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1 Zahlenfolgen

1.1 Grundlegende Begriffe

Definition 1.1 Wird jeder natürlichen Zahl n(∈ N) genau eine reelle Zahl an(∈ R) zu-
geordnet, so bilden die Zahlen a1, a2, a3, . . . eine Zahlenfolge oder einfach Folge.

Schreibweise: {an} für a1, a2, a3, . . .

Graph von {an}: {(n, an) : n ∈ N}

Beispiel 1.1 Der Graph der Zahlenfolge 1, 2, 4, 2,−1, 0, 1, 1, 1, . . . ist die folgende Punkt-
wolke:

{(1, 1), (2, 2), (3, 4), (4, 2), (5,−1), (6, 0), (7, 1), . . .}

a1

a2

a3

a4

a5

n1 2 3 4 5 6 7 8 9

=

Darstellung von Zahlenfolgen

• direkt: man gibt eine allgemeine Formel für das n-te Glied an.

Beispiele:

Bildungsgesetz Folgenglieder

an = n2 ; 1, 4, 9, 16, 25, 36, . . .

bn = 1/n ;

cn = n! ;

Kn =
(
−1

2

)n
;



3

• rekursiv: man gibt eine Vorschrift an, wie man das n-te Glied aus seinen Vorgängern
berechnen kann. Damit dieser Prozess der Konstruktion der Folge starten kann,
müssen wir einige Glieder der Folge festlegen. Rekursiv definierte Zahlenfolgen wer-
den häufig auch als Differenzengleichungen bezeichnet.

Beispiele:

Bildungsgesetz Anfangswerte Folgenglieder

an = 2 · an−1 a1 = 2 ; 2, 4, 8, 16, 32, 64, . . .

bn = 2 · bn−1 b1 = 1 ;

cn = c2n−1 + cn−2 c0 = 1 und c1 = 2 ;

an = sin(an−1) + cos(an−2) a0 = 1 und a1 = 2 ;

an−3 = a2n−4 + an−5 a0 = 1 und a1 = 2 ;

Beispiel 1.2

Sei an der Wert von 1′000.− CHF nach n Jahren bei einer Verzinsung von 4%

In jedem Jahr wächst der Wert der Geldanlage um den Faktor 1.04. Wir erhalten zunächst
die rekursive Folge

an = 1.04 · an−1, a1 = 1′040.

Formal können wir noch ein 0-tes Glied a0 = 1′000 einführen, das das Anfangsguthaben
bezeichnet. Hier kann man nun leicht eine direkte Darstellung der Folge angeben:

an = 1.04 · an−1
= 1.04 · (1.04 · an−2)
= · · ·
= (1.04)n · a0.

Die ersten vier Glieder der Folge sind:
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1.2 Eigenschaften von Zahlenfolgen

Beschränktheit

Definition 1.2 Eine Zahlenfolge {an} heisst

• nach unten beschränkt, wenn es eine Konstante m gibt, so dass gilt

an ≥ m

für alle n = 1, 2, 3, . . ..

• nach oben beschränkt, wenn es eine Konstante M gibt, so dass gilt

an ≤ M

für alle n = 1, 2, 3, . . .

• beschränkt, wenn sie nach unten und nach oben beschränkt ist.

n1 2 3 4 5 6 7 8 9

M

m
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Monotonie

Definition 1.3 Eine Zahlenfolge {an} heisst

• monoton wachsend bzw. streng (strikt) monoton wachsend, falls gilt

an+1 ≥ an bzw. an+1 > an

für alle n = 1, 2, 3, . . .

n1 2 3 4 5 6 7 8 9

• monoton fallend bzw. streng (strikt) monoton fallend, falls gilt

an+1 ≤ an bzw. an+1 < an

für alle n = 1, 2, 3, . . .

n1 2 3 4 5 6 7 8 9
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Konvergenz und Divergenz, Grenzwerte und Nullfolgen

Definition 1.4 Seien a und ε reelle Zahlen mit ε > 0. Die ε-Umgebung Uε(a) von a war
definiert als:

Uε(a) = {x ∈ R : |x− a|︸ ︷︷ ︸
Abstand

< ε} = (a− ε, a+ ε)︸ ︷︷ ︸
offenes Intervall

,

d.h. Uε(a) ist das offene Intervall mit den Grenzen a−ε und a+ε, oder anders ausgedrückt,
die Menge aller reellen Zahlen x, die von a einen Abstand kleiner als ε haben.

Definition 1.5 Eine reelle Zahl a heisst Grenzwert der Zahlenfolge {an}, falls für jede
reelle Zahl ε > 0 eine reelle Zahl N(ε) existiert, so dass

|an − a| < ε bzw. a− ε < an < a+ ε

für alle n > N(ε) gilt. Anders formuliert: Für jede Zahl ε > 0 gibt es eine Zahl N(ε), so
dass alle Glieder an mit n > N(ε) in der ε-Umgebung von a liegen.

Schreibweise: lim
n→∞

an = a

Wir sagen dann, dass die Folge {an} konvergent ist. Existiert eine solche Zahl a nicht,
so nennen wir die Zahlenfolge divergent. Zahlenfolgen mit dem Grenzwert a = 0 heissen
Nullfolgen.

Beispiel 1.3

Uε (a)

a + ε

a − ε

n1 2 3 4 5 6 7 8 9

N(  )ε

a

Für ein beliebig gewähltes ε liegen alle Folgenglieder a6, a7, a8, a9, · · · im ,,ε-Schlauch“ um
a. Das sollte für jedes ε ab einem bestimmten an so sein!
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Beispiel 1.4

1. Wir wollen zeigen, dass die Zahlenfolge {1/n} den Grenzwert a = 0 hat. Zunächst
gilt

|an − a| = |1/n− 0| = 1/n.

Sei nun ein beliebiges ε > 0 vorgegeben. Wir müssen eine Vorschrift finden, die uns
zu jedem ε > 0 eine reelle Zahl N(ε) liefert, so dass alle an mit n > N(ε) in der ε-
Umgebung von 0 liegen. Wir versuchen, die Ungleichung 1/n < ε nach n aufzulösen
und diese Ungleichung gilt genau dann, wenn

n >
1

ε
=: N(ε)

gilt.

• ε = 1 ; N(ε) = 1 und es gilt 1/n < ε = 1 für alle n > N(ε) = 1 oder: ab dem
2-ten Folgenglied liegen alle Folgenglieder in der 1-Umgebung von 0.

• ε = 1/2 ; N(ε) = 2 und es gilt 1/n < ε = 1/2 für alle n > N(ε) = 2 oder: ab
dem 3-ten Folgenglied liegen alle Folgenglieder in der 1/2-Umgebung von 0.

2. Sei q eine reelle Zahl mit der Eigenschaft |q| < 1. Die Zahlenfolge {qn} ist eine
Nullfolge.

Beispiele:

• q = 1
2
;
{

1
2
, 1
4
, 1
8
, . . .

}
• q = 1

3
;
{

1
3
, 1
9
, 1
27
, . . .

}
• q = −1

2
;
{
−1

2
, 1
4
,−1

8
, . . .

}
3. Die Zahlenfolge {n} ist divergent.

Oft ist es nicht leicht, die Konvergenz oder Divergenz von Zahlenfolgen direkt nachzuwei-
sen. Hilfreich können die folgenden Sätze sein.

Satz 1 Seien {an} und {bn} zwei Zahlenfolgen mit lim
n→∞

an = a und lim
n→∞

bn = b. Dann

gilt

lim
n→∞

(an ± bn) = a± b (1)

lim
n→∞

(an · bn) = a · b (2)

lim
n→∞

an
bn

=
a

b
falls bn 6= 0 und b 6= 0. (3)
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Beispiel 1.5

lim
n→∞

n2 + 3n

2n2 − n+ 1
= lim

n→∞

n2 · (1 + 3/n)

n2 · (2− 1/n+ 1/n2)

= lim
n→∞

1 + 3/n

2− 1/n+ 1/n2

=
lim
n→∞

(1 + 3/n)

lim
n→∞

(2− 1/n+ 1/n2)
Regel (3)

=
1 + lim

n→∞
3/n

2− lim
n→∞

1/n+ lim
n→∞

1/n2 Regel (1)

=
1 + 0

2− 0 + 0
{1/n}, {1/n2} sind Nullfolgen

=
1

2
.
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Satz 2 Jede beschränkte monotone Zahlenfolge ist konvergent.

Beispiel 1.6 Man sieht leicht, dass die Zahlenfolge { n
n+1
} beschränkt und monoton wach-

send ist, denn einerseits gilt

m := 0 ≤ n

n+ 1
≤ 1 =: M

und andererseits

an =
n

n+ 1
<

n+ 1

n+ 2
= an+1

für alle n = 1, 2, 3, . . . Es muss hier noch gezeigt werden, dass die folgenden drei Unglei-
chungen für alle natürlichen Zahlen n wahr sind:

1. 0 ≤ n

n+ 1
,

2.
n

n+ 1
≤ 1 und

3.
n

n+ 1
<
n+ 1

n+ 2
.

Aufgabe 1.1 Führen Sie diese allgemeinen Beweise!
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Satz 3 Jede konvergente Zahlenfolge ist beschränkt, oder anders ausgedrückt, jede nicht
beschränkte Zahlenfolge ist nicht konvergent (divergent).

Aufgabe 1.2 Ist jede beschränkte Zahlenfolge auch konvergent?

Satz 4 Das Produkt aus einer beschränkten Folge und einer Nullfolge ist eine Nullfolge.

Beispiel 1.7 Die Zahlenfolge an = sin(n) ist beschränkt, also gilt für das Produkt dieser
Folge mit der Nullfolge {1/n}:

lim
n→∞

1

n
· sin(n) = 0.

Die folgenden Grenzwerte sollte man kennen:

lim
n→∞

1

n
= 0

lim
n→∞

1

na
= 0 für a > 0

lim
n→∞

1√
n

= 0

lim
n→∞

qn = 0 für |q| < 1
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1.3 Geometrische Folgen und Zinseszinsrechnung

Definition 1.6 Seien a und q reelle Zahlen. Eine Zahlenfolge der Gestalt

a, aq, aq2, aq3, . . . , aqn, . . .

heisst geometrische Folge. Die rekursive Bildungsvorschrift einer geometrischen Folge ist
an = q · an−1, a0 = a.

1.3.1 Zinseszinsformel und Barwert

Beispiel 1.8 Angenommen, wir legen 100 Franken auf einem Konto an, das jährlich
zu 5 % verzinst wird. Unser Anfangskapital ist K0 = 100. Am Ende des ersten Jahres
kommen dann 5 Franken hinzu und unser Kapital ist auf K1 = K0 · 1.05 = 105 Franken
angewachsen. Am Ende des zweiten Jahres wächst unser Kapital wieder um 5 % (von
105!), d.h. um 5.25 Franken. Es gilt deshalb K2 = K1 · 1.05 = K0 · 1.05 · 1.05 = 110.25
Franken.

Für das Guthaben nach insgesamt n Jahren gilt somit Kn = 100 · 1.05n.

Satz 5 (Zinseszinsformel) Ein Anfangsguthaben K0, das zu einem Zinssatz p angelegt
wird, wächst nach n Jahren zu einem Endkapital

Kn = K0 · (1 + p)n.

Begründung/Beweis:

Das Kapital am Ende eines Jahres bildet eine geometrische Folge mit den Parame-
tern

• a = K0 = 100

• q = 1 + p = 1.05

Allgemein:

K0, K0(1 + p), K0(1 + p)2, K0(1 + p)3, . . .

2

Beispiel 1.9 (Der Josephsrappen, Richard Price, 1723-1791) Was hätte der Zinses-
sinzeffekt aus vor 2000 Jahren angelegten 0.01 CHF gemacht?

• p = 0.01 = 1%

K2000 = 0.01 · 1.012000 ≈ 4′392′682,− CHF

• p = 0.02 = 2%

K2000 = 0.01 · 1.022000 ≈ 1′586′147′328′000′000,− CHF
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Der Barwert

Definition 1.7 Der Barwert oder auch Gegenwartswert ist der gegenwärtige Wert einer
in der Zukunft anfallenden Zahlung.

Beispiel 1.10 A möchte sich in 4 Jahren ein neues Auto kaufen, das dann 30000 Franken
kosten wird. Er möchte bereits heute wissen, wieviel Geld er anlegen muss, wenn er mit
einer Verzinsung von 6% rechnen kann.

Gesucht ist der Betrag S0, den man heute zum Zinssatz von 6% anlegen muss, um in 4
Jahren ein Guthaben von S4 = 30000 Franken zu erhalten. Unter Nutzung der Zinseszins-
formel muss somit gelten

S0 · (1 + 0.06︸︷︷︸
p

)4 = 30000︸ ︷︷ ︸
S4

oder

S0 =
30000

(1 + 0.06)4
= 23762.81.

Satz 6 Wird eine Zahlung oder Schuld Sn in n Jahren fällig, so beträgt der Barwert S0

dieser Schuld bei einem Zinssatz p

S0 = Sn · (1 + p)−n.

1.3.2 k-malige Verzinsung

Einige Banken berechnen die Zuwachszinsen nicht nur einmal, sondern k-mal im Jahr.
Der Zins wird dann k-mal jährlich (üblich sind 2 mal, 4 mal oder 12 mal) zum Kapital
geschlagen und der Zinssatz pro Periode ist p/k.

Beispiel 1.11 Das Anfangsguthaben sei wieder K0 = 100 Franken und der Zinssatz von
5% (d.h. p = 0.05) werde halbjährlich (k = 2) berechnet. Das Kapital wird dann nach dem
ersten Halbjahr zu einer Rate von 2.5% berechnet; das macht 100 ·1.025 = 102.5 Franken.
Dieses neue Guthaben wird dann nach Ende des zweiten Halbjahres nochmals mit 2.5%
verzinst; das macht dann als Endkapital nach einem Jahr

K1 = 102.5 · 1.025

= 100 · 1.025 · 1.025

= 105.0625.

Satz 7 (k-malige Verzinsung) Ein Anfangskapital K0, das zu einem Zinssatz p ange-
legt und pro Jahr k-mal verzinst wird, wächst nach einem Jahr zu einem Kapital von

K1 = K0 ·
(

1 +
p

k

)k
und nach n Jahren zu einem Endkapital von

Kn = K0 ·
(

1 +
p

k

)k·n
.
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Begründung/Beweis: Das Kapital am Ende eines Jahres (bei k-maliger Verzin-
sung) bildet eine geometrische Folge mit den Parametern

• a = K0

• q =
(
1 +

p

k

)k
Allgemein:

K0,

K0

(
1 +

p

k

)k
,

K0

(
1 +

p

k

)2·k
,

K0

(
1 +

p

k

)3·k
,

. . .

2
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1.4 Die Eulersche Zahl und kontinuierliche Verzinsung

Die Eulersche Zahl Wir betrachten die folgende (allgemeine) unendliche Reihe

1 +
1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

n!
+ · · · =

∞∑
j=0

1

j!
.

Dabei bezeichnet j! := 1 · 2 · . . . · j (mit 0! := 1) die so genannte Fakultät. Diese Reihe ist
konvergent. Der Grenzwert wird mit e bezeichnet und heisst Eulersche Zahl

e :=
∞∑
j=0

1

j!
≈ 2.71828..

Die Zahl e tritt auch als Grenzwert anderer Folgen auf. Es gelten die beiden wichtigen
Gleichungen:

lim
k→∞

(
1 +

1

k

)k
= e und lim

k→∞

(
1 +

p

k

)k
= ep

Beispiel 1.12

lim
k→∞

(
1− 4

3k

)k
= lim

k→∞

(
1 +
−4/3

k

)k
= e−4/3 =

1

e4/3
=

1
3
√
e4

Beispiel 1.13

lim
k→∞

(
k − 2

k + 2

)k
= lim

k→∞

(
k(1− 2/k)

k(1 + 2/k)

)k
= lim

k→∞

(
(1− 2/k)k

(1 + 2/k)k

)
=

e−2

e2
= e−4 =

1

e4

Kontinuierliche Verzinsung Was passiert nun, wenn wir die Verzinsungszeiträume
noch kleiner werden lassen? Wir wollen den Grenzfall, die kontinuierliche Verzinsung,
d.h. k →∞ betrachten. Unter Ausnutzung bekannter Grenzwerte erhalten wir dann das
folgende Resultat.

Satz 8 (Kontinuierliche Verzinsung)

K1 = K0 · lim
k→∞

(
1 +

p

k

)k
= K0 · ep

Kn = K0 · lim
k→∞

(
1 +

p

k

)k·n
= K0 · epn

Beispiel 1.14 Angenommen, Sie haben verschiedene Konten mit gleichem Zins von 5%
und unterschiedlichen Verzinsungszeiträumen zur Auswahl. Auf welchem Konto sollten
Sie die 100 Franken anlegen, um nach einem Jahr ein möglichst grosses Guthaben zu
erhalten?
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k p/k K1

jährlich 1 0.05 105.00 Franken

halbjährlich

vierteljährlich 105.09 Franken

monatlich

wöchentlich

täglich 365 0.0001370
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2 Geometrische Reihen

2.1 Definition und Beispiele

Seien a und q reelle Zahlen und a, aq, aq2, aq3, . . . , aqn, . . . die zugehörige geometrische
Folge.

Definition 2.1 Der Ausdruck

s = a+ aq + aq2 + aq3 + . . .+ aqn + . . . =
∞∑
k=0

a · qk

heisst unendliche geometrische Reihe mit den Parametern a und q. Für jede natürliche
Zahl n heisst die reelle Zahl

sn = a+ aq + aq2 + aq3 + . . .+ aqn−1 =
n−1∑
k=0

a · qk

die n-te Partialsumme der unendlichen geometrischen Reihe. Durch

{sn} = { a︸︷︷︸
s1

, a+ aq︸ ︷︷ ︸
s2

, a+ aq + aq2︸ ︷︷ ︸
s3

, a+ aq + aq2 + aq3︸ ︷︷ ︸
s4

, . . .}

ist damit eine neue Zahlenfolge definiert. Wir wollen nun die unendliche geometrische
Reihe mit den Parametern a und q als konvergent bezeichnen, wenn die zugehörige Folge
{sn} ihrer Partialsummen konvergiert.

Beispiel 2.1

1. Die Folge 1, 1
2
, 1
4
, 1
8
, . . . ist eine geometrische Folge (a = 1 und q = 1/2) und

1 +
1

2
+

1

4
+

1

8
. . . =

∞∑
k=0

(
1

2

)k
ist die unendliche geometrische Reihe mit den Parametern 1 und 1/2. Wir können
die Folge der Partialsummen ablesen:

s1 = 1

s2 = 1 +
1

2
=

3

2
= 1.5

s3 = 1 +
1

2
+

1

4
=

7

4
= 1.75

s4 = 1 +
1

2
+

1

4
+

1

8
=

15

8
= 1.875

· · ·
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2. Die Folge 1,−2, 4,−8, 16, . . . ist eine geometrische Folge (a = 1 und q = −2) und

1− 2 + 4− 8 + 16− . . . =
∞∑
k=0

(−2)k

ist die unendliche geometrische Reihe mit den Parametern 1 und −2. Wir können
die Folge der Partialsummen ablesen:

s1 = 1

s2 = 1− 2 = −1

s3 = 1− 2 + 4 = 3

s4 = 1− 2 + 4− 8 = −5

s5 = 1− 2 + 4− 8 + 16 = 11

· · ·

3. Die Folge 1, 1
2
, 1
4
, 1
8
, 1
16
, . . . ist eine geometrische Folge (a = 1 und q = 1/2) und

1 +
1

2
+

1

4
+

1

8
+

1

16
. . . =

∞∑
k=0

(
1

2

)k
ist die unendliche geometrische Reihe mit den Parametern 1 und 1/2. Wir können
die Folge der Partialsummen ablesen:

s1 = 1

s2 = 1 +
1

2
=

3

2
= 1.5

s3 = 1 +
1

2
+

1

4
=

7

4
= 1.75

s4 = 1 +
1

2
+

1

4
+

1

8
=

15

8
= 1.875

· · ·

4. Die Folge 1,−1
2
, 1
4
,−1

8
, 1
16
, . . . ist eine geometrische Folge (a = 1 und q = −1/2) und

1− 1

2
+

1

4
− 1

8
+

1

16
. . . =

∞∑
k=0

(
−1

2

)k
ist die unendliche geometrische Reihe mit den Parametern 1 und −1/2. Wir können
die Folge der Partialsummen ablesen:

s1 = 1

s2 = 1− 1

2
=

1

2
= 0.5

s3 = 1− 1

2
+

1

4
=

3

4
= 0.75

s4 = 1− 1

2
+

1

4
− 1

8
=

5

8
= 0.625

· · ·
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2.2 Summenformeln für geometrische Reihen

Satz 9 Für die n-te Partialsumme sn der unendlichen geometrischen Reihe mit den Pa-
rametern a und q 6= 1 gilt:

sn = a
1− qn

1− q
.

Beweis: Zunächst gelten die beiden Identitäten

sn = a+ aq + aq2 + aq3 + . . .+ aqn−2 + aqn−1

qsn = aq + aq2 + aq3 + . . .+ aqn−2 + aqn−1 + aqn,

und somit folgt

sn − qsn = sn · (1− q)

= a+ aq + aq2 + aq3 + . . .+ aqn−2 + aqn−1

−aq − aq2 − aq3 − . . .− aqn−2 − aqn−1 − aqn

= a− aqn

= a · (1− qn)

oder

sn = a
1− qn

1− q
.

2

Nun wollen wir uns den unendlichen geometrischen Reihen zuwenden und die Frage stellen,
für welche q die Folge {sn} gegen einen Grenzwert s konvergiert. Zunächst gilt falls q 6= 1:

s =
∞∑
k=0

a · qk = lim
n→∞

n−1∑
k=0

a · qk = lim
n→∞

a
1− qn

1− q
=

a

1− q
lim
n→∞

(1− qn)

Fallunterscheidung:

• q > 1 : Hier ist die Folge {qn} unbeschränkt und positiv, also ist auch {sn} unbe-
schränkt, also divergent.

• q = 1 : Hier gilt sn =
∑n−1

k=0 a = n · a, also ist {sn} divergent.

• |q| < 1 : Die Zahlenfolge {qn} ist eine Nullfolge und es gilt

s =
a

1− q
.

• q ≤ −1 : Hier ist die Folge {qn} alternierend negativ und positiv, dem Betrag nach
≥ 1 (d.h. es ist keine Nullfolge) und {sn} ist divergent.
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Wir haben damit das Folgende bewiesen:

Satz 10 Die unendliche geometrische Reihe

s = a+ aq + aq2 + aq3 + . . .+ aqn + . . . =
∞∑
k=0

a · qk

mit den Parametern a und q konvergiert genau dann, wenn |q| < 1. Ihr Wert beträgt dann

s =
a

1− q
.

Beispiel 2.2

5∑
k=0

(
−1

2

)k
=

1− (−1
2
)6

1− (−1
2
)

=
1− 1

64
3
2

=
21

32

Beispiel 2.3

∞∑
k=0

(
−1

2

)k
=

1
3
2

=
2

3

Beispiel 2.4 Beachten Sie, dass die obige Summenformel für geometrische Reihen nur
für |q| < 1 gilt. Beachtet man das nicht, kommen offensichtlich unsinnige Resultate zu
Stande wie z.B.

∞∑
k=0

2k = 1 + 2 + 4 + 8 + 16 + . . . =
1

1− 2
= −1
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3 Die Rentenformel

Es sei ein Anfangskapital K0 gegeben. In jeder Periode erfolgt eine gleichbleibende Ein-
zahlung E mit E > 0

• am Ende der Periode (nachschüssig)

• am Anfang der Periode (vorschüssig)

Das jeweils vorhandene Kapital wird zu einem Zinssatz p mit Zinseszinsen vergütet. Das
am Ende der n-ten Periode zur Verfügung stehende Kapital Kn soll ermittelt werden.
Schematisch können die beiden Situationen wie folgt dargestellt werden. Dabei ergeben
sich sofort rekursive Darstellungen der Zahlenfolgen, die die Kapitalentwicklung beschrei-
ben.

Nachschüssige Rente

K0 K1 K2

K1pK0p E E

K1 = K0 + p ·K0 + E = (1 + p)K0 + E

K2 = K1 + p ·K1 + E = (1 + p)K1 + E

. . . . . .

Rekursion

Kn = (1 + p)Kn−1 + E

Satz 11 (Nachschüssige Rentenformel) Es gilt

Kn = K0 · (1 + p)n + E
(1 + p)n − 1

p
.
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Beweis: Zunächst gilt die allgemeine rekursive Gleichung

Ki = Ki−1 + pKi−1 + E

= Ki−1 · (1 + p) + E

und somit folgt unter Nutzung der Summenformel für die geometrische Reihe

K1 = K0 · (1 + p) + E

K2 = K1 · (1 + p) + E

= (1 + p) · (K0 · (1 + p) + E)︸ ︷︷ ︸
K1

+E

= K0 · (1 + p)2 + E · (1 + p) + E

· · · · · ·

Kn = K0 · (1 + p)n + E · (1 + p)n−1 + . . .+ E · (1 + p) + E

= K0 · (1 + p)n + E ·
n−1∑
k=0

(1 + p)k

= K0 · (1 + p)n + E · 1− (1 + p)n

1− (1 + p)

= K0 · (1 + p)n + E · (1 + p)n − 1

p
.

2

Erfolgt am Ende einer jeden Periode ein gleichbleibender Rückzug E, gilt die gleiche
Formel. E ist dann ein negativer Wert.

Ergänzung: Vorschüssige Rente

K0 K1 K2

E Ep ( K   + E ) p ( K   + E )0 1

Rekursion

K1 = K0 + E + p(K0 + E) = (1 + p)(K0 + E)

K2 = K1 + E + p(K1 + E) = (1 + p)(K1 + E)

. . . . . .

Kn = (1 + p)(Kn−1 + E)
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4 Testfragen zur Vorlesung

Hinweis: Bevor Sie die Übungsaufgaben lösen, sollten Sie den Stoff der Vorlesung verstan-
den haben. Insbesondere sollten Sie die folgenden einfachen Fragen beantworten können.
Diese Fragen werden im Allgemeinen nicht in den Übungen besprochen, können aber
prüfungsrelevant sein.

1. Definieren Sie die Begriffe Zahlenfolge, geometrische Folge, nach oben beschränkte
Folge, nach unten beschränkte Folge, beschränkte Folge, monoton wachsende Folge,
streng monoton wachsende Folge, monoton fallende Folge, streng monoton fallende
Folge, konvergente Folge, Nullfolge und divergente Folge. Überlegen Sie sich zu jeder
Eigenschaft (und eventuell auch für sinnvolle Kombinationen mehrerer Eigenschaf-
ten) einfache Beispielfolgen.

2. Geben Sie zwei Beispiele von direkt definierten Zahlenfolgen und zwei Beispiel von
rekursiv definierten Zahlenfolgen an.

3. Sei q eine reelle Zahl. Welches Konvergenzverhalten kann die Folge {qn} (in Abhängig-
keit von q) haben?

4. Definieren Sie die Begriffe unendliche geometrische Reihe und n-te Partialsumme
einer unendlichen geometrischen Reihe.
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5 Übungsaufgaben

5.1 Niveau 1

1. Bestimmen Sie die folgenden Grenzwerte:

a) lim
n→∞

3n4 + 6n

2n2 − n+ 1
b) lim

n→∞

5n2 + 3n

2n3 + 2n+ 1
c) lim

n→∞

5n2 + 3n

2n2 + 2n+ 1

2. Berechnen Sie

a)
5∑

k=0

(
3

4

)k
b)

∞∑
k=0

(
3

4

)k

3. Bestimmen Sie den Grenzwert lim
n→∞

(
1 + 3 · 4

n

)n
.

4. Ein Kapital von 50′000 Franken werde mit einem Jahreszinssatz von 5% verzinst.
Gesucht ist der Kontostand nach 10 Jahren bei jährlicher Verzinsung.

5.2 Niveau 2

1. Bestimmen Sie (falls nötig durch Ausprobieren) die folgenden Grenzwerte.

a) lim
n→∞

(
n2

n+ 1
− n2

n+ 3

)
b) 1− 2

3
+

4

9
− 8

27
+ . . .

c) lim
n→∞

((
1−

(
1

2

)n)
·
(

1 +
1

n

)n)

d) lim
n→∞

(
1 +

12

7n

)2·n

e) lim
n→∞

(
n+ 2

n− 3

)n
2. Ein Kapital von 50′000 Franken werde mit einem Jahreszinssatz von 5% verzinst.

Gesucht ist der Kontostand nach 10 Jahren bei

(a) monatlicher bzw.

(b) kontinuierlicher

Verzinsung.

3. Eine Person zahlt 10 Jahre lang 1000 Franken am Ende eines jeden Jahres auf ein
Konto ein. Wieviel Geld befinden sich nach 10 Jahren auf diesem Konto, wenn der
(jährliche) Zinssatz 5% beträgt?

4. In welcher Zeit verdoppelt sich ein Guthaben, das auf einem Konto mit einmaliger
jährlicher Verzinsung p = 0.05 angelegt ist?
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5.3 Niveau 3

1. Eine Person zahlt 10 Jahre lang 1000 Franken am Ende eines jeden Jahres auf
ein Konto ein. Wie lange kann diese Person anschliessend eine ebensolche Rente
beziehen, wenn der Zinssatz 5% beträgt?

2. In welcher Zeit verdoppelt, verdreifacht bzw. ver-k-facht sich ein Guthaben, das auf
einem Konto mit einmaliger jährlicher Verzinsung zum Zinssatz p angelegt ist?

3. Bestimmen Sie den Grenzwert lim
n→∞

(√
n2 + 3n+ 1−

√
n2 + 2n

)
.

4. Wir betrachten die allgemeine nachschüssige Rentenformel

Kn = K0 · (1 + p)n + E
(1 + p)n − 1

p
.

Diese Gleichung enthält die fünf Variablen Kn, K0, E, n und p und sie ist nach Kn

aufgelöst.

(a) Lösen Sie die Gleichung nach K0 auf.

(b) Lösen Sie die Gleichung nach E auf.

(c) Lösen Sie die Gleichung nach n auf.

(d) Lösen Sie die Gleichung falls möglich nach p auf.

Versuchen Sie Ihre Ergebnisse in möglichst einfacher Form darzustellen.
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Lösungen der Übungsaufgaben

Niveau 1

1. a) lim
n→∞

n4
(
3 + 6

n3

)
n2
(
2− 1

n
+ 1

n2

) = lim
n→∞

n2
(
3 + 6

n3

)
2− 1

n
+ 1

n2

=
(∞)2 (3 + 0)

2− 0 + 0
= ∞,

b) 0 und c) 5/2

2. a) 3.288, b) 4

3. e12

4. 81′444.73 Franken

Niveau 2

1. a) 2, b) 3/5, c) e (Eulersche Zahl), d) e24/7 und e) e5

2. a) 82′350.48 Franken und b) 82′436.06 Franken

3. 12′577.89 Franken

4. 15 Jahre (oder 14.2, d.h. nach 14 Jahren hat es sich noch nicht ganz verdoppelt und
nach 15 Jahren ist es mehr als das Doppelte)

Niveau 3

1. 20 Jahre

Hinweis: Auch für die Zeit der Rentenzahlung muss (und kann) die Rentenformel,
mit einem negativen E, verwendet werden.

2. Umformungen:

k ·G = G · (1 + p)n | : G

⇐⇒ k = (1 + p)n | ln(...)

⇐⇒ ln(k) = ln((1 + p)n) = n · ln(1 + p)

⇐⇒ n =
ln(k)

ln(1 + p)
Aufrunden!

3. 1/2

Hinweis: Erweitern mit
√
n2 + 3n+ 1 +

√
n2 + 2n und binomische Formel.

4.

K0 =
pKn + E − E(1 + p)n

p(1 + p)n

E = p
Kn −K0(1 + p)n

(1 + p)n − 1

n =

ln

(
pKn + E

pK0 + E

)
ln(1 + p)


