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1 Matrices and vectors

1.1 Real Vectors

• n-dimensional space Rn

• elements x,y ∈ Rn are called n-vectors

x =


x1
x2
...
xn

 =
(
x1 x2 . . . xn

)T
and y =


y1
y2
...
yn


• scalar product and norm:

x • y = < x,y > = x1y1 + x2y2 + · · ·+ xnyn

||x|| =
√
x21 + x22 + · · ·+ x2n

x • y = ||x|| · ||y|| · cos∠(x,y)

• x1,x2, . . . ,xk ∈ Rn

– If a1, a2, . . . , ak ∈ R, then z = a1x1+a2x2+· · ·+akxk is called a linear combination
of x1,x2, . . . ,xk.

– x1,x2, . . . ,xk are called linearly dependent, if there exist b1, b2, . . . , bk ∈ R such
that b1x1 + b2x2 + · · ·+ bkxk = 0 and not all bj = 0.

– x1,x2, . . . ,xk are called linearly independent, if a linear combination of the
zero vector

b1x1 + b2x2 + · · ·+ bkxk = 0

is possible only with b1 = b2 = · · · = bk = 0.

1.2 Real Matrices

a1, a2, . . . , am ∈ Rn

a1 =


a11
a21
...
an1

 , a2 =


a12
a22
...
an2

 , . . . , am =


a1m
a2m

...
anm

 → A =


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
...

...
an1 an2 . . . anm


is called an n×m matrix.

Notation: A ∈ Rn×m
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• The inverse matrix A−1 of the n× n matrix A = (aij) is defined by

A−1 ·A = A ·A−1 = In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

• For the n×n matrix A let Aij denote the (n−1)×(n−1) submatrix of A generated
by cancelling the i-th row and the j-th column of A. Then the determinant det(A)
is given (recursively) by

det(A) = |A| = a11 det A11 − a12 det A12 + · · ·+ (−1)n+1a1n det A1n

• det(A ·B) = det(A) · det(B)

Example 1.1∣∣∣∣∣∣∣∣
1 1 3 3
1 2 1 2
1 −2 1 −2
0 1 −2 −1

∣∣∣∣∣∣∣∣

= 1 ·

∣∣∣∣∣∣
2 1 2
−2 1 −2

1 −2 −1

∣∣∣∣∣∣− 1 ·

∣∣∣∣∣∣
1 1 2
1 1 −2
0 −2 −1

∣∣∣∣∣∣+ 3 ·

∣∣∣∣∣∣
1 2 2
1 −2 −2
0 1 −1

∣∣∣∣∣∣− 3 ·

∣∣∣∣∣∣
1 2 1
1 −2 1
0 1 −2

∣∣∣∣∣∣ .
1.3 Linear transformations and matrices

Definition 1.1 A linear transformation is a map T : Rm → Rn such that for all x,y ∈
Rm and all λ, µ ∈ R we have:

T (λ · x + µ · y) = λ · T (x) + µ · T (y)

Each n×m matrix A defines a linear transformation by matrix multiplication

TA(x) = A · x = x1a1 + · · ·+ xmam.

The image of the vector x ∈ Rm is a linear combination of the column vectors of the
matrix A.
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1.4 Complex matrices and vectors

Sometimes it is helpful to allow complex matrices and vectors (matrices whose elements
are complex numbers). A complex matrix can be viewed as a combination of two real
matrices:

A =


a11 + ib11 a12 + ib12 . . . a1m + ib1m
a21 + ib21 a22 + ib22 . . . a2m + ib2m

...
...

...
...

an1 + ibn1 an2 + ibn2 . . . anm + ibnm



=


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
...

...
an1 an2 . . . anm

+ i ·


b11 b12 . . . b1m
b21 b22 . . . b2m
...

...
...

...
bn1 bn2 . . . bnm


1.5 Matrix calculus

1a. A + B = B + A 1b. In general: AB 6= BA
2a. (A + B) + C = A + (B + C) 2b. (AB)C = A(BC)
3a. A + 0 = A 3b. AI = IA = A ( A square )

4. AB = 0 6⇒ A = 0 or B = 0
5. AB = AC 6⇒ B = C

6. λ(A + B) = λA + λB λ ∈ R
7. A(B + C) = AB + AC
8. (A + B)C = AC + BC

9. (A−1)−1 = A
10. (AB)−1 = B−1A−1

11. (AT )T = A
12. (A + B)T = AT + BT

13. (AB)T = BTAT

14. (A−1)T = (AT )−1

For A =

(
a b
c d

)
with ad− bc 6= 0 is A−1 =

1

ad− bc

(
d −b
−c a

)
.

All these definitions and results can be generalized to vectors and matrices with complex
entries.
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2 Eigenvalues and eigenvectors

2.1 Definition and determination

Definition 2.1 If A is a real (or complex) n× n matrix, then a (complex) number λ is
an eigenvalue of A if there is a nonzero (complex) vector x ∈ Cn such that

Ax = λx

Then x is an eigenvector of A (associated with λ).

Remark: If x is an eigenvector associated with the eigenvalue λ, then so is αx for every
real (and complex) number α 6= 0.

A (α x) = α A x = α (λ x) = λ (α x)

How to find eigenvalues? The equation can be written as

A x = λ x
⇔ A x− λ I x = 0
⇔ (A− λ I) x = 0

This is a homogeneous system of linear equations. It has a solution x 6= 0 if and only if
the matrix (A− λ I) is singular which means that its determinant equals to 0.

(A− λ I) singular ⇔ det(A− λ I)︸ ︷︷ ︸
pA(λ)

= 0

pA(λ) = 0 is called the characteristic equation of A. The function pA(λ) is a polynomial
of degree n in λ, called the characteristic polynomial of A.

Determination of the eigenvalues and eigenvectors

1. The polynomial equation pA(λ) = 0 has always n complex solutions (counted with
multiplicity) and may have no real solutions. If λ1, . . . , λr ∈ C are the pairwise
distinct solutions (the eigenvalues of A) with the multiplicities k1, . . . , kr then the
characteristic polynomial can be written as

pA(λ) = (λ1 − λ)k1 (λ2 − λ)k2 . . . (λr − λ)kr .

The multiplicity ki of the zero λi is called algebraic multiplicity of the eigenvalue
λi. Generally, the determination of the (exact) zeros is impossible for n ≥ 5 and we
have to use numerical methods.
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2. For each eigenvalue λi (1 ≤ i ≤ r) we compute the so-called eigenspace for λi

V (λi) = { x ∈ Cn | (A− λiI) x = 0 }.

The dimension of the vector space V (λi) is called the geometric multiplicity of the
eigenvalue λi.

Example 2.1

A =

 0 1 0
0 0 1
−6 −1 4


• pA(λ) = −λ3 + 4λ2−λ−6 = (λ+ 1) · (−λ2 + 5λ−6) = −(λ+ 1) · (λ−2) · (λ−3)

• Zeros of the characteristic polynomial: λ1 = −1, λ2 = 2 and λ3 = 3 (all of algebraic
multiplicity 1)

•  0 1 0
0 0 1
−6 −1 4

− (−1)

 1 0 0
0 1 0
0 0 1

 ·
 x1

x2
x3

 =

 0
0
0

 → x(1) =

 1
−1

1


and V (−1) = { t · x(1) | t ∈ R } with geometric multiplicity 1.

•  0 1 0
0 0 1
−6 −1 4

− 2

 1 0 0
0 1 0
0 0 1

 ·
 x1

x2
x3

 =

 0
0
0

 → x(2) =

 1
2
4


and V (2) = { t · x(2) | t ∈ R } with geometric multiplicity 1.

•  0 1 0
0 0 1
−6 −1 4

− 3

 1 0 0
0 1 0
0 0 1

 ·
 x1

x2
x3

 =

 0
0
0

 → x(3) =

 1
3
9


and V (3) = { t · x(3) | t ∈ R } with geometric multiplicity 1.

Definition 2.2 The spectral radius of a quadratic matrix A is the real number

ρ(A) := max{|λ1|, . . . , |λr| }.
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2.2 *Generalized Eigenvectors*

To solve some interesting problems we have to generalize the notion of eigenvectors.

Definition 2.3 A vector x ∈ Cn is called generalized eigenvector of degree l ∈ N associ-
ated to the eigenvalue λ of A, if

(A− λI)l x = 0 and (A− λI)l−1 x 6= 0.

Of course, an eigenvector is a generalized eigenvector of degree 1.

Example 2.2 The matrix

A =

 1 1 1
0 1 1
0 0 1


has the eigenvalue 1 of (algebraic) multiplicity 3 with dimV (1) = 1 (geometric multiplic-
ity). We have:

(A− I) e1 = 0 (A− I) e2 = e1 (A− I)2 e2 = 0

(A− I) e3 = e1 + e2 (A− I)2 e3 = e1 (A− I)3 e3 = 0

This means, that e1 is an eigenvector, e2 is a generalized eigenvector of degree 2 and e3

is a generalized eigenvector of degree 3.

Theorem 2.1 Let A ∈ Cn×n be a complex (or real) matrix with

pA(λ) = (λ1 − λ)k1 (λ2 − λ)k2 . . . (λr − λ)kr .

• Let λ be an eigenvalue of A of (algebraic) multiplicity l. Then there exist l linearly
independent generalized eigenvectors (of degree ≤ l). This means:

dim{ x ∈ Cn | (A− λI)l x = 0 } = l.

• Generalized eigenvectors associated to pairwise different eigenvalues of A are linearly
independent.

• There exists a basis p1,p2, . . . ,pn of Cn consisting of generalized eigenvectors of A.
If P is the matrix with this basis as the columns, then

P−1 A P =


A1 0

A2

. . .

0 Ar


with Ai ∈ Cki×ki for all i = 1, 2, . . . , r.
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Let us have a look at the case n = 2 and A =

(
a b
c d

)
.

1. Characteristic polynomial:

pA(λ) = det

(
a− λ b
c d− λ

)
= λ2 − (a+ d)︸ ︷︷ ︸

=:tr(A)

λ+ ad− bc︸ ︷︷ ︸
=det(A)

= (λ1 − λ)(λ2 − λ)

with λ1,2 =
a+ d

2
±
√

(a+ d)2

4
− det(A) .

2. For each λi (i = 1, 2) we solve the linear system(
a− λi b
c d− λi

)(
x
y

)
=

(
0
0

)
We have four different cases:

1. λ1, λ2 ∈ R, λ1 6= λ2

Example: A =

(
1 2
2 1

)
We have pA(λ) = (1−λ)2−4 = (λ+1)(λ−3) (two different eigenvalues of algebraic
multiplicity 1). A direct calculation shows, that dimV (−1) = 1 and dimV (3) =
1 and the geometric multiplicitiy are (of all eigenvalues) equal to the algebraic
multiplicity.

2. λ = λ1 = λ2 ∈ R with dimV (λ) = 2

Example: A =

(
2 0
0 2

)
We have pA(λ) = (2− λ)2 (one eigenvalue of algebraic multiplicity 2). A direct cal-
culation shows, that dimV (2) = 2 and the geometric multiplicitiy (of the eigenvalue
2) is equal to the algebraic multiplicity.

3. λ = λ1 = λ2 ∈ R with dimV (λ) = 1

Example: A =

(
2 1
0 2

)
We have pA(λ) = (2− λ)2 (one eigenvalue of algebraic multiplicity 2). A direct cal-
culation shows, that dimV (2) = 1 and the geometric multiplicitiy of the eigenvalue
2 is different of the algebraic multiplicity.

4. λ2 = λ1 ∈ C− R

Example: A =

(
cosφ − sinφ
sinφ cosφ

)
with φ 6= kπ

We have pA(λ) = (λ − cosφ)2 + sin2 φ = λ2 − 2λ cosφ + 1 with the two different
complex zeroes λ1,2 = cosφ± i sinφ.
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3 Diagonalization

Let A and P be n × n matrices with P invertible. Then A and P−1AP have the same
eigenvalues (because they have the same characteristic polynomial).

Definition 3.1 An n × n matrix A is diagonalizable if there is an invertible matrix P
and a diagonal matrix D such that

P−1AP = D.

Two natural questions:

1. Which square matrices are diagonalizable?

2. If A is diagonalizable, how do we find the matrix P?

Theorem 3.1 An n×n matrix A is diagonalizable if and only if it has a set of n linearly
independent eigenvectors p1, . . . ,pn. In this case,

P−1AP =

 λ1 0
. . .

0 λn

 ,

where P is the matrix with p1, . . . ,pn as its columns, and λ1, . . . , λn are the corresponding
eigenvalues.

Proof: We prove only one direction of the statement:

A has n linearly independent eigenvectors =⇒ A is diagonalizable.

Let p1,p2, . . . ,pn be the n linearly independent eigenvectors of A with corre-
sponding eigenvalues λ1, λ2, . . . , λn. We form the matrix

P =

 | | |
p1 p2 . . . pn
| | |


with the eigenvectors of A as the columns. Then

AP =

 | | |
Ap1 Ap2 . . . Apn
| | |


the column vectors of AP are the vectors Ap1,Ap2, . . . ,Apn. Using the
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property of eigenvectors, we get

AP =

 | | |
Ap1 Ap2 . . . Apn
| | |


=

 | | |
λ1p1 λ2p2 . . . λnpn
| | |



=

 | | |
p1 p2 . . . pn
| | |




λ1 0
λ2

. . .

0 λn


= PD.

where D is the diagonal matrix with diagonal entries equal to the eigenvalues
of A. The matrix P has maximal rank (and is invertible), because the column
vectors are linearly independent. Hence the equation AP = PD is equivalent
to P−1AP = D.

2

Example 3.1 The matrix A =

(
1 1
−2 4

)
has the eigenvalues and eigenvectors

λ1 = 2 p1 =

(
1
1

)
λ2 = 3 p2 =

(
1
2

)

Hence P =

(
1 1
1 2

)
, P−1 =

(
2 −1
−1 1

)
and:

P−1AP =

(
2 −1
−1 1

)(
1 1
−2 4

)(
1 1
1 2

)
=

(
2 0
0 3

)
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Many matrices encountered in economics are (real) symmetric and for these matrices we
have the following important result.

Theorem 3.2 (Spectral Theorem for symmetric matrices) If the real n×n matrix
A is symmetric (A = AT ), then:

1. All n eigenvalues λ1, . . . , λn are real.

2. Eigenvectors that correspond to different eigenvalues are orthogonal.

3. There exists an orthogonal and real matrix P ( P−1 = PT ) such that

P−1AP =

 λ1 0
. . .

0 λn

 .

The columns p1, . . . ,pn of the matrix P are eigenvectors of unit length corresponding
to the eigenvalues λ1, . . . , λn.

Proof: Let A be a real and symmetric n× n matrix.

1. Let Api = λipi. By complex conjugation of this equation (complex
conjugate all entries of the vector and matix, but keep in mind that A
has only real entries) we get

Api = Api = Api = λipi

and

λip
T
i pi = (Api)

Tpi = pTi ATpi = pTi Api = pTi λipi = λip
T
i pi

Because pTi pi = ||pi||2 6= 0, we have λi = λi and λi must be a real
number.

2. Let Api = λipi and Apj = λjpj with λi 6= λj. Then

λi pTi pj = (Api)
Tpj

= pTi ATpj

= pTi (ATpj)

= pTi (Apj) because A = AT

= pTi λjpj

= λj pTi pj

or

λi (pTi pj) = λj (pTi pj)

and because λi 6= λj, the scalar product of pi and pj must be zero:
pTi pj = pi • pj = 0. Hence the two eigenvectors are orthogonal.



12

3. We give the proof of part 3 only for the case that all eigenvalues λ1, . . . , λn
are (pairwise) different (and real by part 1). In this case, the correspond-
ing eigenvectors p′1, . . . ,p

′
n are orthogonal (by part 2) and hence linearly

independent. Now choose for i = 1, . . . , n an eigenvector of length 1 by

pi :=
1

||p′i||
p′i

It is easy to show, that

pTi pj = pi • pj =

{
1 if i = j
0 if i 6= j

The matrix

P =

 | | |
p1 p2 . . . pn
| | |


is an orthogonal matrix, because

PTP =


− pT1 −
− pT2 −
· · ·

− pTn −


 | | |

p1 p2 · · · pn
| | |



=


pT1 p1 pT1 p2 · · · pT1 pn
pT2 p1 pT2 p2 · · · pT2 pn

· · · · · · . . . · · ·
pTnp1 pTnp2 · · · pTnpn



=


1 0 · · · 0
0 1 · · · 0

· · · · · · . . . · · ·
0 0 · · · 1

 .

Hence we have PT = P−1

2
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Example 3.2 The matrix A =

(
1 2
2 1

)
is symmetric and has the eigenvalues λ1 = −1

and λ2 = 3. The corresponding eigenspaces are

V (−1) = t1

(
1
−1

)
V (3) = t2

(
1
1

)
The two eigenspaces are orthogonal, because the scalar product of the two spanning vectors
is 0. In order to construct the matrix P, we have to use eigenvectors of length 1 (unit
vectors). A spanning vector of length 1 for V (−1) is

p1 =
1√

12 + (−1)1

(
1
−1

)
=

1√
2

(
1
−1

)
and for V (3) is

p2 =
1√

12 + 11

(
1
1

)
=

1√
2

(
1
1

)

Hence P =

(
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)
=

1√
2

(
1 1
−1 1

)
is an orthogonal matrix, because

P−1 = PT =
1√
2

(
1 −1
1 1

)
and

P−1AP =
1√
2

(
1 −1
1 1

)(
1 2
2 1

)
1√
2

(
1 1
−1 1

)
=

(
−1 0

0 3

)
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4 Quadratic forms and matrices

Definition 4.1 A quadratic form in n variables x = (x1, . . . , xn)T is a function of the
form

QA(x) =
n∑

i,j=1

aijxixj = xTAx

where A = (aij) is an n× n matrix.

Quadratic forms are important examples of multi-variate functions and QA is a homoge-
neous function of degree 2 in n variables.

Example 4.1 Q(x1, x2) = x21 + x1x2 + x22 is a quadratic form and can be written as

(x1 x2)

(
1 1
0 1

)(
x1
x2

)
= (x1 x2)

(
1 0
1 1

)(
x1
x2

)
= (x1 x2)

(
1 1/2

1/2 1

)(
x1
x2

)
= .....

Unfortunaetly, there is no unique way to write a given quadratic form in matrix term.
But we may resolve this situation by always choosing A to be symmetric!

Exercise 4.1 Let Q(x) = xTBx where B is not symmetric. Let A = (B + BT )/2 and
C = (B−BT )/2. Show that A is symmetric and evaluate both xTAx and xTCx.
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Example 4.2

• The quadratic form Q(x1, x2) = x21 + x1x2 + x22 can be written as(
x1 +

x2
2

)2
+

3

4
x22.

As a sum of squares, it can not be negative and can only be zero when x1 + x2
2

= 0
and x2 = 0, or x1 = x2 = 0. We call this a positive definite quadratic form.

• The quadratic form Q(x1, x2) = x21+2x1x2+x22 = (x1+x2)
2 is always non-negative,

but it is zero whenever x1 + x2 = 0 or x1 = −x2 (it is zero for non-zero values of
the variables). We call this a positive semi-definite quadratic form.
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• The quadratic form Q(x1, x2) = x21 − 6x1x2 = (x1 − 3x2)
2 − 9x22 can be positive or

negative. We call this an indefinite quadratic form.
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Definition 4.2 A quadratic form QA(x) = xTAx, as well as its associated symmetric
matrix A, is said to be

positive definite :⇐⇒ QA(x) > 0
positive semi-definite :⇐⇒ QA(x) ≥ 0

negative definite :⇐⇒ QA(x) < 0
negative semi-definite :⇐⇒ QA(x) ≤ 0

for all x 6= 0.

The quadratic form is called indefinite, if there are vectors a and b with QA(a) < 0 and
QA(b) > 0.

It is easy to see, that for i = 1, . . . , n:

QA(ei) = aii.

The technique used in the examples to examine the sign of the quadratic form is known
as completing the squares. Let us examine the possible signs of a quadratic form
QA(x) = xTAx using the eigenvalues/eigenvectors of the symmetric matrix A.

By the Spectral Theorem for symmetric matrices we can choose a matrix P of
eigenvectors p1, . . . ,pn of A, such that P−1 = PT and

P−1AP = PTAP =

 λ1 0
. . .

0 λn

 ,

where λ1, . . . , λn are the eigenvalues of A.

Now let y := PTx. This defines new variables y1, . . . , yn as linear combinations of the
old ones

yi =
n∑
j=1

pjixj.

Further, since PPT = I we have x = Py and

QA(x) = xTAx

= (Py)TA(Py)

= yTPTAPy

= yT (PTAP)y

= yT

 λ1 0
. . .

0 λn

y

=
n∑
i=1

λiy
2
i .
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Thus we completed the squares. The quadratic form is expressed in terms of the new
variables as a sum/difference of pure square terms. To determine the sign of the quadratic
form, we simply inspect the signs of the eigenvalues of A.

Theorem 4.1 (Sylvester)

If A is symmetric, then the quadratic form QA(x) = xTAx is

positive definite ⇐⇒ ∀ λi > 0
positive semi-definite ⇐⇒ ∀ λi ≥ 0

negative definite ⇐⇒ ∀ λi < 0
negative semi-definite ⇐⇒ ∀ λi ≤ 0

indefinite ⇐⇒ ∃ λi > 0 and λj < 0.

Checking eigenvalues can be tedious. There is a convenient condition on the matrix A in
terms of certain sub-determinants, which can be used to identify the definiteness of A.

An arbitrary principal minor of order r of an n × n matrix A is the determinant of a
matrix obtained by deleting n − r rows and n − r columns of A such that if the ith
row (column) is selected then so is the ith column (row). A principal minor is called a
leading principal minor of order r if it consists of the first (leading) r rows and columns
of A.

Example 4.3 Let

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


The principal minors of A are det(A), det

(
a11 a12
a21 a22

)
, det

(
a11 a13
a31 a33

)
, det

(
a22 a23
a32 a33

)
,

a11, a22 and a33.

The leading principal minors are a11, det

(
a11 a12
a21 a22

)
and det(A).

Theorem 4.2

Let A be a symmetric n × n matrix. We denote by Dk the leading principal minor of
order k and let ∆k denote an arbitrary principal minor of order k. Then the quadratic
form QA(x) = xTAx is

positive definite ⇐⇒ Dk > 0 for k = 1, . . . , n
positive semi-definite ⇐⇒ ∆k ≥ 0 for all principal minors of order k = 1, . . . , n

negative definite ⇐⇒ (−1)kDk > 0 for k = 1, . . . , n
negative semi-definite ⇐⇒ (−1)k∆k ≥ 0 for all principal minors of order k = 1, . . . , n.
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Special case: n = 2 The quadratic form

QA(x) = (x1 x2)

(
a11 a12
a12 a22

)(
x1
x2

)
= a11x

2
1 + 2a12x1x2 + a22x

2
2

• is positive definite if a11 > 0 and det A = a11a22 − a212 > 0;

• is positive semi-definite if a11 ≥ 0, a22 ≥ 0 and det A = a11a22 − a212 ≥ 0;

• is negative definite if a11 < 0 and det A = a11a22 − a212 > 0;

• is negative semi-definite if a11 ≤ 0, a22 ≤ 0 and det A = a11a22 − a212 ≥ 0.


