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1 Matrices and vectors

1.1 Real Vectors

e n-dimensional space R"

e clements x,y € R" are called n-vectors

I 51
L2 Yo
X = ) :(xl To ... a:n)T and y = )
Tn Yn

e scalar product and norm:

xey = X'y =<X,y> = Tiyi +Tayo + - + Tnly

Il = vxex = \faitadeetal

xey = [[x[|-|lyll - cos £(x,y)

You may see, that ||y|| - cos Z(x,y) is the length of the orthogonal projection of
the vector y on x, with the negative sign if the projection has an opposite direction
with respect to x.

Iy [l cos £(x,y)




o Let x1,Xs,...,X; € R" be a family of vectors.
— Ifai,as,...,ar € R, then z = a;X;+asXs+- - -+a,X;, is called a linear combination
of x1,Xa,...,Xp.
— The set of all linear combinations of the vectors Xi,Xs,...,X; is called the
vector space spanned by the vectors x1,Xs,...,x; and denoted by
VX1, X2, ..., X;) = {aiX1 +agXg + -+ apXy | a1, a9,. .., a; € R}
— X1, Xo,...,X; are called linearly dependent, if there exist by, bs, ..., bx € R such

that b1x; + byXy + - - - + byXy, = 0 and not all b; = 0.

— X1,Xo,...,X, are called linearly independent, if a linear combination of the
zero vector

bix; +boyxg+---+bixy =0
is possible only with by = by = --- = b, = 0.

— Each family of exactly n linearly independent vectors xi,Xs,...,X, € R" is
a so called basis of R". This means, that each vector x € R" can uniquely
expressed as a linear combination of the basis:

X = b1X1—|-bQX2+"'—|-ann

— A family of n (linearly independent) vectors pi,pa,...,pn, € R" is called
orthonormal basis of R” if

0 ifi #j
, = pl'p. =
P:®DP; P; Pj {1 le:]
for all 4,7 = 12,...,n. This means, that each vector has length 1 and each

pair of (different) vectors has a right angle. As before, each vector x € R" can
uniquely expressed as a linear combination of the orthonormal basis

X = bipi +bap2+ -+ b,pp = Z bipi
i=1

but the coefficients b; have a nice interpretation (for orthonormal bases). We
see

p/x = Y bp/p; = bp,p; = b
=1

Hence the coefficient
b; = p; x = ||p|| - ||x|] - cos Z(p;,x) = [|x]| - cos £(p;, x)

is the length of the orthogonal projection of the vector x on the basis vector
b;.



1.2 Real Matrices

a;,as,...,a, € R"”
a1 12 Aim
az1 22 QAom
ay = ,ag = ) yam =

Qp1 Apn2 Apm

a; a2 ... A1m

21 A22 ... Aom

- A = . . . . :(alaaQa"'aam)
ap1  An2 Qpm

is called an n x m matrix.

Notation: A € R™**™

e The inverse matrix A~! of the n x n matrix A = (a;;) is defined by

10...0
()1...0
ALA = A A =1, = o .
00 - 1

e For the n x n matrix A let A;; denote the (n—1) x (n—1) submatrix of A generated
by cancelling the i-th row and the j-th column of A. Then the determinant det(A)

is given (recursively) by the so called cofactor expansion

det(A) = |A‘ = Q11 det A11 — 12 det A12 + -+ (—1)"+1a1n det Aln

e det(A -B) =det(A) - det(B)

Example 1.1

11 3 3
12 1 2
1 -2 1 -2
0o 1 -2 -1

2 1 2 1 1 2 1 2 2 1
=1-]1-2 1 -2|-1-]1 1 -2(+3-|1 -2 -2 |-3-|1 =2 1
1 -2 -1 0 -2 -1 0 1 -1 0



1.3 Linear transformations and matrices

Definition 1.1 A linear transformation is a map T : R™ — R™ such that for all x,y €
R™ and all A\, n € R we have:

TA-x+p-y) =XTx) +p-T(y)

Example 1.2

o The map T(x) = T(x1,w9,x3) = x1 + 229 + 4x3 1S a linear transformation from
R? to R':

T(>\X+,UY) = T()\-ycl—i—u-yl,)\-x2+u-y2,)\-w3+u-y3)
= Aaitpoyp+2- Azt pye)+4- (A astpeys)
= Ax1+2)\1:2+4)\373+uy1+2uy2+4,uy3
= A (r1+2-294+4-23)+pu-(h+2-y2+4-ys3)
= A Tx)+p-Liy)

£U1—|—$2
Ty — T2

o The map L(x) = L(xy,x9) = (
R2. Proof it!

) is a linear transformation from R? to

2
o The map L(x) = L(z1,x2) = ( il +§2 > is not linear.
1~ T2

Each n x m matrix A defines a linear transformation by matrix multiplication

a1 + 199 + -+ A1 Tm,
2171 + Q22T2 + -+ - + A2y Ty

Ap1Tq + Ap2X2 + -+ ApmTm

a1 Q12 A1m

21 Q22 Q2m
= 1 ) + 2 ) Tt Ty

an1 (07%) Apm

The image of the vector x € R™ is a linear combination of the column vectors of the
matrix A.



Example 1.3 In the following picture you can see the original figur (blue) and the image
of this figur under the linear map L. Each blue point (endpoint of the vector x) is maped
on the point Ax (red).

o A= ( _01 _01 ) Rotation with center (0,0) by 180 degree

o A= ( _01 (1) ) Reflection along the y-axis




o A= ( 0 —1 ) Rotation with center (0,0) by 90 degree

Remark: The general rotation with center (0,0) by o degree is given by the following
matriz:

( cos(a) —sin(a) )

sin(a)  cos(«)

o A= ( (2) (1) ) Scaling (by the factor 2) in x-direction




(

-1 0
-2 3

Ik




Projections on lines The following type of matrices is of the special interest. Let

y4!

P2
pP= .
Pn

be an arbitrary non-zero vector. The direct calculation

y4! pP1-P1 P1:DP2 --- P1°DPn

T D2 P2-p1 P2-pP2 ... P2 Pn

p-p = . '(]91 p2 ... pn) = . . . .
Pn Pn-P1 Pn P2 .- Pn-:Pn
- pl‘PT - | | |
- p2'pT -
= . . . = Pr-P pP2-P Pn-DP

- ]92'PT -

shows that p - p? is a symmetric n x n matrix of rank 1 (all columns and all rows are
multiples of the vector p resp. p’).

Theorem 1.1 Let p1,p2,...,Pn € R™ an orthonormal basis of R™, this means

pz"pj:pzrpj:{l ifi=j

and P; = p; - pl foralli,j=1,2,... . n.

Then the linear map
Tp,(x) = P;-x

giwen by matrix multiplication is a projection on the line spanned by the vector p; for all
1=1,2,...,n.

Proof: Let
j=1

be a vector expressed in the given orthonormal basis. Then by direct calcula-
tion

Pi-x = (pi'p;) (Z bﬂ’j)
j=1
= Pi (P?'Z bjpj)
j=1
= Pi- (Z bjpiT'pj) = pib; = b;p;.
j=1
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1.4 Complex matrices and vectors

Sometimes it is helpful to allow complex matrices and vectors (matrices whose elements
are complex numbers). A complex matrix can be viewed as a combination of two real
matrices:

a1 + ibu a9 + ’iblg A A1 + Zblm
agr +iba  age +iby ... gy + iboy
A = : . .
Qn1 + anl Qn2 + an? cee Qpm Tt anm
a1 a2 ... A1m bn b12 Ce blm
a91 A2 ... Ao2m . b21 b22 Ce bgm
= ) . ) : +- )
Apl QAp2 - v G bni b2 ... bum

1.5 Matrix calculus

la. A+B=B+A 1b. In general: AB # BA
2a. (A+B)+C=A+(B+C) 2b. (AB)C = A(BC)

3a. A+0=A 3b. AI=1A = A ( A square)
4. AB=0 2 A=0o B=0

5. AB=AC # B=C

6. MA+B) = XM+)XB XeR

7. AB+C) = AB+AC

8. (A+B)C = AC+BC

9. (A hHt = A

10. (AB)! = B1'A!

11. (AT)T = A

12. (A+B)T = AT+BT

13. (AB)T = BTAT

4. (A—HT = (AT)"!

_(a b : a1 d —b

ForA—(c d)w1thad—bc#OlsA _ad—bc<—c a)'

All these definitions and results can be generalized to vectors and matrices with complex
entries.
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2 Eigenvalues and eigenvectors

2.1 Definition and determination

Definition 2.1 If A is a real (or complex) n X n matriz, then a (complex) number X is
an eigenvalue of A if there is a nonzero (complex) vector x € C* such that

Ax = Mx

Then x is an eigenvector of A (associated with \).

Remark: If x is an eigenvector associated with the eigenvalue A, then so is ax for every
real (and complex) number o # 0.

Alax) = aAx = a(Ax) = N(ax)

How to find eigenvalues? The equation can be written as

Ax = Alx
&S Ax—-)2Ix = 0
& (A-AI)x = 0

This is a homogeneous system of linear equations. It has a solution x # 0 if and only if
the matrix (A — A I) is singular which means that its determinant equals to 0.

(A — A1) singular < det(A—AI)=0
)
pa

pa(A) = 0 is called the characteristic equation of A. The function pa()) is a polynomial
of degree n in A\, called the characteristic polynomial of A.

Theorem 2.1 Are both x and 'y eigenvectors of A associated with the same eigenvalue
A, then all linear combinations of x and y are eigenvectors associated with A to. This
means, that the set of all eigenvectors (and the 0-vector) associated with an eigenvalue X
s a vector space, called the eigenspace of \:

V) = {xeC"'|(A-A)x=0}.

The dimension of the vector space V(\) is called the geometric multiplicity of the eigen-
value \.

Proof: Let Ax = Axand Ay = Ay and a,b € R, not both equal to 0.
Then we have for z = ax + by:

Az = A(ax+by) = aAx+bAy = alx+ by = )z
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Determination of the eigenvalues and eigenvectors

1. The polynomial equation p4(A) = 0 has always n complex solutions (counted with
multiplicity) and may have no real solutions. If Aj,..., A\, € C are the pairwise
distinct solutions (the eigenvalues of A) with the multiplicities &, ..., k, then the
characteristic polynomial can be written as

paA) = (A =" Qo= N2 (A =AM

The multiplicity k; of the zero ); is called algebraic multiplicity of the eigenvalue
Ai. Generally, the determination of the (exact) zeros is impossible for n > 5 and we
have to use numerical methods.

2. For each eigenvalue \; (1 < i <r) we compute the eigenspace of \;

VM) = {xeC" | (A-ADx=0}.

Example 2.1

200
A=10 2 0
00 1
o pa(A) = 2=A)3(1-2)
e Zeros of the characteristic polynomial: Ay = 1 (algebraic multiplicity 1), Aoy = 2
(algebraic multiplicity 2)
[ J
200 1 00 T 0 0
020 ]|-1[010 |l =(0] - xP =10
000 0 01 T3 0 1
and V(=1) = {t-xV |t € R } with geometric multiplicity 1.
[ J
200 1 00 T 0
020]-21010 T = 0
001 001 T3 0

The 2-dimensional vectorspace of all solutions is given by the single equation x3 = 0
and there are infinitely many pairs of orthogonal vectors which span this space. We
take the two standard vectors:

1 0
V(2> = {tl 0 +tq - 1 |t1,t2€R}
0 0
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Example 2.2
0 10
A= 0 01
-6 —1 4
e pa(N) = =N +4XN2—-A—6 = A+1)-(=A2+5X1—6) = —(A+1)-(A=2)-(A=3)

e Zeros of the characteristic polynomial: \y = —1, Ao = 2 and A3 = 3 (all of algebraic

multiplicity 1)

[ J
0 10 100 ) 0
0 01 ])—-(-1]01°0 | =10 = x =
—6 —1 4 001 3 0

and V(=1) = {t-xV |t € R } with geometric multiplicity 1.

[ ]
0 10 100 T 0
0 01 |-21010 s | =0 — x®@ =
-6 —1 4 00 1 T3 0

and V(2) = {t-x@ |t € R } with geometric multiplicity 1.

0 10 100 T 0
0 01 ]|-31010 s | = | 0 — x® =
-6 —1 4 00 1 T3 0

and V(3) = {t-x®) |t € R } with geometric multiplicity 1.

Definition 2.2 The spectral radius of a quadratic matrixz A is the real number

p(A) = max{|\l,.... |\ ).

[\]

w
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2.2 *Generalized Eigenvectors*

To solve some interesting problems we have to generalize the notion of eigenvectors.

Definition 2.3 A vector x € C" is called generalized eigenvector of degree | € N associ-
ated to the eigenvalue A of A, if

(A-=XD)!'x =0 and (A-XD)"'x # 0.
Of course, an eigenvector is a generalized eigenvector of degree 1.

Example 2.3 The matriz

A_:

o O =
O = =
— =

has the eigenvalue 1 of (algebraic) multiplicity 3 with dim V' (1) =1 (geometric multiplic-
ity). We have:

(A—I)e1:0 (A—I)92:e1 (A—I)262:0
(A-T)e; = e; + e (A-T)%e; = e (A-T)Pe; =0

This means, that e is an eigenvector, ey is a generalized eigenvector of degree 2 and es
s a generalized eigenvector of degree 3.

Theorem 2.2 Let A € C"*" be a complex (or real) matriz with
paA) = =N M= NF2 (= A

e Let \ be an eigenvalue of A of (algebraic) multiplicity l. Then there exist | linearly
independent generalized eigenvectors (of degree <1). This means:

dm{xcC"|(A-X))x =0} = L

o (Generalized eigenvectors associated to pairwise different eigenvalues of A are linearly
independent.

o There exists a basis P1, P2, - - -, Pn 0f C" consisting of generalized eigenvectors of A.
If P is the matriz with this basis as the columns, then

0

with A; € CE>%i for alli=1,2,...,7.
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Let us have a look at the case n = 2 and A = < a b )

1.

c d

Characteristic polynomial:

a— A\ b
pA(A) = det( c d—/\)

— 2 _ _ — — _
= N —(a+d)\+ad—bc (A=A —A)
=:tr(A) =det(A)

d e
with Az = a;r j:\/(az  _ det(4) .

2. For each \; (i = 1,2) we solve the linear system

() 0) - G

We have four different cases:

1.

)\1,)\2 c R, /\1 7& )\2

1 2
Example: A = ( 9 1 )

We have pa(\) = (1—X)2—4 = (A+1)(A—3) (two different eigenvalues of algebraic
multiplicity 1). A direct calculation shows, that dim V' (—1) = 1 and dim V' (3) =
1 and the geometric multiplicitiy are (of all eigenvalues) equal to the algebraic
multiplicity.

2 0
Example: A = ( 0 2 )

We have p4(A) = (2 — \)? (one eigenvalue of algebraic multiplicity 2). A direct cal-
culation shows, that dim V' (2) = 2 and the geometric multiplicitiy (of the eigenvalue
2) is equal to the algebraic multiplicity.

A=A =\ € R with dimV(\) = 1

2 1
Example: A = ( 0 2 )

We have p4(A\) = (2 — \)? (one eigenvalue of algebraic multiplicity 2). A direct cal-
culation shows, that dim V(2) = 1 and the geometric multiplicitiy of the eigenvalue
2 is different of the algebraic multiplicity.

=M\ eC—-R
cos¢p —sing

Example: A = ( sing  cosd

> with ¢ # km

We have ps(\) = (A — cos¢)? +sin? ¢ = A2 — 2\ cos ¢ + 1 with the two different
complex zeroes \j o = cos ¢ &£ ¢sin ¢.



16

3 Diagonalization

Let A and P be n x n matrices with P invertible. Then A and P 'AP have the same
eigenvalues (because they have the same characteristic polynomial).

Definition 3.1 An n x n matriz A is diagonalizable if there is an invertible matrixz P
and a diagonal matriz D such that

P 'AP = D.
Two natural questions:

1. Which square matrices are diagonalizable?

2. If A is diagonalizable, how do we find the matrix P?

Theorem 3.1 An n xn matriz A is diagonalizable if and only if it has a set of n linearly

independent eigenvectors p1,...,Pn. In this case,
Al 0
P!AP = . ,
0 An
where P is the matriz with py, ..., Pn as its columns, and Ay, ..., \, are the corresponding
eigenvalues.

Proof: We prove only one direction of the statement:

A has n linearly independent eigenvectors => A is diagonalizable.

Let p1,Pp2,-- ., Pn be the n linearly independent eigenvectors of A with corre-
sponding eigenvalues A\, Ag, ..., \,. We form the matrix
. |
P=1 p1 p2 Pn

with the eigenvectors of A as the columns. Then

| | |
AP = Ap: Apy ... Ap,

the column vectors of AP are the vectors Ap;, Aps,...,Ap,. Using the
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property of eigenvectors, we get

AP = Ap, Ap, ... Ap,
| | |
| | |
= AP1 A2P2 ... AnPn
| | |
A1 0
| | N
= P1 P2 Pn
| VAN N
= PD.

where D is the diagonal matrix with diagonal entries equal to the eigenvalues
of A. The matrix P has maximal rank (and is invertible), because the column
vectors are linearly independent. Hence the equation AP = PD is equivalent
to P'AP = D.

O

11
-2 4

1
AL =2 p1:<1)

1
Ao =3 p2:<2)

(11 1 2 —1 ‘
HenceP-(l 2),P —(_1 1)and.

e - () (1) (1) - (09)

Example 3.1 The matrix A = ( ) has the eigenvalues and eigenvectors
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Many matrices encountered in economics are (real) symmetric and for these matrices we
have the following important result.

Theorem 3.2 (Spectral Theorem for symmetric matrices) If the real nxn matriz
A is symmetric (A = AT ), then:

1. All n eigenvalues \q, ..., \, are real.

2. Figenvectors that correspond to different eigenvalues are orthogonal.

3. There exists an orthogonal and real matrizv P ( P~ = PT ) such that

A1 0
P'AP = .
0 An
The columns p1, . . ., Pn of the matrix P are eigenvectors of unit length corresponding
to the eigenvalues Ay, ..., \,.

Proof: Let A be a real and symmetric n X n matrix.

1. Let Ap; = \;p;- By complex conjugation of this equation (complex
conjugate all entries of the vector and matix, but keep in mind that A
has only real entries) we get

Ap;, = Ap;, = Ap; = \D:

and
ApiDi = (Ap)'P; = piA'p; = p/Ap; = p/\Di = AP/ Di

Because p/p; = ||pi||> # 0, we have \; = \; and ); must be a real
number.

2. Let .Apz = /\zpz and Ap] = /\jpj with )\z 7£ )‘j' Then

Npip; = (Ap)'p;
= p; A'p;
= p; (A"py)
= p!(Ap;j) because A = AT
= P, \;p;

= )\ P, pj
or
X (ppy) = A (p)p))

and because \; # A;, the scalar product of p;, and p,; must be zero:
p; p; = pi ® p; = 0. Hence the two eigenvectors are orthogonal.
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3. We give the proof of part 3 only for the case that all eigenvalues Ay, ..., \,

are (pairwise) different (and real by part 1). In this case, the correspond-

ing eigenvectors pl, ..., p!, are orthogonal (by part 2) and hence linearly
independent. Now choose for ¢ = 1,...,n an eigenvector of length 1 by
L,
Pi = 17 P;
lisAl

It is easy to show, that

1 ifi—j

The matrix

is an orthogonal matrix, because

_p{_
. _ ol | |
PP = o2 P1 P2 - Dn
_ pl - | |
PiP1 PiP2 - PiPn
| Pip1 PIP2 0 PiPa
pip1 Plps -+ pPlpa
1 0 0
0 1 0
0 0 1

Hence we have PT = P!
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Theorem 3.3 (Spectral decomposition of symmetric matrices) Let A be a sym-
metric matrix with the set p1,...,Pn of orthogonal eigenvectors associated to the real
eigenvalues Ay, ..., \,. Then A can be written as

A => A\pp] = \pip{ +--+ APuby
=1

Proof: For each vector p; (of the given ONB) we have

Ap; = Ajp;

and

PIRTES D SPTTS
=1 i=1
= Z /\ipi5ij
i=1

= Ajpj
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Example 3.2 The matriz A = ( ; ]

and Ao = 3. The corresponding eigenspaces are

vien = {e( L) 1eer}
- () e

The two eigenspaces are orthogonal, because the scalar product of the two spanning vectors
is 0. In order to construct the matriz P, we have to use eigenvectors of length 1 (unit
vectors). A spanning vector of length 1 for V(—1) is

p = e () - ()

) 18 symmetric and has the eigenvalues Ay = —1

and for V(3) is

- () -5 ()

1/vV2 1/v2 1 11y . .
H P = = —
ence (_1/\/5 1/\/§ N AGEE 1s an orthogonal matriz, because
1 1 -1
-1 _pT _
P =P ——\/§<1 1>and
1 1 -1 1 2 1 11 -1 0

—1 . —

PAP_\/§(1 1)(21>2(—11) <03>
Furthermore

el = (1) (ve vy = (L1 i)

PPy = (%:g)(l/\/@ /v2) = <}f3 1?3)

and the spectral decomposition of A ist given by

(31) = (R R (B8
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4 Quadratic forms and matrices

Definition 4.1 A quadratic form in n variables x = (x1,...,2,)" is a function of the
form

Qa(x) = Z@z‘sz‘%‘ = x'Ax

1,j=1

where A = (a;;) is an n X n matriz.

Quadratic forms are important examples of multi-variate functions and ) is a homoge-
neous function of degree 2 in n variables.

Of course, Q4 (0) = 0 for all quadratic forms.

Example 4.1 Q(z1,72) = 22 + 2129 + 23 is a quadratic form and can be written as

o (3 1) (2) = e (10)(22)
= (21 72) (1}2 1?)(2)

Unfortunaetly, there is no unique way to write a given quadratic form in matrix term.
But we may resolve this situation by always choosing A to be symmetric!

Exercise 4.1 Let Q(x) = x!Bx where B is not symmetric. Let A = (B + B7T)/2 and
C = (B — BT)/2. Show that A is symmetric and evaluate both x* Ax and x* Cx.
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Example 4.2

e The quadratic form Q(x1,x2) = a3 + x129 + a3 can be written as
T+ — —X5.
( thy) A

As a sum of squares, it can not be negative and can only be zero when xy + % =
and xo =0, or x1 = x9 = 0. We call this a positive definite quadratic form.

e The quadratic form Q(z1,12) = 23 +2x100+23 = (21429)? is always non-negative,
but it is zero whenever x1 + xo = 0 or x1 = —xg (it is zero for non-zero values of
the variables). We call this a positive semi-definite quadratic form.
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e The quadratic form Q(z1,12) = 23 — 6179 = (27 — 312)* — 923 can be positive or
negative. We call this an indefinite quadratic form.
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Definition 4.2 A quadratic form Qa(x) = x'Ax, as well as its associated symmetric
matriz A, is said to be

positive definite <= Qa(X)
positive semi-definite <= Qa(X)
= Qal(x)

= Qa(x)

negative definite
negative semi-definite

INAN IV V
oo oo

for all x # 0.

The quadratic form is called indefinite, if there are vectors a and b with Qa(a) < 0 and
QA(b) > 0.

It is easy to see, that fori =1,... n:

Qa (ei) = Q-

The technique used in the examples to examine the sign of the quadratic form is known
as completing the squares. Let us examine the possible signs of a quadratic form
Qa(x) = xTAx using the eigenvalues/eigenvectors of the symmetric matrix A.

By the Spectral Theorem for symmetric matrices we can choose a matrix P of
eigenvectors pi, ..., pn of A, such that P~! = P and

A1 0
P !AP = PTAP = ,
0 An
where \q,..., \, are the eigenvalues of A.
Now let y := P7x. This defines new variables ¥, ..., ¥y, as linear combinations of the
old ones

n
Yi = Z Djily-
j=1

Further, since PP?” = I we have x = Py and

Qax) = x'Ax

= (Py)"A(Py)
= y!'PTAPy
= y' (PTAP)y
A 0
=y y
0 A,
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Thus we completed the squares. The quadratic form is expressed in terms of the new
variables as a sum/difference of pure square terms. To determine the sign of the quadratic
form, we simply inspect the signs of the eigenvalues of A.

Theorem 4.1 (Sylvester)
If A is symmetric, then the quadratic form Qa(x) = xT Ax is

positive definite <= VY \; >0

positive semi-definite <= Y \; >0

negative definite <= V \; <0

negative semi-definite <= VYV \; <0
indefinite <= 3 \; >0 and \; <O0.

Checking eigenvalues can be tedious. There is a convenient condition on the matrix A in
terms of certain sub-determinants, which can be used to identify the definiteness of A.

An arbitrary principal minor of order » of an n X n matrix A is the determinant of a
matrix obtained by deleting n — r rows and n — r columns of A such that if the ith
row (column) is selected then so is the ith column (row). A principal minor is called a
leading principal minor of order r if it consists of the first (leading) r rows and columns
of A.

Example 4.3 Let

a1; Aaiz2 Qi3
A = Q21 Q22 A23

31 Aaz2 ass

The principal minors of A are det(A), det ( i i ), det ( @i i >, det ( 22 23 ),

Q21 A22 a3; a3z
a1, az and ass.

The leading principal minors are ayq, det ( ZH 312 ) and det(A).
21 Q22

Theorem 4.2

Let A be a symmetric n x n matriz. We denote by Dy the leading principal minor of
order k and let Ay denote an arbitrary principal minor of order k. Then the quadratic
form Qa(x) = xT Ax is

Dy >0 fork=1,....n

Ay > 0 for all principal minors of order k =1,...,n
(=1)*D, >0 fork=1,...,n

(—=1)*Ax > 0 for all principal minors of order k =1,... n.

positive definite
positive semi-definite
negative definite
negative semi-definite

1117
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Example 4.4
1 0 3
A = 01 2
3 2 13
e all principal minors of order 1:
1 0 3
A = 01 2 det(1) > 0
3 2 13
10 3
A = 01 2 det(1) > 0
3 2 13
10 3
A = 01 2 det(13) > 0
3 2 13
e all pricipal minors of order 2
o3 10
A = 0 1 2 det 0 1 =12>0
3 2 13
10 3 1 3
A = 01 2 det(Slg)—éle
3 2 13
1 3 1
A = 01 2 det<213>:920
3 2 13
e all principal minors of order 3
10 3 10 3
A = 01 2 det [ O 1 2 =02>0
3 2 13 3 2 13

Hence A is positive semi-definite and not positive definite.
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Special case: n = 2 The quadratic form

a;; a x
Qa(x) = (21 x2) ( 1t )( 1> = anr] + 26197175 + a75

Q12 Aa22 T2

e is positive definite if a;; > 0 and det A = ayya9 — a2y > 0;
e is positive semi-definite if a;; > 0, az > 0 and det A = ajya90 — a2y > 0;
e is negative definite if a;; < 0 and det A = ajja — a3y > 0;

e is negative semi-definite if aj; < 0, asy < 0 and det A = ajya95 — aly > 0.



