

Linear algebra

Keywords: vector, matrix, eigenvalue, eigenvector, diagonalization, linear transformation, quadratic forms and symmetric matrices

Compare: Vorlesung Mathematik 2

Contents

1	Matrices and vectors	2
1.1	Real Vectors	2
1.2	Real Matrices	2
1.3	Linear transformations and matrices	3
1.4	Complex matrices and vectors	4
1.5	Matrix calculus	4
2	Eigenvalues and eigenvectors	5
2.1	Definition and determination	5
2.2	*Generalized Eigenvectors*	7
3	Diagonalization	9
4	Quadratic forms and matrices	14

1 Matrices and vectors

1.1 Real Vectors

- n -dimensional space \mathbb{R}^n
- elements $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are called n -vectors

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = (x_1 \ x_2 \ \dots \ x_n)^T \text{ and } \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

- scalar product and norm:

$$\begin{aligned} \mathbf{x} \bullet \mathbf{y} &= \langle \mathbf{x}, \mathbf{y} \rangle = x_1y_1 + x_2y_2 + \dots + x_ny_n \\ \|\mathbf{x}\| &= \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} \end{aligned}$$

$$\mathbf{x} \bullet \mathbf{y} = \|\mathbf{x}\| \cdot \|\mathbf{y}\| \cdot \cos \angle(\mathbf{x}, \mathbf{y})$$

- $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k \in \mathbb{R}^n$

- If $a_1, a_2, \dots, a_k \in \mathbb{R}$, then $\mathbf{z} = a_1\mathbf{x}_1 + a_2\mathbf{x}_2 + \dots + a_k\mathbf{x}_k$ is called a linear combination of $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$.
- $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ are called linearly dependent, if there exist $b_1, b_2, \dots, b_k \in \mathbb{R}$ such that $b_1\mathbf{x}_1 + b_2\mathbf{x}_2 + \dots + b_k\mathbf{x}_k = \mathbf{0}$ and not all $b_j = 0$.
- $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ are called linearly independent, if a linear combination of the zero vector

$$b_1\mathbf{x}_1 + b_2\mathbf{x}_2 + \dots + b_k\mathbf{x}_k = \mathbf{0}$$

is possible only with $b_1 = b_2 = \dots = b_k = 0$.

1.2 Real Matrices

$$\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m \in \mathbb{R}^n$$

$$\mathbf{a}_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix}, \mathbf{a}_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{pmatrix}, \dots, \mathbf{a}_m = \begin{pmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{nm} \end{pmatrix} \rightarrow \mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix}$$

is called an $n \times m$ matrix.

Notation: $\mathbf{A} \in \mathbb{R}^{n \times m}$

- The inverse matrix \mathbf{A}^{-1} of the $n \times n$ matrix $\mathbf{A} = (a_{ij})$ is defined by

$$\mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{I}_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}.$$

- For the $n \times n$ matrix \mathbf{A} let \mathbf{A}_{ij} denote the $(n-1) \times (n-1)$ submatrix of \mathbf{A} generated by cancelling the i -th row and the j -th column of \mathbf{A} . Then the determinant $\det(\mathbf{A})$ is given (recursively) by

$$\det(\mathbf{A}) = |\mathbf{A}| = a_{11} \det \mathbf{A}_{11} - a_{12} \det \mathbf{A}_{12} + \cdots + (-1)^{n+1} a_{1n} \det \mathbf{A}_{1n}$$

- $\det(\mathbf{A} \cdot \mathbf{B}) = \det(\mathbf{A}) \cdot \det(\mathbf{B})$

Example 1.1

$$\begin{aligned} & \left| \begin{array}{cccc} 1 & 1 & 3 & 3 \\ 1 & 2 & 1 & 2 \\ 1 & -2 & 1 & -2 \\ 0 & 1 & -2 & -1 \end{array} \right| \\ &= 1 \cdot \left| \begin{array}{ccc} 2 & 1 & 2 \\ -2 & 1 & -2 \\ 1 & -2 & -1 \end{array} \right| - 1 \cdot \left| \begin{array}{ccc} 1 & 1 & 2 \\ 1 & 1 & -2 \\ 0 & -2 & -1 \end{array} \right| + 3 \cdot \left| \begin{array}{ccc} 1 & 2 & 2 \\ 1 & -2 & -2 \\ 0 & 1 & -1 \end{array} \right| - 3 \cdot \left| \begin{array}{ccc} 1 & 2 & 1 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{array} \right|. \end{aligned}$$

1.3 Linear transformations and matrices

Definition 1.1 A linear transformation is a map $T : \mathbb{R}^m \rightarrow \mathbb{R}^n$ such that for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$ and all $\lambda, \mu \in \mathbb{R}$ we have:

$$T(\lambda \cdot \mathbf{x} + \mu \cdot \mathbf{y}) = \lambda \cdot T(\mathbf{x}) + \mu \cdot T(\mathbf{y})$$

Each $n \times m$ matrix \mathbf{A} defines a linear transformation by matrix multiplication

$$T_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \cdot \mathbf{x} = x_1 \mathbf{a}_1 + \cdots + x_m \mathbf{a}_m.$$

The image of the vector $\mathbf{x} \in \mathbb{R}^m$ is a linear combination of the column vectors of the matrix \mathbf{A} .

1.4 Complex matrices and vectors

Sometimes it is helpful to allow complex matrices and vectors (matrices whose elements are complex numbers). A complex matrix can be viewed as a combination of two real matrices:

$$\begin{aligned} \mathbf{A} &= \begin{pmatrix} a_{11} + ib_{11} & a_{12} + ib_{12} & \dots & a_{1m} + ib_{1m} \\ a_{21} + ib_{21} & a_{22} + ib_{22} & \dots & a_{2m} + ib_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} + ib_{n1} & a_{n2} + ib_{n2} & \dots & a_{nm} + ib_{nm} \end{pmatrix} \\ &= \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix} + i \cdot \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nm} \end{pmatrix} \end{aligned}$$

1.5 Matrix calculus

- 1a. $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$
- 1b. In general: $\mathbf{AB} \neq \mathbf{BA}$
- 2a. $(\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C})$
- 2b. $(\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{BC})$
- 3a. $\mathbf{A} + \mathbf{0} = \mathbf{A}$
- 3b. $\mathbf{AI} = I\mathbf{A} = \mathbf{A}$ (\mathbf{A} square)
- 4. $\mathbf{AB} = \mathbf{0} \nRightarrow \mathbf{A} = \mathbf{0}$ or $\mathbf{B} = \mathbf{0}$
- 5. $\mathbf{AB} = \mathbf{AC} \nRightarrow \mathbf{B} = \mathbf{C}$
- 6. $\lambda(\mathbf{A} + \mathbf{B}) = \lambda\mathbf{A} + \lambda\mathbf{B} \quad \lambda \in \mathbb{R}$
- 7. $\mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{AB} + \mathbf{AC}$
- 8. $(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{AC} + \mathbf{BC}$
- 9. $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$
- 10. $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$
- 11. $(\mathbf{A}^T)^T = \mathbf{A}$
- 12. $(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$
- 13. $(\mathbf{AB})^T = \mathbf{B}^T\mathbf{A}^T$
- 14. $(\mathbf{A}^{-1})^T = (\mathbf{A}^T)^{-1}$

For $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $ad - bc \neq 0$ is $\mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

All these definitions and results can be generalized to vectors and matrices with complex entries.

2 Eigenvalues and eigenvectors

2.1 Definition and determination

Definition 2.1 If \mathbf{A} is a real (or complex) $n \times n$ matrix, then a (complex) number λ is an eigenvalue of \mathbf{A} if there is a nonzero (complex) vector $\mathbf{x} \in \mathbb{C}^n$ such that

$$\boxed{\mathbf{A}\mathbf{x} = \lambda\mathbf{x}}$$

Then \mathbf{x} is an eigenvector of \mathbf{A} (associated with λ).

Remark: If \mathbf{x} is an eigenvector associated with the eigenvalue λ , then so is $\alpha\mathbf{x}$ for every real (and complex) number $\alpha \neq 0$.

$$\mathbf{A}(\alpha\mathbf{x}) = \alpha\mathbf{A}\mathbf{x} = \alpha(\lambda\mathbf{x}) = \lambda(\alpha\mathbf{x})$$

How to find eigenvalues? The equation can be written as

$$\begin{aligned} \mathbf{A}\mathbf{x} &= \lambda\mathbf{x} \\ \Leftrightarrow \mathbf{A}\mathbf{x} - \lambda\mathbf{I}\mathbf{x} &= \mathbf{0} \\ \Leftrightarrow (\mathbf{A} - \lambda\mathbf{I})\mathbf{x} &= \mathbf{0} \end{aligned}$$

This is a homogeneous system of linear equations. It has a solution $\mathbf{x} \neq \mathbf{0}$ if and only if the matrix $(\mathbf{A} - \lambda\mathbf{I})$ is singular which means that its determinant equals to 0.

$$\boxed{(\mathbf{A} - \lambda\mathbf{I}) \text{ singular} \Leftrightarrow \underbrace{\det(\mathbf{A} - \lambda\mathbf{I})}_{p_A(\lambda)} = 0}$$

$p_A(\lambda) = 0$ is called the characteristic equation of \mathbf{A} . The function $p_A(\lambda)$ is a polynomial of degree n in λ , called the characteristic polynomial of \mathbf{A} .

Determination of the eigenvalues and eigenvectors

1. The polynomial equation $p_A(\lambda) = 0$ has always n complex solutions (counted with multiplicity) and may have no real solutions. If $\lambda_1, \dots, \lambda_r \in \mathbb{C}$ are the pairwise distinct solutions (the eigenvalues of \mathbf{A}) with the multiplicities k_1, \dots, k_r then the characteristic polynomial can be written as

$$p_A(\lambda) = (\lambda_1 - \lambda)^{k_1} (\lambda_2 - \lambda)^{k_2} \dots (\lambda_r - \lambda)^{k_r}.$$

The multiplicity k_i of the zero λ_i is called algebraic multiplicity of the eigenvalue λ_i . Generally, the determination of the (exact) zeros is impossible for $n \geq 5$ and we have to use numerical methods.

2. For each eigenvalue λ_i ($1 \leq i \leq r$) we compute the so-called eigenspace for λ_i

$$V(\lambda_i) = \{ \mathbf{x} \in \mathbb{C}^n \mid (\mathbf{A} - \lambda_i \mathbf{I}) \mathbf{x} = \mathbf{0} \}.$$

The dimension of the vector space $V(\lambda_i)$ is called the geometric multiplicity of the eigenvalue λ_i .

Example 2.1

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -1 & 4 \end{pmatrix}$$

- $p_A(\lambda) = -\lambda^3 + 4\lambda^2 - \lambda - 6 = (\lambda + 1) \cdot (-\lambda^2 + 5\lambda - 6) = -(\lambda + 1) \cdot (\lambda - 2) \cdot (\lambda - 3)$
- *Zeros of the characteristic polynomial: $\lambda_1 = -1$, $\lambda_2 = 2$ and $\lambda_3 = 3$ (all of algebraic multiplicity 1)*

•

$$\left[\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -1 & 4 \end{pmatrix} - (-1) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right] \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \mathbf{x}^{(1)} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

and $V(-1) = \{ t \cdot \mathbf{x}^{(1)} \mid t \in \mathbb{R} \}$ with geometric multiplicity 1.

•

$$\left[\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -1 & 4 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right] \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \mathbf{x}^{(2)} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$$

and $V(2) = \{ t \cdot \mathbf{x}^{(2)} \mid t \in \mathbb{R} \}$ with geometric multiplicity 1.

•

$$\left[\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -1 & 4 \end{pmatrix} - 3 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right] \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \mathbf{x}^{(3)} = \begin{pmatrix} 1 \\ 3 \\ 9 \end{pmatrix}$$

and $V(3) = \{ t \cdot \mathbf{x}^{(3)} \mid t \in \mathbb{R} \}$ with geometric multiplicity 1.

Definition 2.2 *The spectral radius of a quadratic matrix A is the real number*

$$\rho(A) := \max\{|\lambda_1|, \dots, |\lambda_r|\}.$$

2.2 *Generalized Eigenvectors*

To solve some interesting problems we have to generalize the notion of eigenvectors.

Definition 2.3 A vector $\mathbf{x} \in \mathbb{C}^n$ is called generalized eigenvector of degree $l \in \mathbb{N}$ associated to the eigenvalue λ of \mathbf{A} , if

$$(\mathbf{A} - \lambda \mathbf{I})^l \mathbf{x} = \mathbf{0} \quad \text{and} \quad (\mathbf{A} - \lambda \mathbf{I})^{l-1} \mathbf{x} \neq \mathbf{0}.$$

Of course, an eigenvector is a generalized eigenvector of degree 1.

Example 2.2 The matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

has the eigenvalue 1 of (algebraic) multiplicity 3 with $\dim V(1) = 1$ (geometric multiplicity). We have:

$$\begin{aligned} (\mathbf{A} - \mathbf{I}) \mathbf{e}_1 &= \mathbf{0} & (\mathbf{A} - \mathbf{I}) \mathbf{e}_2 &= \mathbf{e}_1 & (\mathbf{A} - \mathbf{I})^2 \mathbf{e}_2 &= \mathbf{0} \\ (\mathbf{A} - \mathbf{I}) \mathbf{e}_3 &= \mathbf{e}_1 + \mathbf{e}_2 & (\mathbf{A} - \mathbf{I})^2 \mathbf{e}_3 &= \mathbf{e}_1 & (\mathbf{A} - \mathbf{I})^3 \mathbf{e}_3 &= \mathbf{0} \end{aligned}$$

This means, that \mathbf{e}_1 is an eigenvector, \mathbf{e}_2 is a generalized eigenvector of degree 2 and \mathbf{e}_3 is a generalized eigenvector of degree 3.

Theorem 2.1 Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a complex (or real) matrix with

$$p_A(\lambda) = (\lambda_1 - \lambda)^{k_1} (\lambda_2 - \lambda)^{k_2} \dots (\lambda_r - \lambda)^{k_r}.$$

- Let λ be an eigenvalue of \mathbf{A} of (algebraic) multiplicity l . Then there exist l linearly independent generalized eigenvectors (of degree $\leq l$). This means:

$$\dim \{ \mathbf{x} \in \mathbb{C}^n \mid (\mathbf{A} - \lambda \mathbf{I})^l \mathbf{x} = \mathbf{0} \} = l.$$

- Generalized eigenvectors associated to pairwise different eigenvalues of \mathbf{A} are linearly independent.
- There exists a basis $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n$ of \mathbb{C}^n consisting of generalized eigenvectors of \mathbf{A} . If \mathbf{P} is the matrix with this basis as the columns, then

$$\mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \begin{pmatrix} \boxed{\mathbf{A}_1} & & & \mathbf{0} \\ & \boxed{\mathbf{A}_2} & & \\ & & \ddots & \\ \mathbf{0} & & & \boxed{\mathbf{A}_r} \end{pmatrix}$$

with $\mathbf{A}_i \in \mathbb{C}^{k_i \times k_i}$ for all $i = 1, 2, \dots, r$.

Let us have a look at the case $n = 2$ and $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

1. Characteristic polynomial:

$$\begin{aligned} p_A(\lambda) &= \det \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix} \\ &= \underbrace{\lambda^2 - (a + d)\lambda + ad - bc}_{=:tr(A)} = \underbrace{(a + d)\lambda + ad - bc}_{=\det(A)} = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \end{aligned}$$

$$\text{with } \lambda_{1,2} = \frac{a + d}{2} \pm \sqrt{\frac{(a + d)^2}{4} - \det(A)}.$$

2. For each λ_i ($i = 1, 2$) we solve the linear system

$$\begin{pmatrix} a - \lambda_i & b \\ c & d - \lambda_i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

We have four different cases:

1. $\lambda_1, \lambda_2 \in \mathbb{R}, \lambda_1 \neq \lambda_2$

$$\text{Example: } \mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

We have $p_A(\lambda) = (1 - \lambda)^2 - 4 = (\lambda + 1)(\lambda - 3)$ (two different eigenvalues of algebraic multiplicity 1). A direct calculation shows, that $\dim V(-1) = 1$ and $\dim V(3) = 1$ and the geometric multiplicity are (of all eigenvalues) equal to the algebraic multiplicity.

2. $\lambda = \lambda_1 = \lambda_2 \in \mathbb{R}$ with $\dim V(\lambda) = 2$

$$\text{Example: } \mathbf{A} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

We have $p_A(\lambda) = (2 - \lambda)^2$ (one eigenvalue of algebraic multiplicity 2). A direct calculation shows, that $\dim V(2) = 2$ and the geometric multiplicity (of the eigenvalue 2) is equal to the algebraic multiplicity.

3. $\lambda = \lambda_1 = \lambda_2 \in \mathbb{R}$ with $\dim V(\lambda) = 1$

$$\text{Example: } \mathbf{A} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$$

We have $p_A(\lambda) = (2 - \lambda)^2$ (one eigenvalue of algebraic multiplicity 2). A direct calculation shows, that $\dim V(2) = 1$ and the geometric multiplicity of the eigenvalue 2 is different of the algebraic multiplicity.

4. $\lambda_2 = \overline{\lambda_1} \in \mathbb{C} - \mathbb{R}$

$$\text{Example: } \mathbf{A} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \text{ with } \phi \neq k\pi$$

We have $p_A(\lambda) = (\lambda - \cos \phi)^2 + \sin^2 \phi = \lambda^2 - 2\lambda \cos \phi + 1$ with the two different complex zeroes $\lambda_{1,2} = \cos \phi \pm i \sin \phi$.

3 Diagonalization

Let \mathbf{A} and \mathbf{P} be $n \times n$ matrices with \mathbf{P} invertible. Then \mathbf{A} and $\mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ have the same eigenvalues (because they have the same characteristic polynomial).

Definition 3.1 An $n \times n$ matrix \mathbf{A} is diagonalizable if there is an invertible matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D}.$$

Two natural questions:

1. Which square matrices are diagonalizable?
2. If \mathbf{A} is diagonalizable, how do we find the matrix \mathbf{P} ?

Theorem 3.1 An $n \times n$ matrix \mathbf{A} is diagonalizable if and only if it has a set of n linearly independent eigenvectors $\mathbf{p}_1, \dots, \mathbf{p}_n$. In this case,

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix},$$

where \mathbf{P} is the matrix with $\mathbf{p}_1, \dots, \mathbf{p}_n$ as its columns, and $\lambda_1, \dots, \lambda_n$ are the corresponding eigenvalues.

Proof: We prove only one direction of the statement:

\mathbf{A} has n linearly independent eigenvectors $\implies \mathbf{A}$ is diagonalizable.

Let $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n$ be the n linearly independent eigenvectors of \mathbf{A} with corresponding eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$. We form the matrix

$$\mathbf{P} = \begin{pmatrix} | & | & & | \\ \mathbf{p}_1 & \mathbf{p}_2 & \dots & \mathbf{p}_n \\ | & | & & | \end{pmatrix}$$

with the eigenvectors of \mathbf{A} as the columns. Then

$$\mathbf{AP} = \begin{pmatrix} | & | & & | \\ \mathbf{Ap}_1 & \mathbf{Ap}_2 & \dots & \mathbf{Ap}_n \\ | & | & & | \end{pmatrix}$$

the column vectors of \mathbf{AP} are the vectors $\mathbf{Ap}_1, \mathbf{Ap}_2, \dots, \mathbf{Ap}_n$. Using the

property of eigenvectors, we get

$$\begin{aligned}
 \mathbf{AP} &= \begin{pmatrix} | & | & | & | \\ \mathbf{Ap}_1 & \mathbf{Ap}_2 & \dots & \mathbf{Ap}_n \\ | & | & & | \end{pmatrix} \\
 &= \begin{pmatrix} | & | & | & | \\ \lambda_1 \mathbf{p}_1 & \lambda_2 \mathbf{p}_2 & \dots & \lambda_n \mathbf{p}_n \\ | & | & & | \end{pmatrix} \\
 &= \begin{pmatrix} | & | & | & | \\ \mathbf{p}_1 & \mathbf{p}_2 & \dots & \mathbf{p}_n \\ | & | & & | \end{pmatrix} \begin{pmatrix} \lambda_1 & & & 0 \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{pmatrix} \\
 &= \mathbf{PD}.
 \end{aligned}$$

where \mathbf{D} is the diagonal matrix with diagonal entries equal to the eigenvalues of \mathbf{A} . The matrix \mathbf{P} has maximal rank (and is invertible), because the column vectors are linearly independent. Hence the equation $\mathbf{AP} = \mathbf{PD}$ is equivalent to $\mathbf{P}^{-1}\mathbf{AP} = \mathbf{D}$.

□

Example 3.1 The matrix $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$ has the eigenvalues and eigenvectors

$$\begin{aligned}
 \lambda_1 &= 2 & \mathbf{p}_1 &= \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\
 \lambda_2 &= 3 & \mathbf{p}_2 &= \begin{pmatrix} 1 \\ 2 \end{pmatrix}
 \end{aligned}$$

Hence $\mathbf{P} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$, $\mathbf{P}^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$ and:

$$\mathbf{P}^{-1}\mathbf{AP} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$

Many matrices encountered in economics are (real) symmetric and for these matrices we have the following important result.

Theorem 3.2 (Spectral Theorem for symmetric matrices) *If the real $n \times n$ matrix \mathbf{A} is symmetric ($\mathbf{A} = \mathbf{A}^T$), then:*

1. *All n eigenvalues $\lambda_1, \dots, \lambda_n$ are real.*
2. *Eigenvectors that correspond to different eigenvalues are orthogonal.*
3. *There exists an orthogonal and real matrix \mathbf{P} ($\mathbf{P}^{-1} = \mathbf{P}^T$) such that*

$$\mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}.$$

The columns $\mathbf{p}_1, \dots, \mathbf{p}_n$ of the matrix \mathbf{P} are eigenvectors of unit length corresponding to the eigenvalues $\lambda_1, \dots, \lambda_n$.

Proof: Let \mathbf{A} be a real and symmetric $n \times n$ matrix.

1. Let $\mathbf{A}\mathbf{p}_i = \lambda_i \mathbf{p}_i$. By complex conjugation of this equation (complex conjugate all entries of the vector and matrix, but keep in mind that \mathbf{A} has only real entries) we get

$$\overline{\mathbf{A}\mathbf{p}_i} = \overline{\mathbf{A}\overline{\mathbf{p}_i}} = \mathbf{A}\overline{\mathbf{p}_i} = \overline{\lambda_i \mathbf{p}_i}$$

and

$$\lambda_i \mathbf{p}_i^T \overline{\mathbf{p}_i} = (\mathbf{A}\mathbf{p}_i)^T \overline{\mathbf{p}_i} = \mathbf{p}_i^T \mathbf{A}^T \overline{\mathbf{p}_i} = \mathbf{p}_i^T \mathbf{A} \overline{\mathbf{p}_i} = \mathbf{p}_i^T \overline{\lambda_i \mathbf{p}_i} = \overline{\lambda_i} \mathbf{p}_i^T \overline{\mathbf{p}_i}$$

Because $\mathbf{p}_i^T \overline{\mathbf{p}_i} = \|\mathbf{p}_i\|^2 \neq 0$, we have $\lambda_i = \overline{\lambda_i}$ and λ_i must be a real number.

2. Let $\mathbf{A}\mathbf{p}_i = \lambda_i \mathbf{p}_i$ and $\mathbf{A}\mathbf{p}_j = \lambda_j \mathbf{p}_j$ with $\lambda_i \neq \lambda_j$. Then

$$\begin{aligned} \lambda_i \mathbf{p}_i^T \mathbf{p}_j &= (\mathbf{A}\mathbf{p}_i)^T \mathbf{p}_j \\ &= \mathbf{p}_i^T \mathbf{A}^T \mathbf{p}_j \\ &= \mathbf{p}_i^T (\mathbf{A}^T \mathbf{p}_j) \\ &= \mathbf{p}_i^T (\mathbf{A}\mathbf{p}_j) \quad \text{because } \mathbf{A} = \mathbf{A}^T \\ &= \mathbf{p}_i^T \lambda_j \mathbf{p}_j \\ &= \lambda_j \mathbf{p}_i^T \mathbf{p}_j \end{aligned}$$

or

$$\lambda_i (\mathbf{p}_i^T \mathbf{p}_j) = \lambda_j (\mathbf{p}_i^T \mathbf{p}_j)$$

and because $\lambda_i \neq \lambda_j$, the scalar product of \mathbf{p}_i and \mathbf{p}_j must be zero: $\mathbf{p}_i^T \mathbf{p}_j = \mathbf{p}_i \bullet \mathbf{p}_j = 0$. Hence the two eigenvectors are orthogonal.

3. We give the proof of part 3 only for the case that all eigenvalues $\lambda_1, \dots, \lambda_n$ are (pairwise) different (and real by part 1). In this case, the corresponding eigenvectors $\mathbf{p}'_1, \dots, \mathbf{p}'_n$ are orthogonal (by part 2) and hence linearly independent. Now choose for $i = 1, \dots, n$ an eigenvector of length 1 by

$$\mathbf{p}_i := \frac{1}{\|\mathbf{p}'_i\|} \mathbf{p}'_i$$

It is easy to show, that

$$\mathbf{p}_i^T \mathbf{p}_j = \mathbf{p}_i \bullet \mathbf{p}_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

The matrix

$$\mathbf{P} = \begin{pmatrix} | & | & & | \\ \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \\ | & | & & | \end{pmatrix}$$

is an orthogonal matrix, because

$$\begin{aligned} \mathbf{P}^T \mathbf{P} &= \begin{pmatrix} - & \mathbf{p}_1^T & - \\ - & \mathbf{p}_2^T & - \\ \dots & & \\ - & \mathbf{p}_n^T & - \end{pmatrix} \begin{pmatrix} | & | & & | \\ \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \\ | & | & & | \end{pmatrix} \\ &= \begin{pmatrix} \mathbf{p}_1^T \mathbf{p}_1 & \mathbf{p}_1^T \mathbf{p}_2 & \cdots & \mathbf{p}_1^T \mathbf{p}_n \\ \mathbf{p}_2^T \mathbf{p}_1 & \mathbf{p}_2^T \mathbf{p}_2 & \cdots & \mathbf{p}_2^T \mathbf{p}_n \\ \dots & \dots & \ddots & \dots \\ \mathbf{p}_n^T \mathbf{p}_1 & \mathbf{p}_n^T \mathbf{p}_2 & \cdots & \mathbf{p}_n^T \mathbf{p}_n \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \dots & \dots & \ddots & \dots \\ 0 & 0 & \cdots & 1 \end{pmatrix}. \end{aligned}$$

Hence we have $\mathbf{P}^T = \mathbf{P}^{-1}$

□

Example 3.2 The matrix $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ is symmetric and has the eigenvalues $\lambda_1 = -1$ and $\lambda_2 = 3$. The corresponding eigenspaces are

$$V(-1) = t_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} \quad V(3) = t_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

The two eigenspaces are orthogonal, because the scalar product of the two spanning vectors is 0. In order to construct the matrix \mathbf{P} , we have to use eigenvectors of length 1 (unit vectors). A spanning vector of length 1 for $V(-1)$ is

$$\mathbf{p}_1 = \frac{1}{\sqrt{1^2 + (-1)^2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

and for $V(3)$ is

$$\mathbf{p}_2 = \frac{1}{\sqrt{1^2 + 1^2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Hence $\mathbf{P} = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ is an orthogonal matrix, because

$\mathbf{P}^{-1} = \mathbf{P}^T = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ and

$$\mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix}$$

4 Quadratic forms and matrices

Definition 4.1 A quadratic form in n variables $\mathbf{x} = (x_1, \dots, x_n)^T$ is a function of the form

$$Q_{\mathbf{A}}(\mathbf{x}) = \sum_{i,j=1}^n a_{ij}x_i x_j = \mathbf{x}^T \mathbf{A} \mathbf{x}$$

where $\mathbf{A} = (a_{ij})$ is an $n \times n$ matrix.

Quadratic forms are important examples of multi-variate functions and $Q_{\mathbf{A}}$ is a homogeneous function of degree 2 in n variables.

Example 4.1 $Q(x_1, x_2) = x_1^2 + x_1 x_2 + x_2^2$ is a quadratic form and can be written as

$$\begin{aligned} (x_1 \ x_2) \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} &= (x_1 \ x_2) \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\ &= (x_1 \ x_2) \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\ &= \dots \end{aligned}$$

Unfortunaetly, there is no unique way to write a given quadratic form in matrix term. But we may resolve this situation by **always choosing \mathbf{A} to be symmetric!**

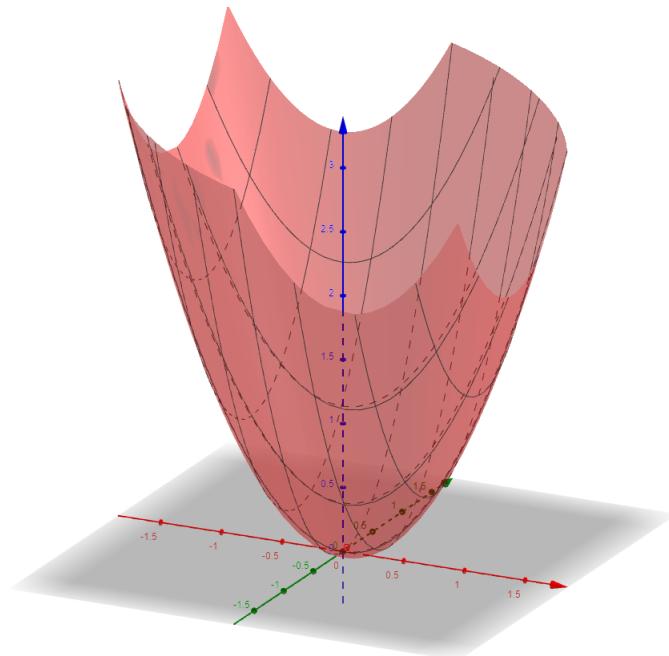
Exercise 4.1 Let $Q(\mathbf{x}) = \mathbf{x}^T \mathbf{B} \mathbf{x}$ where \mathbf{B} is not symmetric. Let $\mathbf{A} = (\mathbf{B} + \mathbf{B}^T)/2$ and $\mathbf{C} = (\mathbf{B} - \mathbf{B}^T)/2$. Show that \mathbf{A} is symmetric and evaluate both $\mathbf{x}^T \mathbf{A} \mathbf{x}$ and $\mathbf{x}^T \mathbf{C} \mathbf{x}$.

Example 4.2

- The quadratic form $Q(x_1, x_2) = x_1^2 + x_1x_2 + x_2^2$ can be written as

$$\left(x_1 + \frac{x_2}{2}\right)^2 + \frac{3}{4}x_2^2.$$

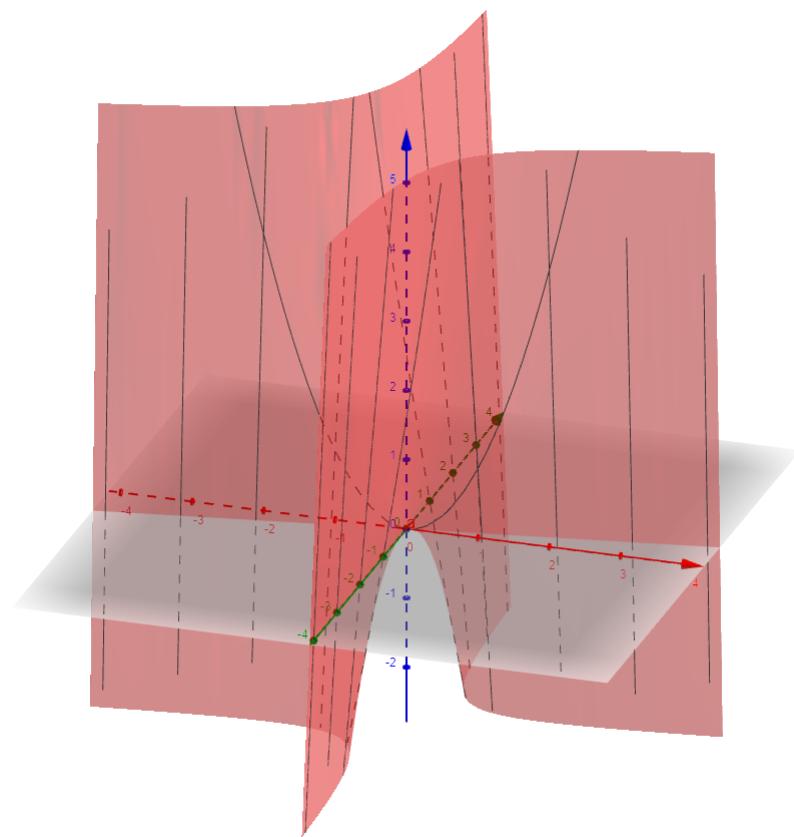
As a sum of squares, it can not be negative and can only be zero when $x_1 + \frac{x_2}{2} = 0$ and $x_2 = 0$, or $x_1 = x_2 = 0$. We call this a positive definite quadratic form.



- The quadratic form $Q(x_1, x_2) = x_1^2 + 2x_1x_2 + x_2^2 = (x_1 + x_2)^2$ is always non-negative, but it is zero whenever $x_1 + x_2 = 0$ or $x_1 = -x_2$ (it is zero for non-zero values of the variables). We call this a positive semi-definite quadratic form.



- The quadratic form $Q(x_1, x_2) = x_1^2 - 6x_1x_2 = (x_1 - 3x_2)^2 - 9x_2^2$ can be positive or negative. We call this an indefinite quadratic form.



Definition 4.2 A quadratic form $Q_{\mathbf{A}}(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$, as well as its associated symmetric matrix \mathbf{A} , is said to be

$$\begin{array}{ll} \text{positive definite} & : \iff Q_{\mathbf{A}}(\mathbf{x}) > 0 \\ \text{positive semi-definite} & : \iff Q_{\mathbf{A}}(\mathbf{x}) \geq 0 \\ \text{negative definite} & : \iff Q_{\mathbf{A}}(\mathbf{x}) < 0 \\ \text{negative semi-definite} & : \iff Q_{\mathbf{A}}(\mathbf{x}) \leq 0 \end{array}$$

for all $\mathbf{x} \neq \mathbf{0}$.

The quadratic form is called indefinite, if there are vectors \mathbf{a} and \mathbf{b} with $Q_{\mathbf{A}}(\mathbf{a}) < 0$ and $Q_{\mathbf{A}}(\mathbf{b}) > 0$.

It is easy to see, that for $i = 1, \dots, n$:

$$Q_{\mathbf{A}}(\mathbf{e}_i) = a_{ii}.$$

The technique used in the examples to examine the sign of the quadratic form is known as **completing the squares**. Let us examine the possible signs of a quadratic form $Q_{\mathbf{A}}(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ using the eigenvalues/eigenvectors of the **symmetric** matrix \mathbf{A} .

By the **Spectral Theorem for symmetric matrices** we can choose a matrix \mathbf{P} of eigenvectors $\mathbf{p}_1, \dots, \mathbf{p}_n$ of \mathbf{A} , such that $\mathbf{P}^{-1} = \mathbf{P}^T$ and

$$\mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \mathbf{P}^T \mathbf{A} \mathbf{P} = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix},$$

where $\lambda_1, \dots, \lambda_n$ are the eigenvalues of \mathbf{A} .

Now let $\mathbf{y} := \mathbf{P}^T \mathbf{x}$. This defines new variables y_1, \dots, y_n as linear combinations of the old ones

$$y_i = \sum_{j=1}^n p_{ji} x_j.$$

Further, since $\mathbf{P} \mathbf{P}^T = \mathbf{I}$ we have $\mathbf{x} = \mathbf{P} \mathbf{y}$ and

$$\begin{aligned} Q_{\mathbf{A}}(\mathbf{x}) &= \mathbf{x}^T \mathbf{A} \mathbf{x} \\ &= (\mathbf{P} \mathbf{y})^T \mathbf{A} (\mathbf{P} \mathbf{y}) \\ &= \mathbf{y}^T \mathbf{P}^T \mathbf{A} \mathbf{P} \mathbf{y} \\ &= \mathbf{y}^T (\mathbf{P}^T \mathbf{A} \mathbf{P}) \mathbf{y} \\ &= \mathbf{y}^T \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} \mathbf{y} \\ &= \sum_{i=1}^n \lambda_i y_i^2. \end{aligned}$$

Thus we completed the squares. The quadratic form is expressed in terms of the new variables as a sum/difference of pure square terms. To determine the sign of the quadratic form, we simply inspect the signs of the eigenvalues of \mathbf{A} .

Theorem 4.1 (Sylvester)

If \mathbf{A} is symmetric, then the quadratic form $Q_{\mathbf{A}}(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ is

$$\begin{array}{ll} \text{positive definite} & \iff \forall \lambda_i > 0 \\ \text{positive semi-definite} & \iff \forall \lambda_i \geq 0 \\ \text{negative definite} & \iff \forall \lambda_i < 0 \\ \text{negative semi-definite} & \iff \forall \lambda_i \leq 0 \\ \text{indefinite} & \iff \exists \lambda_i > 0 \text{ and } \lambda_j < 0. \end{array}$$

Checking eigenvalues can be tedious. There is a convenient condition on the matrix \mathbf{A} in terms of certain sub-determinants, which can be used to identify the definiteness of \mathbf{A} .

An arbitrary principal minor of order r of an $n \times n$ matrix \mathbf{A} is the determinant of a matrix obtained by deleting $n - r$ rows and $n - r$ columns of \mathbf{A} such that if the i th row (column) is selected then so is the i th column (row). A principal minor is called a leading principal minor of order r if it consists of the first (leading) r rows and columns of \mathbf{A} .

Example 4.3 Let

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

The principal minors of \mathbf{A} are $\det(\mathbf{A})$, $\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, $\det \begin{pmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{pmatrix}$, $\det \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix}$, a_{11} , a_{22} and a_{33} .

The leading principal minors are a_{11} , $\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ and $\det(\mathbf{A})$.

Theorem 4.2

Let \mathbf{A} be a symmetric $n \times n$ matrix. We denote by D_k the leading principal minor of order k and let Δ_k denote an arbitrary principal minor of order k . Then the quadratic form $Q_{\mathbf{A}}(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ is

$$\begin{array}{ll} \text{positive definite} & \iff D_k > 0 \text{ for } k = 1, \dots, n \\ \text{positive semi-definite} & \iff \Delta_k \geq 0 \text{ for all principal minors of order } k = 1, \dots, n \\ \text{negative definite} & \iff (-1)^k D_k > 0 \text{ for } k = 1, \dots, n \\ \text{negative semi-definite} & \iff (-1)^k \Delta_k \geq 0 \text{ for all principal minors of order } k = 1, \dots, n. \end{array}$$

Special case: $n = 2$ The quadratic form

$$Q_{\mathbf{A}}(\mathbf{x}) = (x_1 \ x_2) \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$$

- is positive definite if $a_{11} > 0$ and $\det \mathbf{A} = a_{11}a_{22} - a_{12}^2 > 0$;
- is positive semi-definite if $a_{11} \geq 0$, $a_{22} \geq 0$ and $\det \mathbf{A} = a_{11}a_{22} - a_{12}^2 \geq 0$;
- is negative definite if $a_{11} < 0$ and $\det \mathbf{A} = a_{11}a_{22} - a_{12}^2 > 0$;
- is negative semi-definite if $a_{11} \leq 0$, $a_{22} \leq 0$ and $\det \mathbf{A} = a_{11}a_{22} - a_{12}^2 \geq 0$.