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1 Matrices and vectors

1.1 Real Vectors

• n-dimensional space Rn

• elements x,y ∈ Rn are called n-vectors

x =


x1
x2
...
xn

 =
(
x1 x2 . . . xn

)T
and y =


y1
y2
...
yn


• scalar product and norm:

x • y = xTy = < x,y > = x1y1 + x2y2 + · · ·+ xnyn

||x|| =
√

x • x =
√
x21 + x22 + · · ·+ x2n

x • y = ||x|| · ||y|| · cos∠(x,y)

You may see, that ||y|| · cos∠(x,y) is the length of the orthogonal projection of
the vector y on x, with the negative sign if the projection has an opposite direction
with respect to x.
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• Let x1,x2, . . . ,xk ∈ Rn be a family of vectors.

– If a1, a2, . . . , ak ∈ R, then z = a1x1+a2x2+· · ·+akxk is called a linear combination
of x1,x2, . . . ,xk.

– The set of all linear combinations of the vectors x1,x2, . . . ,xk is called the
vector space spanned by the vectors x1,x2, . . . ,xk and denoted by

V (x1,x2, . . . ,xk) = {a1x1 + a2x2 + · · ·+ akxk | a1, a2, . . . , ak ∈ R}

– x1,x2, . . . ,xk are called linearly dependent, if there exist b1, b2, . . . , bk ∈ R such
that b1x1 + b2x2 + · · ·+ bkxk = 0 and not all bj = 0.

– x1,x2, . . . ,xk are called linearly independent, if a linear combination of the
zero vector

b1x1 + b2x2 + · · ·+ bkxk = 0

is possible only with b1 = b2 = · · · = bk = 0.

– Each family of exactly n linearly independent vectors x1,x2, . . . ,xn ∈ Rn is
a so called basis of Rn. This means, that each vector x ∈ Rn can uniquely
expressed as a linear combination of the basis:

x = b1x1 + b2x2 + · · ·+ bnxn

– A family of n (linearly independent) vectors p1,p2, . . . ,pn ∈ Rn is called
orthonormal basis of Rn if

pi • pj = pTi pj =

{
0 if i 6= j
1 if i = j

for all i, j = 12, . . . , n. This means, that each vector has length 1 and each
pair of (different) vectors has a right angle. As before, each vector x ∈ Rn can
uniquely expressed as a linear combination of the orthonormal basis

x = b1p1 + b2p2 + · · ·+ bnpn =
n∑
i=1

bipi

but the coefficients bi have a nice interpretation (for orthonormal bases). We
see

pTj x =
n∑
i=1

bip
T
j pi = bjp

T
j pj = bj

Hence the coefficient

bj = pTj x = ||pj|| · ||x|| · cos∠(pj,x) = ||x|| · cos∠(pj,x)

is the length of the orthogonal projection of the vector x on the basis vector
pj.
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1.2 Real Matrices

a1, a2, . . . , am ∈ Rn

a1 =


a11
a21
...
an1

 , a2 =


a12
a22
...
an2

 , . . . , am =


a1m
a2m

...
anm



→ A =


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
...

...
an1 an2 . . . anm

 = ( a1, a2, . . . , am )

is called an n×m matrix.

Notation: A ∈ Rn×m

• The inverse matrix A−1 of the n× n matrix A = (aij) is defined by

A−1 ·A = A ·A−1 = In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

• For the n×n matrix A let Aij denote the (n−1)×(n−1) submatrix of A generated
by cancelling the i-th row and the j-th column of A. Then the determinant det(A)
is given (recursively) by the so called cofactor expansion

det(A) = |A| = a11 det A11 − a12 det A12 + · · ·+ (−1)n+1a1n det A1n

• det(A ·B) = det(A) · det(B)

Example 1.1∣∣∣∣∣∣∣∣
1 1 3 3
1 2 1 2
1 −2 1 −2
0 1 −2 −1

∣∣∣∣∣∣∣∣

= 1 ·

∣∣∣∣∣∣
2 1 2
−2 1 −2

1 −2 −1

∣∣∣∣∣∣− 1 ·

∣∣∣∣∣∣
1 1 2
1 1 −2
0 −2 −1

∣∣∣∣∣∣+ 3 ·

∣∣∣∣∣∣
1 2 2
1 −2 −2
0 1 −1

∣∣∣∣∣∣− 3 ·

∣∣∣∣∣∣
1 2 1
1 −2 1
0 1 −2

∣∣∣∣∣∣ .
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1.3 Linear transformations and matrices

Definition 1.1 A linear transformation is a map T : Rm → Rn such that for all x,y ∈
Rm and all λ, µ ∈ R we have:

T (λ · x + µ · y) = λ · T (x) + µ · T (y)

Example 1.2

• The map T (x) = T (x1, x2, x3) = x1 + 2x2 + 4x3 is a linear transformation from
R3 to R1:

T (λ · x + µ · y) = T (λ · x1 + µ · y1, λ · x2 + µ · y2, λ · x3 + µ · y3)
= λ · x1 + µ · y1 + 2 · (λ · x2 + µ · y2) + 4 · (λ · x3 + µ · y3)
= λ · x1 + 2 · λ · x2 + 4 · λ · x3 + µ · y1 + 2 · µ · y2 + 4 · µ · y3
= λ · (x1 + 2 · x2 + 4 · x3) + µ · (y1 + 2 · y2 + 4 · y3)
= λ · T (x) + µ · L(y)

• The map L(x) = L(x1, x2) =

(
x1 + x2
x1 − x2

)
is a linear transformation from R2 to

R2. Proof it!

• The map L(x) = L(x1, x2) =

(
x21 + x2
x1 − x2

)
is not linear.

Each n×m matrix A defines a linear transformation by matrix multiplication

TA(x) = A · x =


a11x1 + a12x2 + · · ·+ a1mxm
a21x1 + a22x2 + · · ·+ a2mxm

...
an1x1 + an2x2 + · · ·+ anmxm



= x1


a11
a21
...
an1

+ x2


a12
a22
...
an2

+ · · ·+ xm


a1m
a2m

...
anm


The image of the vector x ∈ Rm is a linear combination of the column vectors of the
matrix A.
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Example 1.3 In the following picture you can see the original figur (blue) and the image
of this figur under the linear map LA. Each blue point (endpoint of the vector x) is maped
on the point Ax (red).

• A =

(
−1 0
0 −1

)
Rotation with center (0, 0) by 180 degree

• A =

(
−1 0
0 1

)
Reflection along the y-axis
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• A =

(
0 −1
1 0

)
Rotation with center (0, 0) by 90 degree

Remark: The general rotation with center (0, 0) by α degree is given by the following
matrix: (

cos(α) − sin(α)
sin(α) cos(α)

)

• A =

(
2 0
0 1

)
Scaling (by the factor 2) in x-direction
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•
(
−1 0
−2 3

)
?
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Projections on lines The following type of matrices is of the special interest. Let

p =


p1
p2
...
pn


be an arbitrary non-zero vector. The direct calculation

p · pT =


p1
p2
...
pn

 · ( p1 p2 . . . pn
)

=


p1 · p1 p1 · p2 . . . p1 · pn
p2 · p1 p2 · p2 . . . p2 · pn

...
...

...
...

pn · p1 pn · p2 . . . pn · pn



=


− p1 · pT −
− p2 · pT −
...

...
...

− p2 · pT −

 =

 | | |
p1 · p p2 · p . . . pn · p
| | |


shows that p · pT is a symmetric n × n matrix of rank 1 (all columns and all rows are
multiples of the vector p resp. pT ).

Theorem 1.1 Let p1,p2, . . . ,pn ∈ Rn an orthonormal basis of Rn, this means

pi • pj = pTi pj =

{
0 if i 6= j
1 if i = j

and Pi = pi · pTi for all i, j = 1, 2, . . . , n.

Then the linear map

TPi
(x) = Pi · x

given by matrix multiplication is a projection on the line spanned by the vector pi for all
i = 1, 2, . . . , n.

Proof: Let

x = b1p1 + b2p2 + · · ·+ bnpn =
n∑
j=1

bjpj

be a vector expressed in the given orthonormal basis. Then by direct calcula-
tion

Pi · x =
(
pi · pTi

)
·

(
n∑
j=1

bjpj

)

= pi ·

(
pTi ·

n∑
j=1

bjpj

)

= pi ·

(
n∑
j=1

bjp
T
i · pj

)
= pibi = bipi.

2



10

1.4 Complex matrices and vectors

Sometimes it is helpful to allow complex matrices and vectors (matrices whose elements
are complex numbers). A complex matrix can be viewed as a combination of two real
matrices:

A =


a11 + ib11 a12 + ib12 . . . a1m + ib1m
a21 + ib21 a22 + ib22 . . . a2m + ib2m

...
...

...
...

an1 + ibn1 an2 + ibn2 . . . anm + ibnm



=


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
...

...
an1 an2 . . . anm

+ i ·


b11 b12 . . . b1m
b21 b22 . . . b2m
...

...
...

...
bn1 bn2 . . . bnm


1.5 Matrix calculus

1a. A + B = B + A 1b. In general: AB 6= BA
2a. (A + B) + C = A + (B + C) 2b. (AB)C = A(BC)
3a. A + 0 = A 3b. AI = IA = A ( A square )

4. AB = 0 6⇒ A = 0 or B = 0
5. AB = AC 6⇒ B = C

6. λ(A + B) = λA + λB λ ∈ R
7. A(B + C) = AB + AC
8. (A + B)C = AC + BC

9. (A−1)−1 = A
10. (AB)−1 = B−1A−1

11. (AT )T = A
12. (A + B)T = AT + BT

13. (AB)T = BTAT

14. (A−1)T = (AT )−1

For A =

(
a b
c d

)
with ad− bc 6= 0 is A−1 =

1

ad− bc

(
d −b
−c a

)
.

All these definitions and results can be generalized to vectors and matrices with complex
entries.



11

2 Eigenvalues and eigenvectors

2.1 Definition and determination

Definition 2.1 If A is a real (or complex) n× n matrix, then a (complex) number λ is
an eigenvalue of A if there is a nonzero (complex) vector x ∈ Cn such that

Ax = λx

Then x is an eigenvector of A (associated with λ).

Remark: If x is an eigenvector associated with the eigenvalue λ, then so is αx for every
real (and complex) number α 6= 0.

A (α x) = α A x = α (λ x) = λ (α x)

How to find eigenvalues? The equation can be written as

A x = λ x
⇔ A x− λ I x = 0
⇔ (A− λ I) x = 0

This is a homogeneous system of linear equations. It has a solution x 6= 0 if and only if
the matrix (A− λ I) is singular which means that its determinant equals to 0.

(A− λ I) singular ⇔ det(A− λ I)︸ ︷︷ ︸
pA(λ)

= 0

pA(λ) = 0 is called the characteristic equation of A. The function pA(λ) is a polynomial
of degree n in λ, called the characteristic polynomial of A.

Theorem 2.1 Are both x and y eigenvectors of A associated with the same eigenvalue
λ, then all linear combinations of x and y are eigenvectors associated with λ to. This
means, that the set of all eigenvectors (and the 0-vector) associated with an eigenvalue λ
is a vector space, called the eigenspace of λ:

V (λ) = { x ∈ Cn | (A− λI) x = 0 }.

The dimension of the vector space V (λ) is called the geometric multiplicity of the eigen-
value λ.

Proof: Let Ax = λ x and Ay = λ y and a, b ∈ R, not both equal to 0.
Then we have for z = ax + by:

Az = A(ax + by) = aAx + bAy = aλx + bλy = λz.

2
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Determination of the eigenvalues and eigenvectors

1. The polynomial equation pA(λ) = 0 has always n complex solutions (counted with
multiplicity) and may have no real solutions. If λ1, . . . , λr ∈ C are the pairwise
distinct solutions (the eigenvalues of A) with the multiplicities k1, . . . , kr then the
characteristic polynomial can be written as

pA(λ) = (λ1 − λ)k1 (λ2 − λ)k2 . . . (λr − λ)kr .

The multiplicity ki of the zero λi is called algebraic multiplicity of the eigenvalue
λi. Generally, the determination of the (exact) zeros is impossible for n ≥ 5 and we
have to use numerical methods.

2. For each eigenvalue λi (1 ≤ i ≤ r) we compute the eigenspace of λi

V (λi) = { x ∈ Cn | (A− λiI) x = 0 }.

Example 2.1

A =

 2 0 0
0 2 0
0 0 1


• pA(λ) = (2− λ)2(1− λ)

• Zeros of the characteristic polynomial: λ1 = 1 (algebraic multiplicity 1), λ2 = 2
(algebraic multiplicity 2)

•  2 0 0
0 2 0
0 0 0

− 1

 1 0 0
0 1 0
0 0 1

 ·
 x1

x2
x3

 =

 0
0
0

 → x(1) =

 0
0
1


and V (−1) = { t · x(1) | t ∈ R } with geometric multiplicity 1.

•  2 0 0
0 2 0
0 0 1

− 2

 1 0 0
0 1 0
0 0 1

 ·
 x1

x2
x3

 =

 0
0
0


The 2-dimensional vectorspace of all solutions is given by the single equation x3 = 0
and there are infinitely many pairs of orthogonal vectors which span this space. We
take the two standard vectors:

V (2) =

{
t1 ·

 1
0
0


︸ ︷︷ ︸

x(2)

+t2 ·

 0
1
0


︸ ︷︷ ︸

x(3)

| t1, t2 ∈ R
}
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Example 2.2

A =

 0 1 0
0 0 1
−6 −1 4


• pA(λ) = −λ3 + 4λ2−λ−6 = (λ+ 1) · (−λ2 + 5λ−6) = −(λ+ 1) · (λ−2) · (λ−3)

• Zeros of the characteristic polynomial: λ1 = −1, λ2 = 2 and λ3 = 3 (all of algebraic
multiplicity 1)

•  0 1 0
0 0 1
−6 −1 4

− (−1)

 1 0 0
0 1 0
0 0 1

 ·
 x1

x2
x3

 =

 0
0
0

 → x(1) =

 1
−1

1


and V (−1) = { t · x(1) | t ∈ R } with geometric multiplicity 1.

•  0 1 0
0 0 1
−6 −1 4

− 2

 1 0 0
0 1 0
0 0 1

 ·
 x1

x2
x3

 =

 0
0
0

 → x(2) =

 1
2
4


and V (2) = { t · x(2) | t ∈ R } with geometric multiplicity 1.

•  0 1 0
0 0 1
−6 −1 4

− 3

 1 0 0
0 1 0
0 0 1

 ·
 x1

x2
x3

 =

 0
0
0

 → x(3) =

 1
3
9


and V (3) = { t · x(3) | t ∈ R } with geometric multiplicity 1.

Definition 2.2 The spectral radius of a quadratic matrix A is the real number

ρ(A) := max{|λ1|, . . . , |λr| }.
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2.2 *Generalized Eigenvectors*

To solve some interesting problems we have to generalize the notion of eigenvectors.

Definition 2.3 A vector x ∈ Cn is called generalized eigenvector of degree l ∈ N associ-
ated to the eigenvalue λ of A, if

(A− λI)l x = 0 and (A− λI)l−1 x 6= 0.

Of course, an eigenvector is a generalized eigenvector of degree 1.

Example 2.3 The matrix

A =

 1 1 1
0 1 1
0 0 1


has the eigenvalue 1 of (algebraic) multiplicity 3 with dimV (1) = 1 (geometric multiplic-
ity). We have:

(A− I) e1 = 0 (A− I) e2 = e1 (A− I)2 e2 = 0

(A− I) e3 = e1 + e2 (A− I)2 e3 = e1 (A− I)3 e3 = 0

This means, that e1 is an eigenvector, e2 is a generalized eigenvector of degree 2 and e3

is a generalized eigenvector of degree 3.

Theorem 2.2 Let A ∈ Cn×n be a complex (or real) matrix with

pA(λ) = (λ1 − λ)k1 (λ2 − λ)k2 . . . (λr − λ)kr .

• Let λ be an eigenvalue of A of (algebraic) multiplicity l. Then there exist l linearly
independent generalized eigenvectors (of degree ≤ l). This means:

dim{ x ∈ Cn | (A− λI)l x = 0 } = l.

• Generalized eigenvectors associated to pairwise different eigenvalues of A are linearly
independent.

• There exists a basis p1,p2, . . . ,pn of Cn consisting of generalized eigenvectors of A.
If P is the matrix with this basis as the columns, then

P−1 A P =


A1 0

A2

. . .

0 Ar


with Ai ∈ Cki×ki for all i = 1, 2, . . . , r.
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Let us have a look at the case n = 2 and A =

(
a b
c d

)
.

1. Characteristic polynomial:

pA(λ) = det

(
a− λ b
c d− λ

)
= λ2 − (a+ d)︸ ︷︷ ︸

=:tr(A)

λ+ ad− bc︸ ︷︷ ︸
=det(A)

= (λ1 − λ)(λ2 − λ)

with λ1,2 =
a+ d

2
±
√

(a+ d)2

4
− det(A) .

2. For each λi (i = 1, 2) we solve the linear system(
a− λi b
c d− λi

)(
x
y

)
=

(
0
0

)
We have four different cases:

1. λ1, λ2 ∈ R, λ1 6= λ2

Example: A =

(
1 2
2 1

)
We have pA(λ) = (1−λ)2−4 = (λ+1)(λ−3) (two different eigenvalues of algebraic
multiplicity 1). A direct calculation shows, that dimV (−1) = 1 and dimV (3) =
1 and the geometric multiplicitiy are (of all eigenvalues) equal to the algebraic
multiplicity.

2. λ = λ1 = λ2 ∈ R with dimV (λ) = 2

Example: A =

(
2 0
0 2

)
We have pA(λ) = (2− λ)2 (one eigenvalue of algebraic multiplicity 2). A direct cal-
culation shows, that dimV (2) = 2 and the geometric multiplicitiy (of the eigenvalue
2) is equal to the algebraic multiplicity.

3. λ = λ1 = λ2 ∈ R with dimV (λ) = 1

Example: A =

(
2 1
0 2

)
We have pA(λ) = (2− λ)2 (one eigenvalue of algebraic multiplicity 2). A direct cal-
culation shows, that dimV (2) = 1 and the geometric multiplicitiy of the eigenvalue
2 is different of the algebraic multiplicity.

4. λ2 = λ1 ∈ C− R

Example: A =

(
cosφ − sinφ
sinφ cosφ

)
with φ 6= kπ

We have pA(λ) = (λ − cosφ)2 + sin2 φ = λ2 − 2λ cosφ + 1 with the two different
complex zeroes λ1,2 = cosφ± i sinφ.
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3 Diagonalization

Let A and P be n × n matrices with P invertible. Then A and P−1AP have the same
eigenvalues (because they have the same characteristic polynomial).

Definition 3.1 An n × n matrix A is diagonalizable if there is an invertible matrix P
and a diagonal matrix D such that

P−1AP = D.

Two natural questions:

1. Which square matrices are diagonalizable?

2. If A is diagonalizable, how do we find the matrix P?

Theorem 3.1 An n×n matrix A is diagonalizable if and only if it has a set of n linearly
independent eigenvectors p1, . . . ,pn. In this case,

P−1AP =

 λ1 0
. . .

0 λn

 ,

where P is the matrix with p1, . . . ,pn as its columns, and λ1, . . . , λn are the corresponding
eigenvalues.

Proof: We prove only one direction of the statement:

A has n linearly independent eigenvectors =⇒ A is diagonalizable.

Let p1,p2, . . . ,pn be the n linearly independent eigenvectors of A with corre-
sponding eigenvalues λ1, λ2, . . . , λn. We form the matrix

P =

 | | |
p1 p2 . . . pn
| | |


with the eigenvectors of A as the columns. Then

AP =

 | | |
Ap1 Ap2 . . . Apn
| | |


the column vectors of AP are the vectors Ap1,Ap2, . . . ,Apn. Using the
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property of eigenvectors, we get

AP =

 | | |
Ap1 Ap2 . . . Apn
| | |


=

 | | |
λ1p1 λ2p2 . . . λnpn
| | |



=

 | | |
p1 p2 . . . pn
| | |




λ1 0
λ2

. . .

0 λn


= PD.

where D is the diagonal matrix with diagonal entries equal to the eigenvalues
of A. The matrix P has maximal rank (and is invertible), because the column
vectors are linearly independent. Hence the equation AP = PD is equivalent
to P−1AP = D.

2

Example 3.1 The matrix A =

(
1 1
−2 4

)
has the eigenvalues and eigenvectors

λ1 = 2 p1 =

(
1
1

)
λ2 = 3 p2 =

(
1
2

)

Hence P =

(
1 1
1 2

)
, P−1 =

(
2 −1
−1 1

)
and:

P−1AP =

(
2 −1
−1 1

)(
1 1
−2 4

)(
1 1
1 2

)
=

(
2 0
0 3

)
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Many matrices encountered in economics are (real) symmetric and for these matrices we
have the following important result.

Theorem 3.2 (Spectral Theorem for symmetric matrices) If the real n×n matrix
A is symmetric (A = AT ), then:

1. All n eigenvalues λ1, . . . , λn are real.

2. Eigenvectors that correspond to different eigenvalues are orthogonal.

3. There exists an orthogonal and real matrix P ( P−1 = PT ) such that

P−1AP =

 λ1 0
. . .

0 λn

 .

The columns p1, . . . ,pn of the matrix P are eigenvectors of unit length corresponding
to the eigenvalues λ1, . . . , λn.

Proof: Let A be a real and symmetric n× n matrix.

1. Let Api = λipi. By complex conjugation of this equation (complex
conjugate all entries of the vector and matix, but keep in mind that A
has only real entries) we get

Api = Api = Api = λipi

and

λip
T
i pi = (Api)

Tpi = pTi ATpi = pTi Api = pTi λipi = λip
T
i pi

Because pTi pi = ||pi||2 6= 0, we have λi = λi and λi must be a real
number.

2. Let Api = λipi and Apj = λjpj with λi 6= λj. Then

λi pTi pj = (Api)
Tpj

= pTi ATpj

= pTi (ATpj)

= pTi (Apj) because A = AT

= pTi λjpj

= λj pTi pj

or

λi (pTi pj) = λj (pTi pj)

and because λi 6= λj, the scalar product of pi and pj must be zero:
pTi pj = pi • pj = 0. Hence the two eigenvectors are orthogonal.



19

3. We give the proof of part 3 only for the case that all eigenvalues λ1, . . . , λn
are (pairwise) different (and real by part 1). In this case, the correspond-
ing eigenvectors p′1, . . . ,p

′
n are orthogonal (by part 2) and hence linearly

independent. Now choose for i = 1, . . . , n an eigenvector of length 1 by

pi :=
1

||p′i||
p′i

It is easy to show, that

pTi pj = pi • pj =

{
1 if i = j
0 if i 6= j

The matrix

P =

 | | |
p1 p2 . . . pn
| | |


is an orthogonal matrix, because

PTP =


− pT1 −
− pT2 −
· · ·

− pTn −


 | | |

p1 p2 · · · pn
| | |



=


pT1 p1 pT1 p2 · · · pT1 pn
pT2 p1 pT2 p2 · · · pT2 pn

· · · · · · . . . · · ·
pTnp1 pTnp2 · · · pTnpn



=


1 0 · · · 0
0 1 · · · 0

· · · · · · . . . · · ·
0 0 · · · 1

 .

Hence we have PT = P−1

2
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Theorem 3.3 (Spectral decomposition of symmetric matrices) Let A be a sym-
metric matrix with the set p1, . . . ,pn of orthogonal eigenvectors associated to the real
eigenvalues λ1, . . . , λn. Then A can be written as

A =
n∑
i=1

λipip
T
i = λ1p1p

T
1 + · · ·+ λnpnp

T
n

Proof: For each vector pj (of the given ONB) we have

Apj = λjpj

and (
n∑
i=1

λipip
T
i

)
pj =

n∑
i=1

λipi
(
pTi pj

)
=

n∑
i=1

λipiδij

= λjpj

2



21

Example 3.2 The matrix A =

(
1 2
2 1

)
is symmetric and has the eigenvalues λ1 = −1

and λ2 = 3. The corresponding eigenspaces are

V (−1) =

{
t

(
1
−1

)
| t ∈ R

}
V (3) =

{
t

(
1
1

)
| t ∈ R

}
The two eigenspaces are orthogonal, because the scalar product of the two spanning vectors
is 0. In order to construct the matrix P, we have to use eigenvectors of length 1 (unit
vectors). A spanning vector of length 1 for V (−1) is

p1 =
1√

12 + (−1)1

(
1
−1

)
=

1√
2

(
1
−1

)
and for V (3) is

p2 =
1√

12 + 11

(
1
1

)
=

1√
2

(
1
1

)

Hence P =

(
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)
=

1√
2

(
1 1
−1 1

)
is an orthogonal matrix, because

P−1 = PT =
1√
2

(
1 −1
1 1

)
and

P−1AP =
1√
2

(
1 −1
1 1

)(
1 2
2 1

)
1√
2

(
1 1
−1 1

)
=

(
−1 0

0 3

)
Furthermore

p1p
T
1 =

(
1/
√

2

−1/
√

2

)(
1/
√

2 −1/
√

2
)

=

(
1/2 −1/2
−1/2 1/2

)

p2p
T
2 =

(
1/
√

2

1/
√

2

)(
1/
√

2 1/
√

2
)

=

(
1/2 1/2
1/2 1/2

)
and the spectral decomposition of A ist given by(

1 2
2 1

)
= −1 ·

(
1/2 −1/2
−1/2 1/2

)
+ 3 ·

(
1/2 1/2
1/2 1/2

)
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4 Quadratic forms and matrices

Definition 4.1 A quadratic form in n variables x = (x1, . . . , xn)T is a function of the
form

QA(x) =
n∑

i,j=1

aijxixj = xTAx

where A = (aij) is an n× n matrix.

Quadratic forms are important examples of multi-variate functions and QA is a homoge-
neous function of degree 2 in n variables.

Of course, QA(0) = 0 for all quadratic forms.

Example 4.1 Q(x1, x2) = x21 + x1x2 + x22 is a quadratic form and can be written as

(x1 x2)

(
1 1
0 1

)(
x1
x2

)
= (x1 x2)

(
1 0
1 1

)(
x1
x2

)
= (x1 x2)

(
1 1/2

1/2 1

)(
x1
x2

)
= .....

Unfortunaetly, there is no unique way to write a given quadratic form in matrix term.
But we may resolve this situation by always choosing A to be symmetric!

Exercise 4.1 Let Q(x) = xTBx where B is not symmetric. Let A = (B + BT )/2 and
C = (B−BT )/2. Show that A is symmetric and evaluate both xTAx and xTCx.
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Example 4.2

• The quadratic form Q(x1, x2) = x21 + x1x2 + x22 can be written as(
x1 +

x2
2

)2
+

3

4
x22.

As a sum of squares, it can not be negative and can only be zero when x1 + x2
2

= 0
and x2 = 0, or x1 = x2 = 0. We call this a positive definite quadratic form.

• The quadratic form Q(x1, x2) = x21+2x1x2+x22 = (x1+x2)
2 is always non-negative,

but it is zero whenever x1 + x2 = 0 or x1 = −x2 (it is zero for non-zero values of
the variables). We call this a positive semi-definite quadratic form.
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• The quadratic form Q(x1, x2) = x21 − 6x1x2 = (x1 − 3x2)
2 − 9x22 can be positive or

negative. We call this an indefinite quadratic form.
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Definition 4.2 A quadratic form QA(x) = xTAx, as well as its associated symmetric
matrix A, is said to be

positive definite :⇐⇒ QA(x) > 0
positive semi-definite :⇐⇒ QA(x) ≥ 0

negative definite :⇐⇒ QA(x) < 0
negative semi-definite :⇐⇒ QA(x) ≤ 0

for all x 6= 0.

The quadratic form is called indefinite, if there are vectors a and b with QA(a) < 0 and
QA(b) > 0.

It is easy to see, that for i = 1, . . . , n:

QA(ei) = aii.

The technique used in the examples to examine the sign of the quadratic form is known
as completing the squares. Let us examine the possible signs of a quadratic form
QA(x) = xTAx using the eigenvalues/eigenvectors of the symmetric matrix A.

By the Spectral Theorem for symmetric matrices we can choose a matrix P of
eigenvectors p1, . . . ,pn of A, such that P−1 = PT and

P−1AP = PTAP =

 λ1 0
. . .

0 λn

 ,

where λ1, . . . , λn are the eigenvalues of A.

Now let y := PTx. This defines new variables y1, . . . , yn as linear combinations of the
old ones

yi =
n∑
j=1

pjixj.

Further, since PPT = I we have x = Py and

QA(x) = xTAx

= (Py)TA(Py)

= yTPTAPy

= yT (PTAP)y

= yT

 λ1 0
. . .

0 λn

y

=
n∑
i=1

λiy
2
i .
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Thus we completed the squares. The quadratic form is expressed in terms of the new
variables as a sum/difference of pure square terms. To determine the sign of the quadratic
form, we simply inspect the signs of the eigenvalues of A.

Theorem 4.1 (Sylvester)

If A is symmetric, then the quadratic form QA(x) = xTAx is

positive definite ⇐⇒ ∀ λi > 0
positive semi-definite ⇐⇒ ∀ λi ≥ 0

negative definite ⇐⇒ ∀ λi < 0
negative semi-definite ⇐⇒ ∀ λi ≤ 0

indefinite ⇐⇒ ∃ λi > 0 and λj < 0.

Checking eigenvalues can be tedious. There is a convenient condition on the matrix A in
terms of certain sub-determinants, which can be used to identify the definiteness of A.

An arbitrary principal minor of order r of an n × n matrix A is the determinant of a
matrix obtained by deleting n − r rows and n − r columns of A such that if the ith
row (column) is selected then so is the ith column (row). A principal minor is called a
leading principal minor of order r if it consists of the first (leading) r rows and columns
of A.

Example 4.3 Let

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


The principal minors of A are det(A), det

(
a11 a12
a21 a22

)
, det

(
a11 a13
a31 a33

)
, det

(
a22 a23
a32 a33

)
,

a11, a22 and a33.

The leading principal minors are a11, det

(
a11 a12
a21 a22

)
and det(A).

Theorem 4.2

Let A be a symmetric n × n matrix. We denote by Dk the leading principal minor of
order k and let ∆k denote an arbitrary principal minor of order k. Then the quadratic
form QA(x) = xTAx is

positive definite ⇐⇒ Dk > 0 for k = 1, . . . , n
positive semi-definite ⇐⇒ ∆k ≥ 0 for all principal minors of order k = 1, . . . , n

negative definite ⇐⇒ (−1)kDk > 0 for k = 1, . . . , n
negative semi-definite ⇐⇒ (−1)k∆k ≥ 0 for all principal minors of order k = 1, . . . , n.
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Example 4.4

A =

 1 0 3
0 1 2
3 2 13


• all principal minors of order 1:

A =

 1 0 3
0 1 2
3 2 13

 det(1) ≥ 0

A =

 1 0 3
0 1 2
3 2 13

 det(1) ≥ 0

A =

 1 0 3
0 1 2
3 2 13

 det(13) ≥ 0

• all pricipal minors of order 2

A =

 1 0 3
0 1 2
3 2 13

 det

(
1 0
0 1

)
= 1 ≥ 0

A =

 1 0 3
0 1 2
3 2 13

 det

(
1 3
3 13

)
= 4 ≥ 0

A =

 1 0 3
0 1 2
3 2 13

 det

(
1 2
2 13

)
= 9 ≥ 0

• all principal minors of order 3

A =

 1 0 3
0 1 2
3 2 13

 det

 1 0 3
0 1 2
3 2 13

 = 0 ≥ 0

Hence A is positive semi-definite and not positive definite.
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Special case: n = 2 The quadratic form

QA(x) = (x1 x2)

(
a11 a12
a12 a22

)(
x1
x2

)
= a11x

2
1 + 2a12x1x2 + a22x

2
2

• is positive definite if a11 > 0 and det A = a11a22 − a212 > 0;

• is positive semi-definite if a11 ≥ 0, a22 ≥ 0 and det A = a11a22 − a212 ≥ 0;

• is negative definite if a11 < 0 and det A = a11a22 − a212 > 0;

• is negative semi-definite if a11 ≤ 0, a22 ≤ 0 and det A = a11a22 − a212 ≥ 0.


