by factors 

included in the model versus factors not included in the model, compared to another person. 

The results are different magnitudes of all the utility coefficients over the set of people. A 

person whose choice is mainly driven by unincluded factors will have utility coefficients that 

are smaller in magnitude than the ones of a person whose choice is strongly impacted by 

included factors, leading to correlation among the coefficients of the included variables (see 

for example Hensher et al. 2015 or Hess and Train 2017). In our data, some responders might 

be largely influenced by cost coefficients while others might be more influenced by convictions 

and habits that we have not captured. What makes it difficult is that correlation which is 

estimated between two coefficients cannot be distinguished empirically from its source. It could 

be scale heterogeneity taking place or any other complex pattern of positive and negative 

correlation between coefficients. Only general evaluations can be made, and Hensher et al. 

(2015) suggest estimating a whole set of different models in order to evaluate the potential role 

of preference heterogeneity and scale heterogeneity. 

The “mixl” package allows for correlation between parameters and calculates a full covariance 

matrix for the post estimation. For our three (full) models, a first investigation rarely states 

correlations above 0.1 between any parameters. However, Hensher and Greene (2003) point 

out that for a model like ours, with several random parameters that are allowed to correlate, 

the standard deviations of the parameters are no longer independent. Using the Cholesky 

decomposition, they can be decomposed into the part that accounts for the related attribute 

and the part that captures the attribute-interaction. But such further investigation has not yet 

been done for our models. 
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4.6. Willingness-to-pay indicators 

One of the most common willingness-to-pay (WTP) indicators is the value of travel-time 

savings (VTTS) measure. It can for example be used to calculate cost-benefit analysis when 

planning new transport systems or to implement efficient pricing systems. For linear-in-

variables utility functions, it is simply calculated by dividing the travel-time (tt) coefficient by the 

travel-cost (tc) coefficient, 𝛽𝑡𝑡/𝛽𝑡𝑐, which results in marginal utilities of an increase by one unit 

in travel-time and travel-cost (Hess et al. 2005). But not only values of travel-time savings, but 

any other WTP ratio can be calculated. However, these calculations are only as good as the 

underlying model and Hess et al. (2005) discuss biases from using the wrong distribution (cf. 

section 2.3). They suggest not to use normal or log-normal distributions but rather a Triangular 

or Johnson’s SB distribution and to estimate the bounds from the underlying data. Nevertheless 

our model has until now only used normal distributions for all variables. This could be one of 

the reasons why our VTTS estimates are somewhat different than those in other studies. A 

group of studies, mentioned in section 2.3, has investigated VTTS for Switzerland and other 

European countries and serves as comparison for our results. 

A general formulation of the VTTS for respondent 𝑖 looks as follows: 

𝑉𝑇𝑇𝑆𝑖(𝑖𝑛𝑐) =  
𝛽𝑡𝑡,𝑖∗60

𝛽𝑡𝑐∗(
𝑋𝑖𝑛𝑐
�̅�𝑖𝑛𝑐

)
𝜆𝑖𝑛𝑐

 CHF/h 

Table 11 lists several VTTS calculations from the three different models, averaged at sample 

mean. Be aware that the column “Ratio” does not show the full calculation (which is done using 

formula 4.2) but is given to be precise on which variables were used. Whenever a coefficient 

was insignificant at the 10%-level or had the wrong expected sign it was not used for 

calculating a VTTS. Hence the number of VTTS that are meaningful is unfortunately limited. 

For the Car/PT model, five VTTS estimates were calculated. “VTTS Car” results in a value of 

77.15 CHF/h or 12.85 CHF for 10 minutes. Intuitively, the assumption that the average 

participant of our experiment is willing to pay almost 13 CHF in order to save 10 minutes of 

travel time in a car seems rather high. Axhausen et al. (2008) found a VTTS of 31 CHF/h for 

car trips that had the purpose of commuting. For business trips however they found a value of 

about 50 CHF. Although one can expect the value of avoiding one hour of congestion to be 

higher than for regular driving, the 126.75 CHF/h based on the Car/PT model seem again 

rather high. However, our experiment has intentionally increased external costs above their 

usual which has not yet been considered. 

The task for respondents was to consider the total costs of the trip. For Car/PT the 

car_ext_congest parameter is significant and we can include it in the calculation. The effect is 

a weighted average of both coefficients which results in a VTTS of 46 CHF/h. The estimated 

VTTS for PT are close to those in other studies. Schmid et al. 2016 reported around 20 CHF/h 

(4.2) 
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for PT in-vehicle time and Axhausen et al. (2008) 28 CHF/h for commuting and roughly 20 

CHF for trips with the purpose of leisure or shopping. VTTS for PT access or egress time is 

somewhat higher than for in-vehicle time, which can be explained as this time can be less used 

to pursue other activities. 

 

For the Car/Bike model it is hardly possible to calculate any WTP ratios. Most of the cost 

coefficients are insignificant and some have positive signs. It will need further improvements 

of the model to afford reliable conclusions. The duration estimates are significant though and 

calculating a VTTS using bike_priv_cost results in 16 CHF for saving one hour of cycling. 

Schmid et al. (2016) reported a much higher value of 60 CHF/h. Schmid et al. (2019) reported 

12 Euro/h, although for Austria. 

The Car/Alt model also faces the problem of lacking some robustness. However, we first find, 

that the “VTTS Alt priv” goes in the same direction than the value for car rides in the Car/PT 

model. Also, the VTTS’ for congestion are in a similar sphere as in the calculation from the 

Car/PT choice situations. Including external congestion and health costs, the VTTS for one 

hour of driving (given a shifted departure time) gets down to about 32 CHF and would be in 

line with Axhausen et al. (2008) who reported 31 CHF/h. For other meaningful WTP estimates 

the coefficients are either not significant or have the wrong expected sign. Results from the 

base model cannot help either.  
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Beside trying to further improve the robustness of the model in order to get better WTP 

estimates, a possibility can also be to directly estimate all taste parameters in the willingness 

to pay space by re-specifying the utility function. As in the study by Scarpa et al. (2008) 

described in section 2.3, Hensher et al. (2015 p.115) state two additional studies that found 

estimates in WTP space to produce much more reasonable results than when calculated by 

ratios of the parameters (Hensher and Greene 2011 and Train and Week 2005 cited in 

Hensher et al. 2015). However, it seems that the best method on how to get willingness to pay 

estimates strongly depends on the underlying data structure and the type of modelling used 

which in our case makes further efforts necessary. 
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5. Conclusion 

5.1. Main findings, strengths and limitations 

Using existing data from the MOBIS Research Project (2019), this study investigated choices 

for means of transportation in an SP experiment with a sample of more than 2'500 participants. 

Based on real car trips participants had conducted in the months before, alternative departure 

times were considered in about 61% of all situations, public transport in 35%, and the bike in 

37%. Mixed MNL models were used for the estimation process and in addition to alternative 

specific attributes, a non-linear income elasticity term and socio-economic as well as other 

choice situation specific attributes were added, leading to comprehensive models. 

What makes our study special is that instead of focusing solely on private costs, external costs 

were included as well, and participants were asked to consider them in their decisions. The 

estimated coefficients for external costs show the most significant effects for costs related to 

congestion whereas health and CO2 related costs play less of a role. One possible explanation 

is that people find it easier to connect to congestion costs as these are related to everyday 

experiences. As such, external costs did not play a major role even though the manipulation 

of these shifted the total costs even further into the direction of already less expensive PT and 

bike options. Much more of choice behaviour can be explained by convictions about 

transportation policies. People stating greenhouse gas emissions and health effects from 

motorized traffic as an issue that should receive more attention from policy makers attribute 

more utility to these options and vice versa for people seeing congestion as a major issue. 

VTTS calculations from the estimated models are in the expected range for the PT mode but 

show rather high values for car and bike modes reflecting the issue of not yet totally robust 

models.  

Because the models are not yet optimal, results should be considered cautiously. 

Nevertheless, some preliminary suggestions for policy makers may be made. As time savings 

had a significant impact on the utility in all choices, it seems safe to suggest that more 

emphasis should be placed on the speed of public transport. On the other hand, knowledge of 

the external costs, such as CO2 emissions or congestion, only had an impact when the 

participant was privately convinced of their importance. A simple educational campaign on 

external costs generated by mobility choices is therefore unlikely to achieve many results. 

Rather, people's views would have to be addressed and changed - undoubtedly a much more 

difficult task. Another finding that is already being implemented in various communities is the 

importance of bike lanes, the existence of which led to an increase in decision-makers 

choosing the Bike alternative. Lastly, car ownership had a negative impact on participants' 

willingness to choose either PT or Bike. The question how car ownership might be reduced 
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must be the subject of other studies, but the reduction of car ownership seems an important 

point for mobility policies. 

This work started from scratch and initially a lot of time needed to be invested to get the 

modelling process started. The biggest limitation of the study therefor lies in the uncertainty 

regarding the model robustness and leads to some prospects for future research and 

improvements. As such, the study provides first insights from a methodological as well as 

content-related point of view and adds to our understanding on how to proceed further. 

5.2. Future research 

In general, more time needs to be invested into finding the “right” model. Mixed multinomial 

logit models offer a huge amount of possibilities and the approach highly differs from situation 

to situation. Hensher and Greene (2003 pp. 144-145) write: 

“It is important to allocate a good proportion of time estimating models in which many of the 

attributes of alternatives are considered as having random parameters. The possibility of 

different distributional assumptions […] for each attribute should also be investigated […]. The 

findings will not necessarily be independent of the number of random draws in the simulation 

[…]. Establishing the appropriate set of random parameters requires consideration of the 

number (and type) of draws, the distributional assumptions and, in the case of multiple choice 

situations per individual, whether correlated choice situations are accounted for […]. These 

interdependencies may make for a lengthy estimation process.” 

Such effort could pay off by delivering more precise answers to our initial questions of 

transportation choice and its relation to social costs. 

Our full models needed about 300 iterations until convergence. Hensher et al. (2015 p. 445) 

mention that too many iterations should make a researcher suspicious. The number of 

iterations depend however also on the complexity of the model as well as other settings. 

Nevertheless, the high number of iterations in our model should be motivation to try out further 

specifications and to work on making the model more efficient. Future models should be more 

specific on the choice situation. The Car/Bike choice situation may require a different 

specification than Car/PT situation and according to their distribution, some variables can be 

treated as fixed instead of random. The use of additional individual specific variables then (cf. 

table 3) should be weighed against having more observations. Another topic that could receive 

additional attention is potential correlation, which might bring insights on how to further improve 

the models. Due to the limited time of this thesis this was unfortunately not possible to evaluate 

further. Finally, the high proportion of “non-trading” for the PT and bike options suggest that 

future studies may want to consider more trade-off variation between alternatives. 

The future of mobility may be deeply impacted by the covid-19 pandemic and future research 

may want to take these developments into account. A recent representative survey among 
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Swiss citizens indicated that the future of transportation could shift towards more individual 

traffic modes based on the experiences during the corona crisis (Deloitte 2020). As our data 

shows, individual investment decisions into transportation modes have long term 

consequences. Owning a car, PT pass or bike significantly increases the probability of 

choosing this option. Of course, it will need to be investigated from more distance, but covid-

19 could change future traffic patterns and could just as well lead to a reduction in mobility. A 

follow-up study with participants of the MOBIS study on mobility behaviour during and after the 

recent corona lockdown is ongoing and promises interesting insights. It remains definitely 

important to understand the driving forces behind individual decisions for transportation modes 

to contribute to a more sustainable mobility system. 
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Appendix 

Appendix 1: Choice situation example for Bike and E-Bike 

 

Source: MOBIS Research Project (2019) 
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Appendix 2: Full model outputs (distr.) for PT, Bike and Alt 
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Appendix 3: Base model outputs for PT, Bike and Alt 
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Appendix 4: Overview online appendix 

 

Folders and Content: 

 

MASTER_THESIS_LS_ONLINE_APPENDIX 

DataPrep : preparation script and original data sets 

FirstWave_mixl : preliminary analysis using mixl-package 

Mlogit_Analysis : analysis using mlogit-package (incl. dataPrep into long-format) 

Output : all model outputs mentioned in this thesis 

Tables and Figures : all tables and figures provided in this thesis 

TOP LEVEL FILES : main scripts used in this thesis, on which output is based 
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