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1 Overview about (static) optimization problems
In a general static optimization problem there is
e a real-valued function

f(X) = f(131,---,55n)

in n variables, the so-called objective function, whose value is to be optimized (max-
imized or minimized) and

e aset D C R", the so-called admissible set.
Then the problem is to find (global) maximum or minimum points x* € D of f:
max(min) f(x) subject to x € D.

From now on we will always assume that f is at least 2-times continuously
partially differentiable.

Because max f(x) = min —f(x) subject to x € D we could focus our attention (without
loss of generality) on minimizing problems.

Depending on the set D and the function f several different types of optimization problems
can arise. At the first level we will distinguish between so-called

1. unconstrained optimization problems:

D contains no boundary points of D. This means that the set D is an open subset

of R™ and a solution of the optimization problem (if it exists) is an interior point of
D.

Example 1.1 Solve the following problems or explain why there are no solutions:
min z? subject to x € D = (—1,1)

min —z? subject to v € D = (—1,1)

min z? subject to x € D =R

min 1/x subject to v € D = (0, 1)

min —1/x subject to x € D = (0, 1)

min 2% — z* subject to v € D = (—2,2)

minz? — z* subject tox € D = (—1,1)

min z? — x4 subject to v € D = (—0.1,0.1)

minsin(1/z)/z subject to x € D = (0,1)

2. constrained optimization problems:

D contains some boundary points of D. A solution of the optimization problem
may be an interior point or a point on the boundary of D.



2 Unconstrained optimization problems

2.1 Local minimizer

Consider a function f : R® — R. Let D be some open subset of R” and x* € D a local
minimizer of f over D. This means that there exists an ¢ > 0 such that for all x € D
satisfying ||x — x*|| < € we have f(x*) < f(x).

The term ,,unconstrained” usually refers to the situation where all points x sufficiently
near x* are in . This is automatically true if D is an open set.

We already know:

Theorem 2.1 (First- and second order necessary conditions for optimality)

Suppose that V2 f is continuous in an open neighbourhood U of x* then

x* is a local minimizer of f = Vf(x*) = 0 and V?f(x*) is pos.semidef.

Note that these necessary conditions are not sufficient.

Theorem 2.2 (First- and second order sufficient conditions for optimality)

Suppose that V2 f is continuous in an open neighbourhood U of x* then

Vf(x*) = 0 and V?f(x*) is pos.def. == x* is a (strict) local minimizer of f

Proof:

Because V2f is continuous and positive definite at x*, we can choose an open
ball B = {x | ||x — x*|]| < €} C D where V?f remains positive definite.
Taking any nonzero vector v with ||v|| < €, we have x* +v € B and by
Taylor’s theorem:

O 4v) = J) VIV 5 VI ()

= )+ VIV ()

for some z = x* +¢-v with ¢t € (0,1).
Since z = x* +t - v € B, we have v V2f(z)v > 0 and therefore f(x* +v) >

f(x*). 0



2.2 Global minimizer

Of course, all local minimizers of a function f are candidates for global minimizing, but
obviously, an arbitrary function may not realise a global minimum in an open set D. For

instance, look at f(x) = —z? subject to x € D = (—1,1).

There are only general results in the case where f is a convex function on D. Because we

define convexity of the function f by the inequality

flx+(1=1)y)

for all x,y € D and all t € [0, 1], all points tx+ (1 — )y (points between x and y) should
lie in D. Hence D must be a convex set.

Theorem 2.3 Let f be a convex (resp. concave) and differentiable function on the convex

(and open) set D. Then

< )+ A =0)f(y)

x* is a global minimizer (resp. mazimizer) of f <= V f(x")

=0

Proof (for convex f):

° , 7:> 114
Clear!?

° 77é [44

Let Vf(x*) = 0 and suppose that x* is not a global minimizer of f on
D. Then we can find a point y € D with f(y) < f(x*).

Consider the line segment that joins x* to y, that is

z(t) =

ty + (1 —t)x* =

X"+ iy —x7)

for all ¢ € [0,1]. Of course, z € D because D is a convex set. Hence

Vi) (y —x7)

d * *
Gy =)
FO° + 1y = x)) = ')

fy)—fx") <0

Therefore, V f(x*) # 0! Contradiction.
Hence, x* is a global minimizer of f on D.



3 Constrained optimization problems

3.1 General remarks

In the previous case we have used the fact that for every direction v points of the form
x* + tv belong to D (for sufficiently small ¢). This is no longer true if D has a boundary
and x* is a point on this boundary.

Definition 3.1 Let D C R" andx* € D. A vectorv € R" is called a feasible direction in x*
if x*+tve D forallt with 0 <t <t.

not feasible

If not all directions v are feasible in x*, then the condition Vf(x*) = 0 is no longer
necessary for local optimality. But we can prove the following result.

Theorem 3.1 If x* is a local minimum of the continuously differentiable function f on
D, then

Of(x") = Vf(x)'v > 0
for every feasible direction v and
VI V(x> 0
for all feasible directions with Oy f(x*) = 0.

There are two cases:

1. 9D ¢ D

There are boundary points of D which are not elements of D. This case is too
difficult and we need a specific method, adapted to the concrete set D, to solve the
optimization problem. We will not follow up on this type of problem.

2.0DbcD
The complete boundary 0D of D is in D; this means that D is closed.



From now on let D always be closed.

We recall the following basic existence result for closed and bounded sets D:

Theorem 3.2 (Weierstrass-Theorem) If f is a continuous function and D is a closed
and bounded set then there exists a global minimum of f over D.

(General) Algorithm for finding a global minimum

1. Find all interior points of D satisfying V f(x*) = 0 (stationary points).
2. Find all points where V f does not exist (critical points).
3. Find all boundary points satisfying 0, f(x*) > 0 for all feasible directions v.

4. Compare all values at all these candidate points and choose one smallest one.

In almost all interesting optimization problems the admissible set D is given by a set of
inequalities (or equations):
D = {x€R"| 0(x) < 1, g2(%) < oo gm(%) < e} = {x €R" | g(x) < c}

with g = (g1,...,9m)7, 91, -, gm : R* = Rand ¢ = (cy,...,cm)T.

92)=0 g,(x)<0

9,(x)=0
9,(x)<0
vertex
9, (x)=00,x)=0|—=
gl(x) <0 vertex
9,(x)=09,(x)=0

g,(x)<0

g,x)<0

9,x)=0 vertex
9,0)=0g,x)=0
g,(x)<0

It is easy to see that one equation of the form g(x) = ¢ can be expressd by the two
inequalities g(x) < ¢ and —g(x) < —c. Hence all sets described by a set of equations
could be described by a set of inequalites and it would be enough to study sets described
by inequalities.

But for practical reasons we will discuss the two cases separately.



Definition 3.2 For the optimization problem

max(min)  y = f(z1,29,...,2,)

G1(x1, T2, ..., Tn) = g1(X)

<

= <
subject to 92($1,$2, 7$n) 92(X) S G
Gm(T1, 22, . Tp) = gm(X) < e

the function (in n + m variables)
L(l’l,"' ,In,)\l,...

shortly

Lix,A) = f(x) - Z)\j (9;(%) = ¢;)

J=1

1s called Lagrange function of the optimization problem.

f(x) = X (g(x) — )



3.2 D={xeR"|gx) =c}
3.2.1 The two-variable case

A (free) maximum of f(zq,x2) is a mountain top on the graph of f; the constrained
maximum is the highest point on a path along the graph. This path lies directly over the
path in the domain of f, given by the constraint g(zq,zs) = c.

The constraint g(z1,x2) = ¢ is simply the contour line (level set) of the function g asso-
ciated the hight c¢. We try to solve the following optimization problem:

max  y = f(z1,72) = f(x)
subject to g(x1,29) = ¢

Suppose now, for simplicity, that

e fis an increasing function (f;,, fz, > 0) and strictly quasi-concave and

e ¢ is strictly quasi-convex.

Than the contour lines of f and the constraint g(x;,z2) = ¢ are as shown in the following
figure:

increasing high of f

f(il?l-,wz) = b3

flz1,x2) = by

f($1,1'2) - b*

f(z1,22) = by

ay

g(l‘l, '7"2) =c




We see, in this case we have an unique (because f is strictly quasi-concave and g strictly
quasi-convex) solution of the maximization problem at the point A. Generally, constrained
maxima/minima may not exist, or be unique.

Assuming that there exists a unique constrained maxima of f. If we have a look at the
figure, we may see that at the point A, the slope of the f-contour line f, , f,, = b
and the slope of the constraint g(z;,x2) = ¢ are the same!

Proof: Suppose, that there is a local solution xs = h(z1) of g(z1, z9) = ¢ near
A, so g(x1,h(z1)) = c. Hene, for all points at the contour line g(z1, h(x1)) = ¢
near A we have:

flr1,22) = flz1,h(z1)) = F(a).

Because the point A = (a1, a) is a local maximum of F' (for all x; near a),
we have the necessary condition

0 = F'(21) lyzay, = Jou(wr, h(@1)) + fo, (21, h(21)) - B (1) |, —g,
= fo(a1,a2) + fo,(a1,a2) - W' (ay)

or
h/(al) _ _fxl(ahaQ)
fa)z (a17 a?)
Otherwise, if we differiantiate the equation g(xy,h(x;)) = ¢ with respect to
Ty, we get
0 = g (21, h(21)) + guy (21, h(21)) - B (1)
and
h'(al) _ Yz (a17a2)
Gz, (ala a2)

By implicit differentiation we can express this property as

_fmlana) - gn(a,az) (same slope at A)
fui (a1, az) 9 (a1, a2)

or

fwl (a’17a2) ffﬂz(aba?)

= = A Lagrange-multiplier
Gy (ab a2) Gy (alv a2)

This equation can be spitted in two equations:

fo(ar,a2) = X gu(ar,az)
fm(alaaQ) = )‘9562(&17@2)

This means, to find A we have to find all solutions (z1, 23, A) of the following system of
three equations:

fl'l(x17x2) = )‘9961(117‘%‘2)
fm(xlaxZ) = )‘ng(xlwx?)

g(x1,20) = ¢
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3.2.2 The general case

Given the following optimization problem:

max(min)  y = f(z1,22,...,7,) = f(X)
g1(x1, 29, ... 2n) = 1(X) =1
subject to 92(1, T2, ) = 92(%) = €
gm(xhx% cee 7xn> = gm(x) = Cnm
Theorem 3.3 Suppose that
e f g1,...,9m are defined on a set S C R"
o xX* = (z%,...,x%) is an interior point of S that solves the optimization problem
o f g1,...,9m are continuously partial differentiable in a ball around x*
e the Jacobi-matrixz of the constraint functions
g1 g g
. (x) By (x) ... p (x)
Dg(x) =
O9m OYm OGm
_(9x1 (x) _(91:2 (x) ... e (x)
has rank m in x = x*.
Necessary condition
Then there exist unique numbers X, ..., A5 such that (x*, X*) = (27,25, ..., 25, A7, ..., L)
s a stationary point of the Lagrange-function:
Ly (x*,A") = 0,...,L,, (x"A") =0
and shortly VL(x*,A*) =0
L/\l (X*, )\*) = O, .. ,L)\m(X*, )\*) =0
or expanded
Vi) = ) X Vgi(x) =0 (%)
j=1
Sufficient condition
If there exist numbers A3, ..., X5 and an admissible X* which together satisfy the necessary

condition, and if the Lagrange function L is concave (convex) in x and S is convezx, then
x* solves the mazimization (minimization) problem.
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Remark:

The condition that Dg(x*) has rank m means, that the gradients Vg;(x*), ..., Vgn(x*)
(the rows of Dg(x*)) are linearly independent. Equation (x) can be written as

x*) = ) N Vgi(x
j=1

This means that in the point x* (solution of the optimization problem) the gradient of f
is a linear combination of the gradients of all constraint functions.

Proof:

Necessary condition We get a nice argument for condition (%) by studying the optimal
value function

fH(e) = max{f(x)|g(x)=c}

If f is a profit function and ¢ = (cy, ..., ¢,,) denotes a resource vector, then f*(c) is the
maximum profit obtainable given the available resource vector c.

In the following argument we assume that f*(c) is differentiable.

Fix a vector c¢* and let x* be the corresponding optimal solution. Then f(x*) = f*(c*)
and obviously for all x we have f(x) < f*(g(x)).

Hence

has a maximum in x = x*, so

_ 09 _ [0 095
0= 8902( )= 3@ ]Zl[(%j L:g(x*) 8xi(x)
Define
a *
3@ = o)~ flete) -1
J

and equation (%) follows.

Sufficient condition Suppose that L = L(x) is a concave (resp. convex) function in
the variable x. The necessary condition means that x* is a stationary point of L, this
means VxL(x*) = 0. Then by Theorem 2.3 we know that x* is a global maximizer (resp.
minimizer) of L and this means that

m

L(x") = f(x')— Z AN (g;(x") = ¢5)
> f(x) - Z Ai(g5(x) — <)

= L(x)

for all x € S. But for all admissible x we have g;(x) = ¢;. Hence f(x*) > f(x) for all
admissible x € S. O
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The equation

af*

i) = 5@

~ fi(ct+e)—f(c) = flea,. ...+ 1, 0,em)— fler, . e, cm)

tells us, that the Lagrange multiplicator )\;‘-(c) for the jth constraint is the rate at which
the optimal value of the objective function changes with respect to the changes in the
constant c;.

Suppose that f*(c) is the maximum profit that a firm can obtain from a production
process when ¢y, ..., ¢, are the available quantities of m different resources. Then \j(c)
is the marginal profit that a firm can earn per extra unit of resource j, and therefore the
firm’s marginal willingness to pay for this resource. If the firm could pay more of this
resource at a price below \%(c) per unit, it could earn more profit by doing so. But if the
price exceeds \}(c) per unit, the firm could increase its profit by selling a small quantity
of this resource at this price.

In economics, the number A\%(c) is referred to a so called shadow price of the resource j.
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Example 3.1 Given the following optimization problem:

max flzy,x0) = x‘{‘xg
subject to g(x1,22) = P11 + pazo = ¢

The necessary condition (x) will only work, if the optimization problem meets the require-
ments from Theorem 3.3. We will check it.

o We take S = R2++7 x1,x2 > 0 (obviously, a solution of the mazximization problem
does not lie on the boundary of R ).

e Hence a solution should be an interior point of S.
e The functions f and g are continously partially differentiable in S.

e The Jacobi-matriz of g (the gradient) is

()

P2

and has the mazximal rank (= 1) for all (z1,29) € S, if (p1,p2) # (0,0). Think
(shortly) about the solution of the optimization problem in the case (pi1,p2) = (0,0).

Hence we are allowed to use the criterion (x) to find a solution. Step by step we get:

o L(xy,20,\) = 95(1%5 — Ap1z1 + poxa — )

ozx?_lxg — Ap1
o VL(x1,79,\) = Vf(x1,15) — AVg(x1,79) = Brezt™ — Ap,
—(p171 + P2z — )

aaz?_lxg — A\p1 0
. Bm?xg_l — Ap2 = 0 | or
—(p171 + paxa — ) 0
. a-1_8 _
E1: ar]y xy = Ap
E2: BaSxi ™ = Ap,
L3: P1T1 + paras = C
o KI1/E2
a-1,_0
ary Ty Ap1 Qrz D1 . 13
1 T 3. S= e I =
Bz AD2 By D2 D2 &
o 1y in B3

p1 B co
P1T1 + PaXo = C < P11+ P2 p—afﬁl =CcS r = —F———x
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® I N Iy

ppa 19_25]91(044‘5) pa(a + f)

o Plﬁx . P13 cx cfs
—

o 27 and x5 in Bl

(atm) Graem)
v _\ma+h) ppla+B)) et

P PEps (a + B)+e-1

o The optimal value function of the problem is

fHe) = max{f(zy,xs) | g(wr, 22) = c}
= (1) ()

- (101(;0‘6F 5))a (P2(Ofﬁ+ 5)>a

_ Oéaﬁﬁ Ca+ﬁ

P35 (a+ B)ots

A direct calculation confirms (c) = A"

oc

e Hesse matrix of L with respect to x

ala— D282 afas el
apaf ey BB~ Dafas

vire = (

o IfV2L(x) is negative definite (for all x1, x5 > 0) then L is concave and x* = (x%, x})
solves the mazimization problem. Is V2L(x) negative definite?

We know that V2L(x) is negative semi-definite if and only if

ala—1) 2872 < 0
>0 Zf x1,22>0
BB-1) afey 2 <0
——
>0 Zf x1,22>0

and

det V2L(x) = afa— 128 2258(8 — Dadal ? — afay ol tafad 2l !

= af(l—a—p) a3’
N ——

>0 Zf z1,22>0
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Hence
ala—1) < 0
BB-1) < 0
af(l—a—=8) > 0

and the combination of these three relations gives the following result:

V2L(x) is negative semi-definite <= 0 < a,3 <1 and 1 > a + B.

Exercise 3.1 Solve the following optimization problem

max  f(x1,22) = aln(xy) + bln(z,)

subject to 9(z1,22) = p11 + Py =

Compare the solution to that obtained in the above example.
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33 D={xeR"|gkx) <c}
Given the following optimization problem:

max y:f<xlax27"'7xn):f<x>

gl(xlvx% cee 7I'n) = gl(x) < €1

= <
subject to 92(1'17332, 7'r’fl) g2(X) > C2
Gm(T1, T2, .. Tp) = gm(X) < e

Definition 3.3 Let x* be the solution of the maximization problem. The constraint
g:(x) < ¢; is called

e binding (or active) at x*, if g;(x*) = ¢; and

e not binding (or inactive) at x*, if g;(x*) < ¢;.
Theorem 3.4 Suppose that

e f.g1,...,9m are defined on a set S C R"

o xX* = (z1,...,x}) is an interior point of S that solves the maximization problem

e f g1,...,9m are continuously partially differentiable in a ball around x*

the constraints are ordered in such a way, that the first mqg constraints are binding
at x* and all the remaining m — mgy constraints are not binding,

the Jacobi-matriz of the binding constraint functions

o ,_, og1 ,

agﬂ”LO * agmo *

has rank mg in x = xX*.

Necessary condition

Then there exist unique real numbers X* = (X\i,..., A% such that

1. Ly (x*,X") = 0,..., L, (x*,A") = 0,

2. N >0,... A >0,

3N (X)) =] =0, A5 - [gm (X)) — em) =0 and
4. 1(x*) < erpngm(X) < o

Conditions 1., 2. and 3. are often called _Karush-Kuhn-Tucker-conditions.
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Proof:

Necessary condition We study the optimal value function

fHe) = max{f(x)]g(x) < c}

This value function must be nondecreasing in each variable ¢y, ..., ¢,,. This is because as
c; increases with all other variables held fixed, the admissible set becomes larger; hence
f*(c) can not decrease.

In the following argument we assume that f*(c) is differentiable.

Fix a vector ¢* and let x* be the corresponding optimal solution. Then f(x*) = f*(c*).
For any x we have f(x) < f*(g(x)) because x obviously satisfies the constraints if each
c; is replaced by g;(x).

But then

[(gx) < f(g(x) +c —gx))
——

>0

since g(x*) < ¢* and f* is non-decreasing.

Hence

o(x) = f(x)—f(gx)+c"—g(x)) <0

=:u(x)

for all x and since ¢(x*) = 0, ¢(x) has a maximum in x = x*, so

96 Of o =Of

O oy L3Oy 005

ox; — OJu, 0x;
Jj=1
Since f* is non-decreasing, we have
af*
AT = >0
J 8cj <C) -

and we should (but will not) prove that if g;(x*) < ¢ then \j = 0. O
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How should we solve a maximization problem by Karush-Kuhn-Tucker? Let’s have a look

at two examples.

Always: )\; > 0 and if g;j(x) < ¢; then \; = 0. Respect the direction of the

implication!

Not true: If \; =0 then g;(x) < ¢;.

Example 3.2

maz  f(r1,79) = 2] + a5 + 12— 1

subsect to  g(xy, 1) = 23 + 25 < 1

1. We have one constraint and need one Lagrange-multiplicator A = \y. The Lagrange-

function is:

L(zy,m3) = aj+a5+a0—1— (2% +25—1)

2. Write down the Karush-Kuhn-Tucker-conditions

(/)

Lx1 (%1,1’2) = 21’1 — 2)\!131 = 2331(1 — )\) =0

(11)

L:,;2 (1‘1, {L’Q) = 2232 +1-— 2)\1}2 =0

(I11)

A>0 and MNz24+23—-1) = 0

3. Find all points (x1,x2, \) which satisfy all Karush-Kuhn-Tucker-conditions and pay
attention that for all these points x3 + 23 < 1 (constraint).

Systematic way

From equation (I) we see, that A =1 or x; = 0. The case A = 1 with equation (I1)
gies a contradiction. Hence: x; = 0.

All constraints could be binding (=) or not binding (<) and there are 2 possibilities,
shortened by = and <.

-

ri4axs=1 = AX>0 with ([I]), first part
?4+23<1 = AX=0 with (III), second part

(a) Case = (or x?+23=1)
Then with 1 = 0 we get xy = £1. By (I1) we can compute the associated \
and get the two candidats for mazimization: (0,1,3/2) and (0,—1,1/2)

(b) Case < (orz3+ 122 <1)
With A =0 and x1 = 0 we get by (II) that x93 = —1/2. We have found a third

candidat for mazimization: (0,—1/2,0).

With

f(0,1) =1,

F0,-1) = —1 and  f(0,—1/2) = —5/4

we see that (0,1) (with A\ = 3/2) is the solution of the mazimization problem.
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Example 3.3

1. We have three constraints and need three Lagrange-multiplicator i, \o, A3.

max y= f(m,x) = m+Inx
gi(m,z) =m+2x <5
subject to ga(m,x) = —m <0
gs(m,x) = —x <0

The

Lagrange-function is:
L(x1,x2) m+Inz—XA (m+2x—5)— X (—m) —

= m+lnzr—XA\ (m+z—5)+ am+ A3z

A3 (=)

. Write down the Karush-Kuhn-Tucker-conditions

(I) Lm(l’l,l’g) = 1- )\14’)\2 =0
([[) Lm(l’l,lCQ) = 5—>\1+)\3 =0
(ITI) A\ >0 and M(m+z— ) =0
(IV) X >0 and Ao(—m) =

(V) A3 >0 and M\3(—z) =

. Find all points (x1,x9, A1, A2, A3) which satisfy all Karush-Kuhn-Tucker-conditions
and all constraints.

Systematic way

All constraints could be binding (=) or not binding (<) and there are 2-2-2 =8
possibilities. Of course, some of these combinations are obviously impossible.

(:,:,:) m+zrz=5|-m=0|—-2=0|= AM2>0 XA>0 A3>0
(<,:,:) m+zx<bH|-m=0|—-x=0]= A=0 XA>0 N>0
(:,<,:) m+z=5|-m<0|—-2x2=0|= XA>0 X=0 A3>0
(:,:,<) m+z=5|-m=0] —-2<0|= AN>0 X>0 )\3:0
(<, <,=)|m+ax<b|-m<0|—2z=0]= A=0 X=0 A3>0
(<,= <) mt+rz=<|-m=0|—-2<0|= AM=0 >0 X=0
(=<, <) |m+x=5|-m<0|—2<0|= AM>0 =0 X=0
(<, <, <) [m+x<b|-m<0|—2<0|= AM=0 =0 X=0

no solution
no solution
no solution
no solution
no solution
no solution
(4,1,1,0,0)

no solution

Confirm all these results!

Elegant way

Ifm+ax <5 then \y =0 by (III) and 1+ Xy =0 or \y = =1 < 0 by () which
contradicts (IV'). Hence m~+x =5 and we have to check only 4 possibilities (=, *, ).

Because In(z) is not defined in x = 0 (and by equation (II)) we see that —x < 0

(resp. x > 0). Hence we have to check the two possibilities (=, x, <).

o (=,=,<) means m+zx =5 m =0 and x > 0 (and A3 =0 by (V)). Then
m=>5 and \y = 1/5 by (I1), Ay = —4/5 by (I). This contradicts (IV').

o (=,<,<)means m+x =5, m >0 and x > 0 (and Ay = A3 = 0 by (IV)
and (V). Then \y =1 by (I), z =1 and m =5—1=4. We get the unique
solution (4,1,1,0,0).



