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Abstract

Accidents are a driver of costs related to traffic. While they have a direct impact on the
people involved, the associated external costs reduce societal welfare. Research on the effect of
different traffic conditions on total accidents and injury severity in Switzerland is rare. I am the
first to use the reduction in traffic volume during the Covid-19 lockdown to analyse its effect on
accidents and related injuries in Switzerland, using an extensive data set of all police reported
accidents. I find an increase in the probability of being fatally injured in an accident during
the lockdown period, with a decrease in probability of remaining unharmed. Higher speed is a
known amplifier of injury severity and is associated to low traffic density. Analysing accidents
in different traffic densities reveals an increased probability of dying in an accident occurring
in a low density environment and higher probabilities of sustaining light injuries or remaining
unharmed in high traffic density. Combining daily accident counts with daily traffic counts
shows, that the relative rate of total accidents and unharmed casualties remains unchanged
with increasing traffic volume. The relative rate of fatalities decreases, while the relative rates
of severe and light injuries increases as traffic counts rise. Investigation of the impact of average
speed in different categories throughout the day revealed no usable results and implies the need
of further research on that topic.
Applying the results on two independent scenarios of possible mobility policies leads to ex-
pected daily savings of 15’895 - 42’076 CHF, but also potential emergence of additional daily
costs of 8’501 CHF. This shows, that policies targeting mobility behavior can generate both
additional costs and savings, depending on the segment of traffic they target. My results help
policy makers to anticipate the effects of mobility policies and to adjust them accordingly.
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1 Introduction

Accidents are a daily part of traffic and with increasing mobility, on a regional and global
level, the interest in contributing factors of both accident frequency as well as accident severity
is rising. Accidents are multilayered events, including one to multiple vehicles and persons,
each suffering different levels of damage or injuries. Different types and weights of vehicle pose
diverse threats to damage on itself and other vehicles, as well as possible injury patterns on
the own occupants or persons colliding with that vehicle. In addition, factors like speed, traffic
density and volume have a large impact on accident results.
This Master Thesis examines the research question: What is the effect of traffic density and
traffic volume on the relative rate of accidents and more importantly their impact on injury
patterns resulting from accidents in Switzerland? Using the Swiss National Accident Register
and combining it with traffic counts on Swiss highways and the results from the MOBIS and
MobisCovid experiment, the goal is to exploit changes in traffic behavior and different traffic
situations and their impact on the accidents. One of the major problems with traffic analyses,
including accident research, is the heterogeneity of people’s mobility behaviors. Gathering data
on traffic is difficult, because the situation strongly varies between places and over time. And
collecting information on all relevant factors is associated to immense effort. Most research
is therefore based on datasets gathered by the researchers themselves at given segments or
areas during a specific period, selectively collecting the information needed. With a recent
emergence of comprehensive datasets based on individual smartphone tracking. Both methods
are technically sophisticated and costly, which results in me not being able to collect data on
traffic volume or speed for this work myself. The last survey on Swiss streets was performed
by the Swiss bord for accident prevention and published in Niemann (2020). It was a pilot
project and results showed, that average speeds are not exceeding the speed limits, except fro
30km/h regimes. Additionally, by reducing the individual speeds measured above the speed
limit, Niemann (2020) states a possible reduction of 22 fatal and 337 severely injured accident
casualties per year. Nevertheless, the automatic measuring systems are found to be imprecise
due to errors in detection and periodical measurements were not started. The Swiss Federal
Statistical Office collects daily counts on some major highway sections, which are only counts
on a daily aggregation and do not include any information on speed or volume distribution
over the days. As of my knowledge there are no official countrywide information on traffic
volume besides the highways or on vehicle speeds at all. With my supervisor Prof. Dr. Beat
Hintermann being part of the MOBIS and MobisCovid research group, I could access their
extensive dataset of individual mobility tracking in Switzerland between fall 2019 and summer
2020.
Most research on this topic is based on within-day variation, which exploits different traffic
conditions over the day and its impact on speed, density, injury patterns and accident frequency.
The disadvantage of this approach is the necessity to compare different groups with each other.
The driver characteristics, reason of trips, vehicles etc. are very heterogeneous over 24 hours.
A professional driver delivering goods on a tight timetable during the night most likely shows
a different driving behavior than a parent doing the weekly shopping before noon, maybe even
having kids in the car. The first is assigned to a low density high speed period, while the
latter falls into a period with more traffic density and assumably lower speeds. But what is the
reason for a possible finding of relatively more accidents during the night? It could be due to
higher speed, but also originate in reckless driving of the strained professional driver. Careful
inclusion of control variables is mandatory for any within-day approach and it remains an
artificial comparison. In addition to the within-day analysis, I therefore want to use the period
of the Covid-19 lockdown in Switzerland in spring 2020, which brought a reduction of nearly
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50% in traffic volume in Switzerland, and compare it to the same periods in the previous years.
I believe that the lockdown, being a natural experiment affecting the whole country, comes with
less variation in driver composition than the within-day approach. Which assumably makes it
a superior model. Though, also the Lockdown had a large impact on the mobility behavior of
Switzerland.
I am interested in two aspects of accidents. The number of accidents, which can be expressed
in total or relative accidents. The total number of accidents is largely dependent on the number
of vehicles on the road, thus I am more interested in the relative number of accidents. They
show the number of accidents proportional to traffic volume and I want to analyse whether this
relationship varies in different traffic conditions. The second aspect I analyse is the severity of
injuries following an accident. The injury severity is influenced by multiple factors and I am
assessing the effect of different traffic conditions on these outcomes. Based on the theory and
literature reviewed in Section 2, I post two hypotheses about what I expect to have happened
in Switzerland during the Covid-19 lockdown period and more general when comparing low
versus high traffic volume situations:

1. A reduction of traffic volume leads to an increase in relative accident rates.

2. A reduction of traffic volume causes a shift in the crash injury pattern from light injuries
towards more severe and fatal outcomes.

I built two different models to perform logit regression of the impact of varying traffic con-
ditions on the probabilities of accident outcomes. First I used the individual accidents and
calculated the change in probability of ending up in a specific injury category when comparing
the Lockdown period in the Covid-19 year of 2020 with the previous years. I found an increased
probability of being fatally injured during the Covid-19 lockdown, compared to the same time
in 2019 and a slight decrease in the probability of remaining unharmed in an accident during
this time. Second, I also estimated the change in probability of ending up in a specific injury
category by different traffic densities at the time of accident. This measure of density is part of
the accident data and was determined by the police when filing the accident report. Both mod-
els estimate the probability conditional on having an accident, because there is no detailed data
on traffic volume that can be merged with the individual accidents, thus the dataset used for
these calculations consists of accidents only. Based on a deviation from normal traffic density, I
find a statistically significant increase of 130% in the probability of being fatally injured in low
traffic density, while in high density the probabilities of light injury and remaining unharmed
rise by 12.81% and 2.69% respectively. For all other categories I find a reduction in probability
of ending up in them.
To be able to incorporate measures for traffic volume, I aggregated the accidents on daily counts
and combined them with the daily traffic counts from Swiss highways. This is necessary to con-
trol for traffic volume variation, without which I could not isolate the effect on relative accident
numbers. Polynomial OLS regression was conducted and I found a positive linear correlation
between total accidents and traffic volume, indicating that the relative accidents are unchanged
by the number of traffic on the road. Additionally, no correlation between traffic counts and
fatal outcomes was found, but increasing effects on accidents with severely injured, lightly in-
jured and unharmed persons. Including the traffic counts also allows to calculate scenarios of
mobility policies targeting the number of vehicles on the road, in addition to policies aiming at
reducing congestion. By that, this model gives valuable insights on accident related costs when
traffic volume varies. Finally, I used data from the MOBIS and MobisCovid experiments, both
tracking smartphones, calculating average speeds for 12 categories of time and speed regimes
for each day. Analyzing the effect of increasing average speed on accident numbers produced
mostly insignificant results, with few categories showing significant positive or negative effects.
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An overview of the four models can be found in Table 1. It includes the outcome of interest
and the variable used to explain the observed changes in the specific outcome(s). Further the
main results are summarized in the last column.

Outcome of Interest Explanatory Variable Results

Probability of
experiencing a specific

injury

Covid-19 Lockdown
(difference in traffic

volume between spring
2019 and 2020)

+130% probability of fatal injury
-1.54% probability of remaining unharmed

during the Lockdown in 2020, compared to 2019

Probability of
experiencing a specific

injury

Traffic Density Increased probability of fatal injury in low traffic
density and of less severe injuries and unharmed
during high traffic density conditions. Decrease

in the probabilities of the other categories.

Accidents and injury
categories as daily

counts

Daily traffic counts from
Swiss highways

No changes in the relative rate of accidents as
well as unharmed casualties.

Decrease of relative rate of fatal accidents.
Increase of relative rate of severe and lightly

injured.
All with regard to increasing traffic counts

Accident counts in 12
categories per day

Daily average speed in 4
time and 3 speed regime

categories

Heterogeneous results, largely varying between
the categories with no clear expressiveness.

Table 1: Summary of the four models included in this thesis.

To analyse the effect of mobility policies, targeting congestion or individual car travelling over
all, I imagined two scenarios. First, an increase in the price of travelling by car leads to a shift
of transport mode away from the car and to a reduction of distance travelled by car, resulting in
savings of accident costs of 15’895 - 42076 CHF per day. Second, individual pricing of produced
external cost leads to changes in driving behavior and a reduction of congestion. This results in
additional accident costs of daily 8’501 CHF due to more severe injuries, assumably caused by
higher speed. The two scenarios are not directly comparable, but give an insight that we can
expect both reductions and increases of accident related costs by mobility policies impacting
traffic volume.

This Thesis is organized as followed. In Section 2 I compile existing theory and empirical
results on the topic, Section 3 reviews previous work on the reactions of mobility behavior
on the Covid-19 measures in Switzerland and Section 4 explains the methodology I apply. In
Section 5 the used data is explained, Section 6 provides the results of the estimations and in
Section 7 I apply the results in calculating Policy Implications. Finally, I discuss the results in
Section 8 and a conclusion is provided in Section 9.
All calculations were performed using StataMP 16 on a MacBook Pro M1 2020. All figures
and tables are created by the author with the data used in the specific model. Additional data
used for particular figures is mentioned in the caption.
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2 Theory and Existing Literature

2.1 Speed-Density Relationship

As with all compressible physical materials that need to pass through a confined space, increas-
ing the volume we want to pass through inevitably increases the density of the material inside
the confined space. The same accounts for traffic flowing on roads which build a confined space
with capacity limits. But unlike a gas the increase in pressure does not accelerate traffic, it
slows down and eventually comes to a full stop. Thus, we can not rely on basic physics to
understand the mechanisms of dense traffic, even though concepts like friction, e.g. drivers do
not want to bump in each other, and inhomogeneous speeds are likely explanations.
Since the beginning of the 20th century researchers from different fields tried to understand
and mathematically express the density of traffic and its impact on speed. Greenshields et al.
(1935) were some of the first building up a model for the relationship of traffic density and
speed in the style that is still used today. They also reinforced their theoretical work with an
extensive field study by collecting data on roads. The model stated a linear negative relation
of speed and density, saying that as density on roads increase the average speed will decline.
Since then the negative relationship was never challenged. Nevertheless, the functional form of
the relationship was largely debated over and still is up to this day. They also introduced the
concept, that below a specific density the average speed does not increase anymore. This is
called ”free speed” and might either be defined through the shape of the road, e.g. curves slow
down, or by speed limits. Greenshields et al. (1935) also invented the concept of traffic flow,
which is number of vehicles per hour, and called it Density-Vehicles per hour without knowing
that twenty years later Lighthill and Whitham (1955) would include this as traffic flow in their
work. They challenged the assumption of linear relationship and explained, that the impact of
one additional car, with regard to different density states, is not always the same. Therefore
the slope of the function differs depending on which number of car the marginal car is in a
specific segment, which leads to a nonlinear relationship. This is also based on work done by
the Great Britain Road Research Laboratory. As mentioned above, Lighthill and Whitham
(1955) use the flow density relationship which is conceptually similar, but has an increasing
section at lower densities. This comes from the fact that flow equals vehicles per hour and
at very low densities there are only few vehicles passing the section. As density raises the
flow does so to until the ”free speed” limit is reached, leading to a stagnation of flow increase.
After passing another threshold of density the flow starts to decline since the whole column
of cars gets slower. Multiple researchers propose different forms of the functional relationships
between speed and traffic density and a comprehensive summary, including empirical testing
can be found in Bramich et al. (2022). They conclude that the newest model developed by Sun
et al. (2014) fits best on their extensive empirical data and propose to use this one as the cur-
rent state of the art. The major superiority comes from applying a non-parametric smoothing
function which approximates the empirical data closest.
Modern research on this topic highly focuses on exploiting large empirical datasets. Qu et al.
(2015) re-estimate some of the aforementioned models with the weighted least squares method
(WLSM), instead of the ordinary least squares method (OLS), which assigns a weight to the
squared error of every observation that is smaller in denser areas and vice versa. This reduces
the impact of dense areas on the slope of the regression line an allows for better fitting the
model over the whole distribution of observations. Further, both Chiappone et al. (2016) and
Wang et al. (2022) use large datasets from Italy and from Shanghai respectively, to calibrate
and validate their models more sophisticated in order to make them capable to even simulate
future traffic conditions.
With the possibility of exploiting large datasets arose a literature investigating confounding
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factors that impact the speed-flow-density relationships. Ben-Edigbe (2010) found that ad-
verse road conditions account for a 50% reduction of optimal speed. Heydecker and Addison
(2011) analyze data from the United Kingdom and find, that conditional on varying speed lim-
its it is not always density defining the current speed, but causality can also be inverted such
that limited speed effects the degree of density. Loder et al. (2019) analyzed traffic network
topologies with data from 41 major cities around the world and the impact of topology on
speed, flow and density. Showing that topology accounts for 90% of critical point (boundary
of free speed and crowded) variation and concluding that infrastructure investments have de-
creasing marginal returns on traffic volume capabilities. In line with that is the work of Zefreh
and Török (2020) separating Budapest traffic in different traffic conditions by analyzing video
footage. They emphasize that diverse traffic conditions also need diverse fundamental diagrams,
i.e. speed-density and flow-density relationships, and that one over all relationship is too much
of a simplification. Finally the impact of speed heterogeneity and rainfall on the fundamental
diagram was investigated by Bai et al. (2021). Concluding that speed heterogeneity accounts
for 18%-24% of free speed and mean speed variance. In addition rainfall intensity leads to
a reduction in both free speed and mean speeds in all observed specifications. This research
shows, that there are numerous confounding factors influencing the fundamental diagram and
its depicted relationships. Therefore, it will be mandatory to control for as many of them as
possible in my upcoming models and estimations.
Anyhow, the detailed form of the functional relationship of density and speed is not of impor-
tance for this Master Thesis. Decreasing density does increase average vehicle speed until a
certain ”free speed”, about that the aforementioned agree on. Therefore, I will stay with the
basic linear relationship invented by Greenshields et al. (1935) and depicted in Equation (1),
for it will sufficiently explain the concept.

V = vf (1−
k

kj
) (1)

V is the average speed derived by the model, while vf is the ”free speed”, k is the current traffic
density and kj its maximum value. Meaning that k/kj is the current proportionate density.
We see that when current density starts to rise, which will happen after a specific number of
vehicles on the segment is exceeded, the average speed will start to decline.

2.2 Speed, Accident-Incidence and Injury Severity

Here I summarize literature investigating the relationship between speed and accidents, mainly
number of accidents and their severity. The vast majority of researchers find a positive cor-
relation between mean speed and relative accident frequency, as well as resulting severity of
injuries. The concept of relative accident frequency is of big importance here, since the absolute
accident frequency is largely dependent of the volume of traffic, i.e. cars on the road, which
is again highly correlated with speed as discussed in the previous section. The most common
approach is to calculate vehicle-miles travelled (or kilometers, also person-miles travelled are
possible). This generates useful and credible measure of traffic volume which can be further ex-
ploited. As a second approach, researchers define a segment or area and count passing vehicles
and accidents during the period of interest. This approach is inferior to the vehicle-miles, due
to the fact that each count weights the same independent of trip length, while vehicle-miles also
account for different trip lengths and therefore for the real time on the road. This disadvan-
tage of the section counts can be attenuated by performing counts on several small segments
and aggregating the results to a bigger geographical picture of traffic flows. Data based on
counts has been used more often, since it is easier to gather compared to tracking individual
peoples mobility. In earlier days, vehicle- or person-miles travelled were based on travel survey
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or extrapolated from traffic counting systems. Nevertheless, with the opportunity of modern
smartphone tracking exact information on vehicle-miles travelled is on the advance. I will focus
on publications after the year 2000 because there is plenty of recent literature to discuss this
topic and older conclusions are often reviewed in those papers.
Taylor et al. (2000) investigated road data from the United Kingdom separating roads into
several categories. They find that accidents increase with increasing speeds and that accident
frequency rises over proportional with higher average speed. Positive correlation between speed
and relative numbers of accidents, as well as good prediction of accidents with injured people
by the power model is reported by Nilsson (2004). Adding, that fatal accidents are underesti-
mated by this model. To calculate the relative numbers of accidents, he used person-kilometers
travelled as well as vehicle-kilometers travelled. The power model, in this scenario, raises ratios
of before/after speed with an exponent and results in a ratio of before/after accidents. An
extensive explanation of the power model can be found at the beginning of Elvik et al. (2004)
who report similar results and state that the relationship between speed and accidents is causal,
with speed being a major risk factor for relative accident frequency and severity of injuries.
They specifically control for traffic volume, by only including data in their model that origins
from research which already included any measure of traffic volume itself. Aarts and Van Scha-
gen (2006) provide a first summary of results and enforce the state of knowledge that increasing
speed does increase both relative accident occurrence and injury severity. But road and traffic
characteristics, including traffic density, as well as driver characteristics play a crucial role in
the magnitude of this relationship. Further, not only average speed but also speed variance,
meaning the heterogeneity of individual vehicle speeds, leads to a large increase in crash risks
at all speed levels.
An interesting variation in travel speeds is analyzed by Ossiander and Cummings (2002) and
13 years later by Van Benthem (2015). In 1987 multiple states in the United States of America
were allowed to increase the speed limits from 55 mph to 65 mph. While Ossiander and Cum-
mings (2002) found more than a doubling of fatal accidents, but no increase in total accident
counts after the increase of the speed limit using Poisson regression models. Van Benthem
(2015) finds a 44.1% increase in fatal accidents, and a 13.2% to 23.5% increase in total acci-
dents, while the average speed only increases by 3 to 4 mph after the 10 mph increase in speed
limit. Based on an extensive combined private and social cost-benefit analysis, he concludes
that 55 mph was the better speed limit with accident costs and pollutant linked health issues
being the by far largest cost factors.
A deeper investigation of confounding factors is performed by Gargoum and El-Basyouny
(2016). They used structural equation modelling which, by combining several analysis, al-
lows multiple variables to influence the outcome directly or via mediators. Average speed was
set to be a mediator specified by several road and traffic characteristics and was found to have
a significant positive correlation with crash frequency. The factors traffic volume (after con-
trolling for congestion effects) and segment length had significant effects not only on average
speed but also directly on crash frequency. Posted Speed Limits only had an indirect effect on
collision frequencies via average speed, while curvy roads only show a direct decrease in crash
frequency and no significant effect mediated through average speed. These results are of big
importance for my own work, because much of the mentioned confounders are available in the
data at hand and must be controlled for. Similarly, Gitelman et al. (2017) used a negative
binomial regression model to calculate the impact of travel speeds on the relative number of
accidents. As expected, a positive correlation was found between average speed and accidents,
controlling for the same factors as Gargoum and El-Basyouny (2016), including traffic volume.
But contrary to them, Gitelman et al. (2017) find a negative effect of curves on the accident
frequency. The latest publication on this topic yields no new knowledge. Higher speeds and
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lower density both lead to an increase in the relative accident rate while controlling for vehicle
density, with the relationship between speed and accidents showing an exponential like pattern
Kriswardhana et al. (2023).
ITF (2018) and Elvik et al. (2019) both provide summaries of literature on this topic and
agree on the fact, that mean speed has a strong positive correlation to the relative number of
accidents and injury severity, mainly on severely injured and fatally injured casualties. This
correlation remains after controlling for different road and driver related confounders, as well as
environmental impacts. The power model persists to be very precise, complemented with the
exponential model Elvik et al. (2004). Both summaries also include work with partly diverting
results, as has been found with all research about traffic in the last century, but the main
findings always remain the same.
One of the diverting papers is Quddus (2013), who found no statistically significant effect of
mean speed on accident rates, but stated a consistent impact of speed variance on accident
rates. Estimated with segment-based data from the region of London, including variable traffic
volume and controlling for several road characteristics in the segments. This relationship has
already been mentioned by Taylor et al. (2000) and later Aarts and Van Schagen (2006). Un-
fortunately there is no possibility to collect or construct this measurement from my data and
thus, I can not include this in my calculations. A direct comparison between congestion and
accidents for traffic around London was tested by Wang et al. (2009). They report no impact of
congestion on accidents (relative accident rate compared to the vehicle flow) when controlling
for other factors like traffic flow and road characteristics, which seem to explain all variation
in accident rates. Summarizing different studies on the congestion accident relationship, Re-
tallack and Ostendorf (2019) conclude that some of the diverging results originate from the
difference in detail of the used data. Suggesting the use of high-quality traffic data including
a spatial differentiation between rural and urban areas. In addition they highlight that the
relationship alters when differentiating between first, accident rates being either positively lin-
ear or U-shaped (thus most accidents with low or high congestion based on the specific traffic
flow) and second, fatal accidents showing an inverse U-shape with most fatalities at medium
congestion levels.
From a medical and physical view, speed is clearly one of the main driver for increased injuries.
Job and Brodie (2022) explain how the kinetic energy released into the body at an impact
increases exponentially with the increase in speed. This was empirically tested by Doecke et al.
(2020), confirming that increasing impact speed leads to a higher probability of serious injury.
Publications like Daffner et al. (1988) or Weninger and Hertz (2007) made early statements
that security measures like seat belts or airbags and the point of impact, i.e. front, side or
rear-end, play a crucial role in injury pattern and therefore their severity. Speeding was found
to be accountable for 18% of fatal and serious injury accidents in Australia by Doecke et al.
(2021). Further, Anderson and Auffhammer (2014) analysed the impact of vehicle weight on
the probability of being fatally injured during an accident. They find a large increase in the risk
of fatal injury when being hit by a heavier car or even a light truck or SUV, while an increase in
own vehicle weight correlates with a decrease in mortality. They suggest to incorporate these
external costs of heavier vehicles in a gas tax or a weight varying mileage tax, with the latter
being very challenging to implement due to the need of information on the exact vehicle-miles
travelled.

2.3 Impact of Covid-19 Measures on Mobility Behavior

The majority of the aforementioned publications exploited the variation of traffic volume and
its influence on speed and accidents during the day, this is called within-day variation. While
some used the change of policies, mainly adapted speed limits, to investigate the related conse-
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quences. In 2020 the Covid-19 pandemic brought large challenges for the whole world including
massive lockdowns impacting every part of peoples lives, including their mobility behavior. It
did not take long for researchers to publish first analysis of the impact of mobility change, i.e.
reduction in traffic volume, on the average speed and accident patterns. The first results were
plain statistical comparisons without accounting for any confounding effects. They found a
decrease of traffic volume of slightly more than 50% combined with a decrease in accidents of
around 75% in Spain Saladié et al. (2020) and around 50% in California, Shilling and Waetjen
(2020), who also found an increase in average and maximum speed. Both publications look
at total numbers and do not consider changes in number and severity of accidents relative to
the change in mobility behavior. The National Highway Traffic Safety Administration of the
United States of America published slightly different results, weighting the accidents with an
inflation rate which contains the change in Vehicle Miles Travelled (VMT) and accidents from
2019, NHTS (2021), and found a relative increase in fatal accidents for the majority of analyses.
Indicating that there was a shift from less to more serious injury accidents.
The methods rapidly improved and results using econometrical approaches were published.
Doucette et al. (2021a) used an interrupted time series design, finding that the 43% decrease in
VMT lead to an increase in crash rates mainly in single vehicle accidents (2.29 times) and fatal
accidents (4.1 times), controlling for temperature and precipitation. In their following work,
Doucette et al. (2021b), show that these results are consistent to further robustness checks and
differentiation. Throughout the published research the decrease in traffic volume led to mixed
effects on the relative occurrence of accidents. Adanu et al. (2021) and Inada et al. (2021) find
a relative increase in crashes, though the latter only accounts for fatal crashes. Decreasing rel-
ative crash rates are reported by Lin et al. (2020), Brodeur et al. (2021), Hughes et al. (2023)
and Patwary and Khattak (2023). Further, all of these find a shift in injury patterns from
non-serious to severe injured and especially a large increase in fatal accidents.
Increases in dangerous driving behavior like reckless driving or drinking, Hughes et al. (2023),
Patwary and Khattak (2023), omitting of seat belts, Adanu et al. (2021) and speeding are all
positively correlated to crash rates and highly increase the probability of being involved in a
fatal accident, Katrakazas et al. (2021),
Concluding this subsection, the available research finds mixed results of Covid-19 lockdown
measurements on the relative number of accident occurrence. But very consistent results of
a shift of accident severity towards more serious and fatal injuries. Additionally increases in
dangerous behaviour during and around driving are seen which are highly correlated to the
relative increase in fatal accidents. The results for accident severity are in line with the results
from earlier work using within-day variation in traffic and speed. While contrary to previous
work, the majority of the Covid-19 research finds a relative decrease in total accidents after the
reduction in traffic volume and the subsequent increase in average speed.

This thesis is, to my knowledge, the first research investigating the impact of traffic density and
traffic volume on relative occurrence of accidents and the distribution of related injury severity
patterns in Switzerland. While there is international consensus on the negativity of the speed-
density relationship, there is no unanimity in the results for the speed-accident relationship.
Analysing not only within-day variation, but also the large change in mobility behavior during
the Covid-19 lockdown, combined with the extensive data on accidents in Switzerland, leads
to insights on accident mechanisms from different perspectives. By that my work contributes
to the national understanding of accident influencing factors and adds to the international
literature on this topic. The results are important in supporting policy makers to anticipate
related effects and by that adjust policies accordingly.
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3 Changes in Mobility Behavior during Covid-19 Measures in
Switzerland

The Covid-19 pandemic affected our lives for multiple years and in several ways. The most
radical impact was likely by the two lockdowns in the first year of the pandemic. In Switzerland
the federal council decided to put the country into a national lockdown starting on March
16th 2020. This measure included a strong recommendation to work from home if possible,
closure of all commercial leisure activities, including restaurants and bars, as well as closure
of all non-essential shops. Schools were closed and public gatherings of more than 5 persons
were prohibited. Additionally, people were asked to limit their social contacts outside of their
household to as few as possible. When infection rates decreased by the end of spring, the
lockdown was terminated on May 11th 2020, with some important businesses already allowed
to reopen two weeks earlier. Public transport was never inflicted during the lockdown, however
it experienced an enormous decrease in usage during this time, with low occupation rates
continuing far longer than the Lockdown measures. This could have partly be intensified by the
national mask mandate in public transport starting at June 6th 2020. In fall 2020, Switzerland
experienced another increase in infection rates largely exceeding the spring counts. This second
wave was counteracted with a second lockdown starting on December 22 and lasting until
January 17th 2021. Preceding this lockdown was a period of two months with less stringent
limitations on mainly gastronomical and cultural locations. As of May 2021 all restrictions
were gradually removed. Besides the forced closure of specific shops and locations and the
mask mandate all measures in Switzerland were urgent recommendations. Thus correctly there
were only ”soft” lockdowns in Switzerland. A comprehensive timeline of all events during the
first year of the Covid-19 pandemic in Switzerland can be found in Hintermann et al. (2023).
These measures led to a large change in daily lives which also affected peoples mobility behavior.
Figure 1 shows the differences in mobility behavior compared to the reference period, which
is defined by Google as the mean of the five weeks from January 3rd - February 6th 2020,
and separated for different locations in Switzerland. The data was published by Google LLC,
based on anonymized mobility data gathered from users of Google Maps, Google (2021). The
available data contains the daily proportional difference from the reference period for every
canton and whole Switzerland.

The enforced closure of nearly all retail shops and all commercial recreational locations led to
a large decrease in people visiting those places. A less but still imminent reduction can be
observed at the workplaces, which is related to the work from home recommendation. The
reduction in grocery store and pharmacy visits show that even though these locations remained
opened people adjusted their behavior and reduced their visits. The data for transit stations
includes all stations of public transport, taxi stands and also highway rest stops. Thus it does
no reveal much about the mode of transport people chose. But it shows that overall there was
a massive reduction in mobility during the Lockdown period. The two right hand side graphs
show where the people went instead. A large increase can be found at residential locations,
being the place where people live and close around the house. A similar increase of around
20% can be found at parks during the second half of the lockdown. Parks here combine public
gardens, national forests, camp grounds and so on, summarizing the outdoors on public land.
These remained open or accessible during the lockdown and were only subject to the social
distancing measures. Whether the decrease in the park visit frequency during the first couple
of weeks of the lockdown was due to bad weather, or if the people were just reluctant to go
out at the beginning of the pandemic remains unclear. Though I would opt for the latter,
since according to the Swiss weather service spring 2020 was one of the warmest and sunniest
in decades, MeteoSchweiz (2020). Since there is no direct comparison, I can not say anything
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Figure 1: Proportional changes in mobility behavior separated by location com-
pared to the reference period (mean of January 3rd - February 6th 2020). Vertical
lines mark the beginning and end of the lockdown. Graphs constructed by author
based on data from Google (2021).

about the large increase in park visits in the second half of the year. Nevertheless, the data
is not adjusted for any seasonality which seems problematic for comparing outdoor activity
behavior with a winter reference period, so the increase might as well be usual seasonal fluc-
tuation. But there were also relaxations of additional security measures throughout summer
which could have intensified the effect.

I now want to turn to the mobility behavior and more specifically the impact of the Covid-19
lockdown on traffic density on Swiss roads. Since mobility was one of the main targets of the
counter Covid-19 measures, the impact of those on mobility was monitored over time. On
behalf of different national and cantonal stakeholders, including the Swiss National COVID-19
Science Task Force, the research institute intervista AG published a report called Mobility-
Monitoring COVID-19, intervista (2021). They used data from their ”Footprints-Panel” which
tracks participants smartphones since October 2018 and provides a large representative sample
of the Swiss population. In the evaluation we see, that the average covered distances decline
by more than 50%. When further separating into mode of transport they find a reduction of
nearly 60% in the usage of cars or motorbikes and even an 80% reduction in public transport
use. This shows, that the Covid-19 lockdown indeed reduced the mobility of Swiss people.
Similarly, Molloy et al. (2021) using data from smartphone tracking, from the MOBIS and
MobisCovid experiment, found a reduction of daily trips to nearly half and a massive reduction
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of the activity space (measured in km2) of more than 75%. When looking at average daily
distances by car, they report a 50% reduction during the lockdown. Both studies state a fast
return to normal behavior after the lockdown was cancelled. Of specific interest for this work
are the results for average speed during the lockdown found by Molloy et al. (2021). They show
an increase of up to 15km/h during some hours of the day, but with most of the observed speed
increases in the range of 2-5km/h. These results are in line with what has been found in other
studies on mobility behavior during Covid-19 lockdowns around the world, i.e. Hughes et al.
(2023) & Katrakazas et al. (2021). This supports the theoretical approach, that the lockdown
led to a decrease in traffic volume, which reduced traffic density followed by an increase in
average speeds on Swiss roads.
The MOBIS and MobisCovid experiment were conducted in Switzerland from September 2019
until May 2020. The MOBIS experiment was designed to analyze people’s behavior response
on mobility policies. Study participants were tracked via their smartphones and their choice
of route and transport modes were recorded. After an initial control phase, the participants
were randomly separated into three groups, a control group and two treatment groups, either
being provided with information on the produced external costs, or information and pricing of
external costs on a budget of which they could keep the remainder. By that a large data set
of people’s mobility behavior and policy responses could be collected. MOBIS officially ended
in January 2020, but some participants remained recording their activities. As the Covid-19
situation exacerbated in Switzerland, all participants were asked to start tracking again, to
gather mobility information during the lockdown period. This created the MobisCovid dataset
containing trips between March and May 2020. In their recent work, Hintermann et al. (2023)
found e nearly 60% decrease in overall distance travelled during the first lockdown in spring
2020. When splitting this reduction into different modes of transport, they report a massive
reduction of over 90% in public transport and a 50% decrease in car travel. This is particularly
important for the upcoming work with traffic counts from Swiss highways explained in the next
part. Traffic count data only contains vehicles passing by, thus a one dimensional measure.
Traffic is instead a two dimensional system containing both the number of vehicles on the
roads, but also the trip length which states how long each vehicle remained on the roads. The
results from Hintermann et al. (2023) provide important insight on the change of distance
travelled during the Lockdown and by that helps to justify the use of the travel counts as a
measure for traffic volume.

Another source of traffic monitoring is provided by the Swiss Federal Roads Office (ASTRA).
Which conducts daily automatic traffic counts on several major highway positions. From which
the results are freely available for twelve counting stations over the years 2019 - 2022, ASTRA
(2020). The available data contains daily counts for all twelve stations and the percental change
compared to the previous year. I focus on the year 2020 and the comparison to 2019. The
data also contains a differentiation between passenger cars, including coaches, and commercial
trucks. I decided not to differentiate between those two categories and to show the total counts,
since my interest lies in traffic counts as a number of volume. Even though the behavior from
and around trucks on streets differs from a situation with only cars, trucks do provide their
part on traffic density. Figure 2 shows the total counts for the years 2020, as well as 2019 in
thousands of vehicles. We can clearly see a seasonal trend in the year 2019, which is also visible
in the beginning and the end of 2020. During the lockdown, marked with the two vertical black
lines, there is a massive decrease in vehicles passing the counting stations. To better understand
the dimension of this reduction, the lower graph in Figure 2 shows the change in traffic volume
in percents. The decrease in vehicle on highways also reaches up to 60%, which is in line with
the results of Molloy et al. (2021), intervista (2021) and Hintermann et al. (2023). The min-
imum is reached at the beginning of April 2020, after which the number of vehicles gradually
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Figure 2: Top: Total vehicle counts (in thousands) on Swiss Highways in the
years 2019 and 2020. Bottom: Proportional change in vehicle counts in 2020
compared to 2019. Vertical lines mark the beginning and end of the lockdown.
Graphs constructed by author based on data from ASTRA (2020).

starts to increase again. Interestingly, we also see that people anticipated the beginning of the
pandemic themselves and traffic volume decreased before the official lockdown. This has also
been widely observed by other researchers.
In the second half of the year we see that the counts of the year 2019 lie below the counts
of 2020, while the proportional change shows values between 0 and -10. This comes from the
fact that there are some months with missing values for single stations. Which were replaced
with the mean of the corresponding station. The daily proportional changes are provided by
the ASTRA and only contain stations with available data for 2019 and 2020, thus they are
based on less observations but are better suited to compare the two years. Also, there are no
observations for the majority of days in December for which the month of December is not
included in Figure 2 and all upcoming calculations.

Figure 3 shows the cumulative yearly hours of traffic jams on Swiss highways. The data is col-
lected by the Swiss Federal Statistical Office (BFS) and publicly available on their homepage,
BFS (2023b). The total hours are differentiated by the cause which is categorized to congestion,
accidents, construction work or other. We can see that other is only a minimal share of all jam
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Figure 3: Hours of traffic jam on Swiss highways separated into cause of the jam.
Graphs constructed by author based on data from BFS (2023b).

hours, while the share of construction work related jams is a bit higher followed by the jams
due to accidents. The majority of all hours of jam comes from congestion, which we also see to
massively increase over the years, while the amount of jam hours due to the other three reasons
remain similar over the whole 22 years. The reduction of traffic jam hours in 2020 is quite obvi-
ous and accounts for an around 35% decrease of jammed hours when comparing 2020 with 2019.

Together, all this work paints a similar picture of the changes in mobility behavior during the
Covid-19 lockdown in Switzerland in spring 2020. The traffic volume decreased by more than
50% with differences between transport modes. While the effects on other transport modes
are very interesting, I only focus on car mobility in the upcoming work, since I only examine
the effects on accidents with cars. The reduction in traffic jams depicted in Figure 3 together
with the increased speeds found by Molloy et al. (2021) support the concept of a negative
speed-density relationship. Further, the results of Hintermann et al. (2023) confirm a reduction
in distance travelled by car during the lockdown of about 50%. This is important, for I want
to use the daily traffic counts from Swiss highways as a proxy for traffic volume, which lacks
the length dimension of trips. As we saw in Figure 2 the traffic counts decreased by nearly
60%, thus using them to also account for differences in distance travelled, includes a small
overestimation of the reduction in trip lengths. Nevertheless, I decided to use the traffic counts
as a credible measure for the variation in traffic volume.
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4 Methodology

I want to estimate three different effects. The change in probability of ending up in a specific
injury category conditional on having an accident, based on individual accidents. The effect on
the relative accident rate and distribution of injury categories by changes in traffic volume on
a daily bases. Further, the impact on accident numbers of changes in average speed. For that,
three different estimation models are needed, suited to the effect of interest.

4.1 Accident Severity as a Function of Traffic Volume, Based on Lockdown In-
duced Traffic Reduction and Variation of Traffic Density During the Day

To estimate the probability of ending up in a specific injury category a logit model was chosen.
For each injury category there is a binary variable which turns one when there is at least one
casualty with according injuries. Having a binary dependent variable makes logit the most
suitable regression model. It estimates the probability of suffering an injury of the specific
severity, based on the explanatory and control variables. The estimation is performed separately
for each injury category, since the injury severity should be independent of each other no ordinal
rule shall be applied. The following equation shows the logit model used:

P(Injury Categoryit = 1|EX) = c + β · EXei + γ · FEft + δ · COci + εit (2)

The dependent variable on the left hand side is the probability of the binary variable for the
specific injury category being 1, thus accident i on day t has a casualty showing this injury
pattern. On the right hand side there is the constant c and the error term εit. EXei is a vector
of dummies e for the specific accident i building the explanatory part of the model, with β
being the vector of estimated coefficients belonging to the dummies. For the Covid-19 lockdown
approach the explanatory variable are dummies for the years 2015-2020, with 2020 being the
characteristic of interest. Implementing a ”treatment” variable differentiating between 2020
and the previous years and adding year fixed-effects (FE) was not possible in this context,
because the year FE would collect the whole variation during the lockdown period in 2020.
To estimate the effect of different traffic densities on injury severity, EXei consisted of binary
variables for the three density levels available in the accident data.
To control for seasonal variation, I used f season fixed-effects (FE) (day-of-week FE, month
FE and holidays) for the day t on which the accident occurred, which are included in the vec-
tor FEft and the corresponding vector of coefficients γ. The term COci is a vector of control
variables c for each accident i consisting of driver controls (gender and age of the driver and
environmental controls (speed limit, weather, light conditions, streetlights and road type), which
are added for some specifications. These control variables are further explained in Subsection
5.3. δ is the vector of estimated coefficients belonging to the specific control variables.
Since the coefficients of a logit model are not directly interpretable, the results reported in
Section 6 do not show the estimated coefficients βe, but the marginal effect on P(Injury
Categoryit=1|EX) of dummy e turning to 1. The marginal effects were calculated using Stata’s
”margins dy/dx” function.

4.2 Daily Accident Counts and Injury Severity as a Function of Daily Traffic
Counts

The estimation of the effect of traffic counts on the relative accident rate and the distribution
of accident severity is based on count data consisting of daily aggregation of the accidents,
their injury patterns an the specific traffic counts. Not all models are well suited to handle
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count data, especially when the distribution of the observation is right skewed do to a high
density of low observations, or even a majority of counts with the value of zero. This is
the case for the more severe injury categories, especially for the fatal accidents, where most
days in Switzerland do not show any fatal accident. In addition to performing an Ordinary
Least Squares (OLS) regression, I targeted this problem by using Pseudo Poisson Maximum
Likelihood (PPML) regression to estimate all count data based results, which is in line with
Hintermann et al. (2023). PPML is well suited to deal with zero inflated count data and
compared to classic Poisson regression, PPML needs no assumption about the distribution of
the dependent variable, Correia et al. (2020), besides a correctly specified conditional mean
of the dependent variable, Gourieroux et al. (1984). Compared to the ordinary least squares
regression (OLS), PPML works consistently with heteroskedastic error terms, with which OLS
has proven to estimate the parameters quite inconsistently, Santos and Tenreyro (2006).
The applied model followed the form of this equation:

Countst = c + β1 · Traffic Countst + β2 · Traffic Counts2t + γ · FEft + εt (3)

Where Countst are the counts of all accidents or a specific injury category on day t. Traffic
Counts are the daily traffic counts from Swiss highways on day t. The β1 coefficient is the esti-
mated linear relationship between Traffic Counts and accident Counts. Since this relationship
is unlikely to be linear, I defined a polynomial regression model by also including a quadratic
term of traffic counts, with the corresponding coefficient β2. Additionally a cubic function was
estimated to allow for a sigmoid functional relationship. Since accidents depend on multiple
influencing factors confounding with traffic volume, such a correlation is imaginable. The cubic
term showed significance on the 10%-level for total accidents and lightly injured and remained
insignificant for all other models. With the significant cubic coefficients only being a very small
fraction of the linear and quadratic coefficients, I decided that the cubic model contains no
additional information and refrained from including it.
When aggregating on a daily level, much of the information on individual drivers is lost, there-
fore I only include a vector FEft of f seasonal fixed-effects (day-of-week FE, month FE and
holidays) on day t in this model. With γ being the vector of corresponding coefficients to it.
The model described by Equation 3 can either be estimated using OLS or PPML. To report
the results, both estimated coefficients β1 and β2 were combined to show the marginal effect of
a change in traffic counts on accidents.

4.3 Accident Counts as a Function of Average Speed in 12 Categories During the
Day

The third model used does not differ substantially from the previous one. The explanatory
variable changes to be average speed and the traffic counts become a control variable. In
addition each day gets separated into 12 categories, four time and three speed categories,
which allows finer investigation of accident occurrence differentiated by time and road specifics.

Countsths = c + βis · Average Speedths + γ · Controlsct + εths (4)

Thus the dependent variable is accident Counts on day t during the time period h in the speed
regime s. Based on data from the MOBIS and MobisCovid experiments, Average Speed is
calculated for each category in every day. The vector of control variables c contains the FE
from above and is extended by the daily traffic counts. I only used OLS to perform estimations
based on this model.
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5 Data

5.1 Swiss Accident Register

In Switzerland the Federal Roads Office (ASTRA) collects all data on vehicle accidents since
1992. After project description and a usage contract the ASTRA gave access to the full
anonymized data set. It contains every accident from 1992 to 2022 in Switzerland, which
sums up to 2’031’162 crashes. There is information on date, approximate time, count of people
involved and the severity of their injuries. Further it has geographical information for every
accident, as well as cause of the crash, weather, road and light conditions. One additional
data-set incorporates information on all involved persons like age, gender, years of driving ex-
perience and usage of seat belts. While another data-set holds all specific information about
the driver and the involved vehicles, like type of vehicle, power of the engine, number of places,
weight, but also type of collision, results from alcohol and drug tests and reason of trip. A full
record of all available data in the three different sets can be downloaded from the homepage of
the Swiss Federal Roads Office, ASTRA (2019).

5.2 Data Cleaning and Preparation

These three data-sets were merged by the accident-ID number, which individually identifies
every single accident. This resulted in many accidents being multiply listed, once for each
person involved. Since I am interested in the number and severity of accidents and the driver
related factors, I removed details of the passengers from the data set. Keeping only the count
of passenger casualties in each injury category per accident. Next I cut the lower bound of
the involved years to 2015, since traffic pattern as well as car security has changed much
over the last decades and therefore, I do not expect any credible insight from accidents that
occurred more than 9 years ago. Additionally, I restricted the data-set to only contain accidents
with passenger cars. Motorbikes, any kind of trucks and coaches are deliberately excluded,
because they offer different injury patterns compared to passenger cars, i.e. motorbikes offer
less protection, while the weight of trucks and coaches is very destructive. Some accidents were
included multiple times, once for each vehicle involved. This was solved by only keeping the
accident perpetrator, resulting in 325’127 remaining accidents. An additional check for further
duplicates revealed 35’589 exact duplicates of unknown origination, which were removed. Five
accidents with missing accident time were deleted, because this could become problematic for
the fourth analysis. Resulting in 289’533 accidents after preparing the basic data-set.
The following main analyses are restricted on four subsets. To investigate the variation due to
the Covid-19 lockdown I use the data from the years 2015 until 2020. Where 2015 - 2019 build
the control group against which I compare the observations from 2020. More importantly, the
dataset for this analysis is further restricted to the time of year when there was the lockdown
in 2020, thus from march 16th until may 10th of each year. For the second approach, exploiting
the within-day variation, I use all observations from 2015 until 2022 deliberately excluding the
full year 2020 due to its distorted mobility behavior. The third dataset uses all days for which
traffic counts from Swiss highways are available, which is from January 1st until December 1st

2019 and from January 1st until November 30th 2020. With 2020 being a leap year, this results
in 669 included days.
For the last model, estimating the relationship between average speed and accident occurrence,
I used every day for which there is data from the 3 phases of the MOBIS experiment, as well
as phase 4 which is the MobisCovid experiment. Together they span from September 2nd 2019
until May 10th 2020, thus ending at the same day as the first Covid-19 lockdown in Switzerland,
containing 252 days. These days were further divided into four time categories and three speed
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limit categories, resulting in 3024 observations each containing average speed and number of
accidents during that specific period and speed category. Since I perform single regressions
on each category of time and speed limit, thus 12 calculations, each of it only contains one
observation per days which lets us return to the 252 days.

Type of Variation Type of
Observation

Period N=

Covid Variation Individual Accidents 2015-2020 Lockdown
Period only

30’485

Within Variation Individual Accidents 2015-2022 254’077
(excluding 2020)

Traffic Counts Daily Aggregation 2019-2020 669
(excluding December)

Average Speed Daily Aggregation 2019-2020 Total: 3024
(per category) (per category) Each Model: 252

Table 2: Tabular presentation of the four datasets including specific number of
observations.

5.3 Variable Preparation

For the upcoming calculations some additional variables were created.

• To restrict the number of different ages of the drivers, I built 8 age categories starting at
< 25, next 25-35 and continuing with categories of 10 years up to the last being ≥ 85.

• Speedlimits were reduced to 4 categories: 30, 50, 80 and 120.

• There are 3 light conditions: day, night and twilight

• 5 road types: straight, curvy, intersection, roundabout and other

• 5 different weathers: sunny, clouded, rain, (snow, hail or freezing rain) and other

• The times of the accidents were divided into 4 categories:

– 06:30 - 08:30 ”Morning Rush-Hour

– 08:30 - 16:30 & 18:30 - 20:00 ”Off-Peak Hours

– 16:30 - 18:30 ”Evening Rush-Hour

– 20:00 . 06:30 ”Night”

• Three categories for speed limits were created to assign different average speeds, derived
from the MOBIS and MobisCovid data, with the accidents. The categories are < 50km/h,
50-80km/h and >80km/h and all accidents were assigned according to the speed zone they
took place. The average speed in these zones were calculated by assigning trips to the
three zones as explained in Section 5.4.

Further and in addition to the two seasonal controls Day of Week Fixed-Effects and Month
Fixed-Effects, I decided to also control for holidays because of the different traffic patterns dur-
ing these days. Holidays in Switzerland are very heterogeneously distributed over the cantons,
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Holidays (2024). Besides the national holiday on the First of August, only New Year, Ascen-
sion Day and Christmas are stated as holidays in the whole country, while Easter Sunday and
Pentecost Sunday are always Sundays. Numerous other holidays are known in Switzerland,
some just celebrated in a handful of cantons, others in nearly the whole country. I decided to
include all holidays which are acknowledged in at least 20 of the 26 cantons, which added Good
Friday, Easter Monday, Pentecost Monday and St. Stephen’s Day (26. December).

5.4 Average Speeds from MOBIS and MobisCovid

The main goal and procedure of data gathering of the MOBIS and MobisCovid experiment
were already explained in Section 3, more detailed information on MOBIS can be found in
Hintermann et al. (2024) and on MobisCovid in Hintermann et al. (2023). For the last model
of this thesis I derived average speeds for multiple subcategories from the combined MOBIS
and MobisCovid data. The goal is to estimate the impact on accidents by varying average
speed during different time frames in three speed regimes. The four time categories are already
explained in the previous Subsection, so are the three speed categories. While the accidents
could be easily assigned to the speed regime they occurred in, the trips from the two MOBIS
and MobisCovid experiments include multiple speed limits for each trip. I therefore relied on
the categorization by Molloy et al. (2021), who assigned the trips into three categories according
to their distance <20km, 20-50km and >50km. The derived average speeds fit well in the three
speed categories and I decided to use the trip length to assign the trips to the according speed
regime. This involves the bold assumption, that trip length serves well enough to proxy the
main speed regime a trip took place in. I can not further verify this assumption. But since I
am interested in the variation of average speed in these 12 categories over each single day, the
precision of the assignment is not that important, since all average speeds are derived by the
same rule and are only compared against each other.
I trimmed the data for some unrealistic values. For that I removed average speeds >120km/h,
duration of trip >10 hours or <12 minutes and trip lengths >500km. This resulted in 69’303
trips, which were then collapsed into the 12 categories for each of the 252 days. These categories
where then merged with the accident dataset, also divided into the 252 times 12 categories.
Due to some categories with 0 trips, the average speeds are only available for 2’923 of the
theoretical 3024 categories. Table 3 shows the the average speeds per category over all 252
days, the denoted standard deviations indicate, that there is sufficient variation distributed
over the days to specify the model.

Average Speed <50 km/h 50-80 km/h >80 km/h

Morning Rush-Hour 48.41 79.61 97.19
(19.14) (20.93) (16.77)

Off-Peak Hours 42.04 80.59 94.33
(21.51) (22.53) (18.94)

Evening Rush-Hour 43.49 77.09 94.39
(19.99) (21.19) (17.41)

Night 49.94 86.43 99.10
(21.37) (20.19) (18.97)

Table 3: Average speed in km/h for all 12 categories over the whole 252 days.
Standard deviations in brackets.
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6 Results

6.1 Descriptive Statistics

In this section I will show descriptive statistics of the four datasets for some selected variables.
Tables with descriptives for all included variables can be found in the Appendix Tables A.1 &
A.2.

2015-2018 2019 2020 Total change %
Mean

All Accidents 5’557 5’343 2’914 30’485 -45.46
72.91 17.53 9.56

Unharmed 5’287 5’077 2’724 28’947 -46.35
95.13 95.02 93.48 94.95

Light Injured 1’415 1’296 695 7’650 -46.37
25.46 24.26 23.85 25.09

Severly Injured 226 193 122 1’218 -36.79
4.06 3.61 4.19 4

Fatals 13 10 12 75 20.00
0.24 0.19 0.41 0.25

Traffic Density
low 2’532 2’319 1’711 14’157 -26.22

45.83 43.65 59.27 46.73
normal 1’908 1’865 945 10’441 -49.33

34.53 35.1 32.73 34.46
high 1’085 1’129 231 5’700 -79.54

19.64 21.25 8 18.81

Speedlimit
30 503 548 324 2’884 -40.88

9.05 10.26 11.12 9.46
50 2’864 2’641 1’446 15’544 -45.25

51.54 49.43 49.62 50.99
80 1’604 1’621 937 8’973 -42.20

28.86 30.34 32.16 29.43
120 586 533 207 3’084 -61.16

10.55 9.98 7.1 10.12

Female 1’823 1’813 949 10’055 -47.66
33.58 34.49 33.43 33.73

Reason of trip
Commuting 1’175 1’093 608 6’402 -44.37

21.15 20.46 20.86 21
Holiday or Daytrip 172 148 35 870 -76.35

3.09 2.77 1.2 2.85
Leisure or Shopping 3’608 3’604 1’934 19’968 -46.34

64.92 67.45 66.37 65.5
Freight- or Worktrip 123 175 93 760 -46.86

2.21 3.28 3.19 2.49
others 480 323 244 2’485 -24.46

8.63 6.05 8.37 8.15

Table 4: Descriptive statistics of main variables for the Covid-19 lockdown vari-
ation. Numbers below the counts denote the shares of accidents having a casualty
in the specific category. Except for the first row, where the percentage shares show
the distribution over the three periods.
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Table 4 displays descriptive statistics for single accidents exploiting the the Covid variation.
Note that the first column shows the mean of the period 2015-2018 for better comparability with
the other two years. The last column tells the change from 2019 to 2020 in percents. In the first
row the numbers below the counts denote the shares of the accidents in each period. Dividing
72.91 by 4, which would be accurate in relation to the mean that is displayed for the counts,
gives 18.23%. Thus the distribution of accidents over the periods is slightly weighted towards
the earlier ones and not surprisingly there is a large decrease of accidents during the lockdown in
2020. Nevertheless, the decrease of 45.46% in all accidents comparing 2020 with 2019 is less than
what has been stated for the traffic volume in Section 3. For the injury categories, the number
below the counts denote the proportion of accidents showing at least one casualty in the specific
category. As mentioned before, an accident can have multiple casualties in different categories,
thus the shares exceed 100% when combined. For all following variables, the percentage shares
show the distribution of the characteristics inside each period. By that we are able to see
whether the distribution changes over the periods and if the composition of the sample varies.
Looking at the injury categories, we see that the shares of accidents with unharmed and lightly
injured persons stay nearly the same over the whole periods. Variations like that are normal
when investigating accident data, since accident occurrence underlies stochastic rules. The two
higher injury categories both show an increase in their share in 2020. While the numbers of
severely injured is just reduced by 36.79%, which results in a higher share of it during the Covid
period, the absolute number of fatal accidents even increases. This leads to an increase of fatal
accidents by 20% from 2019 to 2020. Nevertheless, the number of fatal accidents is very small
during each period and we look at only two more fatals in 2020. When comparing 2020 to the
average of 2015-2018 it stands out, that the latter is even higher. Fatal accidents in Switzerland
have been continuously decreasing in the last 50 years, from a yearly 1’694 dead in 1970 to
below 300 since 2013. The yearly dead on Swiss roads from 2015 to 2018 were between 216 and
253, 2019 had the lowest number since the record with 187 fatalities. Which increased to 227
in 2020, decreased to 200 in 2021 and then rose again to 241 in 2022, BFS (2023a). We must
keep this in mind, since 2019 being the year with the lowest fatality count on Swiss roads ever
and also the baseline for the Covid-19 approach might bias the results upwards. Additionally
as explained in Section 5.2, the yearly counts by BFS (2023a) include every person that died
by an accident, while I reduce the accidents to a binary indicator for each injury category, thus
multiple fatal casualties of one accident summarize to only one fatal accident in the two logit
models.
The composition of traffic density over the three periods is shown next. We see that the share
of accident in normal density does not change substantially over the years. But there is an
increase in the share of accidents in low traffic density in 2020 together with a large decrease
in the share of high traffic density accidents. This reinforces the findings discussed in Section
3 and my assumption, that the change in traffic volume also impacts the accident occurrence.
Differentiating accidents by speed limits on the road where they occurred we see an increase in
the shares for 30km/h and 80km/h over the years. No big change in the 50km/h category, but
a decrease in the 120km/h category in 2020. This is in line with the findings of Molloy et al.
(2021), who find a large drop in peoples mobility spaces during the Covid-19 lockdown, which
might result in a reduced highway usage. The gender distribution of the drivers being included
in an accident does not change over all three periods. We see that male drivers are accountable
for two thirds of all accidents. This is interesting because the Swiss Microcensus of mobility
behavior BFS and ARE (2023), covering the period of 2016 until 2021, finds an average daily
distance by car of 24.2km for men and 17.4km for women. It shows that men are above the
total average daily car distance of 20.8km and women are below, but it is no 2 to 1 proportion.
There are two possible explanations for that, first men have a more reckless or riskier driving
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behavior, or second, some of the accounted trips are not being taken alone and whenever there
is a man and a woman taking a trip together the man is more likely to be the driver. Both are
just hypotheses and can not be further analysed.
The last part of Table 4 looks at the distribution of accidents between different reasons of trips.
Interestingly the share of commuting related trips did not shrink in 2020, even though this was
the time of working from home. The changes in daily distances differentiated by reason of trip
published by intervista (2021), show that while all distances fell during the Lockdown, leisure
activities had a more than proportional reduction. Work and education related trips, as well as
shopping trips just reduced by the ”normal” approximately 50% with the distribution between
them remaining nearly unchanged. This is also what can be seen here in the accident data,
with a large decrease in accidents related to holiday or day trips. Since leisure and shopping
trips are together in one category, it is difficult to say how behavior changed, but since the
share does not alter much I would assume that shopping trips account for the majority of these
accidents. Finally, the freight and work trips did not change much. Again there could be a
possible shift from some reduced work trips to more freight journeys, since people tended to
shop online during the lockdown. The category ”other” combines multiple reasons of trip that
are in the original data, all reacting heterogeneously on the lockdown and therefore this spec-
ification does not have a specific meaning. The further variables used for the single accident
analysis are shown in the Appendix in Table A.1. We see an increase in accidents with young
drivers, while older drivers are involved in less accidents. This might be due to the fact, that
older people tend to be more affected by a Covid-19 infection and therefore practiced social
distancing more conscientious. There is no major deviation between the periods for the light
conditions under which the accidents happened, as well as for the usage of seat belts. But
we see an increase in accidents in areas without streetlights. This, together with the increase
in accidents in 80km/h speed limit rule, indicates a shift from accidents from urban to rural
areas. There was an over proportional decrease in pedestrian involved, road crossing, rear-end,
take-over and lane changing accidents, where especially the latter three are highly driven by
traffic volume. There was an increase in accidents while entering or exiting the road, which
we also see in accidents at intersections and roundabouts in the roadtype variable. Head-on
accidents mostly happen on rural, non highway, roads and also show and increase, that is inline
with the assumed shift towards accidents in these areas. Finally there is a very high increase in
the share of skidding related and self-accidents. These types of accidents are intensified by low
traffic volume, because there is less external restriction in the speed chosen by the driver. This
can be seen in the slight increase in the share of speeding related accidents and even more in the
large increase of 80% in the share of accidents related to relative speeding. In the differentiation
for road types we see a reduction in the share of accidents on straight roads and an increase in
curvy sections. This could also be an indicator of increased misjudgment of speed. Regarding
the weather the spring 2020 was very beautiful with below average shares of accidents during
bad weather. This is in line with the report of MeteoSchweiz (2020) and particularly the large
increase in accident share during sunny weather stands out. This is one of the reasons, besides
the above mentioned increased injury patterns, why I excluded motorbikes from the data, since
motorbike trips are very weather dependent.

In Table 5 we see the descriptive statistics for all accidents differentiated by the traffic density
at time of their occurrence. We see that the majority of accidents (45.36%) happened during
low density and 35.45% occurred in normal density, while only 19.19% of accidents happened
during high traffic density. This is in line with most findings from Section 2.2, which align low
traffic volume with higher speeds and more accidents. More importantly, high but also normal
traffic density conditions cover only a part of a whole days time, thus there is much more time
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covered by low traffic density and by that more opportunities for accidents to happen in this
time. Similarly to Table 4 the percentages in the first column show the distribution of accidents
over the three density levels, while for the injury categories there are again the proportions of
accidents having a casualty in the specific category and for the rest of the table the percentages
show the distribution of the different variable characteristics inside one density level.

Traffic Density
Variable Low Normal High Total

All Accidents 115’241 90’079 48’757 254’077
45.36 35.45 19.19

Unharmed 107’055 85’461 47’348 239’864
92.9 94.87 97.11 94.41

Light Injured 22’103 25’664 15’709 63’476
19.18 28.49 32.22 24.98

Severely Injured 4’299 4’661 1’753 10’713
3.73 5.17 3.6 4.22

Fatals 409 233 67 709
0.35 0.26 0.14 0.28

Female 35’794 31’627 16’360 83’781
31.86 35.98 34.1 33.75

Speedlimit (km/h)
30 17’993 5’464 953 24’310

15.61 6.07 1.75 9.57
50 55’307 49’405 20’413 125’125

47.99 54.85 41.87 49.25
80 34’906 26’624 15’806 77’336

30.29 29.56 32.42 30.44
120 7’035 8’586 11’685 27’306

6.1 9.53 23.97 10.75

Type of Accident
Pedestrian or crossing 6’940 6’785 2’257 15’982

6.02 7.53 4.63 6.29
rear-end, take-over or changing lane 11’816 25’670 31’602 69’088

10.25 28.5 64.82 27.19
Enter or Exit road 13’337 19’966 7’252 40’555

11.57 22.16 14.87 15.96
Head-on collision 4’391 3’228 719 8’338

3.81 3.58 1.47 3.28
Skkiding or self-accident 50’933 23’729 4’994 79’656

44.2 26.34 10.24 31.35
other 27’824 10’701 1’933 40’458

24.14 11.88 3.96 15.92

Road Type
Straight 48’817 41’352 33’347 123’516

42.36 45.91 68.39 48.61
Curves 25’681 13’838 3’896 43’415

22.28 15.36 7.99 17.09
Intersection 19’770 22’394 8’458 50’622

17.16 24.86 17.35 19.92
Roundabout 3’317 5’547 2’004 10’868

2.88 6.16 4.11 4.28
Other 17’656 6’948 1’052 25’656

15.32 7.71 2.16 10.1

Table 5: Descriptive statistics of main variables differentiated into categories of
traffic density. Numbers below counts denote shares analogous to Table 4.
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Figure 4: Daily accident counts and adjusted traffic counts for the years 2019 and
2020. The accident counts have been divided by 7572 to make them the same scale
as the accident counts. Vertical lines mark the beginning and end of the Lockdown.
Graphs constructed by Author with using ASTRA (2020) and accident register.

While the shares of accidents including unharmed or lightly injured persons increases as traffic
density gets higher, the opposite is the case for fatal casualties. No relationship between severe
injury and traffic density can be seen here in the raw comparison. There are again no changes in
the shares of the gender of the driver. In the categories for speed limits we see, that in 30km/h
regimes the accidents are prone to happen in low density times, while on express- and highways
(120km/h regime) the majority of accidents occur when traffic is very dense. This can also bee
seen in the type of accidents, where accident patterns associated to sticky traffic like rear-end
collisions or lane changing related are most likely to happen in high traffic density. While
others like hitting a pedestrian, most likely by overseeing them, colliding head-on or producing
a self accident, which are often related to inadequate speed, are more frequent in low density
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environments. The road types show a similar pattern. Easy straight roads show the highest
accident share in high density situations, thus many other object to collide with. While more
difficult curvy roads seem to experience most accidents during low density times, presumably
because people do not adjust speed according to the road. Intersections and roundabouts show
an interesting distribution, both have the highest share in normal traffic density conditions. A
possible explanation could be, that during low density there are few other vehicles to collide
with and in high density times the speed is very low, so drivers have sufficient time to react.
The full table including all variables can be consulted in the Appendix, Table A.2.

Lockdown period only

2019 2020 2019 2020 change %

Vehicle Counts 833’365 716’488 844’314 431’920 -48.84

(77’110) (170’284) (78’829) (130’642)

Total Accidents 98.51 84.6 95.41 52.04 -45.46

(21.03) (23.17) (18.13) (14.59)

Unharmed 70.1 60.4 69.34 37.66 -45.69

(15.74) (16.83) (12.69) (10.69)

Light Injured 24.3 20.37 22.46 12.04 -46.39

(7.59) (7.66) (7.4) (4.9)

Severely Injured 3.91 3.53 3.43 2.13 -37.90

(2.3) (2.22) (1.79) (1.7)

Fatals 0.207 0.293 0.179 0.214 19.55

(0.457) (0.545) (0.386) (0.456)

N= 334 335 56 56

Table 6: Descriptive statistics of accidents and injury categories, aggregated on
days. The numbers on the left hand side show means on daily level for the years
2019 and 2020, excluding December for which no traffic counts are available. On
the right hand side, only the days during the Lockdown period march 16th until
may 10th are included. Values in parentheses show the standard deviation.

In Table 6 we see the means of total accident counts and separated into the injury categories.
The data contains one aggregated observation for every day during the years 2019 and 2020,
excluding December since there are no traffic counts for this month. In addition, on the right
hand side there are the means of the same variables constricted on the lockdown period, i.e.
march 16th until may 10th. The last column displays the change from 2019 to 2020 in percents
during the lockdown period. On the left hand side we only see slightly lower means in 2020 for
all variables but fatals, which shows that the Covid-19 measures did have a small impact on
the whole year. Thus the large reduction in accidents and traffic counts during the lockdown,
visible on the right hand side, was mostly compensated by the rest of the year. This indicates,
that besides spring, the year 2020 did not diverge much from a usual traffic year. Again we
see a smaller decrease of severe injuries compared to total accidents and also traffic counts and
even an increase in fatal accidents. The positive 20% change in fatal accidents is comparable
to the one in Table 4, and it is worth noting that the average during spring 2019 is much lower
than the total average in 2019. Comparing the lockdown period in 2020 with the mean of the
whole 2019, fatal accidents would only increase by 3.3%. Figure 4 shows the two first variables
of Table 6 over the years 2019 and 2020. Note that the daily traffic counts have been divided by
7572 to make them the same scale as the accident counts for better comparability. 7572 is the
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result from dividing average traffic counts by average accident counts for the two years. In the
upper portion of Figure 4 we see that in 2019 there was no obvious correlation between traffic
volume and accidents and both have a similar amplitude. In Spring 2020 there is an obvious
reaction to the Covid-19 lockdown and we see that traffic volume and accident counts behave
very similar and show nearly parallel trends. The graph for 2020 also shows that by summer
the two lines were about back to pre-Covid values and behavior.

6.2 The Effect of the Covid-19 Lockdown on the Probability of Sustaining a
Specific Injury Severity

The first specification I estimated is the effect of the Covid-19 Lockdown change in mobility
behavior on the probability of sustaining a specific injury severity when having an accident.
As explained in Section 3, the lockdown led to a 55% decrease in traffic volume in Switzerland.
Therefore, the estimated effects displayed in Table 7 show the overall change in probability
comparing the period from march 16th until may 10th of the specific year against this period in
2019, which is the reference year.
We see that during the Covid-19 lockdown (year 2020), even though the overall traffic volume
decreased by around 50%, the probability of suffering a fatal injury when having an accident
increased by 0.25%, compared to the reference year 2019. With an a priori probability of only
0.19% of being fatally injured when having an accident, this results in an increase of 130% of

(1) (2) (3) (4)
VARIABLES Fatals Severely Injured Lightly Injured Unharmed

2015 0.0003 0.0045 0.0208** -0.0052
(0.0009) (0.0038) (0.0084) (0.0043)

2016 -0.0005 0.00423 0.0037 0.0035
(0.0009) (0.0038) (0.0082) (0.0042)

2017 0.0012 0.0067* 0.0036 0.0066
(0.0010) (0.0038) (0.0082) (0.0041)

2018 0.0011 0.0010 0.0020 -0.0036
(0.0010) (0.0037) (0.0082) (0.0043)

2020 0.0025* 0.0026 -0.0109 -0.0146***
(0.0014) (0.0044) (0.0097) (0.0054)

Baseline 2019 (%) 0.19 3.61 24.26 95.02
Percental Change 130% 7.31% -4.49% -1.54%

Observations 27,288 29,783 29,783 29,783
Season FE YES YES YES YES
Driver Controls YES YES YES YES
Environment Controls YES YES YES YES

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 7: Results for the effect of the Covid-19 lockdown change in mobility
behavior on the probability of ending up in a specific injury category, conditional
on having an accident, using the logit regression model. Displayed coefficients are
marginal changes compared to the reference year of 2019.
Note: The baseline 2019 shows the proportion of accidents showing at least one
person with the specific injury, since accidents can contain multiply casualties with
different injury severity the shares combined exceed 100%.
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the probability of dying when having an accident. Based on the literature reviewed in Section 2,
the decrease in traffic volume should lead to a decrease in traffic density and therefore, based on
the speed-density relationship to an increase in average speeds, which is one of the main drivers
for higher injury severity and eventually fatal outcomes. No significant changes can be reported
for the probability of suffering severe or light injuries, but the signs of the coefficients correlate
with the expected shift from light to more severe injuries. As for the probability of remaining
unharmed when involved in an accident, it is also reduced on a statistically significant level by
1.54%. While constructing the binary variables for the injury categories, I defined them to turn
1 if at least one person suffered from the according level of injury. The reduction of 1.54% in
the probability of being unharmed can therefore be interpreted as 1.54% of accidents, in which
someone got injured who was previously unharmed, compared to 2019. All control variables are
included, since the coefficients proved to be robust to adding and leaving the fixed-effect and
controls. The full tables of the whole model, including different specifications of controls are to
be found in the Appendix Tables A.3 to A.6. Further, besides two coefficients the estimates for
the previous years remain insignificant. This is an important fact, indicating that the reference
year 2019 does not deviate substantially from other years.

6.3 The Effect of Varying Traffic Density on the Probability of Sustaining a Spe-
cific Injury Severity

In this subsection I present the results of my estimations on the effect of traffic density on the
probability of suffering a specific injury, given being involved in an accident. This approach
exploits varying traffic density over the period of a day, which is the within-day variation. The
current density during the time of the accidents is defined by the police filing the accident
report and by that, it includes subjectivity and is not the most precise measure. Nevertheless,
given the scarce data on traffic volume or average speed, it offers a crude differentiation between

(1) (2) (3) (4)
VARIABLES Fatals Severely Injured Lightly Injured Unharmed

Low Traffic Density 0.0011*** -0.0073*** -0.0522*** -0.0171***
0.0003 -0.001 -0.002 -0.0012

Percental Change (Low) 41.15% -14.20% -18.32% -1.80%
Baseline Normal Density (%) 0.26 5.17 28.49 94.87
Percental Change (High) -50.38% -22.44% 12.81% 2.69%

High Traffic Density -0.0013*** -0.0116*** 0.0365*** 0.0255***
-0.0002 -0.0011 0.0025 0.0011

Observations 247,989 247,989 247,989 247,989
Season FE YES YES YES YES
Driver Controls YES YES YES YES
Environment Controls YES YES YES YES

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 8: Results for the effect of different traffic densities on the probability of
ending up in a specific injury category, conditional on having an accident, using
the Logit regression model. Displayed coefficients are marginal changes compared
to the reference ”Normal Traffic Density”.
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traffic conditions. As the reference I chose normal traffic density and the shown coefficients in
Table 8 state the marginal change in each injury probability estimated for the specific traffic
density. From theory and literature we know, that lower traffic density is associated with higher
speed and vice versa. Note, that Table 8 shows the results of four different estimations, each
calculating the probability of anybody involved in an accident experiencing the specific injury.
Thus, the estimated results are completely independent from each other. In line with theory,
I find that accidents in low traffic density show a higher probability of being fatally injured
and less probabilities of being non-fatally injured that in normal traffic density. I am surprised
about the decrease in the probability of being severely injured, because I would have expected
this category to be also increasing with increasing speeds.
During high traffic density the opposite can be observed. There is a decrease in the probability
of being fatally or severely injured in an accident, but an increase in suffering light injury or
remaining unharmed. Again being in line with the assumption based on the speed-density
relationship and lower average speed leading to less severe accident outcomes. As with the
first model, I included all available fixed-effects and control variables in the estimation, since
varying specification showed the results to be robust. The full tables with different controls are
included in the Appendix Table A.7 to A.10.

Both models showed results according to the literature reviewed in Section 2, especially the
relation between average speed and injury severity. Nevertheless, neither actual speed nor
the traffic volume could be measured for the individual accidents. The underlying relationship
between speed and density is proven by previous research, but density in this context is also just
an assumption based on inaccurate information. I therefore want to continue with aggregating
the accidents on a daily bases and combine this daily counts with more detailed measures of
traffic volume in the following subsection.

6.4 The Effect of Traffic Volume on Daily Accident Counts and the Distribution
of Injury Severity

Including the daily traffic counts from Swiss highways, collected by the Swiss Statistical Office,
and estimating their impact on daily accidents and casualties gave the results shown in Table
9. The displayed effect is the marginal effect on the specific category of increasing traffic counts

(1) (2) (3) (4) (5)
VARIABLES All Accidents Fatals Severely Injured Lightly Injured Unharmed

Traffic Counts (in 100’000) 10.82*** -0.0331 0.594*** 3.625*** 10.41***
(0.779) (0.0251) (0.112) (0.311) (0.739)

Constant 27.45*** -0.337 1.501 11.74*** 25.77***
(7.182) (0.214) (0.990) (2.678) (6.698)

Observations 669 669 669 669 669
R-squared 0.532 0.026 0.150 0.480 0.543
Season FE YES YES YES YES YES
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 9: Results of the OLS regression of all accidents and the four injury cat-
egories on the daily traffic counts from Swiss highways. The results show the
marginal effect of an increase in traffic counts by 100’000 on the number of acci-
dents/casualties in the specific categories.
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by 100’000. The used model is a polynomial OLS regression, thus as explained in Section 4,
the explanatory variable is both included directly, as well as in a quadratic form and the shown
marginal effect is calculated from both coefficients. I also included the seasonal fixed-effects
day-of-week, month and holidays, to capture unobserved differences between the days besides
traffic volume. Results from the estimations without seasonal fixed-effects can be found in the
Appendix in the upper portion of Table A.11.
I found a highly significant linear relationship between traffic counts and all accidents, as well
as accidents involving unharmed occupants. The similarity between accidents and unharmed
was to be expected, since 94.2% of all accidents include at least one unharmed person. The
marginal effect shows, that with an increase of 100’000 cars on Swiss highways, an increase
of 10.82 accidents can be expected. To better understand and depict the quadratic term of
the model, I predicted total accidents and differentiated by injury category based on the OLS
estimation. The resulting graphs are displayed in Figure 5 and do not only show the slope of
the relationship between traffic counts and accidents, but also the polynomial influence. Since
all accidents and unharmed show virtually the same picture, the prediction of unharmed was
omitted here and can be found in the Appendix in Figure A.1. A positive correlation between
traffic counts and accidents was to be expected, since more vehicles posses more opportunities
to have an accident. Based on the theory presented in Section 2, increasing traffic counts are
assumed to result in a decrease in speed after a certain threshold. Thus, the nonlinear effect of
the quadratic term shows us how the elasticity of the estimated correlation changes as counted
vehicles increase. Table 9 shows no statistically significant relationship between traffic counts
and accidents with at least one fatality. This is good news, since fatalities seem not to depend on
vehicle counts. Having a look at the prediction in 5, shows the potential reason for this result.
While we see an increase in predicted daily fatal accidents as traffic counts increase, there is a
slow reduction of this correlation until it eventually reaches zero. This shows, that a potential
decrease of speed due to high traffic volume, leads to a stagnation of a further increase of fatal
accidents. For both categories, severely and lightly injured a positive correlation with traffic
counts can be reported. While the effect on accidents with severely injured is rather small, only
0.6 more accidents of this category, an increase of traffic volume by 100’000 vehicles can be
associated with an additional 3.6 accidents with lightly injured occupants. Both relationships
show a convex pattern, when inspecting the graphs in Figure 5, thus increasing traffic volume
and possibly lower speeds increases the positive correlation between them. While this increase
in the slope is only small for severely injured, it rises quite a bit for the lightly injured. This
means that the relative counts of these injuries increase. Interpreting this as a shift from fatal
injury patterns towards severe and mostly light injury pattern lies at hand, especially since the
relationship between overall accidents and traffic counts seems to be linear. Nevertheless, I can
not state that so far. But besides fatal accidents, a statistically significant relationship between
traffic counts and accidents as well as injury categories can be reported.
Working with count data, especially including many days with zero fatal accidents, OLS might
no be the best suited method. I already explained the benefits of Pseudo Poisson Maximum
Likelihood (PPML) estimation on this kind of data in Section 4. I estimated the exact same
specifications as for Table 9 with PPML and found, that the results are virtually identical.
These results are displayed in the lower portion of Table A.11, both with and without season
FE. The only difference can be found in the estimation of the relationship between fatal acci-
dents and traffic counts with a majority of zeros, which is exactly where OLS is known to be
vulnerable. Here PPML perfomrs better, mainly to be seen in the non-negative constant and
also a better prediction of fatal accidents. The predictions of all models as well as a plot of the
original data is included in the Appendix for comparison, Figures A.1 & A.2. Here we also see,
that PPML does not predict negative values for fatal accidents, which is one of OLS downsides
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that also occurs here. Due to its simplicity and as shown, still highly accurate estimations, I
chose to report the OLS results.

Figure 5: Prediction of all accidents and differentiated by injury category based
on the OLS estimation.

6.5 The Effect of Speed on Accidents

For the last estimation, I used mobility Data from the MOBIS and MobisCovid experiments.
The tracked trips were separated into four time and three speed zone categories, as explained
in Section 5. For all 12 resulting categories an OLS regression was performed, estimating the
effect of daily average speed on daily accident counts in each case. The base model only in-
cludes accident counts and average speed, which bears the problem of speed also collecting all
variation in traffic volume and is only in the Appendix. Thus, this specification is more likely
to capture the speed-density relationship with density being moderated by the number of acci-
dents. To credibly defend that, we must rely on the assumption of linear correlation between
accidents and traffic volume, which was estimated accordingly in the previous model. We see,
that there is a statistically significant negative relationship between average speed and accident
counts in some categories. Especially during the rush-hour periods, but also in 50km/h zones
during the off-peak times. These are exactly the times at which we would expect an increase in
average speed with decreasing traffic volume leading to less congestion. I therefore, trusting in
the assumption made above, believe that the average speeds and accidents are confounded by
traffic volume, which leads to an overestimation of the negative effect in this specification due
to omitted variable bias. Nevertheless, I would value the results of that model as support for
the negative speed-density relationship in Switzerland. In addition it is important to point out,
that this specification finds a positive relationship between average speed and accidents during
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Figure 6: Estimated effects of average speed on daily accident counts, separated
into the 12 categories. Bars represent the respective 95% confidence intervals. All
calculations made using robust standard errors.

off-peak hours in the >80km/h speed zone. This includes expressways and highways and states,
that on these streets, during a time period not prone to crowding, an increase in average speeds
does have a positive effect on accident counts. Due to the fact, that besides this last coeffi-
cient none are a big support for the question asked here and including this model highly skews
the figure due to one low outlier, this specification is only included in the Appendix, Figure A.3.

The resulting coefficients of the following specifications are depicted in Figure 6, with the ac-
companying 95% confidence interval. And they show the estimated change in accident numbers
in that category by increasing the average speed by 1 km/h. To take daily changes in traffic
volume out of the equation, I controlled for it in the green model. This absorbs much of the
observed variation from the first specification, but helps to better isolate the effect of changes
in average speed on accident counts. This step brought the estimated coefficients closer to zero,
especially the previously highly significant ones. They remain statistically significant during
the morning rush-hour in 80km/h zones, as well as during the evening rush-hour in 50km/h
and 80km/h zones, but with far lower estimated effects. These are still the categories where
congestion can be very well expected. An increase in speed could lead to a reduction in acci-
dents, due to better flow of traffic and less variation of speed within vehicles. People might also
be less impatient when traffic flows at higher speeds, and by that they drive more considerate.
But there is also the possibility, that the daily traffic counts are not detailed enough to control
for traffic volume differences inside the congestion prone categories. So the question remains
open, whether I really find a negative correlation between average speeds and accident counts,
or if this specification still captures part of the speed-density relationship. I found no way to
further differentiate this with the data at hand, but if I had to decide, I would opt for the latter
explanation of the results.
I repeated the model with two other specifications. First including the already known sea-
son fixed-effects and second by including the daily traffic counts and the season FE. Most
importantly, the estimated effects for the morning rush-hour in the <50km/h regime became
significant. With the traffic counts being collected on highways, they might not be the best
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option to control for traffic volume in this regime. And by that, especially the day-of-week FE
might much better control for changes in mobility behavior between weekdays and weekends,
i.e. commuting and business related trips vs leisure trips. The aforementioned reasoning of less
accidents with more fluent traffic, which equals higher average speed, is particularly credible in
urban settings. Therefore the results in these two specifications could show a negative corre-
lation between average speed and accident. But an influence of traffic volume on the accident
numbers and therefore the results can not be ruled out completely.
Interesting results can also be found during the night in the 50-80km/h regime. Besides the
green specification, all results show a statistically significant positive effect of average speed on
the accident numbers in that category. Rural streets show the highest shares of accidents with
fatal and severely injured persons. This is due to higher speed compared to urban streets and
less security measures, i.e. crash barriers and direction separation, compared to highways. And
rural streets show higher numbers of speeding and relative speeding (speed below speed limit,
but believed to be to high for the road specifics or weather circumstances). Additionally, there
is no congestion to be assumed during the night. By that, I believe to have credibly isolated a
positive effect of average speed on accident numbers in this category. This is also in line with
other research presented in Section 2.
Most results are statistically not significant. This is good news in the context of mobility
policies, since most of them aim on reducing congestion and by that increase average speeds.
Figure 6 shows, that except for the night 50-80km/h category, no significant increase in acci-
dents and therefore accident related internal and external costs were found. With this category
most likely not being prone to congestion and therefore no density related speed reductions.
But for other categories, there remains the danger of possible relative increases in accidents
(by increased speed) being absorbed by a simultaneous reduction in traffic volume which is not
observed individually for each category. Therefore, further research with traffic volume like
vehicle-kilometers travelled assigned to each category is needed for a deeper understanding of
these effects. The full results displayed in table form with further specifics of each model can
be found in the Appendix in Tables A.12 & A.13. In the previous model on traffic counts,
polynomial regression showed do deliver more precise results. To check the robustness of the
estimations on average speed in the 12 categories, I performed the same estimations using aver-
age speed and, if included, daily vehicle counts in a linear but also quadratic form. The results
differ slightly, but not substantially and can be found in the Appendix in Figure A.4, showing
the marginal effects of the linear and quadratic term combined by increasing average speed
by 1 km/h on accidents. The most important difference is the disappearance of all statistical
significance of the positive results during the night.

7 Policy Implications

In this Section I want to evaluate the impact of my results on accident costs in Switzerland,
specifically changes in accident costs that can be expected by implementing mobility policies.
For that I created two scenarios of policy induced changes in mobility behavior and their influ-
ence on accidents and accident related costs.
In Switzerland, the internal and external costs of accidents are being calculated by the Federal
Office for Spatial Development (ARE). The latest available costs are from 2020 and were pro-
vided to my by ARE upon request. By the end of 2024 new cost calculations will be published,
based on not only new numbers, but also with a completely new calculation scheme. The costs
used for this work are based on the calculation scheme of 2010, which is extensively explained
in ARE (2014). They consist of costs incurring at every accident, including damage to prop-
erty, administrative costs, police cost and jurisdiction costs all internal and external, which I
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combined to the Damage to Property costs visible in Table 10. Additionally, costs related to
the severity of injury, including medical costs, production/labor downtime, replacement costs,
administrative costs and immaterial costs, are available. The social costs are the direct or
internal costs borne by individuals or firms, while the external costs are borne by the society.
ARE knows two different views of external costs, first the view of the traffic carrier and second
the view of the traffic user. The view of the traffic user assigns more costs, not borne by the
accident causer, to society and therefore to be external compared to the traffic carriers view. I
chose to use the traffic carriers view, since it is more general and the lower external costs in this
view prevent an overestimation of the effects. Together these costs define the total costs for
each injury category shown in Table 10. The shares denote the distribution of injury categories
over all accidents. Note, that in contrast to the previous estimations I assigned the accidents
to the most serious injury only. Following the same procedure as before, thus assigning an
accident once to each injury occurring in this accident, would lead to an overestimation of costs
due to multiple inclusion of one accident into the calculations, especially repeating inclusion
of damage to property costs. With this method the costs of accidents are again rather un-
derestimated, which is preferred over overestimation. Another source for underestimation is
the exclusion of invalidity costs. As visible in the last row of Table 10 the costs of invalidity
are much higher than the costs associated to severe injury. Nevertheless, in the accident data
casualties suffering from lifelong invalidity are most likely labeled as severely injured and by
that the assigned costs for severe injuries are certainly to low. Having no numbers on the share
of invalidity related to the included accidents, I found no way to adjust the costs accordingly.

Social Costs External Costs Damage to Property Total Costs Share in %

Unharmed 0 0 49’139 49’139 71.59

Lightly Injured 28’607 2’246 49’139 79’992 24.15

Severely Injured 808’801 45’198 49’139 903’138 3.99

Fatals 7’236’937 500’489 49’139 7’786’565 0.27

Invalidity 3’409’906 870’053 49’139 4’329’098 unknown

Table 10: Accident costs (in CHF) separated into injury catagories and type of
cost calculated by the Swiss Federal Office for Spatial Development, ARE (2014),
and shares of injury categories in 2019 & 2020 based on the accident data.

For the first scenario, I calculated the expected change in accident costs based on an increase
in the price for driving a car. The total costs for each injury category were weighted with the
share of each category to derive the average cost of one accident, which is 111’556 CHF.

In their most recent work, Hintermann et al. (2024) estimate price elasticities for different trans-
port modes based on data from the MOBIS experiment. They find a reduction of 0.17% in the
probability of taking the car for a trip when facing an increase of 1% in the price for car usage.
Looking at travel time (-0.35%) or distance travelled (-0.45%) the estimated elasticity for car
trips is even bigger. I underlay the assumption, that this reduction in probability of taking the
car translates into the traffic counts used for the model shown in Subsection 6.4. Multiplying
this reduction with the estimated effect of traffic counts on accident numbers, a reduction o
0.17% leads to 0.0184 less accidents per 100’000 vehicles counted on Swiss highways. This can
be seen for all elasticities in the first multiplication depicted in Figure 7. As stated before,
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Figure 7: Path of calculations leading to the range of expected effects on daily
accident costs based on a fictive scenario of a 1% increase in the cost of driving a
car.

the traffic counts are not representative for actual numbers of vehicle counts on Swiss roads,
but were shown to proxy changes in traffic volume quite reliable. Combining the reduction of
0.0184 accidents with the average cost of an accident (second step in Figure 7), this translates
to savings of 2051.95 CHF. With a daily average of 774’651 vehicles counted over the whole
period, this results in savings of 15’895 CHF daily. The above calculation only includes mode
shifts, thus diverting from using the car to another transport mode or not taking the trip at
all. Using the reported elasticity for reduced travel time of -0.35% and distance travelled of
-0.45% from Hintermann et al. (2024), Figure 7 shows their effect on expected accident costs.
Previously I explained how traffic volume is a two dimensional system and that not only the
number of vehicles must be accounted for, but also the kilometers travelled and the time on
the road system. Legitimizing the usage of the elasticity of distance and time travelled.
Together I conclude, that an increase of the price of travelling by car of 1%, via fuel tax or road
pricing, results in an estimated daily savings of accident costs, internal and external combined,
of 15’895 - 42’076 CHF.

The second scenario is based on people’s responses to individual mobility pricing based on the
generated external costs. I again base this calculations on results from Hintermann et al. (2024)
derived from the MOBIS experiment. In the treatment period of the experiment, participants
in the ”pricing group” were assigned a virtual account with a starting budget adjusted to their
mobility behavior in the observation period. For each trip they undertook, the external costs
were deducted from that budget and participants knew that they could keep the remainder
of the budget after the experiment. In addition, the participants of this group also received
weekly information on their external costs per mode and how they could reduced them. Be-
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sides other effects, they report a statistically significant reduction of 6.4% in congestion per km.
This reduction is assigned to a change in route or departure time and an additional estimation
for departure time shows a significant change to 5 minutes earlier in the morning. However,
Hintermann et al. (2024) state that this result might be biased since it also captures possible
mode shifts during this time. I focus on the reduction of congestion for this scenario and set
the assumption, that the shift in mode is neglectable due to the measure of congestion per km.
Knowing, that this might slightly bias my calculations upwards.
For this scenario I want to calculate the change in accident costs by the decrease of congestion
by 6.4% as a reaction to individual mobility pricing. For that I rely on my estimations from
the within-day estimation shown in Table 8. I calculated the average accident costs based on
the distribution of injury categories in normal density, given by the shares denoted in Table 8,
which is 94’322 CHF. By adding the estimated marginal effects of high traffic density to the
shares of normal traffic density, I derived the distribution of injury categories in high traffic
density and the corresponding average accident costs, 87’365 CHF. The different distribution
of injury patterns in the two density environments can be seen in the top portion of Figure 8.
The advantage of using the estimated differences in comparison to pure statistical differences
lies in the exclusion of confounding effects. Note, that in this scenario I returned to account
for casualties in each category they occurred and not only for the worst per accident. This is
possible since I calculate the difference between the two states of traffic density, assuming that

Figure 8: Path of calculations leading to the expected additional accident costs
by shifting 6.4% of accidents occurring in high traffic density to a normal traffic
density environment.
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the number of accidents stays unchanged, thus damage to property wrongly included multiply
for one accident gets equaled out. By that the depicted shares are the portion of accidents
showing a casualty in each specific injury category and exceed 100% when being combined.
The difference in costs arises from the higher shares of fatally and severely injured casualties
in accidents happening in normal traffic density, that is most likely due to increased speed,
and equals 6’958 CHF. The average daily count of accidents during high traffic density for
the years 2015-2022 (excluding 2020), thus the years included in the within-day estimation, is
19.09. Multiplied by the reduction of 6.4% in congestion, this gives 1.2218 accidents per day
experiencing a shift in traffic conditions and thus different injury patterns. Resulting in an
increase of 8’501 CHF per day, when being combined with the difference in costs derived above,
depicted in the lower portion of Figure 8.
In addition to the above mentioned changes in costs, reduced congestion also reduces the ex-
ternal costs related to traffic jams, i.e. prolonged fuel consumption, delays, increased emissions
and noise. Which is of special interest when congestion arises as a result of an accident, thus
it would have to be included in the accident costs. Both scenarios measure one reaction of
accidents, number or severity, to a change in traffic volume while holding the other fixed. This
is unrealistic but a necessary simplification to estimate some changes in accident costs by in-
troducing a mobility policy. Creating a model able to calculate combined results of these two
effects would be very interesting, but also worth a thesis for itself.
I conclude this Section with reporting both savings and additional costs of accidents by in-
troducing mobility policies which increase the price, at least partially, of driving. In my two
scenarios I find higher savings than costs, but comparing the two seems unfair since I do not
know whether the individual externality pricing used in the second scenario lies somewhere
even close to the 1% price increase used for the first scenario.

8 Discussion

In the first part of this work, I estimated the impact of different traffic conditions on the proba-
bility of experiencing a specific injury pattern when having an accident. By using the decrease
in traffic volume of up to 60% during the Covid-19 Lockdown as an exogenous effect, I found
an increase of 130% in the probability of being fatally injured and a reduction of 1.54% in the
probability of remaining unharmed in an accident. Both categories severely and lightly injured
showed no statistically significant differences. With the underlying assumption of less traffic
volume leading to higher speed, based on the speed-density relationship discussed in Section
2, these results are in line with previous research stating a shift towards more severe injury
patterns with increasing vehicle speeds.
Investigating the impact of changes in traffic density at the time of the accident, as reported
by the police, provides comparable results. Accidents during low traffic density show a 41.15%
higher probability of fatal injury compared to accidents in normal traffic density, while all other
injury categories show a reduction of probability between 1.80-18.32%. Again, lower traffic den-
sity comes with higher speed which bears more energy to be transformed in the body at a crash.
In high traffic density the probabilities of fatal or severe injury are 50.38% and 22.44% lower
respectively, while the probability of light injury (12.81%) and remaining unharmed (2.69%)
increase. This shows that speed has an imminent influence on injury patterns and how much
severe and fatal injuries can be reduced by lower speed. Therefore, my results show that the
probability of dying in an accident is highest in low traffic density, the probability of being
severely injured is highest in normal traffic density and for both, lightly injured and unharmed,
the probabilities are highest in high traffic density conditions. This is particularly interesting,
since free speed conditions bring many benefits like no delays, less emissions and noise but are
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obviously associated with more severe injury patterns. Which, with accident costs substantially
rising with the severity of the injury, see Table 10, brings drastic welfare reduction.
Including the daily traffic counts from Swiss highways allowed to also analyse the effect of traffic
volume on total accidents. It showed that an increase of 100’000 vehicles is associated with an
additional 10.82 accidents. No significant correlation between traffic counts and fatal injuries
was found, but on all other categories traffic counts have a statistically significant positive effect.
Performing polynomial regression and further analyzing the shape of the estimated correlation
showed, that all accidents, as well as accidents with unharmed persons are linearly correlated
to traffic counts. This is exactly what Wang et al. (2009) found in their reserach on London
data. Fatal accidents show a concave correlation to traffic counts, thus the marginal effect of
additional vehicles counted tapers off. Contrarily, severe and light injury associated accidents
show a convex correlation to traffic counts and increase over proportional as traffic counts rise.
Thus, the relative accident rate remains unchanged for total accidents and unharmed, declines
for fatal accidents and increases for accidents with severely or lightly injured casualties. The
form of relationship found for the different injury categories approximately reflects the shapes
described by Retallack and Ostendorf (2019), discussed in Subsection 2.2. More important is
the insight we gained on the relationship between traffic volume and total accidents. The fact,
that it is linear is good news for potential mobility policies. They can focus on effects on traffic
distribution and total traffic volume, knowing that this will have an impact on accident occur-
rence based on the number of vehicles en route, but without worrying about disproportional
reactions of accident numbers.
The last model uncovered different effects, with most of the estimated coefficients being insignif-
icant. The results for the uncontrolled specification bear a high possibility of omitted variable
bias, but by that and using accidents as a proxy for traffic volume, show an imprecise measure
of the speed-density relationship in Switzerland. Especially during the off-peak and evening
rush-hour periods. Controlling for daily traffic counts and later for seasonal FE reduces the
observed effects, but the significant ones still remain negative. According to literature on this
topic, we would assume a positive effect of speed on accident numbers. But with higher speed
being associated to lower traffic density, it might as well be the case, that the effects of increased
accidents by higher speed and reduced accidents by lower vehicle numbers on the streets just
cancel each other out. Thus, further research on isolating these two effects is recommended.
Nevertheless, the results of speed having no impact on relative accident numbers is in line with
the linear relationship between traffic counts and accidents I found in the previous model. I
found significant positive effects of speed on the accident numbers during the off-peak hours
in the >80km/h and during night in the 50-80km/h regime with some specifications. These
categories are most likely not prone to congestion, so that I state to have credibly isolated the
speed-accident relationship here, which coincides with the majority of the literature on this
topic.
Based on my calculations of possible policy implications, I estimate a reduction of accident re-
lated daily costs of 15’895-42’076 CHF to be expected from a 1% price increase of driving. This
calculation includes both shift of transport mode and reduction of travel time and distance,
but does not account for any changes in injury patterns resulting in different cost weights.
The second calculation excludes mode shifts and accounts for changed injury probabilities. By
holding the accident numbers fixed and changing the cost weights corresponding to the different
injury distributions in varying traffic density, I find an increase of accident costs of 8’501 CHF
per day when congestion decreases by 5%. Besides the included controls, there is no further
differentiation between day of the week, holidays or also reason of trip or car occupancy. I
also do not know in which relation the 1% increase in driving costs (first scenario) and the
pricing of external costs in the second scenario have to each other. Thus, comparing these two
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results is not possible and I can not make a final statement on expected consequences of any
policy. Niemann (2020) also found potential for reduction in accidents and combining the two
approaches could further support policy makers in their decisions.

Limitations I see are mainly based on the lack of sufficient data. The dataset on accidents
contains all police reported accidents in Switzerland, but no information on all accidents which
were handled without the police, i.e. by the insurances. In Europe, there is the European Ac-
cident Statement which is an international standard form to record accidents without damage
to persons in absence of the police. Many accidents resulting in damage to property are solely
handled by that and the insurances of the involved drivers negotiate the quilt and payments
among each other. Thus, these accidents are missing. Including accidents where two vehicles
slightly bump into or touch upon each other, which is more likely to happen on dense traffic
environments. By that, the effect of traffic volume on total accidents might by underestimated
by my models. Additionally, the variable of traffic density during the accident is a subjective
evaluation of the filing police officer and consistency of this evaluation is not ensured.
The information on traffic volume is also limited, mostly because of the complexity of collect-
ing extensive data on traffic behavior. The traffic counts from Swiss highways provide a useful
workaround to include some daily variation of traffic volume in the models. But they lack de-
tail, mainly in all regions besides the highways and especially on the distribution of the vehicles
over the day. Being able to distinguish the counts, at least into the four time categories used
in the last model, would increase the credibility of the results largely.
Another limitation is my reduction of casualties to maximum one per accident and injury cat-
egory. I did this for the logit models, to be able to calculate the probability of an accident
producing a casualty with the given injury category. For this model that approach seemed
appropriate. For the count based third model, aggregating every person experiencing a specific
injury on that day would have been superior. I realized the downside of this specification for
that model to late to redo all calculations, but including all casualties would improve that
model. Though besides unharmed, there are only few accidents with more than one person in
a specific injury category.
Finally, there is imprecision with the speed data from the MOBIS and MobisCovid experi-
ments. The derived average speeds for the 12 categories are a good start, but much more is
possible. The assignment of the trips to speed regimes, based on their length seems to work
approximately, but is highly experimental and very imprecise. Also each trip was attached
to the time frame corresponding to the starting time, which is problematic for trips lasting
multiple hours. Here I see a large problem with the calculations leading to the results of the
fourth model. As mentioned above, the included effects are not well separated and will never
be with the used approach. Overall, it seems like there was always one information missing,
thus most interpretations strongly rely on assumptions based on existing literature.

To solve that, I propose to differentiate the trips into single sections, which can be assigned
by their GPS tracks to categories like urban, suburban and rural or even speed regimes. This
could also relax the problem of bottlenecks in the traffic system showing different traffic behav-
ior than unrestricted roads discussed in Section 2, which is neglected in this work. Calculating
average speeds based on the trip snippets, also allowing for more precise assignment of time,
the average speed in the categories can be identified much better. Derivation of some measure
of density in the categories might also be possible based on the MOBIS and MobisCovid data
further improving the richness of the model. This was one of the ideas Prof. Hintermann and I
had during the first meetings for this thesis. Unfortunately, we misunderstood each other for a
while and meanwhile I followed different approaches. By the time we finally figured it out, the
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work was already in the final stages and it was to late to process all the data. I am sure, that
including the available details contained in the data would largely improve my results and this
would be the first direction of future research I see here. Additionally, separating the accidents
into the corresponding injury categories could give advanced insight on the relationship of speed
and injury patterns.
Sophisticated estimation of the speed-density relationship would be very useful for policy mak-
ers and efforts towards data gathering for that should be undertaken. This, together with
behavioral research of peoples reaction to mobility policies would allow to make useful predic-
tions of the consequences of such policies. Here is where I see the most extensive value and
a need for future research. Understanding and maybe even being able to model the complex
system of policies and their impact via multiple paths and mechanisms on the behavior of peo-
ple, the direct and external costs they produce and their consequences on society and societal
welfare would be very beneficial. This is very voluminous and as I stated before, only a solid
calculation of changes in accident related costs based on one or two policies would fill one thesis
by itself. I therefore hope, that many future researchers find an interest in this topic, since
there are still many unknowns.
I would wish for more available data on that. Globally tracking smartphones becomes a source
for extensive data on mobility behavior. A large project, maybe by the Swiss Federal Statistical
Office, the Federal Roads Office or the Federal Office for Spatial Development, collecting data
over a longer period and from a representative sample like in the microcensus of BFS and ARE
(2023) would open uncountable options for further research.

9 Conclusion

In this thesis I wanted to analyse the impact of changes in traffic volume on the relative number
and injury severity of accidents. The first hypothesis was: ”A reduction of traffic volume leads
to an increase in relative accident rates., which could not be proved. I found a linear correlation
between traffic counts and number of accidents, indicating no substantial changes in the relative
accident rate. The second hypothesis was: ”A reduction of traffic volume causes a shift in the
crash injury pattern from light injuries towards more severe and fatal outcomes.” and could
be confirmed. The main driver is an increase in the share of fatal accidents with lower traffic
volume, while I found higher shares of lightly injured and unharmed persons in high traffic
density.
I can conclude that, with the data at hand, total accidents in Switzerland are mainly dependent
on the volume of traffic en route and are not additionally increased or reduced by variations
in speed. The severity of injuries experienced when having an accident on the other hand is
largely driven by the speed of the vehicles, with higher speed leading to more fatal outcomes.
Differentiation into subcategories of time during the day and speed regimes did not show more
precise results. This is supposedly not an accurate finding, due to traffic counts availability
being limited on daily level and very rough assignment of tracked trips into these categories.
Which leads to a need in further research on that topic.
Calculation of two independent scenarios for policy implications show, that the reduction of
accidents by an increase in the price of driving by 1% results in daily savings of accident
costs of 15’895 - 42’076 CHF by shifting of transport mode or reduction of travelling distance.
Individual pricing of external costs from driving reduced congestion by 5% and a possible shift
in departure times. These changes in traffic density environment come with additional daily
costs of 8’501 CHF due to more severe injuries. The two scenarios are not directly comparable,
since the unit of impact is different, but shows that savings and additional costs associated
with accidents can be expected by mobility policies.
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BFS (2023b). Wöchentliche Verkehrsentwicklung, Archiv 2020. Accessed: 22.03.2024.
URL: https://www.bfs.admin.ch/bfs/de/home/statistiken/mobilitaet-
verkehr/verkehrsinfrastruktur-fahrzeuge/schweiz-strassenverkehrszaehlung/stau.assetdetail.27846682
.html
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Appendix
Descriptive statistics of variables for the Covid-19 Lockdown variation.

2015-2018 2019 2020 Total change %
Mean

All Accidents 5’557 5’343 2’914 30’485 -45.46
72.91 17.53 9.56

Unharmed 5’287 5’077 2’724 28’947 -46.35
95.13 95.02 93.48 94.95

Light Injured 1’415 1’296 695 7’650 -46.37
25.46 24.26 23.85 25.09

Severly Injured 226 193 122 1’218 -36.79
4.06 3.61 4.19 4

Fatals 13 10 12 75 20.00
0.24 0.19 0.41 0.25

Speedlimit
30 503 548 324 2’884 -40.88

9.05 10.26 11.12 9.46
50 2’864 2’641 1’446 15’544 -45.25

51.54 49.43 49.62 50.99
80 1’604 1’621 937 8’973 -42.20

28.86 30.34 32.16 29.43
120 586 533 207 3’084 -61.16

10.55 9.98 7.1 10.12

Traffic Density
low 2’532 2’319 1’711 14’157 -26.22

45.83 43.65 59.27 46.73
normal 1’908 1’865 945 10’441 -49.33

34.53 35.1 32.73 34.46
high 1’085 1’129 231 5’700 -79.54

19.64 21.25 8 18.81

Streetlights
ON 970 869 384 5’131 -55.81

17.45 16.26 13.18 16’83

Lightcondition
Day 4’113 3’821 2’121 22’393 -44.49

74.13 71.53 72.84 73.55
Night 1’136 1’076 603 6’221 -43.96

20.47 20.14 20.71 20.43
Twilight 300 445 188 1’831 -57.75

5.4 8.33 6.46 6.01

Roadtype
Straight 2’706 2’670 1’226 14’720 -54.08

48.7 49.97 42.07 48.29
Curves 843 766 563 4’699 -26.50

15.16 14.34 19.32 15.41
Intersection 1’180 1’066 643 6’429 -39.68

21.23 19.95 22.07 21.09
Roundabout 242 216 145 1’328 -32.87

4.35 4.04 4.98 4.36
Other 587 625 337 3’309 -46.08

10.56 11.7 11.56 10.85

Age
<25 911 817 569 5’029 -30.35

16.39 15.29 19.53 16.5
25-34 1’965 1’009 554 5’821 -45.09

19.16 18.88 19.01 19.09
35-44 905 822 460 4’901 -44.04

16.28 15.38 15.79 16.08
45-54 900 864 455 4’920 -47.34

16.2 16.17 15.61 16.14
55-64 665 705 394 3’759 -44.11

11.97 13.19 13.52 12.33
65-74 471 474 169 2’538 -64.35

8.47 8.87 6.25 8.33
75-84 379 407 169 2’090 -58.48

6.81 7.62 5.8 6.86
>84 263 254 131 1’427 -48.43

4.73 4.59 4.5 4.68
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2015-2018 2019 2020 Total change %
Mean

Female 1’823 1’813 949 10’055 -47.66
33.58 34.49 33.43 33.73

Holidays
YES 259 219 105 1’358 -52.05

4.65 4.1 3.6 4.45

Reason of trip
Commuting 1’175 1’093 608 6’402 -44.37

21.15 20.46 20.86 21
Holiday or Daytrip 172 148 35 870 -76.35

3.09 2.77 1.2 2.85
Leisure or Shopping 3’608 3’604 1’934 19’968 -46.34

64.92 67.45 66.37 65.5
Freight- or Worktrip 123 175 93 760 -46.86

2.21 3.28 3.19 2.49
others 480 323 244 2’485 -24.46

8.63 6.05 8.37 8.15

Type of Accident
Pedestrian or crossing 334 319 118 1’772 -63.01

6.01 5.97 4.03 5.81
rear-end, take-over or changing
lane

1’645 1’548 568 8’696 -63.31

29.6 28.97 19.49 28.53
Enter or Exit road 942 826 533 5’127 -35.47

16.95 15.46 18.29 16.82
Head-on collision 175 156 90 944 -42.31

3.14 2.92 3.09 3.1
Skkiding or self-accident 1’520 1’487 1’030 8’595 -30.73

27.34 27.83 35.35 28.19
other 942 1’007 575 5’351 -42.90

16.96 18.85 19.73 17.55

Weather
sunny 3’492 3’352 2’278 19’596 -32.04

62.83 62.74 78.17 64.28
clouded 1’272 1’280 358 6’725 -72.03

22.89 23.96 12.29 22.06
rain 658 550 249 3’430 -54.73

11.84 10.29 8.54 11.25
snow, hail or freezing rain 91 119 4 486 -96.64

1.63 2.23 0.14 1.59
other 45 42 25 248 -40.48

0.81 0.79 0.86 0.81

Seatbelt
YES 5’357 5’172 2’818 29’418 -45.51

96.4 96.8 96.71 96.5

Alcohol
YES 408 383 271 2’286 -29.24

7.34 7.17 9.3 7.5

Speeding
YES 12 11 8 67 -27.27

0.22 0.21 0.27 0.22

Relative Speeding
YES 125 131 129 759 -1.53

2.24 2.45 4.43 2.49

Table A.1: Descriptive statistics of variables for the Covid-19 Lockdown vari-
ation. Numbers below the counts denote the shares of accidents in the specific
category in percents for each year (vertical share comparison). Except for the first
row, where the percental shares show the distribution over the three periods.
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Descriptive statistics of main variables differentiated into categories of traffic density.
Traffic Density

Variable Low Normal High Total

All Accidents 115’241 90’079 48’757 254’077
45.36 35.45 19.19

Unharmed 107’055 85’461 47’348 239’864
92.9 94.87 97.11 94.41

Light Injured 22’103 25’664 15’709 63’476
19.18 28.49 32.22 24.98

Severely Injured 4’299 4’661 1’753 10’713
3.73 5.17 3.6 4.22

Fatals 409 233 67 709
0.35 0.26 0.14 0.28

Speedlimit (km/h)
30 17’993 5’464 953 24’310

15.61 6.07 1.75 9.57
50 55’307 49’405 20’413 125’125

47.99 54.85 41.87 49.25
80 34’906 26’624 15’806 77’336

30.29 29.56 32.42 30.44
120 7’035 8’586 11’685 27’306

6.1 9.53 23.97 10.75

Streetlights
ON 33’028 14’594 9’265 56’887

28.66 16.2 19 22.39

Light Condition
Day 58’480 69’951 36’396 164’827

50.86 77.7 74.69 64.96
Night 47’895 13’264 6’754 67’913

41.65 14.73 13.9 26.76
Twilight 8’610 6’811 5’582 21’003

7.49 7.57 11.45 8.28

Road Type
Straight 48’817 41’352 33’347 123’516

42.36 45.91 68.39 48.61
Curves 25’681 13’838 3’896 43’415

22.28 15.36 7.99 17.09
Intersection 19’770 22’394 8’458 50’622

17.16 24.86 17.35 19.92
Roundabout 3’317 5’547 2’004 10’868

2.88 6.16 4.11 4.28
Other 17’656 6’948 1’052 25’656

15.32 7.71 2.16 10.1

Age
<25 21’849 12’747 7’831 42’427

18.96 14.15 16.06 16.7
25-34 22’442 16’104 10’724 49’270

19.47 17.88 21.99 19.39
35-44 17’639 14’042 8’577 40’258

15.31 15.59 17.59 15.84
45-54 17’408 14’367 8’010 39’785

15.11 15.95 16.43 15.66
55-64 13’263 11’822 5’849 30’934

11.51 13.12 12 12.18
65-74 9’295 8’918 3’507 21’720

8.07 9.9 7.19 8.55
75-84 7’531 7’315 2’555 17’401

6.54 8.12 5.24 6.85
>84 5’814 4’764 1’704 12’282

5.05 5.29 3.49 4.83
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Traffic Density
Variable Low Normal High Total

Female 35’794 31’627 16’360 83’781
31.86 35.98 34.1 33.75

Holidays
Yes 3’032 1’322 482 4’836

2.63 1.47 0.99 1.9

Reason of trip
Commuting 18’937 19’322 16’127 54’396

16.43 21.46 33.08 21.41
Holiday or Daytrip 3’499 3’282 2’050 8’831

3.04 3.64 4.2 3.48
Leisure or Shopping 80’179 57’846 26’372 164’397

69.58 64.22 54.09 64.7
Freight- or Worktrip 2’703 2’450 1’471 6’624

2.35 2.72 3.02 2.61
others 9’923 7’169 2’737 19’829

8.61 7.96 5.61 7.8

Seatbelt
Yes 110’140 87’727 47’950 245’817

95.57 97.39 98.34 96.75

Type of Accident
Pedestrian or crossing 6’940 6’785 2’257 15’982

6.02 7.53 4.63 6.29
rear-end, take-over or changing
lane

11’816 25’670 31’602 69’088

10.25 28.5 64.82 27.19
Enter or Exit road 13’337 19’966 7’252 40’555

11.57 22.16 14.87 15.96
Head-on collision 4’391 3’228 719 8’338

3.81 3.58 1.47 3.28
Skkiding or self-accident 50’933 23’729 4’994 79’656

44.2 26.34 10.24 31.35
other 27’824 10’701 1’933 40’458

24.14 11.88 3.96 15.92

Weather
sunny 63’290 53’177 28’501 144’968

54.92 59.03 58.46 57.06
clouded 32’168 23’042 13’172 68’382

27.91 25.58 27.02 26.91
rain 12’193 9’814 5’805 27’812

10.58 10.89 11.91 10.95
snow, hail or freezing rain 6’186 3’546 1’035 10’767

5.37 3.95 2.12 4.24
other 1’404 500 244 2’148

1.22 0.56 0.5 0.85

Alcohol
YES 14’413 3’888 1’104 19’820

12.87 4.32 2.26 7.8

Speeding
YES 366 189 36 591

0.32 0.21 0.07 0.23

Relative Speeding
YES 3’891 1’673 237 5’801

3.38 1.86 0.49 2.28

Table A.2: Descriptive statistics of main variables differentiated into categories
of traffic density. Numbers below the counts denote the proportional shares of
accidents in the three density categories in percents.
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(1) (2) (3) (4)
VARIABLES Fatals Fatals Fatals Fatals
Jahr (2019)
2015 0.000520 0.000568 0.000628 0.000351

(0.000888) (0.000895) (0.000907) (0.000940)
2016 -0.000432 -0.000451 -0.000419 -0.000462

(0.000780) (0.000775) (0.000783) (0.000856)
2017 0.000940 0.000969 0.00106 0.00122

(0.000918) (0.000919) (0.000936) (0.00103)
2018 0.00101 0.000977 0.00101 0.00118

(0.000932) (0.000924) (0.000933) (0.00103)
2020 0.00225* 0.00239* 0.00259* 0.00263*

(0.00133) (0.00136) (0.00144) (0.00149)
Holiday 0.00199** 0.00211** 0.00197*

(0.00101) (0.00103) (0.00111)
Female -0.00133* -0.00107

(0.000701) (0.000757)
Age (26-34)
<25 0.000870 0.000607

(0.000900) (0.000874)
35-44 –0.00126* -0.00124*

(0.000668) (0.000695)
45-54 0.000838 0.00110

(0.000942) (0.00101)
55-64 0.000800 0.00120

(0.00102) (0.00112)
65-74 0.00189 0.00288*

(0.00140) (0.00171)
75-84 0.00480** 0.00699***

(0.00193) (0.00269)
>84 -0.000519 0.000114

(0.00147) (0.00211)
Weather (sunny)
clouded 0.000570

(0.000794)
rain -0.000740

(0.000873)
snow, hail or freezing rain, omit-
ted

-

other, omitted -
Speedlimit (km/h) (50)
30 -0.000176

(0.000736)
80 0.00339***

(0.000885)
120 0.00195*

(0.00112)
Light Condition (Day)
Night -0.00104

(0.000755)
Twilight, omitted -
Streetlights, omitted -
Road Type (Straight Road)
Curves 0.00380***

(0.00121)
Intersection -0.00129**

(0.000598)
Roundabout, omitted -
Others -0.00104

(0.000832)

Season FE YES YES YES
Driver Controls YES YES
Environment Controls YES
Observations 30,485 30,485 29,812 27,288
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table A.3: Full results of the regression analysis explained Section 6.2 corresponding
to Table 7. Categories in parentheses denote the reference category for the particular
variable.
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(1) (2) (3) (4)
VARIABLES Severely Injured Severely

Injured
Severely
Injured

Severely
Injured

Jahr (2019)
2015 0.00472 0.00470 0.00538 0.00448

(0.00370) (0.00370) (0.00374) (0.00380)
2016 0.00490 0.00501 0.00532 0.00429

(0.00369) (0.00369) (0.00373) (0.00377)
2017 0.00675* 0.00672* 0.00723* 0.00671*

(0.00371) (0.00370) (0.00373) (0.00379)
2018 0.00158 0.00180 0.00211 0.00104

(0.00361) (0.00362) (0.00365) (0.00369)
2020 0.00574 0.00563 0.00645 0.00264

(0.00450) (0.00449) (0.00459) (0.00444)
Holiday -0.00643 -0.00427 -0.00207

(0.00589) (0.00595) (0.00592)
Female 0.00318 0.00195

(0.00240) (0.00241)
Age (25-34)
<25 0.00336 0.00261

(0.00352) (0.00354)
35-44 0.00429 0.00398

(0.00358) (0.00362)
45-54 0.00554 0.00469

(0.00361) (0.00363)
55-64 0.00948** 0.00785*

(0.00405) (0.00401)
65-74 0.0232*** 0.0209***

(0.00516) (0.00511)
75-84 0.0202*** 0.0190***

(0.00547) (0.00553)
>84 0.0190** 0.0187**

(0.00846) (0.00859)
Weather (sunny)
clouded -0.00941***

(0.00274)
rain -0.0137***

(0.00333)
snow, hail or freezing rain -0.0176**

(0.00782)
other -0.0111

(0.0162)
Speedlimit (km/h) (50)
30 -0.0187***

(0.00347)
80 0.00237

(0.00291)
120 -0.0213***

(0.00342)
Light Condition (Day)
Night -0.00829**

(0.00347)
Twilight -0.00200

(0.00537)
Streetlights -0.00793*

(0.00470)
Road Type (Straight Road)
Curves 0.0149***

(0.00371)
Intersection 0.0174***

(0.00321)
Roundabout 0.0194***

(0.00613)
Others -0.0180***

(0.00282)

Season FE YES YES YES
Driver Controls YES YES
Environment Controls YES
Observations 30,485 30,485 29,812 29,783
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table A.4: Full results of the regression analysis explained Section 6.2 corresponding
to Table 7. Categories in parentheses denote the reference category for the particular
variable.
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(1) (2) (3) (4)
VARIABLES Lightly Injured Lightly Injured Lightly Injured Lightly Injured
Jahr (2019)
2015 0.0277*** 0.0273*** 0.0265*** 0.0208**

(0.00841) (0.00840) (0.00848) (0.00836)
2016 0.00825 0.00836 0.00869 0.00370

(0.00826) (0.00826) (0.00835) (0.00822)
2017 0.00748 0.00719 0.00831 0.00363

(0.00821) (0.00820) (0.00828) (0.00816)
2018 0.00514 0.00497 0.00539 0.00199

(0.00825) (0.00824) (0.00831) (0.00822)
2020 -0.00406 -0.00523 -0.00488 -0.0109

(0.00983) (0.00982) (0.00993) (0.00973)

Holiday -0.0400*** -0.0393*** -0.0184
(0.0131) (0.0133) (0.0130)

Female 0.0368*** 0.0263***
(0.00522) (0.00516)

Age (25-34)
<25 0.00803 0.0125

(0.00847) (0.00838)
35-44 -0.00399 -0.00517

(0.00843) (0.00823)
45-54 -0.0167** -0.0204**

(0.00834) (0.00813)
55-64 0.00343 -0.00504

(0.00915) (0.00887)
65-74 -0.0179* -0.0255**

(0.0102) (0.00995)
75-84 -0.0247** -0.0254**

(0.0108) (0.0109)
>84 -0.00385 -0.000560

(0.0168) (0.0168)

Weather (sunny)
clouded -0.0343***

(0.00600)
rain -0.0196**

(0.00801)
snow, hail or freezing rain -0.00972

(0.0205)
other -0.0144

(0.0366)
Speedlimit (km/h) (50)
30 0.111***

(0.00808)
80 0.000597

(0.00612)
120 -0.0251***

(0.00891)
Light Condition (Day)
Night -0.125***

(0.00680)
Twilight -0.0194*

(0.0112)
Streetlights -0.0106

(0.0110)
Road Type (Straight Road)
Curves -0.00592

(0.00755)
Intersection 0.0634***

(0.00705)
Roundabout 0.0811***

(0.0133)
Others -0.175***

(0.00619)

Season FE YES YES YES
Driver Controls YES YES
Environment Controls YES
Observations 30,485 30,485 29,812 29,783
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table A.5: Full results of the regression analysis explained Section 6.2 corresponding
to Table 7. Categories in parentheses denote the reference category for the particular
variable.
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(1) (2) (3) (4)
VARIABLES Unharmed Unharmed Unharmed Unharmed
Jahr (2019)
2015 -0.00559 -0.00553 -0.00620 -0.00522

(0.00430) (0.00430) (0.00439) (0.00429)
2016 0.00444 0.00466 0.00452 0.00345

(0.00408) (0.00407) (0.00416) (0.00415)
2017 0.00726* 0.00730* 0.00726* 0.00659

(0.00400) (0.00401) (0.00409) (0.00405)
2018 -0.00199 -0.00192 -0.00219 -0.00360

(0.00421) (0.00421) (0.00429) (0.00427)
2020 -0.0154*** -0.0156*** -0.0158*** -0.0146***

(0.00546) (0.00548) (0.00558) (0.00541)
Holiday -0.00865 -0.00884 -0.00203

(0.00572) (0.00584) (0.00575)
Female -0.0127*** -0.0200***

(0.00265) (0.00264)
Age (25-34)
<25 -0.0170*** -0.00966**

(0.00460) (0.00396)
35-44 0.00658 0.00273

(0.00415) (0.00390)
45-54 0.00738* 0.00158

(0.00413) (0.00396)
55-64 0.00739* -0.00151

(0.00444) (0.00450)
65-74 0.00446 -0.0113*

(0.00514) (0.00577)
75-84 -0.00405 -0.0298***

(0.00584) (0.00724)
>84 -0.00559 -0.0308***

(0.00907) (0.0116)
Weather (sunny)
clouded 0.00225

(0.00309)
rain -0.000436

(0.00403)
snow, hail or freezing rain -0.00346

(0.00898)
other -0.0130

(0.0201)
Speedlimit (km/h) (50)
30 0.00998***

(0.00364)
80 -0.0335***

(0.00334)
120 -0.0269***

(0.00492)
Light Condition (Day)
Night -0.0174***

(0.00377)
Twilight -0.0199***

(0.00594)
Streetlights 0.00285

(0.00465)
Road Type (Straight Road)
Curves -0.0564***

(0.00474)
Intersection 0.0154***

(0.00296)
Roundabout 0.0208***

(0.00477)
Others 0.0192***

(0.00378)

Season FE YES YES YES
Driver Controls YES YES
Environment Controls YES
Observations 30,485 30,485 29,812 29,783
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table A.6: Full results of the regression analysis explained Section 6.2 corresponding
to Table 7. Categories in parentheses denote the reference category for the particular
variable.
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Master Thesis Severin Gerfin

(1) (2) (3) (4)
VARIABLES Fatals Fatals Fatals Fatals
Traffic Density (Normal)
Low Traffic Density 0.000962*** 0.000879*** 0.000897*** 0.00107***

(0.000244) (0.000247) (0.000251) (0.000272)
High Traffic Density -0.00121*** -0.00121*** -0.00117*** -0.00131***

(0.000238) (0.000242) (0.000253) (0.000244)
Holiday 0.00156*** 0.00162*** 0.00141**

(0.000577) (0.000589) (0.000586)
Female -0.00157*** -0.00125***

(0.000265) (0.000260)
Age (25-34)
<25 0.000494 0.000183

(0.000339) (0.000298)
35-44 -0.000461 -0.000266

(0.000317) (0.000308)
45-54 -7.53e-05 0.000162

(0.000333) (0.000330)
55-64 4.03e-05 0.000380

(0.000363) (0.000369)
65-74 0.00161*** 0.00228***

(0.000494) (0.000550)
75-84 0.00250*** 0.00400***

(0.000585) (0.000739)
>84 0.00302*** 0.00514***

(0.000929) (0.00124)
Weather (sunny)
clouded -0.000359

(0.000264)
rain -0.000787**

(0.000336)
snow, hail or freezing rain -0.00170***

(0.000359)
other 0.00375*

(0.00193)
Speedlimit (km/h) (50)
30 -0.00127***

(0.000201)
80 0.00280***

(0.000314)
120 0.00142***

(0.000434)
Light Condition (Day)
Night -0.000313

(0.000309)
Twilight -0.000596

(0.000407)
Streetlights 0.000374

(0.000477)
Road Type (Straight Road)
Curves 0.00217***

(0.000364)
Intersection -0.000846***

(0.000266)
Roundabout -0.00214***

(0.000285)
Others -0.00122***

(0.000314)
Season FE YES YES YES
Driver Controls YES YES
Environment Controls YES
Observations 254,077 254,077 248,246 247,989
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table A.7: Full results of the regression analysis based on the within-day variation
explained Section 6.3 corresponding to Table 8. Categories in parentheses denote the
reference category for the particular variable.
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Master Thesis Severin Gerfin

(1) (2) (3) (4)
VARIABLES Severely Injured Severely

Injured
Severely
Injured

Severely
Injured

Traffic Density (Normal)
Low Traffic Density -0.0144*** -0.0139*** -0.0134*** -0.00730***

(0.000920) (0.000927) (0.000936) (0.000997)
High Traffic Density -0.0155*** -0.0157*** -0.0145*** -0.0112***

(0.00112) (0.00111) (0.00113) (0.00112)
Holiday -0.00825** -0.00711** -0.00715**

(0.00327) (0.00331) (0.00329)
Female 0.000442 0.000109

(0.000849) (0.000853)
Age (25-34)
<25 0.00205 0.00105

(0.00127) (0.00125)
35-44 0.00229* 0.00224*

(0.00128) (0.00128)
45-54 0.00490*** 0.00457***

(0.00130) (0.00130)
55-64 0.0106*** 0.0103***

(0.00146) (0.00146)
65-74 0.0174*** 0.0175***

(0.00173) (0.00176)
75-84 0.0161*** 0.0169***

(0.00187) (0.00193)
>84 0.0131*** 0.0150***

(0.00279) (0.00291)
Weather (sunny)
clouded -0.00704***

(0.000960)
rain -0.00593***

(0.00130)
snow, hail or freezing rain -0.0211***

(0.00172)
other 0.00518

(0.00595)
Speedlimit (km/h) (50)
30 -0.0187***

(0.00124)
80 0.00457***

(0.00105)
120 -0.0189***

(0.00126)
Light Condition (Day)
Night -0.00602***

(0.00123)
Twilight 0.000455

(0.00171)
Streetlights -0.00223

(0.00164)
Road Type (Straight Road)
Curves 0.0122***

(0.00127)
Intersection 0.0160***

(0.00118)
Roundabout 0.0109***

(0.00205)
Others -0.0224***

(0.000999)
Season FE YES YES YES
Driver Controls YES YES
Environment Controls YES
Observations 254,077 254,077 248,246 247,989
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table A.8: Full results of the regression analysis based on the within-day variation
explained Section 6.3 corresponding to Table 8. Categories in parentheses denote the
reference category for the particular variable.
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Master Thesis Severin Gerfin

(1) (2) (3) (4)
VARIABLES Lightly Injured Lightly Injured Lightly Injured Lightly Injured
Traffic Density (Normal)
Low Traffic Density -0.0899*** -0.0860*** -0.0879*** -0.0492***

(0.00187) (0.00189) (0.00191) (0.00202)
High Traffic Density 0.0392*** 0.0364*** 0.0366*** 0.0387***

(0.00257) (0.00256) (0.00260) (0.00252)
Holiday -0.0145** -0.0138** -0.00957

(0.00662) (0.00669) (0.00654)
Female 0.0343*** 0.0303***

(0.00177) (0.00176)
Age (25-34)
<25 0.0161*** 0.0151***

(0.00287) (0.00284)
35-44 -0.00645** -0.00806***

(0.00284) (0.00280)
45-54 -0.00777*** -0.0105***

(0.00284) (0.00280)
55-64 -0.00187 -0.00546*

(0.00308) (0.00303)
65-74 -0.0112*** -0.0127***

(0.00343) (0.00342)
75-84 -0.0187*** -0.0180***

(0.00368) (0.00373)
>84 -0.0210*** -0.0164***

(0.00552) (0.00565)
Weather (sunny)
clouded -0.0121***

(0.00204)
rain -0.00375

(0.00281)
snow, hail or freezing rain -0.0178***

(0.00459)
other 0.0135

(0.0115)
Speedlimit (km/h) (50)
30 -0.0871***

(0.00303)
80 -0.0222***

(0.00213)
120 -0.0527***

(0.00293)
Light Condition (Day)
Night -0.0484***

(0.00262)
Twilight 0.0124***

(0.00352)
Streetlights -0.0179***

(0.00332)
Road Type (Straight Road)
Curves 0.000903

(0.00254)
Intersection 0.0655***

(0.00247)
Roundabout 0.0881***

(0.00463)
Others -0.154***

(0.00228)
Season FE YES YES YES
Driver Controls YES YES
Environment Controls YES
Observations 254,077 254,077 248,246 247,989
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table A.9: Full results of the regression analysis based on the within-day variation
explained Section 6.3 corresponding to Table 8. Categories in parentheses denote the
reference category for the particular variable.
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Master Thesis Severin Gerfin

(1) (2) (3) (4)
VARIABLES Unharmed Unharmed Unharmed Unharmed
Traffic Density (Normal)
Low Traffic Density 0.103*** 0.0990*** 0.100*** 0.0557***

(0.00199) (0.00200) (0.00203) (0.00213)
High Traffic Density -0.0225*** -0.0196*** -0.0213*** -0.0267***

(0.00267) (0.00266) (0.00270) (0.00262)
Holiday 0.0198*** 0.0181** 0.0142**

(0.00695) (0.00702) (0.00682)
Female -0.0336*** -0.0296***

(0.00188) (0.00186)
Age (25-34)
<25 -0.0186*** -0.0161***

(0.00301) (0.00295)
35-44 0.00468 0.00614**

(0.00298) (0.00294)
45-54 0.00308 0.00594**

(0.00300) (0.00294)
55-64 -0.00863*** -0.00507

(0.00325) (0.00319)
65-74 -0.00777** -0.00687*

(0.00365) (0.00364)
75-84 0.000120 -0.00238

(0.00394) (0.00398)
>84 0.00455 -0.00305

(0.00591) (0.00607)
Weather (sunny)
clouded 0.0195***

(0.00215)
rain 0.0106***

(0.00296)
snow, hail or freezing rain 0.0411***

(0.00472)
other -0.0236**

(0.0119)
Speedlimit (km/h) (50)
30 0.107***

(0.00316)
80 0.0153***

(0.00225)
120 0.0679***

(0.00310)
Light Condition (Day)
Night 0.0529***

(0.00278)
Twilight -0.0126***

(0.00369)
Streetlights 0.0201***

(0.00351)
Road Type (Straight Road)
Curves -0.0161***

(0.00269)
Intersection -0.0821***

(0.00258)
Roundabout -0.0985***

(0.00480)
Others 0.177***

(0.00245)
Season FE YES YES YES
Driver Controls YES YES
Environment Controls YES
Observations 254,077 254,077 248,246 247,989
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table A.10: Full results of the regression analysis based on the within-day variation
explained Section 6.3 corresponding to Table 8. Categories in parentheses denote the
reference category for the particular variable.
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Master Thesis Severin Gerfin
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Figure A.3: Estimated effects of average speed on daily accident counts, sepa-
rated into the 12 categories. Bars represent the respective 95% confidence intervals.

Figure A.4: Estimated marginal effects of average speed on daily accident counts,
separated into the 12 categories. Bars represent the respective 95% confidence
intervals. Including speed, and where applied also traffic counts, not only linear
but additionally also in a squared form.
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