

Linear Algebra

1. Compute the (complex) eigenvalues and the associated (complex) eigenvectors for the following matrices:

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \text{ and } \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

2. The rank $r(\mathbf{A})$ of a matrix \mathbf{A} is the maximal number of linearly independent column vectors in \mathbf{A} . Determine the rank of the following matrix for all values of the real parameter a . Hint: Use elementary row operations.

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 2 & 0 \\ -1 & a & -1 & a \\ 2 & 0 & 1 & -1 \end{pmatrix}$$

3. Verify the **Spectral Theorem for symmetric matrices** for the following matrix by finding a matrix \mathbf{P} :

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Investigate the definiteness of \mathbf{A} .

4. Use the identity $\det(\mathbf{A} \cdot \mathbf{B}) = \det(\mathbf{A}) \cdot \det(\mathbf{B})$ for all $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ to prove the following facts:

- (a) $\det(\mathbf{A}^{-1}) = (\det(\mathbf{A}))^{-1}$;
- (b) $\det(\lambda \mathbf{A}) = \lambda^n \det(\mathbf{A})$ for $\lambda \in \mathbb{R}$;
- (c) \mathbf{A} and $\mathbf{P}^{-1} \mathbf{A} \mathbf{P}$ have the same eigenvalues.

5. Let \mathbf{A} be a square matrix with $\det \mathbf{A} \neq 0$ and let λ be an eigenvalue of \mathbf{A} . Prove:

- (a) $\lambda \neq 0$ and
- (b) $1/\lambda$ is an eigenvalue of the inverse \mathbf{A}^{-1} .