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1 Overview about (static) optimization problems

In a general static optimization problem there is

• a real-valued function

f(x) = f(x1, . . . , xn)

in n variables, the so-called objective function, whose value is to be optimized (max-
imized or minimized) and

• a set D ⊂ Rn, the so-called admissible set.

Then the problem is to find (global) maximum or minimum points x∗ ∈ D of f :

max(min) f(x) subject to x ∈ D.

From now on we will always assume that f is at least 2-times continuously
partially differentiable.

Because max f(x) = min −f(x) subject to x ∈ D we could focus our attention (without
loss of generality) on minimizing problems.

Depending on the setD and the function f several different types of optimization problems
can arise. At the first level we will distinguish between so-called

1. unconstrained optimization problems:

D contains no boundary points of D. This means that the set D is an open subset
of Rn and a solution of the optimization problem (if it exists) is an interior point of
D.

Example 1.1 Solve the following problems or explain why there are no solutions:

minx2 subject to x ∈ D = (−1, 1)

min−x2 subject to x ∈ D = (−1, 1)

minx2 subject to x ∈ D = R
min 1/x subject to x ∈ D = (0, 1)

min−1/x subject to x ∈ D = (0, 1)

minx2 − x4 subject to x ∈ D = (−2, 2)

minx2 − x4 subject to x ∈ D = (−1, 1)

minx2 − x4 subject to x ∈ D = (−0.1, 0.1)

min sin(1/x)/x subject to x ∈ D = (0, 1)

2. constrained optimization problems:

D contains some boundary points of D. A solution of the optimization problem
may be an interior point or a point on the boundary of D.
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2 Unconstrained optimization problems

2.1 Local minimizer

Consider a function f : Rn → R. Let D be some open subset of Rn and x∗ ∈ D a local
minimizer of f over D. This means that there exists an ε > 0 such that for all x ∈ D
satisfying ||x− x∗|| < ε we have f(x∗) ≤ f(x).

The term ,,unconstrained” usually refers to the situation where all points x sufficiently
near x∗ are in D. This is automatically true if D is an open set.

We already know:

Theorem 2.1 (First- and second order necessary conditions for optimality)

Suppose that ∇2f is continuous in an open neighbourhood U of x∗ then

x∗ is a local minimizer of f =⇒ ∇f(x∗) = 0 and ∇2f(x∗) is pos.semidef.

Note that these necessary conditions are not sufficient.

Theorem 2.2 (First- and second order sufficient conditions for optimality)

Suppose that ∇2f is continuous in an open neighbourhood U of x∗ then

∇f(x∗) = 0 and ∇2f(x∗) is pos.def. =⇒ x∗ is a (strict) local minimizer of f

Proof:

Because ∇2f is continuous and positive definite at x∗, we can choose an open
ball B = {x | ||x − x∗|| < ε} ⊂ D where ∇2f remains positive definite.
Taking any nonzero vector v with ||v|| < ε, we have x∗ + v ∈ B and by
Taylor’s theorem:

f(x∗ + v) = f(x∗) + vT∇f(x∗) +
1

2
vT∇2f(z)v

= f(x∗) +
1

2
vT∇2f(z)v

for some z = x∗ + t · v with t ∈ (0, 1).

Since z = x∗ + t · v ∈ B, we have vT∇2f(z)v > 0 and therefore f(x∗ + v) >
f(x∗). 2
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2.2 Global minimizer

Of course, all local minimizers of a function f are candidates for global minimizing, but
obviously, an arbitrary function may not realise a global minimum in an open set D. For
instance, look at f(x) = −x2 subject to x ∈ D = (−1, 1).

There are only general results in the case where f is a convex function on D. Because we
define convexity of the function f by the inequality

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y)

for all x,y ∈ D and all t ∈ [0, 1], all points tx + (1− t)y (points between x and y) should
lie in D. Hence D must be a convex set.

Theorem 2.3 Let f be a convex (resp. concave) and differentiable function on the convex
(and open) set D. Then

x∗ is a global minimizer (resp. maximizer) of f ⇐⇒ ∇f(x∗) = 0

Proof (for convex f):

• ,,=⇒“

Clear!?

• ,,⇐=“

Let ∇f(x∗) = 0 and suppose that x∗ is not a global minimizer of f on
D. Then we can find a point y ∈ D with f(y) < f(x∗).

Consider the line segment that joins x∗ to y, that is

z = z(t) = ty + (1− t)x∗ = x∗ + t(y − x∗)

for all t ∈ [0, 1]. Of course, z ∈ D because D is a convex set. Hence

∇f(x∗)T (y − x∗) =
d

dt
f(x∗ + t(y − x∗))

∣∣∣∣
t=0

= lim
t→0+

f(x∗ + t(y − x∗))− f(x∗)

t

≤ lim
t→0+

tf(y) + (1− t)f(x∗)− f(x∗)

t

= lim
t→0+

t(f(y)− f(x∗))

t
= f(y)− f(x∗) < 0.

Therefore, ∇f(x∗) 6= 0! Contradiction.

Hence, x∗ is a global minimizer of f on D.

2
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3 Constrained optimization problems

3.1 General remarks

In the previous case we have used the fact that for every direction v points of the form
x∗ + tv belong to D (for sufficiently small t). This is no longer true if D has a boundary
and x∗ is a point on this boundary.

Definition 3.1 Let D ⊂ Rn and x∗ ∈ D. A vector v ∈ Rn is called a feasible direction in x∗

if x∗ + tv ∈ D for all t with 0 ≤ t < t0.

If not all directions v are feasible in x∗, then the condition ∇f(x∗) = 0 is no longer
necessary for local optimality. But we can prove the following result.

Theorem 3.1 If x∗ is a local minimum of the continuously differentiable function f on
D, then

∂vf(x∗) = ∇f(x∗)Tv ≥ 0

for every feasible direction v and

vT ∇2f(x∗) v ≥ 0

for all feasible directions with ∂vf(x∗) = 0.

There are two cases:

1. ∂D 6⊂ D

There are boundary points of D which are not elements of D. This case is too
difficult and we need a specific method, adapted to the concrete set D, to solve the
optimization problem. We will not follow up on this type of problem.

2. ∂D ⊂ D

The complete boundary ∂D of D is in D; this means that D is closed.
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From now on let D always be closed.

We recall the following basic existence result for closed and bounded sets D:

Theorem 3.2 (Weierstrass-Theorem) If f is a continuous function and D is a closed
and bounded set then there exists a global minimum of f over D.

(General) Algorithm for finding a global minimum

1. Find all interior points of D satisfying ∇f(x∗) = 0 (stationary points).

2. Find all points where ∇f does not exist (critical points).

3. Find all boundary points satisfying ∂vf(x∗) ≥ 0 for all feasible directions v.

4. Compare all values at all these candidate points and choose one smallest one.

In almost all interesting optimization problems the admissible set D is given by a set of
inequalities (or equations):

D = {x ∈ Rn | g1(x) ≤ c1, g2(x) ≤ c2, . . . , gm(x) ≤ cm} = {x ∈ Rn | g(x) ≤ c}

with g = (g1, . . . , gm)T , g1, . . . , gm : Rn → R and c = (c1, . . . , cm)T .

g
3 (  )x = 0

g
3

(  )x < 0

g2 (  )x = 0 g2 (  )x < 0

1
g (  )x = 0

g
1
(  )x < 0

1
g (  )x = 0

1
g

3
(  )x < 0

g2 (  )x = 0

g
3 (  )x = 0g2 (  )x = 0

g
1
(  )x < 0 vertex

g
3 x(  ) = 0 

g2 x(  ) < 0

vertex
g x(  ) = 0

vertex D

It is easy to see that one equation of the form g(x) = c can be expressd by the two
inequalities g(x) ≤ c and −g(x) ≤ −c. Hence all sets described by a set of equations
could be described by a set of inequalites and it would be enough to study sets described
by inequalities.

But for practical reasons we will discuss the two cases separately.
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Definition 3.2 For the optimization problem

max(min) y = f(x1, x2, . . . , xn) = f(x)

subject to


g1(x1, x2, . . . , xn) = g1(x) ≤ c1
g2(x1, x2, . . . , xn) = g2(x) ≤ c2

. . .
gm(x1, x2, . . . , xn) = gm(x) ≤ cm

the function (in n+m variables)

L(x1, · · · , xn, λ1, . . . , λm) = f(x1, x2, · · · , xn)−
m∑
j=1

λj (gj(x1, x2, · · · , xn)− cj)

shortly

L(x,λ) = f(x)−
m∑
j=1

λj (gj(x)− cj) = f(x)− λT (g(x)− c)

is called Lagrange function of the optimization problem.
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3.2 D = {x ∈ Rn | g(x) = c}

3.2.1 The two-variable case

A (free) maximum of f(x1, x2) is a mountain top on the graph of f ; the constrained
maximum is the highest point on a path along the graph. This path lies directly over the
path in the domain of f , given by the constraint g(x1, x2) = c.

The constraint g(x1, x2) = c is simply the contour line (level set) of the function g asso-
ciated the hight c. We try to solve the following optimization problem:

max y = f(x1, x2) = f(x)

subject to g(x1, x2) = c

Suppose now, for simplicity, that

• f is an increasing function (fx1 , fx2 > 0) and strictly quasi-concave and

• g is strictly quasi-convex.

Than the contour lines of f and the constraint g(x1, x2) = c are as shown in the following
figure:
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We see, in this case we have an unique (because f is strictly quasi-concave and g strictly
quasi-convex) solution of the maximization problem at the point A. Generally, constrained
maxima/minima may not exist, or be unique.

Assuming that there exists a unique constrained maxima of f . If we have a look at the
figure, we may see that at the point A, the slope of the f-contour line fx1 , fx2 = b∗

and the slope of the constraint g(x1, x2) = c are the same!

Proof: Suppose, that there is a local solution x2 = h(x1) of g(x1, x2) = c near
A, so g(x1, h(x1)) = c. Hene, for all points at the contour line g(x1, h(x1)) = c
near A we have:

f(x1, x2) = f(x1, h(x1)) =: F (x1).

Because the point A = (a1, a2) is a local maximum of F (for all x1 near a1),
we have the necessary condition

0 = F ′(x1) |x1=a1 = fx1(x1, h(x1)) + fx2(x1, h(x1)) · h′(x1) |x1=a1
= fx1(a1, a2) + fx2(a1, a2) · h′(a1)

or

h′(a1) = −fx1(a1, a2)
fx2(a1, a2)

Otherwise, if we differiantiate the equation g(x1, h(x1)) = c with respect to
x1, we get

0 = gx1(x1, h(x1)) + gx2(x1, h(x1)) · h′(x1)

and

h′(a1) = −gx1(a1, a2)
gx2(a1, a2)

2

By implicit differentiation we can express this property as

−fx2(a1, a2)
fx1(a1, a2)

= −gx2(a1, a2)
gx1(a1, a2)

(same slope at A)

or

fx1(a1, a2)

gx1(a1, a2)
=

fx2(a1, a2)

gx2(a1, a2)
= λ Lagrange-multiplier

This equation can be spitted in two equations:

fx1(a1, a2) = λ gx1(a1, a2)

fx2(a1, a2) = λ gx2(a1, a2)

This means, to find A we have to find all solutions (x1, x2, λ) of the following system of
three equations:

fx1(x1, x2) = λ gx1(x1, x2)

fx2(x1, x2) = λ gx2(x1, x2)

g(x1, x2) = c
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3.2.2 The general case

Given the following optimization problem:

max(min) y = f(x1, x2, . . . , xn) = f(x)

subject to


g1(x1, x2, . . . , xn) = g1(x) = c1
g2(x1, x2, . . . , xn) = g2(x) = c2

. . .
gm(x1, x2, . . . , xn) = gm(x) = cm

Theorem 3.3 Suppose that

• f, g1, . . . , gm are defined on a set S ⊂ Rn

• x∗ = (x∗1, . . . , x
∗
n) is an interior point of S that solves the optimization problem

• f, g1, . . . , gm are continuously partial differentiable in a ball around x∗

• the Jacobi-matrix of the constraint functions

Dg(x) =



∂g1
∂x1

(x)
∂g1
∂x2

(x) . . .
∂g1
∂xn

(x)

...
...

. . .
...

∂gm
∂x1

(x)
∂gm
∂x2

(x) . . .
∂gm
∂xn

(x)


has rank m in x = x∗.

Necessary condition

Then there exist unique numbers λ∗1, . . . , λ
∗
m such that (x∗,λ∗) = (x∗1, x

∗
2, . . . , x

∗
n, λ

∗
1, . . . , λ

∗
m)

is a stationary point of the Lagrange-function:

Lx1(x
∗,λ∗) = 0, . . . , Lxn(x∗,λ∗) = 0

and shortly ∇L(x∗,λ∗) = 0

Lλ1(x
∗,λ∗) = 0, . . . , Lλm(x∗,λ∗) = 0

or expanded

∇f(x∗) −
m∑
j=1

λ∗j ∇gj(x∗) = 0 (?)

Sufficient condition

If there exist numbers λ∗1, . . . , λ
∗
m and an admissible x∗ which together satisfy the necessary

condition, and if the Lagrange function L is concave (convex) in x and S is convex, then
x∗ solves the maximization (minimization) problem.
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Remark:

The condition that Dg(x∗) has rank m means, that the gradients ∇g1(x∗), . . . ,∇gm(x∗)
(the rows of Dg(x∗)) are linearly independent. Equation (?) can be written as

∇f(x∗) =
m∑
j=1

λ∗j ∇gj(x∗).

This means that in the point x∗ (solution of the optimization problem) the gradient of f
is a linear combination of the gradients of all constraint functions.

Proof:

Necessary condition We get a nice argument for condition (?) by studying the optimal
value function

f ∗(c) = max{f(x) | g(x) = c}

If f is a profit function and c = (c1, . . . , cm) denotes a resource vector, then f ∗(c) is the
maximum profit obtainable given the available resource vector c.

In the following argument we assume that f ∗(c) is differentiable.

Fix a vector c∗ and let x∗ be the corresponding optimal solution. Then f(x∗) = f ∗(c∗)
and obviously for all x we have f(x) ≤ f ∗(g(x)).

Hence

φ(x) := f(x)− f ∗(g(x)) ≤ 0

has a maximum in x = x∗, so

0 =
∂φ

∂xi
(x∗) =

∂f

∂xi
(x∗)−

m∑
j=1

[
∂f ∗

∂cj
(c)

]
c=g(x∗)

∂gj
∂xi

(x∗)

Define

λ∗j(c) :=
∂f ∗

∂cj
(c) ≈ f ∗(c + ej)− f ∗(c)

and equation (?) follows.

Sufficient condition Suppose that L = L(x) is a concave (resp. convex) function in
the variable x. The necessary condition means that x∗ is a stationary point of L, this
means ∇xL(x∗) = 0. Then by Theorem 2.3 we know that x∗ is a global maximizer (resp.
minimizer) of L and this means that

L(x∗) = f(x∗)−
m∑
j=1

λ∗j(gj(x
∗)− cj)

≥ f(x)−
m∑
j=1

λ∗j(gj(x)− cj)

= L(x)

for all x ∈ S. But for all admissible x we have gj(x) = cj. Hence f(x∗) ≥ f(x) for all
admissible x ∈ S. 2
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The equation

λ∗j(c) =
∂f ∗

∂cj
(c)

≈ f ∗(c + ej)− f ∗(c) = f ∗(c1, . . . , cj + 1, . . . , cm)− f ∗(c1, . . . , cj, . . . , cm)

tells us, that the Lagrange multiplicator λ∗j(c) for the jth constraint is the rate at which
the optimal value of the objective function changes with respect to the changes in the
constant cj.

Suppose that f ∗(c) is the maximum profit that a firm can obtain from a production
process when c1, . . . , cm are the available quantities of m different resources. Then λ∗j(c)
is the marginal profit that a firm can earn per extra unit of resource j, and therefore the
firm’s marginal willingness to pay for this resource. If the firm could pay more of this
resource at a price below λ∗j(c) per unit, it could earn more profit by doing so. But if the
price exceeds λ∗j(c) per unit, the firm could increase its profit by selling a small quantity
of this resource at this price.

In economics, the number λ∗j(c) is referred to a so called shadow price of the resource j.
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Example 3.1 Given the following optimization problem:

max f(x1, x2) = xα1x
β
2

subject to g(x1, x2) = p1x1 + p2x2 = c

The necessary condition (?) will only work, if the optimization problem meets the require-
ments from Theorem 3.3. We will check it.

• We take S = R2
++, x1, x2 > 0 (obviously, a solution of the maximization problem

does not lie on the boundary of R2
++).

• Hence a solution should be an interior point of S.

• The functions f and g are continously partially differentiable in S.

• The Jacobi-matrix of g (the gradient) is(
p1
p2

)
and has the maximal rank (= 1) for all (x1, x2) ∈ S, if (p1, p2) 6= (0, 0). Think
(shortly) about the solution of the optimization problem in the case (p1, p2) = (0, 0).

Hence we are allowed to use the criterion (?) to find a solution. Step by step we get:

• L(x1, x2, λ) = xα1x
β
2 − λ(p1x1 + p2x2 − c)

• ∇L(x1, x2, λ) = ∇f(x1, x2)− λ∇g(x1, x2) =

 αxα−11 xβ2 − λp1
βxα1x

β−1
2 − λp2

−(p1x1 + p2x2 − c)



•

 αxα−11 xβ2 − λp1
βxα1x

β−1
2 − λp2

−(p1x1 + p2x2 − c)

 =

 0
0
0

 or

E1: αxα−11 xβ2 = λp1

E2: βxα1x
β−1
2 = λp2

E3: p1x1 + p2x2 = c

• E1/E2

αxα−11 xβ2

βxα1x
β−1
2

=
λp1
λp2

⇔ αx2
βx1

=
p1
p2
⇔ x2 =

p1
p2

β

α
x1

• x2 in E3

p1x1 + p2x2 = c ⇔ p1x1 + p2

(
p1
p2

β

α
x1

)
= c ⇔ x∗1 =

cα

p1(α + β)
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• x1 in x2

x∗2 =
p1
p2

β

α
x1 =

p1
p2

β

α

cα

p1(α + β)
=

cβ

p2(α + β)

• x∗1 and x∗2 in E1

λ∗ =

α

(
cα

p1(α + β)

)α−1(
cβ

p2(α + β)

)β
p1

=
ααββcα+β−1

pα1p
β
2 (α + β)α+β−1

• The optimal value function of the problem is

f ∗(c) = max{f(x1, x2) | g(x1, x2) = c}

= (x∗1)
α(x∗2)

β

=

(
cα

p1(α + β)

)α(
cβ

p2(α + β)

)α
=

ααββ

pα1p
β
2 (α + β)α+β

cα+β

A direct calculation confirms
∂f ∗

∂c
(c) = λ∗.

• Hesse matrix of L with respect to x

∇2
xL(x) =

(
α(α− 1)xα−21 xβ2 αβxα−11 xβ−12

αβxα−11 xβ−12 β(β − 1)xα1x
β−2
2

)
• If ∇2

xL(x) is negative definite (for all x1, x2 > 0) then L is concave and x∗ = (x∗1, x
∗
2)

solves the maximization problem. Is ∇2
xL(x) negative definite?

We know that ∇2
xL(x) is negative semi-definite if and only if

α(α− 1) xα−21 xβ2︸ ︷︷ ︸
>0 if x1,x2>0

≤ 0

β(β − 1) xα1x
β−2
2︸ ︷︷ ︸

>0 if x1,x2>0

≤ 0

and

det∇2
xL(x) = α(α− 1)xα−21 xβ2β(β − 1)xα1x

β−2
2 − αβxα−11 xβ−12 αβxα−11 xβ−12

= αβ(1− α− β) x2α−21 x2β−22︸ ︷︷ ︸
>0 if x1,x2>0

≥ 0.
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Hence

α(α− 1) ≤ 0

β(β − 1) ≤ 0

αβ(1− α− β) ≥ 0

and the combination of these three relations gives the following result:

∇2
xL(x) is negative semi-definite ⇐⇒ 0 ≤ α, β ≤ 1 and 1 ≥ α + β.

Exercise 3.1 Solve the following optimization problem

max f(x1, x2) = a ln(x1) + b ln(x2)

subject to g(x1, x2) = p1x1 + p2x2 = c

Compare the solution to that obtained in the above example.
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3.3 D = {x ∈ Rn | g(x) ≤ c}

Given the following optimization problem:

max y = f(x1, x2, . . . , xn) = f(x)

subject to


g1(x1, x2, . . . , xn) = g1(x) ≤ c1
g2(x1, x2, . . . , xn) = g2(x) ≤ c2

. . .
gm(x1, x2, . . . , xn) = gm(x) ≤ cm

Definition 3.3 Let x∗ be the solution of the maximization problem. The constraint
gi(x) ≤ ci is called

• binding (or active) at x∗, if gi(x
∗) = ci and

• not binding (or inactive) at x∗, if gi(x
∗) < ci.

Theorem 3.4 Suppose that

• f, g1, . . . , gm are defined on a set S ⊂ Rn

• x∗ = (x∗1, . . . , x
∗
n) is an interior point of S that solves the maximization problem

• f, g1, . . . , gm are continuously partially differentiable in a ball around x∗

• the constraints are ordered in such a way, that the first m0 constraints are binding
at x∗ and all the remaining m−m0 constraints are not binding,

• the Jacobi-matrix of the binding constraint functions

∂g1
∂x1

(x∗) . . .
∂g1
∂xn

(x∗)

...
. . .

...

∂gm0

∂x1
(x∗) . . .

∂gm0

∂xn
(x∗)


has rank m0 in x = x∗.

Necessary condition

Then there exist unique real numbers λ∗ = (λ∗1, . . . , λ
∗
m) such that

1. Lx1(x
∗,λ∗) = 0, . . . , Lxn(x∗,λ∗) = 0,

2. λ∗1 ≥ 0, . . . , λ∗m ≥ 0,

3. λ∗1 · [g1(x∗)− c1] = 0, . . . , λ∗m · [gm(x∗)− cm] = 0 and

4. g1(x
∗) ≤ c1, . . . , gm(x∗) ≤ cm.

Conditions 1., 2. and 3. are often called Karush-Kuhn-Tucker-conditions.
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Proof:

Necessary condition We study the optimal value function

f ∗(c) = max{f(x) | g(x) ≤ c}

This value function must be nondecreasing in each variable c1, . . . , cm. This is because as
cj increases with all other variables held fixed, the admissible set becomes larger; hence
f ∗(c) can not decrease.

In the following argument we assume that f ∗(c) is differentiable.

Fix a vector c∗ and let x∗ be the corresponding optimal solution. Then f(x∗) = f ∗(c∗).
For any x we have f(x) ≤ f ∗(g(x)) because x obviously satisfies the constraints if each
c∗j is replaced by gj(x).

But then

f ∗(g(x)) ≤ f ∗(g(x) + c∗ − g(x∗)︸ ︷︷ ︸
≥0

)

since g(x∗) ≤ c∗ and f ∗ is non-decreasing.

Hence

φ(x) := f(x)− f ∗(g(x) + c∗ − g(x∗)︸ ︷︷ ︸
=:u(x)

) ≤ 0

for all x and since φ(x∗) = 0, φ(x) has a maximum in x = x∗, so

0 =
∂φ

∂xi
(x∗) =

∂f

∂xi
(x∗)−

m∑
j=1

∂f ∗

∂uj
(u(x∗))

∂uj
∂xi

(x∗)

=
∂f

∂xi
(x∗)−

m∑
j=1

∂f ∗

∂uj
(c∗)

∂gj
∂xi

(x∗)

Since f ∗ is non-decreasing, we have

λ∗j :=
∂f ∗

∂cj
(c) ≥ 0

and we should (but will not) prove that if gj(x
∗) < c∗j then λ∗j = 0. 2
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How should we solve a maximization problem by Karush-Kuhn-Tucker? Let’s have a look
at two examples.

Always: λj ≥ 0 and if gj(x) < cj then λj = 0. Respect the direction of the
implication!

Not true: If λj = 0 then gj(x) < cj.

Example 3.2

max f(x1, x2) = x21 + x22 + x2 − 1

subsect to g(x1, x2) = x21 + x22 ≤ 1

1. We have one constraint and need one Lagrange-multiplicator λ = λ1. The Lagrange-
function is:

L(x1, x2) = x21 + x22 + x2 − 1− λ (x21 + x22 − 1)

2. Write down the Karush-Kuhn-Tucker-conditions

(I) Lx1(x1, x2) = 2x1 − 2λx1 = 2x1(1− λ) = 0
(II) Lx2(x1, x2) = 2x2 + 1− 2λx2 = 0
(III) λ ≥ 0 and λ(x21 + x22 − 1) = 0

3. Find all points (x1, x2, λ) which satisfy all Karush-Kuhn-Tucker-conditions and pay
attention that for all these points x21 + x22 ≤ 1 (constraint).

Systematic way

From equation (I) we see, that λ = 1 or x1 = 0. The case λ = 1 with equation (II)
gives a contradiction. Hence: x1 = 0.

All constraints could be binding (=) or not binding (<) and there are 2 possibilities,
shortened by = and <.

= x21 + x22 = 1 ⇒ λ ≥ 0 with (III), first part
< x21 + x22 < 1 ⇒ λ = 0 with (III), second part

(a) Case = (or x21 + x22 = 1)

Then with x1 = 0 we get x2 = ±1. By (II) we can compute the associated λ
and get the two candidats for maximization: (0, 1, 3/2) and (0,−1, 1/2)

(b) Case < (or x21 + x22 < 1)

With λ = 0 and x1 = 0 we get by (II) that x2 = −1/2. We have found a third
candidat for maximization: (0,−1/2, 0).

With

f(0, 1) = 1, f(0,−1) = −1 and f(0,−1/2) = −5/4

we see that (0, 1) (with λ = 3/2) is the solution of the maximization problem.
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Example 3.3

max y = f(m,x) = m+ lnx

subject to


g1(m,x) = m+ x ≤ 5
g2(m,x) = −m ≤ 0
g3(m,x) = −x ≤ 0

1. We have three constraints and need three Lagrange-multiplicator λ1, λ2, λ3. The
Lagrange-function is:

L(x1, x2) = m+ lnx− λ1 (m+ x− 5)− λ2 (−m)− λ3 (−x)

= m+ lnx− λ1 (m+ x− 5) + λ2m+ λ3x

2. Write down the Karush-Kuhn-Tucker-conditions

(I) Lx1(x1, x2) = 1− λ1 + λ2 = 0
(II) Lx2(x1, x2) = 1

x
− λ1 + λ3 = 0

(III) λ1 ≥ 0 and λ1(m+ x− 5) = 0
(IV ) λ2 ≥ 0 and λ2(−m) = 0
(V ) λ3 ≥ 0 and λ3(−x) = 0

3. Find all points (x1, x2, λ1, λ2, λ3) which satisfy all Karush-Kuhn-Tucker-conditions
and all constraints.

Systematic way

All constraints could be binding (=) or not binding (<) and there are 2 · 2 · 2 = 8
possibilities. Of course, some of these combinations are obviously impossible.

(=,=,=) m+ x = 5 −m = 0 −x = 0 ⇒ λ1 ≥ 0 λ2 ≥ 0 λ3 ≥ 0 no solution
(<,=,=) m+ x < 5 −m = 0 −x = 0 ⇒ λ1 = 0 λ2 ≥ 0 λ3 ≥ 0 no solution
(=, <,=) m+ x = 5 −m < 0 −x = 0 ⇒ λ1 ≥ 0 λ2 = 0 λ3 ≥ 0 no solution
(=,=, <) m+ x = 5 −m = 0 −x < 0 ⇒ λ1 ≥ 0 λ2 ≥ 0 λ3 = 0 no solution
(<,<,=) m+ x < 5 −m < 0 −x = 0 ⇒ λ1 = 0 λ2 = 0 λ3 ≥ 0 no solution
(<,=, <) m+ x =< −m = 0 −x < 0 ⇒ λ1 = 0 λ2 ≥ 0 λ3 = 0 no solution
(=, <,<) m+ x = 5 −m < 0 −x < 0 ⇒ λ1 ≥ 0 λ2 = 0 λ3 = 0 (4, 1, 1, 0, 0)
(<,<,<) m+ x < 5 −m < 0 −x < 0 ⇒ λ1 = 0 λ2 = 0 λ3 = 0 no solution

Confirm all these results!

Elegant way

If m + x < 5 then λ1 = 0 by (III) and 1 + λ2 = 0 or λ2 = −1 < 0 by (I) which
contradicts (IV ). Hence m+x = 5 and we have to check only 4 possibilities (=, ∗, ∗).

Because ln(x) is not defined in x = 0 (and by equation (II)) we see that −x < 0
(resp. x > 0). Hence we have to check the two possibilities (=, ∗, <).

• (=,=, <) means m + x = 5, m = 0 and x > 0 (and λ3 = 0 by (V )). Then
m = 5 and λ1 = 1/5 by (II), λ2 = −4/5 by (I). This contradicts (IV ).

• (=, <,<) means m + x = 5, m > 0 and x > 0 (and λ2 = λ3 = 0 by (IV )
and (V )). Then λ1 = 1 by (I), x = 1 and m = 5 − 1 = 4. We get the unique
solution (4, 1, 1, 0, 0).


