Linear algebra

Keywords: vector, matrix, eigenvalue, eigenvector, diagonalization, linear transformation, quadratic forms and symmetric matrices

Compare: Vorlesung Mathematik 2

Contents

1	Matrices and vectors		2
	1.1	Real Vectors	2
	1.2	Real Matrices	4
	1.3	Linear transformations and matrices	5
	1.4	Complex matrices and vectors	10
	1.5	Matrix calculus	10
2	Eige	envalues and eigenvectors	11
	2.1	Definition and determination	11
	2.2	*Generalized Eigenvectors*	14
3	3 Diagonalization		
4	Qua	adratic forms and matrices	22

1 Matrices and vectors

1.1 Real Vectors

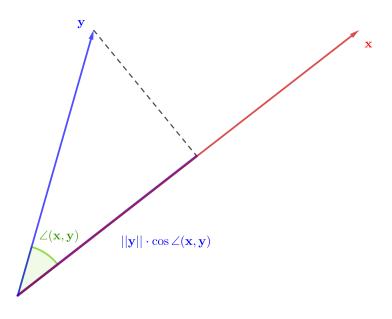
- *n*-dimensional space \mathbb{R}^n
- elements $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are called <u>*n*-vectors</u>

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & \dots & x_n \end{pmatrix}^T \text{ and } \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

• scalar product and <u>norm</u>:

$$\mathbf{x} \bullet \mathbf{y} = \mathbf{x}^T \mathbf{y} = \langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$
$$||\mathbf{x}|| = \sqrt{\mathbf{x} \bullet \mathbf{x}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$
$$\mathbf{x} \bullet \mathbf{y} = ||\mathbf{x}|| \cdot ||\mathbf{y}|| \cdot \cos \angle (\mathbf{x}, \mathbf{y})$$

You may see, that $||\mathbf{y}|| \cdot \cos \angle(\mathbf{x}, \mathbf{y})$ is the length of the orthogonal projection of the vector \mathbf{y} on \mathbf{x} , with the negative sign if the projection has an opposite direction with respect to \mathbf{x} .



- Let $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k \in \mathbb{R}^n$ be a family of vectors.
 - If $a_1, a_2, \ldots, a_k \in \mathbb{R}$, then $\mathbf{z} = a_1 \mathbf{x}_1 + a_2 \mathbf{x}_2 + \cdots + a_k \mathbf{x}_k$ is called a <u>linear combination</u> of $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$.
 - The set of all linear combinations of the vectors $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$ is called the vector space spanned by the vectors $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$ and denoted by

$$V(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k) = \{a_1\mathbf{x}_1 + a_2\mathbf{x}_2 + \dots + a_k\mathbf{x}_k \mid a_1, a_2, \dots, a_k \in \mathbb{R}\}$$

- $-\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ are called linearly dependent, if there exist $b_1, b_2, \dots, b_k \in \mathbb{R}$ such that $b_1\mathbf{x}_1 + b_2\mathbf{x}_2 + \dots + \overline{b_k\mathbf{x}_k} = \mathbf{0}$ and not all $b_j = 0$.
- $-\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ are called <u>linearly independent</u>, if a linear combination of the zero vector

$$b_1\mathbf{x}_1 + b_2\mathbf{x}_2 + \dots + b_k\mathbf{x}_k = \mathbf{0}$$

is possible only with $b_1 = b_2 = \cdots = b_k = 0$.

- Each family of exactly *n* linearly independent vectors $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n \in \mathbb{R}^n$ is a so called <u>basis of \mathbb{R}^n </u>. This means, that each vector $\mathbf{x} \in \mathbb{R}^n$ can uniquely expressed as a linear combination of the basis:

$$\mathbf{x} = b_1 \mathbf{x}_1 + b_2 \mathbf{x}_2 + \dots + b_n \mathbf{x}_n$$

- A family of n (linearly independent) vectors $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n \in \mathbb{R}^n$ is called <u>orthonormal basis of \mathbb{R}^n if</u>

$$\mathbf{p}_i \bullet \mathbf{p}_j = \mathbf{p}_i^T \mathbf{p}_j = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

for all i, j = 12, ..., n. This means, that each vector has length 1 and each pair of (different) vectors has a right angle. As before, each vector $\mathbf{x} \in \mathbb{R}^n$ can uniquely expressed as a linear combination of the orthonormal basis

$$\mathbf{x} = b_1 \mathbf{p}_1 + b_2 \mathbf{p}_2 + \dots + b_n \mathbf{p}_n = \sum_{i=1}^n b_i \mathbf{p}_i$$

but the coefficients b_i have a nice interpretation (for orthonormal bases). We see

$$\mathbf{p}_j^T \mathbf{x} = \sum_{i=1}^n b_i \mathbf{p}_j^T \mathbf{p}_i = b_j \mathbf{p}_j^T \mathbf{p}_j = b_j$$

Hence the coefficient

$$b_j = \mathbf{p}_j^T \mathbf{x} = ||\mathbf{p}_j|| \cdot ||\mathbf{x}|| \cdot \cos \angle (\mathbf{p}_j, \mathbf{x}) = ||\mathbf{x}|| \cdot \cos \angle (\mathbf{p}_j, \mathbf{x})$$

is the length of the orthogonal projection of the vector \mathbf{x} on the basis vector \mathbf{p}_{j} .

1.2 Real Matrices

 $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m \in \mathbb{R}^n$

$$\mathbf{a}_{1} = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix}, \mathbf{a}_{2} = \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{pmatrix}, \dots, \mathbf{a}_{m} = \begin{pmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{mm} \end{pmatrix}$$
$$\rightarrow \mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix} = (\mathbf{a}_{1}, \mathbf{a}_{2}, \dots, \mathbf{a}_{m})$$

is called an <u> $n \times m$ matrix</u>. Notation: $\mathbf{A} \in \mathbb{R}^{n \times m}$

• The <u>inverse matrix</u> \mathbf{A}^{-1} of the $n \times n$ matrix $\mathbf{A} = (a_{ij})$ is defined by

$$\mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{I}_{\mathbf{n}} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}.$$

• For the $n \times n$ matrix **A** let \mathbf{A}_{ij} denote the $(n-1) \times (n-1)$ submatrix of **A** generated by cancelling the *i*-th row and the *j*-th column of **A**. Then the <u>determinant</u> det(**A**) is given (recursively) by the so called cofactor expansion

$$\det(\mathbf{A}) = |\mathbf{A}| = a_{11} \det \mathbf{A}_{11} - a_{12} \det \mathbf{A}_{12} + \dots + (-1)^{n+1} a_{1n} \det \mathbf{A}_{1n}$$

• $det(\mathbf{A} \cdot \mathbf{B}) = det(\mathbf{A}) \cdot det(\mathbf{B})$

Example 1.1

$$\begin{vmatrix} 1 & 1 & 3 & 3 \\ 1 & 2 & 1 & 2 \\ 1 & -2 & 1 & -2 \\ 0 & 1 & -2 & -1 \end{vmatrix}$$
$$= 1 \cdot \begin{vmatrix} 2 & 1 & 2 \\ -2 & 1 & -2 \\ 1 & -2 & -1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & 1 & 2 \\ 1 & 1 & -2 \\ 0 & -2 & -1 \end{vmatrix} + 3 \cdot \begin{vmatrix} 1 & 2 & 2 \\ 1 & -2 & -2 \\ 0 & 1 & -1 \end{vmatrix} - 3 \cdot \begin{vmatrix} 1 & 2 & 1 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{vmatrix}.$$

1.3 Linear transformations and matrices

Definition 1.1 A linear transformation is a map $T : \mathbb{R}^m \to \mathbb{R}^n$ such that for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$ and all $\lambda, \mu \in \mathbb{R}$ we have:

$$T(\lambda \cdot \mathbf{x} + \mu \cdot \mathbf{y}) = \lambda \cdot T(\mathbf{x}) + \mu \cdot T(\mathbf{y})$$

Example 1.2

• The map $T(\mathbf{x}) = T(x_1, x_2, x_3) = x_1 + 2x_2 + 4x_3$ is a linear transformation from \mathbb{R}^3 to \mathbb{R}^1 :

$$T(\lambda \cdot \mathbf{x} + \mu \cdot \mathbf{y}) = T(\lambda \cdot x_1 + \mu \cdot y_1, \lambda \cdot x_2 + \mu \cdot y_2, \lambda \cdot x_3 + \mu \cdot y_3)$$

= $\lambda \cdot x_1 + \mu \cdot y_1 + 2 \cdot (\lambda \cdot x_2 + \mu \cdot y_2) + 4 \cdot (\lambda \cdot x_3 + \mu \cdot y_3)$
= $\lambda \cdot x_1 + 2 \cdot \lambda \cdot x_2 + 4 \cdot \lambda \cdot x_3 + \mu \cdot y_1 + 2 \cdot \mu \cdot y_2 + 4 \cdot \mu \cdot y_3$
= $\lambda \cdot (x_1 + 2 \cdot x_2 + 4 \cdot x_3) + \mu \cdot (y_1 + 2 \cdot y_2 + 4 \cdot y_3)$
= $\lambda \cdot T(\mathbf{x}) + \mu \cdot L(\mathbf{y})$

• The map $L(\mathbf{x}) = L(x_1, x_2) = \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \end{pmatrix}$ is a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 . Proof it!

• The map
$$L(\mathbf{x}) = L(x_1, x_2) = \begin{pmatrix} x_1^2 + x_2 \\ x_1 - x_2 \end{pmatrix}$$
 is not linear.

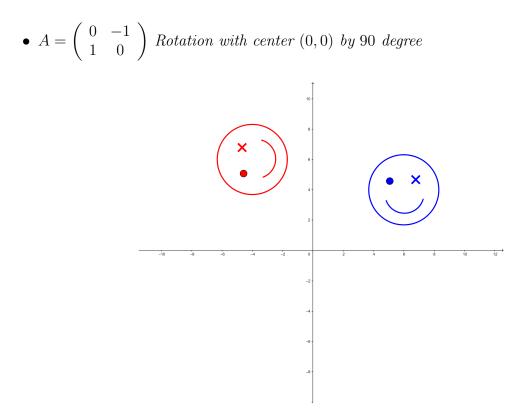
Each $n \times m$ matrix **A** defines a linear transformation by matrix multiplication

$$T_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \cdot \mathbf{x} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_m \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m \end{pmatrix}$$
$$= x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{pmatrix} + \dots + x_m \begin{pmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{nm} \end{pmatrix}$$

The image of the vector $\mathbf{x} \in \mathbb{R}^m$ is a linear combination of the column vectors of the matrix \mathbf{A} .

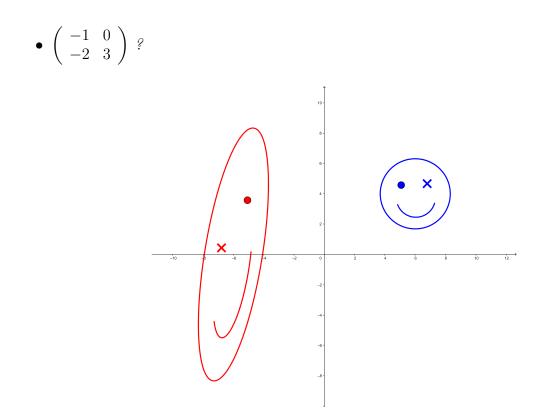
Example 1.3 In the following picture you can see the original figur (blue) and the image of this figur under the linear map L_A . Each blue point (endpoint of the vector \mathbf{x}) is maped on the point $A\mathbf{x}$ (red).

• $A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ Rotation with center (0, 0) by 180 degree • $A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ Reflection along the y-axis



Remark: The general rotation with center (0,0) by α degree is given by the following matrix:

$$\left(\begin{array}{cc}\cos(\alpha) & -\sin(\alpha)\\\sin(\alpha) & \cos(\alpha)\end{array}\right)$$



Projections on lines The following type of matrices is of the special interest. Let

$$\mathbf{p} = \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{pmatrix}$$

be an arbitrary non-zero vector. The direct calculation

$$\mathbf{p} \cdot \mathbf{p}^{T} = \begin{pmatrix} p_{1} \\ p_{2} \\ \vdots \\ p_{n} \end{pmatrix} \cdot \begin{pmatrix} p_{1} & p_{2} & \dots & p_{n} \end{pmatrix} = \begin{pmatrix} p_{1} \cdot p_{1} & p_{1} \cdot p_{2} & \dots & p_{1} \cdot p_{n} \\ p_{2} \cdot p_{1} & p_{2} \cdot p_{2} & \dots & p_{2} \cdot p_{n} \\ \vdots & \vdots & \vdots & \vdots \\ p_{n} \cdot p_{1} & p_{n} \cdot p_{2} & \dots & p_{n} \cdot p_{n} \end{pmatrix}$$
$$= \begin{pmatrix} - & p_{1} \cdot \mathbf{p}^{T} & - \\ - & p_{2} \cdot \mathbf{p}^{T} & - \\ \vdots & \vdots & \vdots \\ - & p_{2} \cdot \mathbf{p}^{T} & - \end{pmatrix} = \begin{pmatrix} | & | & | \\ p_{1} \cdot \mathbf{p} & p_{2} \cdot \mathbf{p} & \dots & p_{n} \cdot \mathbf{p} \\ | & | & | \end{pmatrix}$$

shows that $\mathbf{p} \cdot \mathbf{p}^T$ is a symmetric $n \times n$ matrix of rank 1 (all columns and all rows are multiples of the vector \mathbf{p} resp. \mathbf{p}^T).

Theorem 1.1 Let $\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_n \in \mathbb{R}^n$ an orthonormal basis of \mathbb{R}^n , this means

$$\mathbf{p}_i \bullet \mathbf{p}_j = \mathbf{p}_i^T \mathbf{p}_j = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

and $\mathbf{P}_i = \mathbf{p}_i \cdot \mathbf{p}_i^T$ for all $i, j = 1, 2, \dots, n$. Then the linear map

$$T_{\mathbf{P}_i}(\mathbf{x}) = \mathbf{P}_i \cdot \mathbf{x}$$

given by matrix multiplication is a projection on the line spanned by the vector \mathbf{p}_i for all i = 1, 2, ..., n.

Proof: Let

$$\mathbf{x} = b_1 \mathbf{p}_1 + b_2 \mathbf{p}_2 + \dots + b_n \mathbf{p}_n = \sum_{j=1}^n b_j \mathbf{p}_j$$

be a vector expressed in the given orthonormal basis. Then by direct calculation

$$\begin{aligned} \mathbf{P}_i \cdot \mathbf{x} &= \left(\mathbf{p}_i \cdot \mathbf{p}_i^T \right) \cdot \left(\sum_{j=1}^n b_j \mathbf{p}_j \right) \\ &= \mathbf{p}_i \cdot \left(\mathbf{p}_i^T \cdot \sum_{j=1}^n b_j \mathbf{p}_j \right) \\ &= \mathbf{p}_i \cdot \left(\sum_{j=1}^n b_j \mathbf{p}_i^T \cdot \mathbf{p}_j \right) = \mathbf{p}_i b_i = b_i \mathbf{p}_i. \end{aligned}$$

1.4 Complex matrices and vectors

Sometimes it is helpful to allow complex matrices and vectors (matrices whose elements are complex numbers). A complex matrix can be viewed as a combination of two real matrices:

$$\mathbf{A} = \begin{pmatrix} a_{11} + ib_{11} & a_{12} + ib_{12} & \dots & a_{1m} + ib_{1m} \\ a_{21} + ib_{21} & a_{22} + ib_{22} & \dots & a_{2m} + ib_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} + ib_{n1} & a_{n2} + ib_{n2} & \dots & a_{nm} + ib_{nm} \end{pmatrix}$$
$$= \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix} + i \cdot \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nm} \end{pmatrix}$$

1.5 Matrix calculus

1a. $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$ 2a. $(\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C})$ 3a. $\mathbf{A} + 0 = \mathbf{A}$	1b. In general: $AB \neq BA$ 2b. $(AB)C = A(BC)$ 3b. $AI = IA = A (A \text{ square })$
4. $AB = 0$ \Rightarrow $A = 0$ or B 5. $AB = AC$ \Rightarrow $B = C$	B=0
6. $\lambda(\mathbf{A} + \mathbf{B}) = \lambda \mathbf{A} + \lambda \mathbf{B} \lambda \in$ 7. $\mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$ 8. $(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C}$	\mathbb{R}
9. $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$ 10. $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$ 11. $(\mathbf{A}^{T})^{T} = \mathbf{A}$ 12. $(\mathbf{A} + \mathbf{B})^{\mathbf{T}} = \mathbf{A}^{T} + \mathbf{B}^{\mathbf{T}}$ 13. $(\mathbf{A}\mathbf{B})^{\mathbf{T}} = \mathbf{B}^{\mathbf{T}}\mathbf{A}^{\mathbf{T}}$ 14. $(\mathbf{A}^{-1})^{T} = (\mathbf{A}^{T})^{-1}$	
For $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $ad - bc \neq 0$ is .	$\mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$

All these definitions and results can be generalized to vectors and matrices with complex entries.

2 Eigenvalues and eigenvectors

2.1 Definition and determination

Definition 2.1 If **A** is a real (or complex) $n \times n$ matrix, then a (complex) number λ is an eigenvalue of **A** if there is a nonzero (complex) vector $\mathbf{x} \in \mathbb{C}^n$ such that

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

Then \mathbf{x} is an eigenvector of \mathbf{A} (associated with λ).

Remark: If **x** is an eigenvector associated with the eigenvalue λ , then so is $\alpha \mathbf{x}$ for every real (and complex) number $\alpha \neq 0$.

$$\mathbf{A} (\alpha \mathbf{x}) = \alpha \mathbf{A} \mathbf{x} = \alpha (\lambda \mathbf{x}) = \lambda (\alpha \mathbf{x})$$

How to find eigenvalues? The equation can be written as

$$\begin{aligned} \mathbf{A} \mathbf{x} &= \lambda \mathbf{x} \\ \Leftrightarrow & \mathbf{A} \mathbf{x} - \lambda \mathbf{I} \mathbf{x} &= \mathbf{0} \\ \Leftrightarrow & (\mathbf{A} - \lambda \mathbf{I}) \mathbf{x} &= \mathbf{0} \end{aligned}$$

This is a homogeneous system of linear equations. It has a solution $\mathbf{x} \neq \mathbf{0}$ if and only if the matrix $(\mathbf{A} - \lambda \mathbf{I})$ is singular which means that its determinant equals to 0.

$$(\mathbf{A} - \lambda \mathbf{I})$$
 singular $\Leftrightarrow \underbrace{\det(\mathbf{A} - \lambda \mathbf{I})}_{p_A(\lambda)} = 0$

 $p_A(\lambda) = 0$ is called the characteristic equation of **A**. The function $p_A(\lambda)$ is a polynomial of degree n in λ , called the characteristic polynomial of **A**.

Theorem 2.1 Are both \mathbf{x} and \mathbf{y} eigenvectors of \mathbf{A} associated with the same eigenvalue λ , then all linear combinations of \mathbf{x} and \mathbf{y} are eigenvectors associated with λ to. This means, that the set of all eigenvectors (and the **0**-vector) associated with an eigenvalue λ is a vector space, called the eigenspace of λ :

$$V(\lambda) = \{ \mathbf{x} \in \mathbb{C}^n \mid (\mathbf{A} - \lambda \mathbf{I}) \mathbf{x} = \mathbf{0} \}.$$

The dimension of the vector space $V(\lambda)$ is called the <u>geometric multiplicity</u> of the eigenvalue λ .

Proof: Let $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ and $\mathbf{A}\mathbf{y} = \lambda \mathbf{y}$ and $a, b \in \mathbb{R}$, not both equal to 0. Then we have for $\mathbf{z} = a\mathbf{x} + b\mathbf{y}$:

$$\mathbf{A}\mathbf{z} = \mathbf{A}(a\mathbf{x} + b\mathbf{y}) = a\mathbf{A}\mathbf{x} + b\mathbf{A}\mathbf{y} = a\lambda\mathbf{x} + b\lambda\mathbf{y} = \lambda\mathbf{z}.$$

Determination of the eigenvalues and eigenvectors

1. The polynomial equation $p_A(\lambda) = 0$ has always *n* complex solutions (counted with multiplicity) and may have no real solutions. If $\lambda_1, \ldots, \lambda_r \in \mathbb{C}$ are the pairwise distinct solutions (the eigenvalues of **A**) with the multiplicities k_1, \ldots, k_r then the characteristic polynomial can be written as

$$p_A(\lambda) = (\lambda_1 - \lambda)^{k_1} (\lambda_2 - \lambda)^{k_2} \dots (\lambda_r - \lambda)^{k_r}.$$

The multiplicity k_i of the zero λ_i is called <u>algebraic multiplicity</u> of the eigenvalue λ_i . Generally, the determination of the (exact) zeros is impossible for $n \geq 5$ and we have to use numerical methods.

2. For each eigenvalue λ_i $(1 \leq i \leq r)$ we compute the eigenspace of λ_i

$$V(\lambda_i) = \{ \mathbf{x} \in \mathbb{C}^n \mid (\mathbf{A} - \lambda_i \mathbf{I}) \mathbf{x} = \mathbf{0} \}.$$

Example 2.1

$$A = \left(\begin{array}{rrr} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

- $p_A(\lambda) = (2-\lambda)^2(1-\lambda)$
- Zeros of the characteristic polynomial: $\lambda_1 = 1$ (algebraic multiplicity 1), $\lambda_2 = 2$ (algebraic multiplicity 2)
- •

$$\begin{bmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} - 1 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \mathbf{x}^{(1)} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

and $V(-1) = \{ t \cdot \mathbf{x}^{(1)} \mid t \in \mathbb{R} \}$ with geometric multiplicity 1.

$$\left[\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right] \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

The 2-dimensional vectorspace of all solutions is given by the single equation $x_3 = 0$ and there are infinitely many pairs of orthogonal vectors which span this space. We take the two standard vectors:

$$V(2) = \left\{ t_1 \cdot \underbrace{\begin{pmatrix} 1\\0\\0 \end{pmatrix}}_{\mathbf{x}^{(2)}} + t_2 \cdot \underbrace{\begin{pmatrix} 0\\1\\0 \end{pmatrix}}_{\mathbf{x}^{(3)}} \mid t_1, t_2 \in \mathbb{R} \right\}$$

Example 2.2

$$A = \left(\begin{array}{rrr} 0 & 1 & 0\\ 0 & 0 & 1\\ -6 & -1 & 4 \end{array}\right)$$

- $p_A(\lambda) = -\lambda^3 + 4\lambda^2 \lambda 6 = (\lambda + 1) \cdot (-\lambda^2 + 5\lambda 6) = -(\lambda + 1) \cdot (\lambda 2) \cdot (\lambda 3)$
- Zeros of the characteristic polynomial: $\lambda_1 = -1$, $\lambda_2 = 2$ and $\lambda_3 = 3$ (all of algebraic multiplicity 1)
- •

$$\left[\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -1 & 4 \end{pmatrix} - (-1) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right] \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \mathbf{x}^{(1)} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

and $V(-1) = \{ t \cdot \mathbf{x}^{(1)} \mid t \in \mathbb{R} \}$ with geometric multiplicity 1.

•

$$\left[\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -1 & 4 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right] \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \mathbf{x}^{(2)} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$$

and $V(2) = \{ t \cdot \mathbf{x}^{(2)} \mid t \in \mathbb{R} \}$ with geometric multiplicity 1.

•

$$\left[\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -1 & 4 \end{pmatrix} - 3 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right] \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \mathbf{x}^{(3)} = \begin{pmatrix} 1 \\ 3 \\ 9 \end{pmatrix}$$

and $V(3) = \{ t \cdot \mathbf{x}^{(3)} \mid t \in \mathbb{R} \}$ with geometric multiplicity 1.

Definition 2.2 The spectral radius of a quadratic matrix A is the real number

$$\rho(A) := \max\{|\lambda_1|, \dots, |\lambda_r|\}.$$

To solve some interesting problems we have to generalize the notion of eigenvectors.

Definition 2.3 A vector $\mathbf{x} \in \mathbb{C}^n$ is called <u>generalized eigenvector</u> of degree $l \in \mathbb{N}$ associated to the eigenvalue λ of \mathbf{A} , if

$$(\mathbf{A} - \lambda \mathbf{I})^l \mathbf{x} = \mathbf{0}$$
 and $(\mathbf{A} - \lambda \mathbf{I})^{l-1} \mathbf{x} \neq \mathbf{0}$.

Of course, an eigenvector is a generalized eigenvector of degree 1.

Generalized Eigenvectors

Example 2.3 The matrix

2.2

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

has the eigenvalue 1 of (algebraic) multiplicity 3 with dim V(1) = 1 (geometric multiplicity). We have:

$$(A - I) e_1 = 0 (A - I) e_2 = e_1 (A - I)^2 e_2 = 0 (A - I) e_3 = e_1 + e_2 (A - I)^2 e_3 = e_1 (A - I)^3 e_3 = 0$$

This means, that \mathbf{e}_1 is an eigenvector, \mathbf{e}_2 is a generalized eigenvector of degree 2 and \mathbf{e}_3 is a generalized eigenvector of degree 3.

Theorem 2.2 Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a complex (or real) matrix with

$$p_A(\lambda) = (\lambda_1 - \lambda)^{k_1} (\lambda_2 - \lambda)^{k_2} \dots (\lambda_r - \lambda)^{k_r}$$

• Let λ be an eigenvalue of **A** of (algebraic) multiplicity *l*. Then there exist *l* linearly independent generalized eigenvectors (of degree $\leq l$). This means:

$$\dim\{\mathbf{x} \in \mathbb{C}^n \mid (\mathbf{A} - \lambda \mathbf{I})^l \mathbf{x} = \mathbf{0}\} = l.$$

- Generalized eigenvectors associated to pairwise different eigenvalues of **A** are linearly independent.
- There exists a basis p₁, p₂,..., p_n of Cⁿ consisting of generalized eigenvectors of A.
 If P is the matrix with this basis as the columns, then

$$\mathbf{P}^{-1} \mathbf{A} \mathbf{P} \; = \; egin{pmatrix} egin{pmatrix} \mathbf{A}_1 & & \mathbf{0} \ & \mathbf{A}_2 & & \ & \mathbf{A}_2 & & \ & & \ddots & \ & & & \ddots & \ & & & \mathbf{A}_r \end{pmatrix}$$

with $\mathbf{A}_i \in \mathbb{C}^{k_i \times k_i}$ for all $i = 1, 2, \ldots, r$.

Let us have a look at the case n = 2 and $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

1. Characteristic polynomial:

$$p_A(\lambda) = \det \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$$
$$= \lambda^2 - \underbrace{(a+d)}_{=:tr(A)} \lambda + \underbrace{ad - bc}_{=\det(A)} = (\lambda_1 - \lambda)(\lambda_2 - \lambda)$$

with $\lambda_{1,2} = \frac{a+d}{2} \pm \sqrt{\frac{(a+d)^2}{4} - \det(A)}$.

2. For each λ_i (i = 1, 2) we solve the linear system

$$\begin{pmatrix} a-\lambda_i & b\\ c & d-\lambda_i \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

We have four different cases:

1. $\lambda_1, \lambda_2 \in \mathbb{R}, \ \lambda_1 \neq \lambda_2$ Example: $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$

We have $p_A(\lambda) = (1-\lambda)^2 - 4 = (\lambda+1)(\lambda-3)$ (two different eigenvalues of algebraic multiplicity 1). A direct calculation shows, that dim V(-1) = 1 and dim V(3) = 1 and the geometric multiplicity are (of all eigenvalues) equal to the algebraic multiplicity.

2. $\lambda = \lambda_1 = \lambda_2 \in \mathbb{R}$ with dim $V(\lambda) = 2$

Example: $\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$

We have $p_A(\lambda) = (2 - \lambda)^2$ (one eigenvalue of algebraic multiplicity 2). A direct calculation shows, that dim V(2) = 2 and the geometric multiplicity (of the eigenvalue 2) is equal to the algebraic multiplicity.

3. $\lambda = \lambda_1 = \lambda_2 \in \mathbb{R}$ with dim $V(\lambda) = 1$

Example:
$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$$

We have $p_A(\lambda) = (2 - \lambda)^2$ (one eigenvalue of algebraic multiplicity 2). A direct calculation shows, that dim V(2) = 1 and the geometric multiplicity of the eigenvalue 2 is different of the algebraic multiplicity.

4. $\lambda_2 = \overline{\lambda_1} \in \mathbb{C} - \mathbb{R}$

Example:
$$\mathbf{A} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$
 with $\phi \neq k\pi$

We have $p_A(\lambda) = (\lambda - \cos \phi)^2 + \sin^2 \phi = \lambda^2 - 2\lambda \cos \phi + 1$ with the two different complex zeroes $\lambda_{1,2} = \cos \phi \pm i \sin \phi$.

3 Diagonalization

Let **A** and **P** be $n \times n$ matrices with **P** invertible. Then **A** and **P**⁻¹**AP** have the same eigenvalues (because they have the same characteristic polynomial).

Definition 3.1 An $n \times n$ matrix **A** is <u>diagonalizable</u> if there is an invertible matrix **P** and a diagonal matrix **D** such that

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D}.$$

Two natural questions:

- 1. Which square matrices are diagonalizable?
- 2. If \mathbf{A} is diagonalizable, how do we find the matrix \mathbf{P} ?

Theorem 3.1 An $n \times n$ matrix **A** is diagonalizable if and only if it has a set of n linearly independent eigenvectors $\mathbf{p}_1, \ldots, \mathbf{p}_n$. In this case,

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix},$$

where **P** is the matrix with $\mathbf{p}_1, \ldots, \mathbf{p}_n$ as its columns, and $\lambda_1, \ldots, \lambda_n$ are the corresponding eigenvalues.

Proof: We prove only one direction of the statement:

A has n linearly independent eigenvectors \implies A is diagonalizable.

Let $\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_n$ be the *n* linearly independent eigenvectors of **A** with corresponding eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. We form the matrix

$$\mathbf{P} = \left(egin{array}{cccc} ert & ert & ert & ert \ \mathbf{p}_1 & \mathbf{p}_2 & \dots & \mathbf{p}_n \ ert & ert & ert & ert \end{array}
ight)$$

with the eigenvectors of A as the columns. Then

$$\mathbf{AP} \;=\; \left(egin{array}{ccccccc} ert \, \mathbf{Ap}_1 & \mathbf{Ap}_2 & \ldots & \mathbf{Ap}_n \ ert \, e$$

the column vectors of \mathbf{AP} are the vectors $\mathbf{Ap}_1, \mathbf{Ap}_2, \ldots, \mathbf{Ap}_n$. Using the

property of eigenvectors, we get

$$\mathbf{AP} = \begin{pmatrix} | & | & | & | \\ \mathbf{Ap}_1 & \mathbf{Ap}_2 & \dots & \mathbf{Ap}_n \\ | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ \lambda_1 \mathbf{p}_1 & \lambda_2 \mathbf{p}_2 & \dots & \lambda_n \mathbf{p}_n \\ | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | \\ \mathbf{p}_1 & \mathbf{p}_2 & \dots & \mathbf{p}_n \\ | & | & | & | \end{pmatrix} \begin{pmatrix} \lambda_1 & & 0 \\ & \lambda_2 & \\ & & \ddots & \\ 0 & & & \lambda_n \end{pmatrix}$$

$$= \mathbf{PD}.$$

where **D** is the diagonal matrix with diagonal entries equal to the eigenvalues of **A**. The matrix **P** has maximal rank (and is invertible), because the column vectors are linearly independent. Hence the equation $\mathbf{AP} = \mathbf{PD}$ is equivalent to $\mathbf{P}^{-1}\mathbf{AP} = \mathbf{D}$.

Example 3.1 The matrix $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$ has the eigenvalues and eigenvectors

$$\lambda_1 = 2 \qquad \mathbf{p}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$\lambda_2 = 3 \qquad \mathbf{p}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Hence $\mathbf{P} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$, $\mathbf{P}^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$ and: $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$ Many matrices encountered in economics are (real) symmetric and for these matrices we have the following important result.

Theorem 3.2 (Spectral Theorem for symmetric matrices) If the real $n \times n$ matrix **A** is symmetric ($\mathbf{A} = \mathbf{A}^T$), then:

- 1. All n eigenvalues $\lambda_1, \ldots, \lambda_n$ are real.
- 2. Eigenvectors that correspond to different eigenvalues are orthogonal.
- 3. There exists an orthogonal and real matrix \mathbf{P} ($\mathbf{P}^{-1} = \mathbf{P}^T$) such that

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}.$$

The columns $\mathbf{p}_1, \ldots, \mathbf{p}_n$ of the matrix \mathbf{P} are eigenvectors of unit length corresponding to the eigenvalues $\lambda_1, \ldots, \lambda_n$.

Proof: Let **A** be a real and symmetric $n \times n$ matrix.

1. Let $\mathbf{Ap}_i = \lambda_i \mathbf{p}_i$. By complex conjugation of this equation (complex conjugate all entries of the vector and matix, but keep in mind that \mathbf{A} has only real entries) we get

$$\overline{\mathbf{A}\mathbf{p}_i} \;\;=\;\; \overline{\mathbf{A}}\overline{\mathbf{p}_i} \;\;=\;\; \mathbf{A}\overline{\mathbf{p}_i} \;\;=\;\; \overline{\lambda_i}\overline{\mathbf{p}_i}$$

and

$$\lambda_i \mathbf{p}_i^T \overline{\mathbf{p}_i} = (\mathbf{A}\mathbf{p}_i)^T \overline{\mathbf{p}_i} = \mathbf{p}_i^T \mathbf{A}^T \overline{\mathbf{p}_i} = \mathbf{p}_i^T \mathbf{A} \overline{\mathbf{p}_i} = \mathbf{p}_i^T \overline{\lambda_i} \overline{\mathbf{p}_i} = \overline{\lambda_i} \mathbf{p}_i^T \overline{\mathbf{p}_i}$$

Because $\mathbf{p}_i^T \overline{\mathbf{p}_i} = ||\mathbf{p}_i||^2 \neq 0$, we have $\lambda_i = \overline{\lambda_i}$ and λ_i must be a real number.

2. Let $\mathbf{A}\mathbf{p}_i = \lambda_i \mathbf{p}_i$ and $\mathbf{A}\mathbf{p}_j = \lambda_j \mathbf{p}_j$ with $\lambda_i \neq \lambda_j$. Then

$$\lambda_i \mathbf{p}_i^T \mathbf{p}_j = (\mathbf{A} \mathbf{p}_i)^T \mathbf{p}_j$$

$$= \mathbf{p}_i^T \mathbf{A}^T \mathbf{p}_j$$

$$= \mathbf{p}_i^T (\mathbf{A}^T \mathbf{p}_j)$$

$$= \mathbf{p}_i^T (\mathbf{A} \mathbf{p}_j)$$
because $\mathbf{A} = \mathbf{A}^T$

$$= \mathbf{p}_i^T \lambda_j \mathbf{p}_j$$

$$= \lambda_j \mathbf{p}_i^T \mathbf{p}_j$$

or

$$\lambda_i (\mathbf{p}_i^T \mathbf{p}_j) = \lambda_j (\mathbf{p}_i^T \mathbf{p}_j)$$

and because $\lambda_i \neq \lambda_j$, the scalar product of \mathbf{p}_i and \mathbf{p}_j must be zero: $\mathbf{p}_i^T \mathbf{p}_j = \mathbf{p}_i \bullet \mathbf{p}_j = 0$. Hence the two eigenvectors are orthogonal. 3. We give the proof of part 3 only for the case that all eigenvalues $\lambda_1, \ldots, \lambda_n$ are (pairwise) different (and real by part 1). In this case, the corresponding eigenvectors $\mathbf{p}'_1, \ldots, \mathbf{p}'_n$ are orthogonal (by part 2) and hence linearly independent. Now choose for $i = 1, \ldots, n$ an eigenvector of length 1 by

$$\mathbf{p}_i \hspace{0.1 in} := \hspace{0.1 in} rac{1}{||\mathbf{p}_i'||} \hspace{0.1 in} \mathbf{p}_i'$$

It is easy to show, that

$$\mathbf{p}_i^T \mathbf{p}_j = \mathbf{p}_i \bullet \mathbf{p}_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

The matrix

$$\mathbf{P} = \left(\begin{array}{cccc} | & | & \cdots & | \\ \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \\ | & | & \cdots & | \end{array}\right)$$

is an orthogonal matrix, because

$$\mathbf{P}^{T}\mathbf{P} = \begin{pmatrix} - \mathbf{p}_{1}^{T} & - \\ - \mathbf{p}_{2}^{T} & - \\ & \ddots & \\ - & \mathbf{p}_{n}^{T} & - \end{pmatrix} \begin{pmatrix} | & | & | & | \\ \mathbf{p}_{1} & \mathbf{p}_{2} & \cdots & \mathbf{p}_{n} \\ | & | & | & | \end{pmatrix}$$
$$= \begin{pmatrix} \mathbf{p}_{1}^{T}\mathbf{p}_{1} & \mathbf{p}_{1}^{T}\mathbf{p}_{2} & \cdots & \mathbf{p}_{1}^{T}\mathbf{p}_{n} \\ \mathbf{p}_{2}^{T}\mathbf{p}_{1} & \mathbf{p}_{2}^{T}\mathbf{p}_{2} & \cdots & \mathbf{p}_{2}^{T}\mathbf{p}_{n} \\ & \ddots & \ddots & \ddots & \ddots \\ \mathbf{p}_{n}^{T}\mathbf{p}_{1} & \mathbf{p}_{n}^{T}\mathbf{p}_{2} & \cdots & \mathbf{p}_{n}^{T}\mathbf{p}_{n} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ & \ddots & \ddots & \ddots \\ & 0 & 0 & \cdots & 1 \end{pmatrix}.$$

Hence we have $\mathbf{P}^T = \mathbf{P}^{-1}$

$$\mathbf{A} = \sum_{i=1}^{n} \lambda_i \mathbf{p}_i \mathbf{p}_i^T = \lambda_1 \mathbf{p}_1 \mathbf{p}_1^T + \dots + \lambda_n \mathbf{p}_n \mathbf{p}_n^T$$

Proof: For each vector \mathbf{p}_j (of the given ONB) we have

$$\mathbf{A}\mathbf{p}_j = \lambda_j \mathbf{p}_j$$

and

$$\left(\sum_{i=1}^{n} \lambda_{i} \mathbf{p}_{i} \mathbf{p}_{i}^{T}\right) \mathbf{p}_{j} = \sum_{i=1}^{n} \lambda_{i} \mathbf{p}_{i} \left(\mathbf{p}_{i}^{T} \mathbf{p}_{j}\right)$$
$$= \sum_{i=1}^{n} \lambda_{i} \mathbf{p}_{i} \delta_{ij}$$
$$= \lambda_{j} \mathbf{p}_{j}$$

Example 3.2 The matrix $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ is symmetric and has the eigenvalues $\lambda_1 = -1$ and $\lambda_2 = 3$. The corresponding eigenspaces are

$$V(-1) = \left\{ t \begin{pmatrix} 1 \\ -1 \end{pmatrix} \mid t \in \mathbb{R} \right\}$$
$$V(3) = \left\{ t \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

The two eigenspaces are orthogonal, because the scalar product of the two spanning vectors is 0. In order to construct the matrix \mathbf{P} , we have to use eigenvectors of length 1 (unit vectors). A spanning vector of length 1 for V(-1) is

$$\mathbf{p}_1 = \frac{1}{\sqrt{1^2 + (-1)^1}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

and for V(3) is

$$\mathbf{p}_2 = \frac{1}{\sqrt{1^2 + 1^1}} \begin{pmatrix} 1\\1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}$$

Hence $\mathbf{P} = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ is an orthogonal matrix, because $\mathbf{P}^{-1} = \mathbf{P}^{T} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ and

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix}$$

Furthermore

$$\mathbf{p}_{1}\mathbf{p}_{1}^{T} = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}$$
$$\mathbf{p}_{2}\mathbf{p}_{2}^{T} = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$$

and the spectral decomposition of A ist given by

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = -1 \cdot \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix} + 3 \cdot \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$$

4 Quadratic forms and matrices

Definition 4.1 A <u>quadratic form</u> in n variables $\mathbf{x} = (x_1, \dots, x_n)^T$ is a function of the form

$$Q_{\mathbf{A}}(\mathbf{x}) = \sum_{i,j=1}^{n} a_{ij} x_i x_j = \mathbf{x}^T \mathbf{A} \mathbf{x}$$

where $\mathbf{A} = (a_{ij})$ is an $n \times n$ matrix.

Quadratic forms are important examples of multi-variate functions and $Q_{\mathbf{A}}$ is a homogeneous function of degree 2 in n variables.

Of course, $Q_{\mathbf{A}}(\mathbf{0}) = 0$ for all quadratic forms.

Example 4.1 $Q(x_1, x_2) = x_1^2 + x_1x_2 + x_2^2$ is a quadratic form and can be written as

$$(x_1 x_2) \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = (x_1 x_2) \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= (x_1 x_2) \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= \dots$$

Unfortunately, there is no unique way to write a given quadratic form in matrix term. But we may resolve this situation by **always choosing A to be symmetric!**

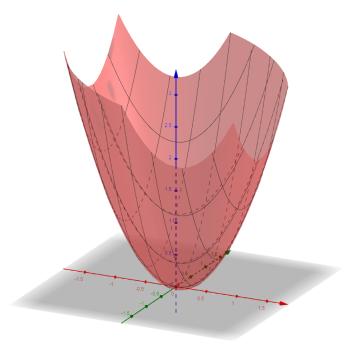
Exercise 4.1 Let $Q(\mathbf{x}) = \mathbf{x}^T \mathbf{B} \mathbf{x}$ where **B** is not symmetric. Let $\mathbf{A} = (\mathbf{B} + \mathbf{B}^T)/2$ and $\mathbf{C} = (\mathbf{B} - \mathbf{B}^T)/2$. Show that **A** is symmetric and evaluate both $\mathbf{x}^T \mathbf{A} \mathbf{x}$ and $\mathbf{x}^T \mathbf{C} \mathbf{x}$.

Example 4.2

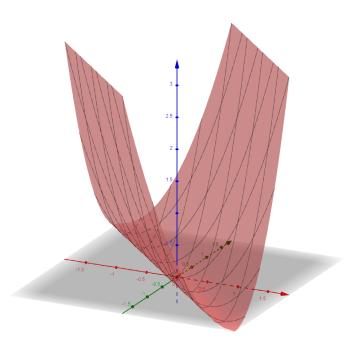
• The quadratic form $Q(x_1, x_2) = x_1^2 + x_1x_2 + x_2^2$ can be written as

$$\left(x_1 + \frac{x_2}{2}\right)^2 + \frac{3}{4}x_2^2.$$

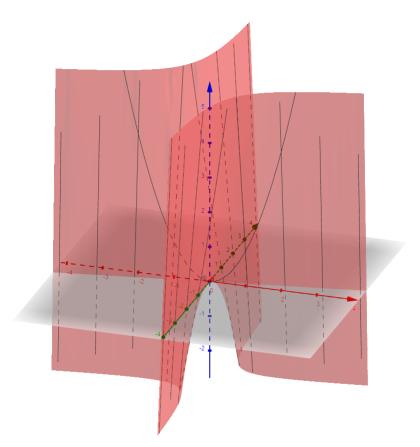
As a sum of squares, it can not be negative and can only be zero when $x_1 + \frac{x_2}{2} = 0$ and $x_2 = 0$, or $x_1 = x_2 = 0$. We call this a positive definite quadratic form.



• The quadratic form $Q(x_1, x_2) = x_1^2 + 2x_1x_2 + x_2^2 = (x_1 + x_2)^2$ is always non-negative, but it is zero whenever $x_1 + x_2 = 0$ or $x_1 = -x_2$ (it is zero for non-zero values of the variables). We call this a positive semi-definite quadratic form.



• The quadratic form $Q(x_1, x_2) = x_1^2 - 6x_1x_2 = (x_1 - 3x_2)^2 - 9x_2^2$ can be positive or negative. We call this an indefinite quadratic form.



Definition 4.2 A quadratic form $Q_{\mathbf{A}}(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$, as well as its associated symmetric matrix \mathbf{A} , is said to be

positive definite	:⇔⇒	$Q_{\mathbf{A}}(\mathbf{x}) > 0$
positive semi-definite	$:\iff$	$Q_{\mathbf{A}}(\mathbf{x}) \geq 0$
negative definite	$:\iff$	$Q_{\mathbf{A}}(\mathbf{x}) < 0$
negative semi-definite	$:\iff$	$Q_{\mathbf{A}}(\mathbf{x}) \leq 0$

for all $\mathbf{x} \neq \mathbf{0}$.

The quadratic form is called <u>indefinite</u>, if there are vectors \mathbf{a} and \mathbf{b} with $Q_{\mathbf{A}}(\mathbf{a}) < 0$ and $Q_{\mathbf{A}}(\mathbf{b}) > 0$.

It is easy to see, that for $i = 1, \ldots, n$:

$$Q_{\mathbf{A}}(\mathbf{e}_i) = a_{ii}.$$

The technique used in the examples to examine the sign of the quadratic form is known as **completing the squares**. Let us examine the possible signs of a quadratic form $Q_{\mathbf{A}}(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ using the eigenvalues/eigenvectors of the **symmetric** matrix **A**.

By the **Spectral Theorem for symmetric matrices** we can choose a matrix **P** of eigenvectors $\mathbf{p}_1, \ldots, \mathbf{p}_n$ of **A**, such that $\mathbf{P}^{-1} = \mathbf{P}^T$ and

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{P}^T\mathbf{A}\mathbf{P} = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix},$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of **A**.

Now let $\mathbf{y} := \mathbf{P}^T \mathbf{x}$. This defines new variables y_1, \ldots, y_n as linear combinations of the old ones

$$y_i = \sum_{j=1}^n p_{ji} x_j.$$

Further, since $\mathbf{P}\mathbf{P}^T = \mathbf{I}$ we have $\mathbf{x} = \mathbf{P}\mathbf{y}$ and

 $Q_{\mathbf{A}}$

$$(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$$

$$= (\mathbf{P} \mathbf{y})^T \mathbf{A} (\mathbf{P} \mathbf{y})$$

$$= \mathbf{y}^T \mathbf{P}^T \mathbf{A} \mathbf{P} \mathbf{y}$$

$$= \mathbf{y}^T (\mathbf{P}^T \mathbf{A} \mathbf{P}) \mathbf{y}$$

$$= \mathbf{y}^T \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} \mathbf{y}$$

$$= \sum_{i=1}^n \lambda_i y_i^2.$$

Thus we completed the squares. The quadratic form is expressed in terms of the new variables as a sum/difference of pure square terms. To determine the sign of the quadratic form, we simply inspect the signs of the eigenvalues of \mathbf{A} .

Theorem 4.1 (Sylvester)

If A is symmetric, then the quadratic form $Q_{\mathbf{A}}(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ is

$$\begin{array}{rcl} \underline{positive\ definite} & \Longleftrightarrow & \forall\ \lambda_i > 0\\ \underline{positive\ semi-definite} & \Longleftrightarrow & \forall\ \lambda_i \ge 0\\ \hline \underline{negative\ definite} & \Longleftrightarrow & \forall\ \lambda_i < 0\\ \hline \underline{negative\ semi-definite} & \Longleftrightarrow & \forall\ \lambda_i \le 0\\ \hline \underline{negative\ semi-definite} & \Longleftrightarrow & \exists\ \lambda_i > 0 \ and\ \lambda_j < 0. \end{array}$$

Checking eigenvalues can be tedious. There is a convenient condition on the matrix **A** in terms of certain sub-determinants, which can be used to identify the definiteness of **A**.

An arbitrary principal minor of order r of an $n \times n$ matrix \mathbf{A} is the determinant of a matrix obtained by deleting n - r rows and n - r columns of \mathbf{A} such that if the *i*th row (column) is selected then so is the *i*th column (row). A principal minor is called a leading principal minor of order r if it consists of the first (leading) r rows and columns of \mathbf{A} .

Example 4.3 Let

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

The principal minors of \mathbf{A} are det(\mathbf{A}), det $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, det $\begin{pmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{pmatrix}$, det $\begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix}$, a_{11} , a_{22} and a_{33} . The leading principal minors are a_{11} , det $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ and det(\mathbf{A}).

Theorem 4.2

Let **A** be a symmetric $n \times n$ matrix. We denote by D_k the leading principal minor of order k and let Δ_k denote an arbitrary principal minor of order k. Then the quadratic form $Q_{\mathbf{A}}(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ is

 $\begin{array}{lll} \underbrace{positive \ definite} & \Longleftrightarrow & D_k > 0 \ for \ k = 1, \dots, n \\ \\ \underline{positive \ semi-definite} & \Longleftrightarrow & \Delta_k \geq 0 \ for \ all \ principal \ minors \ of \ order \ k = 1, \dots, n \\ \\ \underline{negative \ definite} & \Longleftrightarrow & (-1)^k D_k > 0 \ for \ k = 1, \dots, n \\ negative \ semi-definite & \Longleftrightarrow & (-1)^k \Delta_k \geq 0 \ for \ all \ principal \ minors \ of \ order \ k = 1, \dots, n. \end{array}$

Example 4.4

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 3 & 2 & 13 \end{pmatrix}$$

• all principal minors of order 1:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 3 & 2 & 13 \end{pmatrix} \qquad \det(1) \ge 0$$

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 3 & 2 & 13 \end{pmatrix} \qquad \det(\mathbf{1}) \ge 0$$

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 3 & 2 & 13 \end{pmatrix} \qquad \det(13) \ge 0$$

• all pricipal minors of order 2

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 3 & 2 & 13 \end{pmatrix} \qquad \det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1 \ge 0$$
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 3 & 2 & 13 \end{pmatrix} \qquad \det \begin{pmatrix} 1 & 3 \\ 3 & 13 \end{pmatrix} = 4 \ge 0$$
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 3 & 2 & 13 \end{pmatrix} \qquad \det \begin{pmatrix} 1 & 2 \\ 2 & 13 \end{pmatrix} = 9 \ge 0$$

• all principal minors of order 3

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 3 & 2 & 13 \end{pmatrix} \qquad \det \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 3 & 2 & 13 \end{pmatrix} = 0 \ge 0$$

Hence A is positive semi-definite and not positive definite.

Special case: n = 2 The quadratic form

$$Q_{\mathbf{A}}(\mathbf{x}) = (x_1 \ x_2) \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{12} & a_{22} \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$$

- is positive definite if $a_{11} > 0$ and det $\mathbf{A} = a_{11}a_{22} a_{12}^2 > 0$;
- is positive semi-definite if $a_{11} \ge 0$, $a_{22} \ge 0$ and det $\mathbf{A} = a_{11}a_{22} a_{12}^2 \ge 0$;
- is negative definite if $a_{11} < 0$ and det $\mathbf{A} = a_{11}a_{22} a_{12}^2 > 0$;
- is negative semi-definite if $a_{11} \le 0$, $a_{22} \le 0$ and det $\mathbf{A} = a_{11}a_{22} a_{12}^2 \ge 0$.