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1 The Taylor formula for a function in one variable

We start with the following important fact and try to approximate functions by polyno-
mials.

Theorem 1.1 Let I be an open interval, f : I → R a (k + 1)-times continuously differ-
entiable function, k ∈ N and a ∈ I. Then for all t ∈ I we have:

f(t) =
k∑
j=0

f (j)(a)

j!
(t− a)j +Ra,k(t)

= f(a) +
f (1)(a)

1!
(t− a) +

f (2)(a)

2!
(t− a)2 + · · ·+ f (k)(a)

k!
(t− a)k︸ ︷︷ ︸

=:Pa,k(t)

+Ra,k(t)

with lim
t→a

f(t)− Pa,k(t)
(t− a)k

= lim
t→a

Ra,k(t)

(t− a)k
= 0.

This means, that Ra,k(t) tends faster to 0 as the function (t− a)k if t→ a.

Definition 1.1 The polynomial (in t) Pa,k(t) is called the k-th Taylor polynomial for f at a.

Example 1.1 Let f(t) = et, a = 0 and k = 2. Then

et =
1

0!
e0 t0 +

1

1!
e0 t1 +

1

2!
e0 t2 +R0,2(t)

= 1 + t+
1

2
t2 +R0,2(t)

with lim
t→0

et − 1− t− 1
2
t2

t2
= 0 (Verify this by using l’Hospital’s rule!).

The 2-th Taylor polynomial for f in a = 0 is P0,2(t) = 1 + t+ 1
2
t2.

Example 1.2 Let f(t) = et, a = 1 and k = 2. Then

et =
1

0!
e1 (t− 1)0 +

1

1!
e1 (t− 1)1 +

1

2!
e1 (t− 1)2 +R1,2(t)

= e+ e(t− 1) +
1

2
e(t− 1)2 +R1,2(t).

The 2-th Taylor polynomial for f in a = 1 is P1,2(t) = e+ e(t− 1) + 1
2
e(t− 1)2.
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Example 1.3 Here you can see the graphs of some Taylor polynomials, denoted by T (x),
for the function f(x) = sin(x)+sin(3x) in a = 1. We use x instead of t for the independent
variable.
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We know, that if f ′(a) = 0 and f ′′(a) > (<)0, then f has a local minimum (maximum)
in a. More generally we have:

Theorem 1.2 Suppose that

f ′(a) = f (2)(a) = . . . = f (k−1)(a) = 0

f (k)(a) 6= 0

1. If k is even and f (k)(a) > 0, then f has a local minimum at a.

2. If k is even and f (k)(a) < 0, then f has a local maximum at a.

3. If k is odd, then f has neither a local maximum nor a local minimum at a.

Example 1.4 Let f(t) = t4. Then f ′(t) = 4t3, f ′′(t) = 12t2, f (3)(t) = 24t and f (4)(t) =
24. Hence f ′(0) = f ′′(0) = f (3)(0) = 0 and f (4)(0) = 24 > 0. We see, that f has a local
minimum in a = 0.
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2 Differentiable functions of several variables

2.1 Partial derivatives

Definition 2.1 Let y = f(x) = f(x1, . . . , xi, . . . , xn) be a function. For i = 1, 2, . . . , n
the i-th partial derivative of f is defined by

∂f

∂xi
(x) = fxi(x) = lim

t→0

f(x + tei)− f(x)

t

The function f is called 2-times (k)-times partially differentiable, if all partial derivatives
of second (k-th) order exist. Notation:

fxixj = (fxi)xj =
∂

∂xj

(
∂f

∂xi

)
(1 ≤ i, j ≤ n)

The following fact is sometimes important:

Theorem 2.1 If all partial derivatives of second order exist and are continuous functions,
then fxixj = fxjxi.

Definition 2.2 Let a = (a1, a2, . . . , an) ∈ D ⊂ Rn be a point in the domain of f . The
vector

∇f(a) =


fx1(a)
fx2(a)

...
fxn(a)


is called gradient of f in a. The n× n matrix

∇2f(a) =


fx1x1(a) fx1x2(a) . . . fx1xn(a)
fx2x1(a) fx2x2(a) . . . fx2xn(a)

...
...

...
...

fxnx1(a) fxnx2(a) . . . fxnxn(a)


is called Hesse matrix of f in a.

Example 2.1 Let f(x1, x2) = xα1x
β
2 . We see (by direct calculation):

∇f(a) =

(
αaα−11 aβ2
βaα1a

β−1
2

)

∇2f(a) =

(
α(α− 1)aα−21 aβ2 αβaα−11 aβ−12

αβaα−11 aβ−12 β(β − 1)aα1a
β−2
2

)
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2.2 The differential and differentiable functions

Definition 2.3 The (total) differential df of f is defined by

df = df(x, dx) = fx1(x) · dx1 + · · ·+ fxn(x) · dxn = ∇f(a)T · dx

Definition 2.4 Let D ⊂ Rn be an open set, a and x = a+dx ∈ D. A function f : D → R
is called (totally) differentiable in a, if

f(x) = f(a) +∇f(a)T · dx +Ra(x)︸ ︷︷ ︸
∗

and lim
x→a

Ra(x)

||x− a||
= 0︸ ︷︷ ︸

?

• We have:

 x1
...
xn


︸ ︷︷ ︸

x

=

 a1
...
an


︸ ︷︷ ︸

a

+

 dx1
...
dxn


︸ ︷︷ ︸

dx

• The function t(x) = f(a) +∇f(a)T · dx is called tangent hyperplane of f in a:

t(x) = f(a) +∇f(a)T · (x− a)

= f(a) + fx1(a) · (x1 − a1) + · · ·+ fxn(a) · (xn − an)

= f(a) + df(a, dx)

• A differentiable function can be approximated (very well) by a linear function and
the claim ? is essential.

• If we use the notation ∆f(a, dx) = f(a + dx) − f(a) for the real change of f and
x = a + dx we get

∆f(a, dx) = df(a, dx) +Ra(x)

Example 2.2 Let f(x1, x2) = xα1x
β
2 . We know

∇f(a) =

(
αaα−11 aβ2
βaα1a

β−1
2

)
and hence

df(a, dx) = df(a1, a2, dx1, dx2) = αaα−11 aβ2 dx1 + βaα1a
β−1
2 dx2
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2.3 The directional derivative

Definition 2.5 Let v ∈ Rn be a vector. The limit (if it exists)

∂vf(a) = lim
t→0

f(a + tv)− f(a)

t

is called the derivative of f in a along v.

If v is a vector of length 1 (unit vector) then ∂vf(a) is called the directional derivative of f
in a in direction v.

The directional derivative of f in a in direction v is a generalisation of partial derivatives.
For all i = 1, . . . , n we have:

∂eif(a) = fxi(a).

Theorem 2.2 Let D be open, f differentiable on D and v ∈ Rn with ||v|| = 1. Then

∂vf(a) = ∇f(a)T · v =
n∑
i=1

fxi(a) vi
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Theorem 2.3 (Properties of the gradient ∇f(a))

• The gradient of f in a is orthogonal to the level set

L = Lf(a) = { x ∈ Rn | f(x) = f(a) }

(shortly f(x) = f(a)). If f is a function in two variables, then we denote a level
set as contour line.

• The gradient of f in a points in the direction of the greatest rate of increase of the
function f in a.

Proof: For v ∈ Rn with ||v|| = 1 we have

∂vf(a) = ∇f(a)T · v

= ||∇f(a)|| · ||v|| · cos∠(∇f(a),v)

= ||∇f(a)|| · cos∠(∇f(a),v)

If v is a tangent vector to a curve in the level set f(x) = f(a) then ∂vf(a) = 0 and
cos∠(∇f(a),v) = 0 or ∠(∇f(a),v) = π/2.

Because ||∇f(a)|| > 0 is constant and −1 ≤ cos∠(∇f(a),v) ≤ 1 we see that

• ∂vf(a) is maximal if cos∠(∇f(a),v) = 1, that is ∠(∇f(a),v) = 0 (v and ∇f(a)
have the same direction),

• ∂vf(a) is minimal if cos∠(∇f(a),v) = −1, that is ∠(∇f(a),v) = π (v and ∇f(a)
have the opposite direction).

2
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2.4 The chain rule

Let D ⊂ Rn be open and f : D → R continuously partially differentiable, I ⊂ R and

x : I → D ⊂ Rn with x(t) =


x1(t)
x2(t)

...
xn(t)


with differentiable coordinate functions xi(t) for 1 ≤ i ≤ n. The image x(I) ⊂ D ⊂ Rn is
a curve and for all t ∈ I the vector

ẋ(t) = lim
dt→0

1

dt
(x(t+ dt)− x(t)) =


ẋ1(t)
ẋ2(t)

...
ẋn(t)


is the so called tangent vector at the curve x(I) in the point x(t).
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Theorem 2.4 The composition f ◦ x : I → R where f ◦ x(t) = f(x(t)) is differentiable
with

d

dt
f(x(t)) = ∇f(x(t))T · d

dt
x(t) =


fx1(x(t))
fx2(x(t))

...
fxn(x(t))


T

·


ẋ1(t)
ẋ2(t)

...
ẋn(t)



Expansion:

d

dt
f(x(t))

= ∇f(x(t))T · d
dt

x(t)

=
d

dt
f(x1(t), x2(t), . . . , xn(t))

= fx1(x(t))
d

dt
x1(t) + fx2(x(t))

d

dt
x2(t) + · · ·+ fxn(x(t))

d

dt
xn(t)

= fx1(x(t)) ẋ1(t) + fx2(x(t)) ẋ2(t) + · · ·+ fxn(x(t)) ẋn(t)

Example 2.3 Let f(x1, x2) = xα1x
β
2 , x1(t) = e2t and x2(t) = t+ 1. By the chain rule we

get

d

dt
f(x(t)) = fx1(x(t)) ẋ1(t) + fx2(x(t)) ẋ2(t)

= α(e2t)α−1(t+ 1)β · 2e2t + β(e2t)α(t+ 1)β−1 · 1

= e2tα(t+ 1)β−1[2α(t+ 1) + β].
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2.5 Implicit function theorem

Notation: (x, y) = (x1, . . . , xn, y) ∈ Rn+1

Theorem 2.5 Let M ⊂ Rn+1 be open, φ : M → R continuously partially differentiable
and a = (a1, . . . , an, an+1) ∈ M with φ(a) = 0 and φy(a) 6= 0. Then there is a neighbour-
hood U of (a1, . . . , an) and an open interval I ⊂ R with an+1 ∈ I such that:

1. R := { (x, y) ⊂ Rn+1 | x ⊂ U and y ∈ I } ⊂ M and φy(x) 6= 0 for all (x, y) ∈ R.

2. For each x ∈ U there exists exactly one y ∈ I with φ(x, y) = 0. The function
y := y(x) is partially differentiable ( y : U → I ) and

φ(x, y) = φ(x, y(x)) = 0 −→ ∂

∂xi
y(x) = −

∂

∂xi
φ(x, y)

∂

∂y
φ(x, y)

= −φxi(x, y)

φy(x, y)

a2

y

a1 x1

φ(x1, y ) = 0

α

y

a1 x1

φ(x1, y ) = 0

a2 = y(   )a1

U
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Let y := y(x) for all x ∈ U the function above. Then

φ(x, y) = φ(x, y(x)) = 0

By the chain rule we get:

0 =
∂

∂xi
0 =

∂

∂xi
φ(

x︷ ︸︸ ︷
x1, . . . , xn,

y︷ ︸︸ ︷
y(x1, . . . , xn))

=
n∑
j=1

∂

∂xj
φ (x, y) · ∂xj

∂xi
+

∂

∂y
φ(x, y) · ∂y

∂xi

=
∂

∂xi
φ(x, y) · ∂xi

∂xi
+

∂

∂y
φ(x, y) · ∂y

∂xi

=
∂

∂xi
φ(x, y) +

∂

∂y
φ(x, y) · ∂

∂xi
y(x)

Solving this equation for ∂
∂xi

y(x) proves the second part of the Theorem.

2

Example 2.4 We could prove (differentiate the equation y′ = −φx/φy with respect to x
and solve for y′′) that if φ is twice continuously differentiable and φ(x, y) defines y as a
twice differentiable function of x, then

y′′ = −φxx + 2φxy · y′ + φyy · (y′)2

φy

= · · ·

=
1

(φy)3
· det

 0 φx φy
φx φxx φxy
φy φyx φyy
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3 The general Taylor formula

Theorem 3.1 Let D ⊂ Rn be an open and convex set and f : D → R a 3-times contin-
uously differentiable function, a,x ∈ D and v = dx = x− a. Then we have:

•
f(x) = f(a) +∇f(a)T · (x− a) +

1

2
(x− a)T ∇2f(a) (x− a)︸ ︷︷ ︸

=:Pa,2(x)

+Ra,2(x)

with lim
x→a

f(x)− Pa,2(x)

||x− a||2
= lim

x→a

Ra,2(x)

||x− a||2
= 0.

The polynomial (in x) Pa,2(x) is called the 2-th Taylor polynomial for f at a.

• f(x) = f(a) +∇f(a)T · (x− a) +
1

2
(x− a)T ∇2f(a + cv) (x− a)

for some real number c ∈ (0, 1). This means that the point a + cv lies between a
and a + v in the convex set D.

Example 3.1 Let f(x1, x2) = xα1x
β
2 . We already know:

∇f(a) =

(
αaα−11 aβ2
βaα1a

β−1
2

)

∇2f(a) =

(
α(α− 1)aα−21 aβ2 αβaα−11 aβ−12

αβaα−11 aβ−12 β(β − 1)aα1a
β−2
2

)
and

Pa,2(x) = aα1a
β
2 +

(
αaα−11 aβ2
βaα1a

β−1
2

)T
· (x− a)

+
1

2
(x− a)T

(
α(α− 1)aα−21 aβ2 αβaα−11 aβ−12

αβaα−11 aβ−12 β(β − 1)aα1a
β−2
2

)
(x− a)

= aα1a
β
2 +

(
αaα−11 aβ2
βaα1a

β−1
2

)T
·
(
x1 − a1
x2 − a2

)

+
1

2

(
x1 − a1
x2 − a2

)T (
α(α− 1)aα−21 aβ2 αβaα−11 aβ−12

αβaα−11 aβ−12 β(β − 1)aα1a
β−2
2

) (
x1 − a1
x2 − a2

)
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Example 3.2 Let f(x1, x2) = x
1/3
1 x

2/3
2 and a =

(
a1
a2

)
=

(
1
8

)
. We have f(a) =

f(1, 8) = 4,

∇f(a) =

(
4/3
1/3

)
, ∇2f(a) =

(
−8/9 1/9
1/9 −1/72

)
and

Pa,2(x) = 4 +

(
4/3
1/3

)T
·
(
x1 − 1
x2 − 8

)
+

1

2

(
x1 − 1
x2 − 8

)T ( −8/9 1/9
1/9 −1/72

) (
x1 − 1
x2 − 8

)
Here you can see the graph of f , the graph of f and of the 1-st Taylor polynomial and the
graph of f and of the 2-nd Taylor polynomial.
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4 Concave and convex functions

The function y = f(x) is called concave (convex) if it is defined on a convex set and the
line segment joining any two points on the graph is never above (below) the graph. This
definition is easy to understand but difficult to use. How could we check this criterion for
a concrete function given by a complicated formula? We need an algebraic definition for
concavity/convexity.

The two points P and Q correspond to the points a and b in the convex domain of f :

P = (a, f(a)) and Q = (b, f(b)).

An arbitrary point R on the line segment PQ has the coordinates

R = tQ+ (1− t)P
= P + t(Q− P )

= ( ta + (1− t)b, tf(a) + (1− t)f(b) )

for a suitable t ∈ [0, 1]. This point R lies directly above the point ta + (1 − t)b and the
point ta + (1− t)b lies on the line segment between a and b in the (convex) domain of f .

The corresponding point R′ on the graph of f can be expressed as

R′ = ( ta + (1− t)b, f(ta + (1− t)b) ) .

The fact that R does not lie above R′ can be described by the following inequality:

f(ta + (1− t)b) ≥ tf(a) + (1− t)f(b).
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Definition 4.1 A function f(x) = f(x1, . . . , xn) defined on a convex set S is concave
(convex) on S, if

f(ta + (1− t)b) ≥ (≤) tf(a) + (1− t)f(b)

or

f(ta + (1− t)b)− tf(a)− (1− t)f(b) ≥ (≤) 0

for all a, b ∈ S and all t ∈ [0, 1].

We may ask: What is the relationship between concavity/convexity and partial deriva-
tives? The second partial derivatives fx1x1 , fx2x2 , . . . measure curvature along sections
through the function, holding one variable constant. By Taylor’s formula we know, that
near a ∈ Rn we have:

f(x) ≈ Pa,2(x) = f(a) +∇f(a)T · (x− a) +
1

2
(x− a)T ∇2f(a) (x− a)

The tangent hyperplane f(a) +∇f(a)T · (x−a) has no curvature (this means: is concave
and convex) and we may believe, that the Hessian ∇2f(a) of the function f embodies all
the informations needed to determine concavity/convexity.

Theorem 4.1 The function y = f(x) is concave (convex) on the convex set S if and only
if ∇2f(a) is negative semi-definite (positive semi-definite) for all a ∈ S.

Example 4.1

The function f(x) = f(x1, x2) = −x21 − x22 (in the picture you can see the graph of f and
a typical level set) is concave on the convex set S = R2, because

∇2f(a) =

(
−2 0
0 −2

)
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is obviously negative definite (and negative semi-definite) on R2. For a direct proof, we
have to show that

f(ta + (1− t)b)− tf(a)− (1− t)f(b) ≥ 0

for all a = (a1, a2), b = (b1, b2) ∈ R2 and all t ∈ [0, 1]. Let us do it.

f(ta + (1− t)b)− tf(a)− (1− t)f(b)

= −[ta1 + (1− t)b1]2 − [ta2 + (1− t)b2]2 − t(−a21 − a22)− (1− t)(−b21 − b22)
= . . .

= t(1− t)[ (a1 − b1)2 + (a2 − b2)2 ]

≥ 0.

Example 4.2

The function f(x) = f(x1, x2) = x
1/2
1 x

1/2
2 (in the picture you can see the graph of f and

a typical level set) is concave on the convex set S = R2
++. The Hessian

∇2f(a) =

(
−1

4
a
−3/2
1 a

1/2
2

1
4
a
−1/2
1 a

−1/2
2

1
4
a
−1/2
1 a

−1/2
2 −1

4
a
1/2
1 a

−3/2
2

)

is negative semi-definite for all a = (a1, a2) ∈ R2
++ (a1, a2 > 0), because (Hurwitz crite-

rion)

−1

4
a
−3/2
1 a

1/2
2 ≤ 0 (first leading subdeterminant)

−1

4
a
1/2
1 a

−3/2
2 ≤ 0

det∇2f(a) =
1

16
a−11 a−12 −

1

16
a−11 a−12 = 0

a1, a2 > 0
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Example 4.3

The function f(x) = f(x1, x2) = x1x2 (in the picture you can see the graph of f and a
typical level set) is neither concave nor convex on the convex set S = R2

++, because

∇2f(a) =

(
0 1
1 0

)
is obviously indefinite on R2. By a direct calculation we see:

f(ta + (1− t)b)− tf(a)− (1− t)f(b)

= [ta1 + (1− t)a2] · [tb1 + (1− t)b2]− ta1a2 − (1− t)b1b2 = . . .

= t(1− t)[ (−a1 + b1)(a2 − b2) ]

and there are points in S = R2
++ where this term is positive (for example (0, 3) and (3, 0))

or negative (for example (0, 0) and (3, 3)) for all t ∈ [0, 1].



19

5 Quasi-concave and quasi-convex functions

We have seen that the level sets f(x) = c of the functions f(x1, x2) = x
1/2
1 x

1/2
2 and

f(x1, x2) = x1x2 look similiar for (x1, x2) ∈ R2
++. Actually, we have

x
1/2
1 x

1/2
2 = c ⇒ x2(x1) =

c2

x1

x1x2 = c ⇒ x2(x1) =
c

x1

and both level sets (curves) are decreasing and convex curves in the plane!

Both functions are increasing away from the origin (fx1 , fx2 > 0 in R2
++) but only one

is concave in R2
++. Such level sets represent ,,mound-like” graphs, in a significant sense;

and they are pervasive and important in economics. In fact, they are functions which we
call quasi-concave (quasi-convex).

Definition 5.1 A function y = f(x) is called quasi-concave (quasi-convex) on a convex
set S if and only if, whenever a,b ∈ S with f(a) ≥ c (≤ c) and f(b) ≥ c (≤ c) then also

f(ta + (1− t)b) ≥ c (≤ c)

for all t ∈ [0, 1].

Theorem 5.1

f concave on S ⇒ f quasi-concave on S 6⇒ f concave on S
f convex on S ⇒ f quasi-convex on S 6⇒ f convex on S

Proof:

We prove only the part ,,f concave on S ⇒ f quasi-concave on S”.

For ,,f quasi-concave on S 6⇒ f concave on S” look at the function f(x1, x2) = x1x2 on
S = R2

++, which is quasi-concave but not concave.

Let f be concave on S and a,b ∈ S.

If f(a) ≥ c and f(b) ≥ c then we have by the definition of concavity:

f(ta + (1− t)b) ≥ t f(a)︸︷︷︸
≥c

+(1− t) f(b)︸︷︷︸
≥c

≥ tc+ (1− t)c = c

2
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*Level sets of quasi-concave functions*

Indeed, the criteria of quasi-concavity of a function y = f(x1, x2) in two variables which
is increasing away from the origin (fx1 , fx2 > 0 in R2

++) imply that each contour line
x2 = x2(x1) = g(x1) is a convex function (in one variable x1).

Theorem 5.2 Let y = f(x1, x2) be a function with domain R2
++, such that

• fx1 , fx2 > 0 in R2
++,

• f is quasi-concave in R2
++ and

• f(x1, x2) = f(x1, g(x1)) = c is a contour line in R2
++.

Then the contour line x2 = x2(x1) = g(x1) is decreasing and convex.

Proof:

The function x2 = g(x1) is decreasing, because by implicit differentiation and with
fx1 , fx2 > 0 in R2

++ we have

g′(x1) = −fx1(x1, x2)
fx2(x1, x2)

< 0.

We take two points a1, b1 ∈ R+ and let a2 = g(a1) and b2 = g(b1), Then the two points
(a1, a2) and (b1, b2) lie on the contour line f(x1, x2) = f(x1, g(x1)) = c.

Because f is quasi-concave, f(a1, a2) = f(a) = c and f(b1, b2) = f(b) = c we have

f(ta + (1− t)b) = f(ta1 + (1− t)b1, ta2 + (1− t)b2)
= f(ta1 + (1− t)b1, tg(a1) + (1− t)g(b1)) ≥ c.

Furthermore, we have

f( ta1 + (1− t)b1, g(ta1 + (1− t)b1) ) = c

by definition of the function g.

We combine both relations and get

f( ta1 + (1− t)b1, g(ta1 + (1− t)b1) )

≤ f( ta1 + (1− t)b1, tg(a1) + (1− t)g(b1) )

and because f is increasing in all variables (so in the second one) we see that

g(ta1 + (1− t)b1) ≤ tg(a1) + (1− t)g(b1)

for all a1, b1 ∈ R+ and g is a convex function.
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6 Local minima in open sets

6.1 Introduction

Consider a function f : Rn → R. Let D be some open subset of Rn and x∗ ∈ D a local
minimizer of f over D. This means that there exists an ε > 0 such that for all x ∈ D
satisfying ||x− x∗|| < ε we have f(x∗) ≤ f(x).

The term ,,unconstrained” usually refers to the situation where all points x sufficiently
near x∗ are in D. This is automatically true if D is an open set.

6.2 First-order necessary condition for optimality

Suppose that f is a continuously differentiable function and x∗ ∈ D is a local minimizer.

Pick an arbitrary vector (direction) v ∈ Rn. Since we are in the unconstrained case, we
have x∗ + tv ∈ D for all t with −t0 < t < t0.

For the fixed v we can consider f(x∗ + tv) as a function of the real parameter t and we
define

g(t) := f(x∗ + tv).

Since x∗ is a local minimizer of f , it is clear that t = 0 is a minimizer of g, such that
g′(0) = 0. We will try to re-express this result in terms of the original function f :

g(t) = f(x∗ + tv)

g′(t) = ∇f(x∗ + tv)T · v

and

0 = g′(0) = ∇f(x∗)T · v

Since v was arbitrary, we get the first-order necessary condition for optimality:

x∗ is a local minimizer (maximizer) =⇒ ∇f(x∗) = 0
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6.3 Second-order necessary condition for optimality

We assume, as before, that x∗ ∈ D is a local minimizer of f . For an arbitrary vector v
let g(t) = f(x∗ + tv). Then

g′(t) = ∇f(x∗ + tv)T · v =
n∑
i=1

fxi(x
∗ + tv) · vi

g′′(t) =
n∑
i=1

(
d

dt
fxi(x

∗ + tv)

)
· vi

=
n∑
i=1

(
n∑
j=1

fxixj(x
∗ + tv) · vj

)
· vi

=
n∑

i,j=1

fxixj(x
∗ + tv) · vi · vj.

and

g′′(0) =
n∑

i,j=1

fxixj(x
∗) · vi · vj = vT ∇2f(x∗) v.

If x∗ is a local minimizer of f then g(t) has a local minimum in t = 0. Hence

0 ≤ g′′(0) = vT ∇2f(x∗) v = (v1 v2 . . . vn)

 fx1x1(x
∗) . . . fx1xn(x∗)

...
...

...
fxnx1(x

∗) . . . fxnxn(x∗)




v1
v2
...
vn


for all v ∈ Rn. We conclude that the matrix ∇2f(x∗) must be positive semi-definite and
this is the second-order necessary condition for optimality:

x∗ is a local minimizer (maximizer) =⇒ ∇2f(x∗) is positive (negative) semi-definite


