Faculty of Business and Economics
University of Basel
Peter Merian-Weg 6
4002 Basel
Switzerland

Course:	$18545-01$ Advanced mathematics for economics MOCK EXAM
Examinator:	Dr. Thomas Zehrt
Begin of examination:	
Duration:	$\mathbf{9 0}$ minutes

Important:

- Allowed electronic means: simple pocket calculator (einfacher Taschenrechner, according to Merkblatt Hilfsmittel)
- Allowed non-electronic means: open-book
- The examination consists of 4 questions. Answer ALL the questions.
- Sketches and diagrams are NOT necessarily drawn to scale.
- It is in your own interest to write legibly and to present the work neatly.
- Solve all questions on separate sheets.
- Cheating and other misconduct, whether attempted or successful, will be penalised by getting the mark 1.0 (BA-Ordnung 17, MA-Ordnung 15).

Question 1

Let $\mathbf{A}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & \sqrt{2} \\ 0 & \sqrt{2} & 1\end{array}\right)$.

1. Compute the rank of \mathbf{A}.
2. Determine $\operatorname{det}(\mathbf{A})$. Computation or explanation!
3. Determine all eigenvalues of \mathbf{A}.
4. Determine the eigenvectors of \mathbf{A} associated to the eigenvalues.
5. Is A diagonalizable? Explanation!
6. Is A invertible? Explanation!

Question 2

Let $f(\mathbf{x})=f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}-4 x_{1} x_{2}+9 x_{2}^{2}+2 x_{3}^{2}$.

1. Determine the gradient ∇f and the Hesse matrix $\nabla^{2} f$ of f.
2. Determine all points $\mathbf{x} \in \mathbb{R}^{3}$ with $\nabla f(\mathbf{x})=\mathbf{0}$.
3. Investigate the definiteness of the Hesse matrix $\nabla^{2} f$.
4. Is f concave, convex, quasi-concave or quasi-convex?

Question 3

Consider the problem

$$
\begin{aligned}
\max & : f(x, y)=x y+x^{2}+y \\
\text { subject to } & :\left\{\begin{array}{l}
g_{1}(x, y)=x^{2}+y \leq 2 \\
g_{2}(x, y)=-y \leq 1 \\
g_{3}(x, y)=-x \leq 1
\end{array}\right.
\end{aligned}
$$

1. Sketch the admissible set (given by the constrained functions) of the maximization problem.
2. Write down the Kuhn-Tucker conditions of the problem.
3. Solve comprehensibly and step by step the Kuhn-Tucker conditions only in the (two) cases

- $x^{2}+y<2,-y=1$ and $-x=1$;
- $x^{2}+y=2,-y<1$ and $-x<1$.

Question 4

1. Prove or disprove: Let $z=f(x, y)=x^{a} y^{b}$ be a (differentiable) homogeneous function of degree 1. Then $\operatorname{det}\left(\nabla^{2} f\right)=\operatorname{det}\left(\begin{array}{ll}f_{x x} & f_{x y} \\ f_{y x} & f_{y y}\end{array}\right)=0$.
2. Prove or disprove: Let $z=f(x, y)=x^{a} y^{b}$ be a (differentiable) homogeneous function of $\operatorname{degree} 2$ 2. Then $\operatorname{det}\left(\nabla^{2} f\right)=\operatorname{det}\left(\begin{array}{ll}f_{x x} & f_{x y} \\ f_{y x} & f_{y y}\end{array}\right)=0$.
3. Use the identity $\operatorname{det}(\mathbf{A} \cdot \mathbf{B})=\operatorname{det}(\mathbf{A}) \cdot \operatorname{det}(\mathbf{B})$ for all $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ to prove:
(a) $\operatorname{det}\left(\lambda \mathbf{A}^{-\mathbf{1}}\right)=\frac{\lambda^{\mathbf{n}}}{\operatorname{det}(\mathbf{A})}$.
(b) \mathbf{A} and $\mathbf{P}^{-\mathbf{1}} \mathbf{A P}$ have the same eigenvalues.
(c) If λ is an eigenvalue with associated eigenvector \mathbf{x} for the matrix A, then λ is an eigenvalue with associated eigenvector $\mathbf{y}=\mathbf{P}^{-1} \mathbf{x}$ for the matrix $\mathbf{P}^{-1} \mathbf{A P}$.
