Static optimization

Keywords: local and global extremal points, unconstrained optimization, constrained optimization, Lagrange function, Lagrange multipliers, Lagrange method, Karush-Kuhn-Tucker method

Compare: Vorlesungen Mathematik 1 und Mathematik 2

Contents

1 Overview about (static) optimization problems						
2	Unconstrained optimization problems					
	2.1	Local minimizer	3			
	2.2	Global minimizer	4			
3 Constrained optimization problems						
	3.1	General remarks	5			
	3.2	$D = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{g}(\mathbf{x}) = \mathbf{c} \} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	8			
		3.2.1 The two-variable case \ldots	8			
		3.2.2 The general case \ldots	10			
	3.3	$D = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{g}(\mathbf{x}) \le \mathbf{c} \} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	16			

1 Overview about (static) optimization problems

In a general static optimization problem there is

• a real-valued function

$$f(\mathbf{x}) = f(x_1, \dots, x_n)$$

in n variables, the so-called <u>objective function</u>, whose value is to be optimized (maximized or minimized) and

• a set $D \subset \mathbb{R}^n$, the so-called <u>admissible set</u>.

Then the problem is to find (global) maximum or minimum points $\mathbf{x}^* \in D$ of f:

 $\max(\min) f(\mathbf{x})$ subject to $\mathbf{x} \in D$.

From now on we will always assume that f is at least 2-times continuously partially differentiable.

Because max $f(\mathbf{x}) = \min -f(\mathbf{x})$ subject to $\mathbf{x} \in D$ we could focus our attention (without loss of generality) on minimizing problems.

Depending on the set D and the function f several different types of optimization problems can arise. At the first level we will distinguish between so-called

1. unconstrained optimization problems:

D contains no boundary points of D. This means that the set D is an open subset of \mathbb{R}^n and a solution of the optimization problem (if it exists) is an interior point of D.

Example 1.1 Solve the following problems or explain why there are no solutions: $\min x^2$ subject to $x \in D = (-1, 1)$ $\min -x^2$ subject to $x \in D = (-1, 1)$ $\min x^2$ subject to $x \in D = (-1, 1)$ $\min 1/x$ subject to $x \in D = (0, 1)$ $\min -1/x$ subject to $x \in D = (0, 1)$ $\min x^2 - x^4$ subject to $x \in D = (-2, 2)$ $\min x^2 - x^4$ subject to $x \in D = (-1, 1)$ $\min x^2 - x^4$ subject to $x \in D = (-1, 1, 0, 1)$ $\min (1/x)/x$ subject to $x \in D = (0, 1)$

2. constrained optimization problems:

D contains some boundary points of D. A solution of the optimization problem may be an interior point or a point on the boundary of D.

2 Unconstrained optimization problems

2.1 Local minimizer

Consider a function $f : \mathbb{R}^n \to \mathbb{R}$. Let D be some **open** subset of \mathbb{R}^n and $\mathbf{x}^* \in D$ a local minimizer of f over D. This means that there exists an $\epsilon > 0$ such that for all $\mathbf{x} \in D$ satisfying $||\mathbf{x} - \mathbf{x}^*|| < \epsilon$ we have $f(\mathbf{x}^*) \leq f(\mathbf{x})$.

The term ,unconstrained" usually refers to the situation where all points \mathbf{x} sufficiently near \mathbf{x}^* are in D. This is automatically true if D is an open set. We already know:

Theorem 2.1 (First- and second order necessary conditions for optimality) Suppose that $\nabla^2 f$ is continuous in an open neighbourhood U of \mathbf{x}^* then

 \mathbf{x}^* is a local minimizer of $f \implies \nabla f(\mathbf{x}^*) = \mathbf{0}$ and $\nabla^2 f(\mathbf{x}^*)$ is possemidef.

Note that these necessary conditions are not sufficient.

Theorem 2.2 (First- and second order sufficient conditions for optimality) Suppose that $\nabla^2 f$ is continuous in an open neighbourhood U of \mathbf{x}^* then

 $\nabla f(\mathbf{x}^*) = \mathbf{0}$ and $\nabla^2 f(\mathbf{x}^*)$ is pos.def. $\implies \mathbf{x}^*$ is a (strict) local minimizer of f

Proof:

Because $\nabla^2 f$ is continuous and positive definite at \mathbf{x}^* , we can choose an open ball $B = {\mathbf{x} \mid ||\mathbf{x} - \mathbf{x}^*|| < \epsilon} \subset D$ where $\nabla^2 f$ remains positive definite. Taking any nonzero vector \mathbf{v} with $||\mathbf{v}|| < \epsilon$, we have $\mathbf{x}^* + \mathbf{v} \in B$ and by Taylor's theorem:

$$\begin{aligned} f(\mathbf{x}^* + \mathbf{v}) &= f(\mathbf{x}^*) + \mathbf{v}^T \nabla f(\mathbf{x}^*) + \frac{1}{2} \mathbf{v}^T \nabla^2 f(\mathbf{z}) \mathbf{v} \\ &= f(\mathbf{x}^*) + \frac{1}{2} \mathbf{v}^T \nabla^2 f(\mathbf{z}) \mathbf{v} \end{aligned}$$

for some $\mathbf{z} = \mathbf{x}^* + t \cdot \mathbf{v}$ with $t \in (0, 1)$.

Since $\mathbf{z} = \mathbf{x}^* + t \cdot \mathbf{v} \in B$, we have $\mathbf{v}^T \nabla^2 f(\mathbf{z}) \mathbf{v} > 0$ and therefore $f(\mathbf{x}^* + \mathbf{v}) > f(\mathbf{x}^*)$.

2.2 Global minimizer

Of course, all local minimizers of a function f are candidates for global minimizing, but obviously, an arbitrary function may not realise a global minimum in an open set D. For instance, look at $f(x) = -x^2$ subject to $x \in D = (-1, 1)$.

There are only general results in the case where f is a convex function on D. Because we define convexity of the function f by the inequality

$$f(t\mathbf{x} + (1-t)\mathbf{y}) \leq tf(\mathbf{x}) + (1-t)f(\mathbf{y})$$

for all $\mathbf{x}, \mathbf{y} \in D$ and all $t \in [0, 1]$, all points $t\mathbf{x} + (1 - t)\mathbf{y}$ (points between \mathbf{x} and \mathbf{y}) should lie in D. Hence D must be a convex set.

Theorem 2.3 Let f be a convex (resp. concave) and differentiable function on the convex (and open) set D. Then

 \mathbf{x}^* is a global minimizer (resp. maximizer) of $f \iff \nabla f(\mathbf{x}^*) = \mathbf{0}$

Proof (for convex f):

- $,,\Longrightarrow$ " Clear!?
- ,,="

Let $\nabla f(\mathbf{x}^*) = \mathbf{0}$ and suppose that \mathbf{x}^* is **not** a global minimizer of f on D. Then we can find a point $\mathbf{y} \in D$ with $f(\mathbf{y}) < f(\mathbf{x}^*)$.

Consider the line segment that joins \mathbf{x}^* to \mathbf{y} , that is

$$z = z(t) = ty + (1-t)x^* = x^* + t(y - x^*)$$

for all $t \in [0, 1]$. Of course, $\mathbf{z} \in D$ because D is a convex set. Hence

$$\nabla f(\mathbf{x}^*)^T (\mathbf{y} - \mathbf{x}^*) = \left. \frac{d}{dt} f(\mathbf{x}^* + t(\mathbf{y} - \mathbf{x}^*)) \right|_{t=0}$$

$$= \left. \lim_{t \to 0+} \frac{f(\mathbf{x}^* + t(\mathbf{y} - \mathbf{x}^*)) - f(\mathbf{x}^*)}{t} \right|_{t=0}$$

$$\leq \left. \lim_{t \to 0+} \frac{tf(\mathbf{y}) + (1 - t)f(\mathbf{x}^*) - f(\mathbf{x}^*)}{t} \right|_{t=0}$$

$$= \left. \lim_{t \to 0+} \frac{t(f(\mathbf{y}) - f(\mathbf{x}^*))}{t} \right|_{t=0}$$

$$= f(\mathbf{y}) - f(\mathbf{x}^*) < 0.$$

Therefore, $\nabla f(\mathbf{x}^*) \neq \mathbf{0}!$ Contradiction. Hence, \mathbf{x}^* is a global minimizer of f on D.

3 Constrained optimization problems

3.1 General remarks

In the previous case we have used the fact that for every direction \mathbf{v} points of the form $\mathbf{x}^* + t\mathbf{v}$ belong to D (for sufficiently small t). This is no longer true if D has a boundary and \mathbf{x}^* is a point on this boundary.

Definition 3.1 Let $D \subset \mathbb{R}^n$ and $\mathbf{x}^* \in D$. A vector $\mathbf{v} \in \mathbb{R}^n$ is called a feasible direction in \mathbf{x}^* if $\mathbf{x}^* + t\mathbf{v} \in D$ for all t with $0 \le t < t_0$.

If not all directions \mathbf{v} are feasible in \mathbf{x}^* , then the condition $\nabla f(\mathbf{x}^*) = \mathbf{0}$ is no longer necessary for local optimality. But we can prove the following result.

Theorem 3.1 If \mathbf{x}^* is a local minimum of the continuously differentiable function f on D, then

$$\partial_{\mathbf{v}} f(\mathbf{x}^*) = \nabla f(\mathbf{x}^*)^T \mathbf{v} \geq 0$$

for every feasible direction \mathbf{v} and

$$\mathbf{v}^T \ \nabla^2 f(\mathbf{x}^*) \ \mathbf{v} \ \ge \ 0$$

for all feasible directions with $\partial_{\mathbf{v}} f(\mathbf{x}^*) = 0$.

There are two cases:

1. $\partial D \not\subset D$

There are boundary points of D which are not elements of D. This case is too difficult and we need a specific method, adapted to the concrete set D, to solve the optimization problem. We will **not** follow up on this type of problem.

2. $\partial D \subset D$

The complete boundary ∂D of D is in D; this means that D is <u>closed</u>.

From now on let D always be closed.

We recall the following basic existence result for **closed and bounded** sets *D*:

Theorem 3.2 (Weierstrass-Theorem) If f is a continuous function and D is a closed and bounded set then there exists a global minimum of f over D.

(General) Algorithm for finding a global minimum

- 1. Find all interior points of D satisfying $\nabla f(\mathbf{x}^*) = \mathbf{0}$ (stationary points).
- 2. Find all points where ∇f does not exist (critical points).
- 3. Find all boundary points satisfying $\partial_{\mathbf{v}} f(\mathbf{x}^*) \geq 0$ for all feasible directions \mathbf{v} .
- 4. Compare all values at all these candidate points and choose one smallest one.

In almost all interesting optimization problems the admissible set D is given by a set of inequalities (or equations):

$$D = \{ \mathbf{x} \in \mathbb{R}^n \mid g_1(\mathbf{x}) \le c_1, g_2(\mathbf{x}) \le c_2, \dots, g_m(\mathbf{x}) \le c_m \} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{g}(\mathbf{x}) \le \mathbf{c} \}$$

with $\mathbf{g} = (g_1, \dots, g_m)^T, g_1, \dots, g_m : \mathbb{R}^n \to \mathbb{R}$ and $\mathbf{c} = (c_1, \dots, c_m)^T.$

It is easy to see that one equation of the form $g(\mathbf{x}) = c$ can be expressed by the two inequalities $g(\mathbf{x}) \leq c$ and $-g(\mathbf{x}) \leq -c$. Hence all sets described by a set of equations could be described by a set of inequalities and it would be enough to study sets described by inequalities.

But for practical reasons we will discuss the two cases separately.

Definition 3.2 For the optimization problem

$$\max(\min) \quad y = f(x_1, x_2, \dots, x_n) = f(\mathbf{x})$$

subject to
$$\begin{cases} g_1(x_1, x_2, \dots, x_n) = g_1(\mathbf{x}) \le c_1 \\ g_2(x_1, x_2, \dots, x_n) = g_2(\mathbf{x}) \le c_2 \\ \dots \\ g_m(x_1, x_2, \dots, x_n) = g_m(\mathbf{x}) \le c_m \end{cases}$$

the function (in n + m variables)

$$L(x_1, \cdots, x_n, \lambda_1, \dots, \lambda_m) = f(x_1, x_2, \cdots, x_n) - \sum_{j=1}^m \lambda_j (g_j(x_1, x_2, \cdots, x_n) - c_j)$$

shortly

$$L(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \sum_{j=1}^{m} \lambda_j (g_j(\mathbf{x}) - c_j) = f(\mathbf{x}) - \boldsymbol{\lambda}^T (\mathbf{g}(\mathbf{x}) - \mathbf{c})$$

 $is \ called \ \underline{Lagrange} \ function \ of \ the \ optimization \ problem.$

3.2 $D = {\mathbf{x} \in \mathbb{R}^n \mid \mathbf{g}(\mathbf{x}) = \mathbf{c}}$

3.2.1 The two-variable case

A (free) maximum of $f(x_1, x_2)$ is a mountain top on the graph of f; the constrained maximum is the highest point on a path along the graph. This path lies directly over the path in the domain of f, given by the constraint $g(x_1, x_2) = c$.

The constraint $g(x_1, x_2) = c$ is simply the contour line (level set) of the function g associated the hight c. We try to solve the following optimization problem:

max
$$y = f(x_1, x_2) = f(\mathbf{x})$$

subject to $g(x_1, x_2) = c$

Suppose now, for simplicity, that

- f is an increasing function $(f_{x_1}, f_{x_2} > 0)$ and strictly quasi-concave and
- g is strictly quasi-convex.

Than the contour lines of f and the constraint $g(x_1, x_2) = c$ are as shown in the following figure:

We see, in this case we have an unique (because f is strictly quasi-concave and g strictly quasi-convex) solution of the maximization problem at the point A. Generally, constrained maxima/minima may not exist, or be unique.

Assuming that there exists a unique constrained maxima of f. If we have a look at the figure, we may see that at the point A, the slope of the f-contour line $f_{x_1}, f_{x_2} = b^*$ and the slope of the constraint $g(x_1, x_2) = c$ are the same!

Proof: Suppose, that there is a local solution $x_2 = h(x_1)$ of $g(x_1, x_2) = c$ near A, so $g(x_1, h(x_1)) = c$. Hene, for all points at the contour line $g(x_1, h(x_1)) = c$ near A we have:

$$f(x_1, x_2) = f(x_1, h(x_1)) =: F(x_1)$$

Because the point $A = (a_1, a_2)$ is a local maximum of F (for all x_1 near a_1), we have the necessary condition

$$0 = F'(x_1) |_{x_1=a_1} = f_{x_1}(x_1, h(x_1)) + f_{x_2}(x_1, h(x_1)) \cdot h'(x_1) |_{x_1=a_1} = f_{x_1}(a_1, a_2) + f_{x_2}(a_1, a_2) \cdot h'(a_1)$$

or

$$h'(a_1) = -\frac{f_{x_1}(a_1, a_2)}{f_{x_2}(a_1, a_2)}$$

Otherwise, if we differiantiate the equation $g(x_1, h(x_1)) = c$ with respect to x_1 , we get

$$0 = g_{x_1}(x_1, h(x_1)) + g_{x_2}(x_1, h(x_1)) \cdot h'(x_1)$$

and

$$h'(a_1) = -\frac{g_{x_1}(a_1, a_2)}{g_{x_2}(a_1, a_2)}$$

By implicit differentiation we can express this property as

$$\frac{f_{x_2}(a_1, a_2)}{f_{x_1}(a_1, a_2)} = -\frac{g_{x_2}(a_1, a_2)}{g_{x_1}(a_1, a_2)} \quad \text{(same slope at } A\text{)}$$

or

$$\frac{f_{x_1}(a_1, a_2)}{g_{x_1}(a_1, a_2)} = \frac{f_{x_2}(a_1, a_2)}{g_{x_2}(a_1, a_2)} = \lambda \quad \text{Lagrange-multiplier}$$

This equation can be spitted in two equations:

$$f_{x_1}(a_1, a_2) = \lambda g_{x_1}(a_1, a_2)$$

$$f_{x_2}(a_1, a_2) = \lambda g_{x_2}(a_1, a_2)$$

This means, to find A we have to find all solutions (x_1, x_2, λ) of the following system of three equations:

$$f_{x_1}(x_1, x_2) = \lambda g_{x_1}(x_1, x_2)$$

$$f_{x_2}(x_1, x_2) = \lambda g_{x_2}(x_1, x_2)$$

$$g(x_1, x_2) = c$$

3.2.2 The general case

Given the following optimization problem:

max(min)
$$y = f(x_1, x_2, \dots, x_n) = f(\mathbf{x})$$

subject to
$$\begin{cases} g_1(x_1, x_2, \dots, x_n) = g_1(\mathbf{x}) = c_1 \\ g_2(x_1, x_2, \dots, x_n) = g_2(\mathbf{x}) = c_2 \\ \dots \\ g_m(x_1, x_2, \dots, x_n) = g_m(\mathbf{x}) = c_m \end{cases}$$

Theorem 3.3 Suppose that

- f, g_1, \ldots, g_m are defined on a set $S \subset \mathbb{R}^n$
- $\mathbf{x}^* = (x_1^*, \dots, x_n^*)$ is an interior point of S that solves the optimization problem
- f, g_1, \ldots, g_m are continuously partial differentiable in a ball around \mathbf{x}^*
- the Jacobi-matrix of the constraint functions

$$D\mathbf{g}(\mathbf{x}) = \begin{pmatrix} \frac{\partial g_1}{\partial x_1}(\mathbf{x}) & \frac{\partial g_1}{\partial x_2}(\mathbf{x}) & \dots & \frac{\partial g_1}{\partial x_n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_m}{\partial x_1}(\mathbf{x}) & \frac{\partial g_m}{\partial x_2}(\mathbf{x}) & \dots & \frac{\partial g_m}{\partial x_n}(\mathbf{x}) \end{pmatrix}$$

has rank m in $\mathbf{x} = \mathbf{x}^*$.

Necessary condition

Then there exist unique numbers $\lambda_1^*, \ldots, \lambda_m^*$ such that $(\mathbf{x}^*, \boldsymbol{\lambda}^*) = (x_1^*, x_2^*, \ldots, x_n^*, \lambda_1^*, \ldots, \lambda_m^*)$ is a stationary point of the Lagrange-function:

$$L_{x_1}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0, \dots, L_{x_n}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0$$

and shortly
$$\nabla L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0, \dots, L_{\lambda_m}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0$$

or expanded

$$\nabla f(\mathbf{x}^*) - \sum_{j=1}^m \lambda_j^* \nabla g_j(\mathbf{x}^*) = \mathbf{0}$$
 (*)

Sufficient condition

If there exist numbers $\lambda_1^*, \ldots, \lambda_m^*$ and an admissible \mathbf{x}^* which together satisfy the necessary condition, and if the Lagrange function L is concave (convex) in \mathbf{x} and S is convex, then \mathbf{x}^* solves the maximization (minimization) problem.

Remark:

The condition that $D\mathbf{g}(\mathbf{x}^*)$ has rank m means, that the gradients $\nabla g_1(\mathbf{x}^*), \ldots, \nabla g_m(\mathbf{x}^*)$ (the rows of $D\mathbf{g}(\mathbf{x}^*)$) are linearly independent. Equation (\star) can be written as

$$\nabla f(\mathbf{x}^*) = \sum_{j=1}^m \lambda_j^* \nabla g_j(\mathbf{x}^*).$$

This means that in the point \mathbf{x}^* (solution of the optimization problem) the gradient of f is a linear combination of the gradients of all constraint functions.

Proof:

Necessary condition We get a nice argument for condition (\star) by studying the optimal value function

$$f^*(\mathbf{c}) = \max\{f(\mathbf{x}) \mid \mathbf{g}(\mathbf{x}) = \mathbf{c}\}$$

If f is a profit function and $\mathbf{c} = (c_1, \ldots, c_m)$ denotes a resource vector, then $f^*(\mathbf{c})$ is the maximum profit obtainable given the available resource vector \mathbf{c} .

In the following argument we assume that $f^*(\mathbf{c})$ is differentiable.

Fix a vector \mathbf{c}^* and let \mathbf{x}^* be the corresponding optimal solution. Then $f(\mathbf{x}^*) = f^*(\mathbf{c}^*)$ and obviously for all \mathbf{x} we have $f(\mathbf{x}) \leq f^*(\mathbf{g}(\mathbf{x}))$.

Hence

$$\phi(\mathbf{x}) := f(\mathbf{x}) - f^*(\mathbf{g}(\mathbf{x})) \leq 0$$

has a maximum in $\mathbf{x} = \mathbf{x}^*$, so

$$0 = \frac{\partial \phi}{\partial x_i}(\mathbf{x}^*) = \frac{\partial f}{\partial x_i}(\mathbf{x}^*) - \sum_{j=1}^m \left[\frac{\partial f^*}{\partial c_j}(\mathbf{c})\right]_{\mathbf{c}=\mathbf{g}(\mathbf{x}^*)} \frac{\partial g_j}{\partial x_i}(\mathbf{x}^*)$$

Define

$$\lambda_j^*(\mathbf{c}) := \frac{\partial f^*}{\partial c_j}(\mathbf{c}) \approx f^*(\mathbf{c} + \mathbf{e}_j) - f^*(\mathbf{c})$$

and equation (\star) follows.

Sufficient condition Suppose that $L = L(\mathbf{x})$ is a concave (resp. convex) function in the variable \mathbf{x} . The necessary condition means that \mathbf{x}^* is a stationary point of L, this means $\nabla_{\mathbf{x}} L(\mathbf{x}^*) = \mathbf{0}$. Then by Theorem 2.3 we know that \mathbf{x}^* is a global maximizer (resp. minimizer) of L and this means that

$$L(\mathbf{x}^*) = f(\mathbf{x}^*) - \sum_{j=1}^m \lambda_j^*(g_j(\mathbf{x}^*) - c_j)$$

$$\geq f(\mathbf{x}) - \sum_{j=1}^m \lambda_j^*(g_j(\mathbf{x}) - c_j)$$

$$= L(\mathbf{x})$$

for all $\mathbf{x} \in S$. But for all admissible \mathbf{x} we have $g_j(\mathbf{x}) = c_j$. Hence $f(\mathbf{x}^*) \ge f(\mathbf{x})$ for all admissible $\mathbf{x} \in S$.

The equation

$$\lambda_j^*(\mathbf{c}) = \frac{\partial f^*}{\partial c_j}(\mathbf{c})$$

$$\approx f^*(\mathbf{c} + \mathbf{e}_j) - f^*(\mathbf{c}) = f^*(c_1, \dots, c_j + 1, \dots, c_m) - f^*(c_1, \dots, c_j, \dots, c_m)$$

tells us, that the Lagrange multiplicator $\lambda_j^*(\mathbf{c})$ for the *j*th constraint is the rate at which the optimal value of the objective function changes with respect to the changes in the constant c_j .

Suppose that $f^*(\mathbf{c})$ is the maximum profit that a firm can obtain from a production process when c_1, \ldots, c_m are the available quantities of m different resources. Then $\lambda_j^*(\mathbf{c})$ is the marginal profit that a firm can earn per extra unit of resource j, and therefore the firm's marginal willingness to pay for this resource. If the firm could pay more of this resource at a price below $\lambda_j^*(\mathbf{c})$ per unit, it could earn more profit by doing so. But if the price exceeds $\lambda_j^*(\mathbf{c})$ per unit, the firm could increase its profit by selling a small quantity of this resource at this price.

In economics, the number $\lambda_i^*(\mathbf{c})$ is referred to a so called shadow price of the resource j.

Example 3.1 Given the following optimization problem:

$$\begin{array}{ll} \max & f(x_{1}, x_{2}) = x_{1}^{\alpha} x_{2}^{\beta} \\ subject \ to & g(x_{1}, x_{2}) = p_{1} x_{1} + p_{2} x_{2} = c \end{array}$$

The necessary condition (\star) will only work, if the optimization problem meets the requirements from Theorem 3.3. We will check it.

- We take $S = \mathbb{R}^2_{++}$, $x_1, x_2 > 0$ (obviously, a solution of the maximization problem does not lie on the boundary of \mathbb{R}^2_{++}).
- Hence a solution should be an interior point of S.
- The functions f and g are continuously partially differentiable in S.
- The Jacobi-matrix of g (the gradient) is

$$\left(\begin{array}{c} p_1 \\ p_2 \end{array}\right)$$

and has the maximal rank (= 1) for all $(x_1, x_2) \in S$, if $(p_1, p_2) \neq (0, 0)$. Think (shortly) about the solution of the optimization problem in the case $(p_1, p_2) = (0, 0)$.

Hence we are allowed to use the criterion (\star) to find a solution. Step by step we get:

•
$$L(x_1, x_2, \lambda) = x_1^{\alpha} x_2^{\beta} - \lambda (p_1 x_1 + p_2 x_2 - c)$$

• $\nabla L(x_1, x_2, \lambda) = \nabla f(x_1, x_2) - \lambda \nabla g(x_1, x_2) = \begin{pmatrix} \alpha x_1^{\alpha - 1} x_2^{\beta} - \lambda p_1 \\ \beta x_1^{\alpha} x_2^{\beta - 1} - \lambda p_2 \\ -(p_1 x_1 + p_2 x_2 - c) \end{pmatrix}$

•
$$\begin{pmatrix} \alpha x_1 & x_2 & \beta p_1 \\ \beta x_1^{\alpha} x_2^{\beta-1} - \lambda p_2 \\ -(p_1 x_1 + p_2 x_2 - c) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} or$$

$$E1: \qquad \alpha x_1^{\alpha-1} x_2^{\beta} = E2: \qquad \beta x_1^{\alpha} x_2^{\beta-1} = E3: \qquad p_1 x_1 + p_2 x_2 = E3$$

$$\frac{\alpha x_1^{\alpha-1} x_2^{\beta}}{\beta x_1^{\alpha} x_2^{\beta-1}} = \frac{\lambda p_1}{\lambda p_2} \Leftrightarrow \frac{\alpha x_2}{\beta x_1} = \frac{p_1}{p_2} \Leftrightarrow x_2 = \frac{p_1}{p_2} \frac{\beta}{\alpha} x_1$$

 $p_1 x_1 + p_2 x_2$

 λp_1 λp_2

= c

• x_2 in E3

$$p_1 x_1 + p_2 x_2 = c \Leftrightarrow p_1 x_1 + p_2 \left(\frac{p_1}{p_2} \frac{\beta}{\alpha} x_1\right) = c \Leftrightarrow x_1^* = \frac{c\alpha}{p_1(\alpha + \beta)}$$

• x_1 in x_2

$$x_2^* = \frac{p_1}{p_2} \frac{\beta}{\alpha} x_1 = \frac{p_1}{p_2} \frac{\beta}{\alpha} \frac{c\alpha}{p_1(\alpha+\beta)} = \frac{c\beta}{p_2(\alpha+\beta)}$$

• x_1^* and x_2^* in E1

$$\lambda^* = \frac{\alpha \left(\frac{c\alpha}{p_1(\alpha+\beta)}\right)^{\alpha-1} \left(\frac{c\beta}{p_2(\alpha+\beta)}\right)^{\beta}}{p_1} = \frac{\alpha^{\alpha}\beta^{\beta}c^{\alpha+\beta-1}}{p_1^{\alpha}p_2^{\beta}(\alpha+\beta)^{\alpha+\beta-1}}$$

• The optimal value function of the problem is

$$f^{*}(c) = \max\{f(x_{1}, x_{2}) \mid g(x_{1}, x_{2}) = c\}$$
$$= (x_{1}^{*})^{\alpha} (x_{2}^{*})^{\beta}$$
$$= \left(\frac{c\alpha}{p_{1}(\alpha + \beta)}\right)^{\alpha} \left(\frac{c\beta}{p_{2}(\alpha + \beta)}\right)^{\alpha}$$
$$= \frac{\alpha^{\alpha}\beta^{\beta}}{p_{1}^{\alpha}p_{2}^{\beta}(\alpha + \beta)^{\alpha + \beta}} c^{\alpha + \beta}$$

A direct calculation confirms $\frac{\partial f^*}{\partial c}(c) = \lambda^*.$

• Hesse matrix of L with respect to \mathbf{x}

$$\nabla_{\mathbf{x}}^{2}L(\mathbf{x}) = \begin{pmatrix} \alpha(\alpha-1)x_{1}^{\alpha-2}x_{2}^{\beta} & \alpha\beta x_{1}^{\alpha-1}x_{2}^{\beta-1} \\ \alpha\beta x_{1}^{\alpha-1}x_{2}^{\beta-1} & \beta(\beta-1)x_{1}^{\alpha}x_{2}^{\beta-2} \end{pmatrix}$$

• If $\nabla_{\mathbf{x}}^2 L(\mathbf{x})$ is negative definite (for all $x_1, x_2 > 0$) then L is concave and $\mathbf{x}^* = (x_1^*, x_2^*)$ solves the maximization problem. Is $\nabla_{\mathbf{x}}^2 L(\mathbf{x})$ negative definite? -2 W

Ve know that
$$abla^2_{\mathbf{x}} L(\mathbf{x})$$
 is negative semi-definite if and only if

$$\alpha(\alpha - 1) \underbrace{x_1^{\alpha - 2} x_2^{\beta}}_{>0 \ if \ x_1, x_2 > 0} \leq 0$$

$$\beta(\beta - 1) \underbrace{x_1^{\alpha} x_2^{\beta - 2}}_{>0 \ if \ x_1, x_2 > 0} \leq 0$$

and

$$\det \nabla_{\mathbf{x}}^{2} L(\mathbf{x}) = \alpha(\alpha - 1)x_{1}^{\alpha - 2}x_{2}^{\beta}\beta(\beta - 1)x_{1}^{\alpha}x_{2}^{\beta - 2} - \alpha\beta x_{1}^{\alpha - 1}x_{2}^{\beta - 1}\alpha\beta x_{1}^{\alpha - 1}x_{2}^{\beta - 1}$$
$$= \alpha\beta(1 - \alpha - \beta)\underbrace{x_{1}^{2\alpha - 2}x_{2}^{2\beta - 2}}_{>0 \ if \ x_{1}, x_{2} > 0}$$
$$\geq 0.$$

$$\begin{array}{rcl} \alpha(\alpha-1) &\leq & 0 \\ \beta(\beta-1) &\leq & 0 \\ \alpha\beta(1-\alpha-\beta) &\geq & 0 \end{array}$$

and the combination of these three relations gives the following result:

 $\nabla^2_{\mathbf{x}} L(\mathbf{x}) \text{ is negative semi-definite} \Longleftrightarrow 0 \leq \alpha, \beta \leq 1 \text{ and } 1 \geq \alpha + \beta.$

Exercise 3.1 Solve the following optimization problem

 $\begin{array}{ll} \max & f(x_1, x_2) = a \ln(x_1) + b \ln(x_2) \\ subject \ to & g(x_1, x_2) = p_1 x_1 + p_2 x_2 = c \end{array}$

Compare the solution to that obtained in the above example.

3.3 $D = {\mathbf{x} \in \mathbb{R}^n \mid \mathbf{g}(\mathbf{x}) \le \mathbf{c}}$

Given the following optimization problem:

max
$$y = f(x_1, x_2, \dots, x_n) = f(\mathbf{x})$$

subject to
$$\begin{cases} g_1(x_1, x_2, \dots, x_n) = g_1(\mathbf{x}) \le c_1 \\ g_2(x_1, x_2, \dots, x_n) = g_2(\mathbf{x}) \le c_2 \\ \dots \\ g_m(x_1, x_2, \dots, x_n) = g_m(\mathbf{x}) \le c_m \end{cases}$$

Definition 3.3 Let \mathbf{x}^* be the solution of the maximization problem. The constraint $g_i(\mathbf{x}) \leq c_i$ is called

- binding (or <u>active</u>) at \mathbf{x}^* , if $g_i(\mathbf{x}^*) = c_i$ and
- <u>not binding</u> (or <u>inactive</u>) at \mathbf{x}^* , if $g_i(\mathbf{x}^*) < c_i$.

Theorem 3.4 Suppose that

- f, g_1, \ldots, g_m are defined on a set $S \subset \mathbb{R}^n$
- $\mathbf{x}^* = (x_1^*, \dots, x_n^*)$ is an interior point of S that solves the maximization problem
- f, g_1, \ldots, g_m are continuously partially differentiable in a ball around \mathbf{x}^*
- the constraints are ordered in such a way, that the first m₀ constraints are binding at x^{*} and all the remaining m − m₀ constraints are not binding,
- the Jacobi-matrix of the binding constraint functions

$$\left(\begin{array}{ccc} \frac{\partial g_1}{\partial x_1}(\mathbf{x}^*) & \dots & \frac{\partial g_1}{\partial x_n}(\mathbf{x}^*) \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{m_0}}{\partial x_1}(\mathbf{x}^*) & \dots & \frac{\partial g_{m_0}}{\partial x_n}(\mathbf{x}^*) \end{array}\right)$$

has rank m_0 in $\mathbf{x} = \mathbf{x}^*$.

Necessary condition

Then there exist unique real numbers $\boldsymbol{\lambda}^* = (\lambda_1^*, \dots, \lambda_m^*)$ such that

1. $L_{x_1}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0, \dots, L_{x_n}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0,$ 2. $\lambda_1^* \ge 0, \dots, \lambda_m^* \ge 0,$ 3. $\lambda_1^* \cdot [g_1(\mathbf{x}^*) - c_1] = 0, \dots, \lambda_m^* \cdot [g_m(\mathbf{x}^*) - c_m] = 0$ and 4. $g_1(\mathbf{x}^*) \le c_1, \dots, g_m(\mathbf{x}^*) \le c_m.$

Conditions 1., 2. and 3. are often called <u>Karush-Kuhn-Tucker-conditions</u>.

Proof:

Necessary condition We study the optimal value function

$$f^*(\mathbf{c}) = \max\{f(\mathbf{x}) \mid \mathbf{g}(\mathbf{x}) \le \mathbf{c}\}$$

This value function must be nondecreasing in each variable c_1, \ldots, c_m . This is because as c_j increases with all other variables held fixed, the admissible set becomes larger; hence $f^*(\mathbf{c})$ can not decrease.

In the following argument we assume that $f^*(\mathbf{c})$ is differentiable.

Fix a vector \mathbf{c}^* and let \mathbf{x}^* be the corresponding optimal solution. Then $f(\mathbf{x}^*) = f^*(\mathbf{c}^*)$. For any \mathbf{x} we have $f(\mathbf{x}) \leq f^*(\mathbf{g}(\mathbf{x}))$ because \mathbf{x} obviously satisfies the constraints if each c_j^* is replaced by $g_j(\mathbf{x})$.

But then

$$f^*(\mathbf{g}(\mathbf{x})) \leq f^*(\mathbf{g}(\mathbf{x}) + \underbrace{\mathbf{c}^* - \mathbf{g}(\mathbf{x}^*)}_{\geq 0})$$

since $\mathbf{g}(\mathbf{x}^*) \leq \mathbf{c}^*$ and f^* is non-decreasing. Hence

$$\phi(\mathbf{x}) := f(\mathbf{x}) - f^*(\underbrace{\mathbf{g}(\mathbf{x}) + \mathbf{c}^* - \mathbf{g}(\mathbf{x}^*)}_{=:\mathbf{u}(\mathbf{x})}) \leq 0$$

for all **x** and since $\phi(\mathbf{x}^*) = 0$, $\phi(\mathbf{x})$ has a maximum in $\mathbf{x} = \mathbf{x}^*$, so

$$0 = \frac{\partial \phi}{\partial x_i}(\mathbf{x}^*) = \frac{\partial f}{\partial x_i}(\mathbf{x}^*) - \sum_{j=1}^m \frac{\partial f^*}{\partial u_j}(\mathbf{u}(\mathbf{x}^*)) \frac{\partial u_j}{\partial x_i}(\mathbf{x}^*)$$
$$= \frac{\partial f}{\partial x_i}(\mathbf{x}^*) - \sum_{j=1}^m \frac{\partial f^*}{\partial u_j}(\mathbf{c}^*) \frac{\partial g_j}{\partial x_i}(\mathbf{x}^*)$$

Since f^* is non-decreasing, we have

$$\lambda_j^* := \frac{\partial f^*}{\partial c_j}(\mathbf{c}) \ge 0$$

and we should (but will not) prove that if $g_j(\mathbf{x}^*) < c_j^*$ then $\lambda_j^* = 0$.

How should we solve a maximization problem by Karush-Kuhn-Tucker? Let's have a look at two examples.

Always: $\lambda_j \ge 0$ and if $g_j(\mathbf{x}) < c_j$ then $\lambda_j = 0$. Respect the direction of the implication!

Not true: If $\lambda_j = 0$ then $g_j(\mathbf{x}) < c_j$.

Example 3.2

$$max \qquad f(x_1, x_2) = x_1^2 + x_2^2 + x_2 - 1$$

subsect to
$$g(x_1, x_2) = x_1^2 + x_2^2 \le 1$$

1. We have one constraint and need one Lagrange-multiplicator $\lambda = \lambda_1$. The Lagrange-function is:

$$L(x_1, x_2) = x_1^2 + x_2^2 + x_2 - 1 - \lambda (x_1^2 + x_2^2 - 1)$$

2. Write down the Karush-Kuhn-Tucker-conditions

(I)	$L_{x_1}(x_1, x_2) = 2x_1 - 2\lambda x_1 = 2x_1(1 - \lambda)$	= 0
(II)	$L_{x_2}(x_1, x_2) = 2x_2 + 1 - 2\lambda x_2$	= 0
(III)	$\lambda \ge 0 \ and \ \lambda (x_1^2 + x_2^2 - 1) = 0$	

3. Find all points (x_1, x_2, λ) which satisfy all Karush-Kuhn-Tucker-conditions and pay attention that for all these points $x_1^2 + x_2^2 \leq 1$ (constraint).

Systematic way

From equation (I) we see, that $\lambda = 1$ or $x_1 = 0$. The case $\lambda = 1$ with equation (II) gives a contradiction. Hence: $x_1 = 0$.

All constraints could be binding (=) or not binding (<) and there are 2 possibilities, shortened by = and <.

=	$x_1^2 + x_2^2 = 1$	\Rightarrow	$\lambda \ge 0$	with (III), first part
<	$x_1^2 + x_2^2 < 1$	\Rightarrow	$\lambda = 0$	with (III), second part

(a) $Case = (or x_1^2 + x_2^2 = 1)$

Then with $x_1 = 0$ we get $x_2 = \pm 1$. By (II) we can compute the associated λ and get the two candidats for maximization: (0, 1, 3/2) and (0, -1, 1/2)

(b) Case < (or $x_1^2 + x_2^2 < 1$) With $\lambda = 0$ and $x_1 = 0$ we get by (II) that $x_2 = -1/2$. We have found a third candidat for maximization: (0, -1/2, 0).

With

$$f(0,1) = 1,$$
 $f(0,-1) = -1$ and $f(0,-1/2) = -5/4$

we see that (0,1) (with $\lambda = 3/2$) is the solution of the maximization problem.

 $\max \quad y = f(m, x) = m + \ln x$ subject to $\begin{cases} g_1(m, x) = m + x \le 5\\ g_2(m, x) = -m \le 0\\ g_3(m, x) = -x \le 0 \end{cases}$

1. We have three constraints and need three Lagrange-multiplicator $\lambda_1, \lambda_2, \lambda_3$. The Lagrange-function is:

$$L(x_1, x_2) = m + \ln x - \lambda_1 (m + x - 5) - \lambda_2 (-m) - \lambda_3 (-x)$$

= m + \ln x - \lambda_1 (m + x - 5) + \lambda_2 m + \lambda_3 x

2. Write down the Karush-Kuhn-Tucker-conditions

(I)	$L_{x_1}(x_1, x_2) = 1 - \lambda_1 + \lambda_2$	= 0
(II)	$L_{x_2}(x_1, x_2) = \frac{1}{x} - \lambda_1 + \lambda_3$	= 0
(III)	$\lambda_1 \ge 0$ and $\lambda_1(m+x-5) = 0$	
(IV)	$\lambda_2 \ge 0$ and $\lambda_2(-m) = 0$	
(V)	$\lambda_3 \ge 0$ and $\lambda_3(-x) = 0$	

3. Find all points $(x_1, x_2, \lambda_1, \lambda_2, \lambda_3)$ which satisfy all Karush-Kuhn-Tucker-conditions and all constraints.

Systematic way

All constraints could be binding (=) or not binding (<) and there are $2 \cdot 2 \cdot 2 = 8$ possibilities. Of course, some of these combinations are obviously impossible.

(=,=,=)	m + x = 5	-m=0	-x=0	\Rightarrow	$\lambda_1 \ge 0$	$\lambda_2 \ge 0$	$\lambda_3 \ge 0$	no solution
(<, =, =)	m + x < 5	-m = 0	-x=0	\Rightarrow	$\lambda_1 = 0$	$\lambda_2 \ge 0$	$\lambda_3 \ge 0$	no solution
(=,<,=)	m + x = 5	-m < 0	-x=0	$ \Rightarrow$	$\lambda_1 \ge 0$	$\lambda_2 = 0$	$\lambda_3 \ge 0$	no solution
(=,=,<)	m + x = 5	-m = 0	-x < 0	\Rightarrow	$\lambda_1 \ge 0$	$\lambda_2 \ge 0$	$\lambda_3 = 0$	no solution
(<,<,=)	m + x < 5	-m < 0	-x=0	$ \Rightarrow$	$\lambda_1 = 0$	$\lambda_2 = 0$	$\lambda_3 \ge 0$	no solution
(<,=,<)	m + x = <	-m = 0	-x < 0	\Rightarrow	$\lambda_1 = 0$	$\lambda_2 \ge 0$	$\lambda_3 = 0$	no solution
(=,<,<)	m + x = 5	-m < 0	-x < 0	$ \Rightarrow$	$\lambda_1 \ge 0$	$\lambda_2 = 0$	$\lambda_3 = 0$	(4, 1, 1, 0, 0)
(<,<,<)	m + x < 5	-m < 0	-x < 0	$ \Rightarrow$	$\lambda_1 = 0$	$\lambda_2 = 0$	$\lambda_3 = 0$	no solution

Confirm all these results!

Elegant way

If m + x < 5 then $\lambda_1 = 0$ by (III) and $1 + \lambda_2 = 0$ or $\lambda_2 = -1 < 0$ by (I) which contradicts (IV). Hence m+x = 5 and we have to check only 4 possibilities (=, *, *). Because $\ln(x)$ is not defined in x = 0 (and by equation (II)) we see that -x < 0(resp. x > 0). Hence we have to check the two possibilities (=, *, <).

- (=, =, <) means m + x = 5, m = 0 and x > 0 (and $\lambda_3 = 0$ by (V)). Then m = 5 and $\lambda_1 = 1/5$ by (II), $\lambda_2 = -4/5$ by (I). This contradicts (IV).
- (=, <, <) means m + x = 5, m > 0 and x > 0 (and $\lambda_2 = \lambda_3 = 0$ by (IV) and (V)). Then $\lambda_1 = 1$ by (I), x = 1 and m = 5 1 = 4. We get the unique solution (4, 1, 1, 0, 0).