Faculty of Business and Economics University of Basel Peter Merian-Weg 6 4002 Basel Switzerland

Course:	18545-01 Advanced mathematics for economics MOCK EXAM
Examinator:	Dr. Thomas Zehrt
Begin of examination:	
Duration:	90 minutes

Important:

- Allowed electronic means: simple pocket calculator (einfacher Taschenrechner, according to Merkblatt Hilfsmittel)
- Allowed non-electronic means: open-book
- The examination consists of 4 questions. Answer ALL the questions.
- Sketches and diagrams are NOT necessarily drawn to scale.
- It is in your own interest to write legibly and to present the work neatly.
- Solve all questions on separate sheets.
- Cheating and other misconduct, whether attempted or successful, will be penalised by getting the mark 1.0 (BA-Ordnung 17, MA-Ordnung 15).

Question 1

Let $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & \sqrt{2} \\ 0 & \sqrt{2} & 1 \end{pmatrix}$.	
1. Compute the rank of A .	2
2. Determine $det(\mathbf{A})$. Computation or explanation!	2
3. Determine all eigenvalues of A .	6
4. Determine the eigenvectors of \mathbf{A} associated to the eigenvalues.	6
5. Is \mathbf{A} diagonalizable? Explanation!	2
6. Is A invertible? Explanation!	2

Question 2

Let $f(\mathbf{x}) = f(x_1, x_2, x_3) = x_1^2 - 4x_1x_2 + 9x_2^2 + 2x_3^2$.

- 1. Determine the gradient ∇f and the Hesse matrix $\nabla^2 f$ of f. 52. Determine all points $\mathbf{x} \in \mathbb{R}^3$ with $\nabla f(\mathbf{x}) = \mathbf{0}$. 53. Investigate the definiteness of the Hesse matrix $\nabla^2 f$. 55
 - 4. Is f concave, convex, quasi-concave or quasi-convex?

Question 3

Consider the problem

$$\max \quad : f(x,y) = xy + x^2 + y$$

subject to :
$$\begin{cases} g_1(x,y) = x^2 + y \leq 2 \\ g_2(x,y) = -y \leq 1 \\ g_3(x,y) = -x \leq 1 \end{cases}$$

- 1. Sketch the admissible set (given by the constrained functions) of the maximization problem.
- 2. Write down the Kuhn-Tucker conditions of the problem.
- 3. Solve comprehensibly and step by step the Kuhn-Tucker conditions only in the (two) cases
 - $x^2 + y < 2, -y = 1$ and -x = 1;
 - $x^2 + y = 2, -y < 1$ and -x < 1.

	3	
_		_
	5	

5	

6

6

Question 4

- 1. Prove or disprove: Let $z = f(x, y) = x^a y^b$ be a (differentiable) homogeneous function of degree 1. Then $det(\nabla^2 f) = det \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix} = 0.$ 5
- 2. Prove or disprove: Let $z = f(x, y) = x^a y^b$ be a (differentiable) homogeneous function of degree 2. Then $\det(\nabla^2 f) = \det\begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix} = 0.$ 5
- 3. Use the identity $\det(\mathbf{A} \cdot \mathbf{B}) = \det(\mathbf{A}) \cdot \det(\mathbf{B})$ for all $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ to prove:

(a)
$$\det(\lambda \mathbf{A}^{-1}) = \frac{\lambda^{\mathbf{n}}}{\det(\mathbf{A})}.$$
 3

3

4

- (b) **A** and $\mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ have the same eigenvalues.
- (c) If λ is an eigenvalue with associated eigenvector \mathbf{x} for the matrix A, then λ is an eigenvalue with associated eigenvector $\mathbf{y} = \mathbf{P}^{-1}\mathbf{x}$ for the matrix $\mathbf{P}^{-1}\mathbf{A}\mathbf{P}$.