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1 Marginale Funktionen

1.1 Einfiihrung

Gegeben sei eine 6konomische Funktion y = f(z).

Wir wissen bereits, dass der Quotient

Af(x,Ax)  f(z+Azx) — f()

Az Ax

die durchschnittliche Anderung von f darstellt, wenn man  um Az éndert. Der Grenzwert

oy — g Lt AD) )

Az—0 Az

kann als momentane Anderung von f angesehen werden. Die Ableitung f'(x) wird (in
okonomischen Zusammenhéngen) auch marginale Funktion genannt.

Bemerkung 1.1 Setzen wir Az =1, so konnen wir die Ableitung von f (ungefihr) als
die Anderung von f ansehen, falls x auf x + 1 erhéht wird:

flx+Ax) = flz)  fla+1) - [fz)

[ = g LRSI SV iy - g
tan(7) tan(o)

f(x+1)

f(x)

X x+1

1.2 Marginale Funktionen in der Mikro6konomie

Es sei K = K(x) eine Kostenfunktion (d.h. K(z) sind die Kosten zur Erzeugung von x
Einheiten eines Gutes). Die Ableitung K’(z) nennen wir auch Grenzkostenfunktion.



Interpretation:

K'(x) kann (in erster Ndherung) als die zusétzlichen Kosten interpretiert werden, die
benotigt werden, um den Output von z auf x + 1 Einheiten zu erhchen.

Wir betrachten das rechtwinklige Dreieck mit den Eckpunkten P, und R. Dann gilt

R| (Gegenkathete) |QR|
(@) an(r) |PR| (Ankathete) 1 QR
K'(x)
Kosten&anderung
in 1. Naherung
Py
Q ,/
P_~1
R
T
X X+1

Abbildung 1: Grenzkostenfunktion

oder auch

, B . K(z+ Az) — K(2)
Kl = i, Ae

K(z+1)— K(z)

A = K(z+1) — K(x)
Az=1
Dabei sind K(x + 1) — K(z) die zusétzlichen Kosten die anfallen, wenn der Output von
x auf x + 1 Stiick erhoht wird.



Beispiel 1.1 Vergleichen Sie die Werte K'(x) und K (z+1)—K (z) fir die Kostenfunktion
K(x) =23+ 5000 an den gegebenen Stellen.

x | Steigerung | K(x +1) — K(x) K'(z)

0 |0—=1 1 0

10 | 10 —» 11 331 300

20|20 — 21 1200

30 | 30 — 31 2700
Es gilt 2.B.

K'(z) = 32> und K'(10) = 3-10* = 300
und

K(10+1)— K(10) = K(11) — K(10)

112 4+ 5000 — 10 — 5000
331.

Ergdnzen Sie die fehlenden Werte in der Tabelle.

1.3 Marginale Funktionen in der Makrotkonomie

(V) = dig)
S(V) = %g) 1= oY)

bezeichnet den Konsum als Funktion des
Volkseinkommens Y

bezeichnet das Sparen

wird marginale Konsumquote (oder Grenzneigung

zum Konsum) genannt

wird marginale Sparquote (oder Grenzneigung

zum Sparen) genannt

Welche Eigenschaften sollte eine Konsumfunktion C(Y) haben? Zumindest sollte sie
streng monoton wachsend sein, denn ein grosseres Volkseinkommen Y sollte auch den

Konsum steigern.



1.4 Marginale Funktionen und Optimierungsprobleme

Wir wollen nun die Grenzkosten K’(x) verwenden, um den Output z* zu bestimmen, der

1. zu minimalen Durchschnittskosten oder

2. zu maximalem Profit

fiihrt.

1. Minimale Durchschnittskosten

Die Durchschnittskosten lassen sich durch @ ausdriicken. Wie wir noch aus der

Schule wissen (!7), ist eine notwendige Bedingung fiir die Existenz eines Minimums
in x* das Verschwinden der ersten Ableitung. Also muss gelten:

= d% (#) K'(@7) o — K(a") -1

. .I'*2
_ K'(z") K(z7)
- T* ZC*2 ’
oder
K(z*
X

Also sind die Durchschnittskosten minimal, wenn die Grenzkosten gleich den Durch-
schnittskosten sind.
2. Maximaler Profit

Wir betrachten den Preis p einer Einheit des Gutes als konstant. Dann ist der Profit
P(x) fiir « Einheiten des Gutes gegeben durch

P(z) = FErlés — Totale Kosten
= p-x— K(x).

Die notwendige Bedingung fiir das Vorliegen eines Maximums in z* ist wieder das
Verschwinden der ersten Ableitung in z*.

0 = dixP(:z:) = p— K'(z").

r=x*

oder
K'(z*) = p.

Der Profit ist maximal, wenn die Grenzkosten gleich dem Preis einer Einheit des
Gutes sind.



2 Das (totale) Differential

Es sei f eine differenzierbare Funktion, d.h. fiir jedes x des Definitionsbereiches existiert
der Grenzwert

o fle+Ax) = fo) . Af(x,Az)
v AT A T
Diese Situation kann aber auch anders beschrieben werden. Es gilt
A A
Aflw,A) f'(z) + R(z,Ar) oder
Az —~
Sekantenanstieg Tangentenanstieg

Af(z,Az) = f'(z) Az + R(zx,Az) - Ax
wobei der Rest R(z, Az) die Eigenschaft hat:
lim R(zx,Az) = 0.

Az—0

Definition 2.1 Der Ausdruck f'(x)- Az heisst das Differential von f an der Stelle x fiir
den Zuwachs Ax. Gewdohnlich setzt man auch do = Az und schreibt

df = df(x,dzx) = f'(x)-dz.

Das Differential einer Funktion ist also zunéchst einmal selbst eine Funktion, die auf die
Eingabe von = und dz wartet.

Weiterhin gilt fir die Tangente ¢ an f im Punkt x (wir schreiben den neuen Punkt als
x + dx):

tx+dx) = f(z)+ f'(x) dz.
Somit:
o +dr) —t(x) = f(2)+ F(x) do— f(r) = F'a)de = df(z,da)

Das Differential df(x,dz) kann also als Anderung der Tangente angesehen werden, falls
sich x um dz dndert.

Beispiel 2.1 Die Funktion f(x) = 2% ist differenzierbar und es gilt

Af(z,Ar) (x + Ax)? — 22
Az Az
12 4 2xAz + (Az)? — 22
Az
2eAx + (Ax)?

Az
= 22+ Ax

_ 2 _ 2
Af(z,Az) = 2zxAz+ (Az)° = 2zdz + (dx)
df(z,dx) R(z,dx)



Geometrische Interpretation:

Af(x,dx) B
= f(x+dx)=f(x) | t(x+dx)

- tx) =

- f(x+dx)

f(x)

R(x,dx) dx

df(x,dx)
= t(x+dx)-t(X
= f(x)dx

f X X+dx

Abbildung 2: Das Differential

Ax = dx
Af =Af(x,dx)
df = df(x,dx)

t(x +dz) = f(x) + f(x)dz

Die beiden Ausdriicke sind gleich. Sie messen die
Anderung der unabhéngigen Variablen z.

misst die tatséchliche Anderung der Funktion wenn
man z um dx dndert.

misst die Anderung der linearen Approximation
(Tangente in z), wenn man x um dz dndert.

Af(z,dx) = df(z,dx) + R(x,dz)dx mit dlimo R(x,dx) =0

Af(z, Az) = df (z, Az) = f'(x)dx fiir kleine Anderungen dz

Tangente an f im Punkt x




2500
x + 20

Beispiel 2.2 Wir betrachten die Kostenfunktion K(x) = 50 + 20z +
produzierende Menge x wdchst von 30 auf 31.
Wir wollen dK (30, 1) mit AK (30, 1) vergleichen. Es gilt x = 30 und Ax = 1 sowie

. Die zu

2500
K’ = 20— —— d K =1
(x) 0 1 20)2 un (30) 9
Dann gilt
AK(30,1) = K(31)— K(30) = 19.02
dK(30,1) = K'(30)-1 = 19.

Ein Vorteil des Differentials offenbart sich, wenn wir mehrere Anderungen von f bei
gleichem Ausgangspunkt x = 30 und verschiedenen Werten Ax bestimmen sollten. Bei
exakter Rechnung miissten wir jeweils einen neuen Funktionswert von f bestimmen. Das
ist recht aufwindig. Nutzen wir dagegen das Differential missen wir den Wert K'(30) = 19
nur mit der neuen Anderung Az multiplizieren. Das ist einfacher. Oder?

Az AK (30, Az) = K(30 + Az) — K(30) dK (30, Ax)
2500 2500
1| 5042031 — {50+ 20-30 191
* T390 * * 30+ 20
9500 2500
9 15042032 {50+ 20-30 19.92
+ T 39190 * 30120
2500 2500
10 | 50 +20 - 40 — {50+ 20-30 1910
+ T 10120 * 30+ 20



* Ausblick* Neben der Moglichkeit, mit Hilfe des Differentials Funktionséinderungen zu
approximieren, bietet das Differential auch viele theoretische Anwendungsmoglichkeiten.

In einer geschlossenen Volkswirtschaft ohne Staatstétigkeit (keine Staatsausgaben, keine
Nettoexporte) gilt die Gleichung:

Y = C+1.

Dabei ist

Y =Y(I) das Volkseinkommen d.h. der Wert aller in einem Land
hergestellten Waren und Dienstleistungen.

C =C(Y) der Konsum, d.h. die Ausgaben der Haushalte fiir Waren und
Dienstleistungen mit Ausnahme des Erwerbs von Grundstiicken
und Geb#uden (und deren Neubau).

I die Investitionen, d.h. die Ausgaben fiir Kapitalausstattung,
Lagerbestéinde und Bauten.

Wie wirkt sich eine zusatzliche Investition auf das Volkseinkommen aus?

Es gilt

dy(I) = Y'(I)dI

, _d _dC dy R (O
Y'(I) = E(C(Y(I)) I) = W a7 1 dYY(I)—l—l
also
, 1 1
i) = 7~ = =
dy d

wobei S = Y — (' = [ die Spartétigkeit bezeichnet. Mit den in der Literatur h&ufig
verwendeten Bezeichnungen

dC ds
erhalt man somit
1 1
ay (I) = dl = dl
(1) 1—¢(Y) s(Y)
Der Ausdruck
1 1
b= 1) s(Y)

wird dabei als Multiplikator bezeichnet.
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3 Elastizitaten

Grenzkosten, Grenzneigung zum Konsum usw. hidngen vom Massstab ab, in dem die
Grossen Kosten, Konsum usw. gemessen werden. Besonders in wirtschaftlichen Verglei-
chen ist es aber wiinschenswert, eine Grosse zu definieren, die Anderungen der Funkti-
onswerte massstabsunabhéngig darstellt.

Wir betrachten den Quotienten
flz+ Az) — f(z)

rel. Anderung der Funktionswerte B f(x)
rel. Anderung der unabh. Variablen Az
x
_ Je+Ar) - flx) @
B Az flz)

Definition 3.1 Fulls f differenzierbar ist, so existiert

o) — g Tt AT )

Az—0 Az

und wir definieren die Elastizitit der Funktion f oder die Rate der relativen Anderung

von f bezogen auf die relative Anderung von x:

- flet+Ar) - flx) : x f'(@)
€fz = €fg(x) = lim . = fi(x)—— = x- .
fa = €ra(r) = lim, Ax OIS f(@)
Beispiel 3.1
a
flx) = ax = ¢ T —
Beispiel 3.2
A Az
f@) = e = €, =2 :Ax = AT
Interpretation der Elastizitét:
Af(x, Ax) N . Az
/() R D

relative f-Anderung relative 2-Anderung
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Beispiel 3.3 Wir betrachten die Funktion f(z) = x3+5000 fir v = 20 und Ax = 1. Wir
dndern also x von 20 auf 21 absolut um 1 und relativ um

Az 1
— = — =005 =5
T 20 %

Wie dndert sich in diesem Fall f absolut und relativ? Fine exakte Rechnung ergibt:

absolute Anderung Af(20,1) = f(21) — f(20) = 1'261

. Af(20,1 1261
relative Anderung % = % = 0.097 = 9.7%
Was liefert die Elastizitat?
f'(x) 3a°
€ra(x) = o e T s ro00 " €7..(20) 846

Setzen wir das in die Relation der Elastizitit ein, erhalten wir eine Ndherung fir die
relative Anderung der Funktion f:

Af(20,1)

1
€7,(20) - — = 1.846-0.05 = 0.092 = 9.2%
f(20) 120

20
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Definition 3.2 Fine relative A_'.nderung der unabhdngigen Variablen x bewirkt also un-
gefihr eine €4 .- fache relative Anderung der Funktion. Ist nun

1. lesz| > 1, s0 heisst f elastisch (eine relative Anderung von x wirken sich iiberpro-
portional auf f aus);

2. lesa|l < 1, so heisst f unelastisch (eine relative Anderung von x wirken sich un-
terproportional auf f aus)

Beispiel 3.4 Wir betrachten die Nachfragefunktion

qg=q(p) = 9-3p.

Die unabhingige Variable ist hier also p. Weiterhin sollten sowohl p (Preise) als auch q
(Nachfrage) ausschliesslich positive Werte annehmen, d.h. p > 0 und ¢ = 9 — 3p > 0.
Somit sind in diesem Modell nur Preise p mit 0 < p < 3 sinnvoll.

Dann qilt fir die Elastizitdt

—3 —3p —P
9—3p 9—3p 3—p

Fiir welche Werte p ist die Funktion g nun elastisch? Dazu miissen wir die Ungleichung
leqpl > 1 nach p auflésen. Die Betragszeichen diirfen dabei nicht einfach weggelassen
werden! Sie miissen beachten, dass innerhalb des Bereichs 0 < p < 3 der Zdihler —p sicher
negativ und der Nenner 3 — p sicher positiv ist.

leqpl = ‘—_p‘ = 2 >1

3—p 3—0p

gilt genau dann, wenn p > 1.5. Also ist die Funktion q im Bereich 1.5 < p < 3 elastisch.



13

4 Wachstumsraten

Es sei y = f(t) eine differenzierbare Funktion der Zeit. Wir betrachten die durchschnitt-
liche relative Anderung der Funktion im Laufe der Zeit:

Crir) . G5 e

At £(t) 0

Definition 4.1 Die Wachstumsrate ist definiert durch

Beispiel 4.1 Ezponentialfunktionen weisen konstante Wachstumsraten auf. Sei also

12-2- %
t) =12-¢* = t) = ———5— = 2

Beispiel 4.2 Wir betrachten eine so genannte logistische Funktion.

4 Ge 3t

= — = = —%
vt = T rilt) = 13w

Interpretation der Wachstumsrate:

Af(t, At)
—_ ~ re(t : At

(0 0 =L
— echte t-Anderung

relative f-Anderung

Es gilt 7¢(t) = [In f(¢)]', was hilfreich ist, um bestimmte Wachstumsraten zu berechnen.
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5 Das Newton-Verfahren

Die in den Ubungen gestellten Aufgaben erwecken den Eindruck, als kénne man jede Auf-
gabe exakt und analytisch l6sen, wenn man sich nur genug anstrengt und die richtige Idee
hat. Dieser Eindruck ist falsch! Bei den allermeisten 6konomisch-mathematischen Proble-
men wird man (aus verschiedenen Griinden) keine exakte Losung bestimmen koénnen.

Wir wollen uns dazu das schon bekannte Problem der Evaluation eines Projektes ansehen.
Seien also ag,ay,as, ..., a, die Ertridge eines Projektes in aufeinander folgenden Jahren
(neg. Zahlen sind Verluste bzw. Investitionen und positive Zahlen sind Gewinne bzw.
Riickzahlungen). Der Barwert dieser Ertrige ist dann eine Funktion der Zinsrate p € [0, 1]:

aq _'_ a9 + (07%
I+p (1+p? — (1+pn

B(p) = ao+

Gesucht ist hier hdaufig die so genannte interne Ertragsrate, die als der Zinssatz py definiert
ist, bei dem der Barwert aller Ertréige gleich 0 ist.

Zum Losen der Gleichung

a1 a2 Ay,

ag + + 44—
"Tiap (1+p)2 (1+p)m

sollte man zuerst x = 1 + p substituieren und die Gleichung dann mit z" = (1 + p)”
multiplizieren. Wir erhalten dann die folgende polynomiale Gleichung:

apx” +a " a2+ .. . +a, = 0

Fiir n =1 (lineare Gleichung) konnte die Losung schnell und exakt bestimmt werden.

Fiir n = 2 (quadratische Gleichung) kénnten wir die abc-Formel nutzen:

—ay £ /a2 — 4dagas

€T =

1,2 240
Beim Ziehen der Wurzel werden wir die dort hochstwahrscheinlich auftretende irrationale
Zahl runden miissen, aber wir kénnen auch hier noch von einer (fast) exakten Losung
sprechen.

Fiir n = 3 kénnte man sich noch mit der so genannten Cardanischen Formel behelfen,
die eigentlich von N. Tartaglia (1500-1557) entdeckt, aber von C. Cardano (1501-1576)
in seinem Buch Ars Magna (in einer verallgemeinerten Form) verdffentlicht wurde (und
deshalb ihm zugeschrieben wurde). Eine stets existierende reelle Losung der reduzierten
kubischen Gleichung 4 + py + ¢ = 0 kann damit wie folgt bestimmt werden:

Fiir n > 5 gibt es (beweisbar) keine allgemeinen Losungsformeln (durch endliche Wur-
zelausdriicke)!! Hier muss man auf numerische Verfahren zuriick greifen. Wir wollen hier
das so genannte Newton-Verfahren kurz besprechen.
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Sei f : [a,b] — R eine (geniigend oft) stetig differenzierbare Funktion. Wir wollen ein
schnelles Verfahren konstruieren, um eine Nullstelle von f zu finden. Dazu sei z,, € [a, b]
ein Naherungswert nahe bei der gesuchten Nullstelle x,,,;. Dann ist die Tangente an f im
Punkt (x,, f(z,)) gegeben durch

T(z) = flzn) + [ (z0)(z —20).

Wir bestimmen nun die Nullstelle x,,;; der Tangent, die eine (hoffentlich) bessere Nihe-
rung an T,,; ist. Es muss also gelten:

0 = T(xn—&—l) - f(mn)_’_f/(xn)(xn—i—l_xn) oder Tpny1 = Tp —

/ /.
Xn+1 Xn

Fiir einen zunéchst beliebigen Startwert x, betrachten wir also die rekursiv definierte
Folge

n

=0,1,2,...

Unsere Hoffnung ist auch hier, dass die so erzeugte Folge gegen eine Nullstelle z,,,; von f
konvergiert. Der folgende Satz bestétigt unsere Hoffnung in den meisten Féllen, in denen
T €ine einfache Nullstelle ist (f'(x,u) # 0).

Satz 1 Das Newton-Verfahren konvergiert fiir Startwert xo nahe der Nullstelle, falls x,.u
einfache Nullstelle von f ist.

Beispiel 5.1 Mit dem Startwert xy = 2 gilt fiir die Funktion f(z) = 23 — 2z — 5:

(o) 2 _2.2-5
= 20— — 9 T TETY 9y
T1 Zo f’(l’o) 3 K 22 _ 2
fl) _ o, 21°=2.21-5 _

Tog = T1 — f/(ilfl) . 3.912_9
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6 Testfragen zur Vorlesung

Hinweis: Bevor Sie die Ubungsaufgaben lésen, sollten Sie den Stoff der Vorlesung verstan-
den haben. Insbesondere sollten Sie die folgenden einfachen Fragen beantworten kénnen.
Diese Fragen werden im Allgemeinen nicht in den Ubungen besprochen, kénnen aber
priifungsrelevant sein.

1. Beschreiben (benennen) Sie alle Terme in den folgenden Relation

Af(z,Az) ~ f'(z)Ax

Af(x,Ax) () A
Af(z,Az) Ax

W ~ Ef,z(x) R

T
und beschreiben Sie (kurz) in Worten die Aussage dieser Relationen.

2. Erldutern Sie (kurz) in Worten die Bedeutung der folgenden Ausdriicke: Az, dz,

Af(x), df(x), B2, SHE, A0 und L2,

3. Beschreiben Sie (kurz) in Worten und/ oder mit einer Skizze den Unterschied zwi-
schen den beiden Ausdriicken Af(x) und df (x).

4. Sei ¢ # 0 eine reelle Zahl. Zeigen Sie, dass die Funktion f(x) = x¢ eine konstante
Elastizitéat hat.

5. Seien a > 0,a # 1 und b # 0 zwei reelle Zahlen. Zeigen Sie, dass die Funktion
f(x) = a® eine konstante Wachstumsrate hat.

6. Beschreiben Sie das Newton-Verfahren.
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7.1

7.2

7.3

Ubungsaufgaben

Niveau 1

. Sei f(p) =100 —2p fiir 0 < p < 50. Berechnen Sie die Preiselastizitéit der Nachfrage

fiir die Nachfragefunktion. In welchem Bereich ist die Nachfragefunktion elastisch
resp. unelastisch? Skizzieren Sie die Funktion f (ohne Taschenrechner).

Gegeben ist die Kostenfunktion (vergl. Beispiel im Skript)
1600

) € -
x + 20

(a) Berechnen Sie das Differential dK fiir die Kostenzunahme bei einer Produk-
tionserhohung von xq auf xq + Az fiir
i. 1o =30 und Az =1
ii. 9 = 30 und Az = 10
(b) Vergleichen Sie den Ndaherungswert dK mit der exakten Kostenzunahme AK.

K(z) = —70+ 20z +

Bestimmen Sie die Wachstumsraten fiir die folgenden Funktionen:

(a) f(t) =4
(b) f(t) =1t

Berechnen Sie eine Nullstelle des Polynoms f(z) = 2® —2x —5, indem Sie ausgehend
vom Startwert xy = 2 zwel Iterationsschritte des Newton-Verfahrens durchfiithren.

Niveau 2

. Sei f(p) = 100 — 2p fiir 0 < p < 50. Um wieviel % verdndert sich die Nachfrage

(approximativ), wenn der Preis von p = 40 um 1%, 2%, 4%, 5%, 10% bzw. 13%
erhoht wird? Hinweis: Benutzen Sie die Elastizitét!

1

. Fiir welche a > 0 ist die folgende Nachfragefunktion ¢(p) = —, p > 0 elastische?

pO{
1
Gegeben sei die Funktion F(z) =z (m + 4) . Bestimmen Sie dE(x, dz), dE(1, dx)
und dE(1,1/5).

Niveau 3

. Man beweise: Fiir die Wachstumsrate r(t) einer Funktion f(t) gilt:

") = S ().

Bestétigen Sie mit Hilfe dieser Formel die Ergebnisse aus der vorhergehenden Auf-
gabe und berechnen Sie die Wachstumsrate von
t2

ft) = T t>0.
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2. Bestimmen Sie die Differentiale der folgenden Funktionen:

(a) E(x)=z-p(x) x>0
(b) N(I)=I—-1-s(I) I>0
(¢) k(z) = Kff) v >0
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Lésungen der Ubungsaufgaben

Niveau 1

1. Nachfragefunktion elastisch fiir p > 25

2. a)i) 19.36 a)ii) 193.6 b)i)  19.372549 b) it) 194.6666667
3 a)r(t) =In(4) b)) :%
4. xo = 2.095
Niveau 2
1. —4%, —8%, ...
2. a>1

3. dE(z,dz) = (—327%2 + 4) dz, dE(1,dz) = 3.5 dz und dE(1,1/5) = 0.7.

Niveau 3

2—t
(t+1)

L. r(t)= ;

2. Wir schreiben der Einfachheit halber z.B. E anstelle von E(z) bzw. dE anstelle von

dE(x,dz), wenn es klar ist, von welcher Variablen die Funktion abhéngt.

a) dE = (z-p)de = (1-p+zx-p)dex = p-de+xz-pde = p-de+x-dp

b) AN = [1 —I-5(I) — s(I)]dI = dI — Ids — sdI
¢) d = i[K’(x) = k()] dz = é[dK ~ k()da]
d) dG = [z - p'(x) + p(z) — K'(z)]dx = xdp + pdx — dK
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Zusatzaufgaben mit Losung

Wenn Sie den Stoff noch weiter vertiefen wollen, konnen Sie die folgenden Zusatzaufgaben

bearbeiten. Insbesondere die zweite Aufgabe hat eine ausfiihrliche Musterlosung.

1. Schétzen Sie fiir die folgenden Funktionen unter Nutzung des Differentials df (zo, Ax),

dg(xo, Ax) bzw. dh(zg, Azx) die (ndherungsweise) Funktionswertverinderung ge-
geniiber dem Wert im Punkt xg = 1.5 bei einem Zuwachs um Ax = 1, Az = 0.1
bzw. Az = 0.01 und vergleichen Sie mit den exakten Anderungen Af(zo, Az),
Ag(zo, Ax) bzw. Ah(zg, Az).

(@) f) = oo
(b) g(z) =3x + 1i0 sin(x)
(€) h(r) = oo &

. An welcher Stelle x > 0 betrégt die Elastizitat der Funktion f(z)

Eins? Bestimmen Sie die Elastizitatsbereiche der Funktion.

I
DO
&

|

DO
_l’_
SHE

Losungen

1. Wir verwenden fiir die Ndherung der Funktionswertdnderungen mittels Differential

die wohlbekannte Beziehung:
df (xg, Az) =~ Af(xg, Ax).

Fiir die drei Funktionen gilt an der Stelle zy = 1.5:

2e7 "
1
g (x) =3+ i cos(z)  g(xg) =4.59975  ¢'(x) = 3.00707
1
B (z) = = e 1 h(wg) =0.07389  R'(w) = 0.14778

Fiir die Naherungen gilt:

Az Af(flfo,Al’) df(.]?o,Al’) Ag(l'o,Al') dg<x07A$) Ah(x(J?Ax) dh(x07Ax>
1 0.00123 0.00192 2.96010 3.00707 0.47209 0.14778

0.1 0.00018 0.00019 0.30021 0.30071 0.01636 0.01478

0.01 0.00002 0.00002 0.03006 0.03007 0.00149 0.00148

Es gibt stets eine recht gute Ubereinstimmung fiir Az = 0.01 und eine recht schlechte
fir Ax = 1.
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e Flastizitat der Funktion

3 1
— 99— 24
fr) = 2ot
1
fl@) = 2-—
1
9 _ —
f(z)x < xZ) v 27 — 1
e = - 3 1 3
f(z) 20 — -+ — 272 — ~x + 1
2 2

Dabei wurde im letzten Schritt der Bruch mit x erweitert, um in Zéhler und
Nenner der Einfachheit halber Polynome zu erzeugen.

e Wo ist die Elastizitét gleich 17

222 — 1
1 _ x—?)
202 — x4+ 1
x 2:B~|—
2 2 3
= 2x"—-1 = 2x—§x—|—1
3
= - = 2
5%
<~ 1
x = =
3
e Wo ist die Funktion f elastisch?
272 — 1
x—?) > 1
20% — —w + 1
T 2x+
2 2 3
= [2z" - 1] > 2x—§x—|—1‘

Nun muss man diese Ungleichung mit Betréigen 16sen (Vorkurs). Dazu werden
zunéchst die kritischen Punkte beider Ausdriicke (Nullstellen, hier wechselt das
Vorzeichen) in den Betréigen bestimmt.

— Der Ausdruck 22% —1 ist in den Punkten x = j:\/g gleich Null und da wir

die Funktion f nur fiir x > 0 untersuchen, interessiert uns nur die positive
Nullstelle. Wir sehen auch sofort

<0 fﬁr0<x§\/g

>0 fiir\/g<x

2% — 1
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— Der Ausdruck 222 — 22 + 1 hat keine Nullstellen (Mitternachtformel oder

quadratische Ergdnzung). Weiterhin kann man leicht zeigen, dass sogar
207 — 3241 > 0 fiir alle 2 > 0 gilt.

Mit diesen Uberlegungen koénnen wir nun die Betragsstriche in der obigen Un-
gleichung beseitigen. Natiirlich ist dabei eine Fallunterscheidung notig.

1
(a) Bereich 1: 0 <z < \/; ~ 0.709

In diesem Betreich ist der linke Ausdruck nicht positiv und der rechte
positiv. Es gilt somit (nur in diesem Bereich!!):

222 =1 >

3

= —(2*-1) > 20 — i1

2
3 3
~— 0 > 4x2—§x: (4x—§)x
3
<~ 0 > 495—5

<— 220.375 >

Dabei haben wir in der dritten Zeile benutzt, dass ein Produkt genau dann
kleiner als Null ist, wenn beide Faktoren verschiedene Vorzeichen haben.
Ausserdem kann x nur nicht-negative Werte annehmen.

1
Wir haben also gezeigt, dass im Bereich 0 < z < \/; ~ 0.709 alle x mit

3
3= 0.375 > x die Ungleichung 16sen. Unsere Ausgangsfunktion ist also

auf dem Intervall x € (0, g) elastisch.

1
Bereich 2: \/; ~0.709 < z

In diesem Betreich ist der linke Ausdruck positiv und der rechte positiv.
Es gilt somit (nur in diesem Bereich!!):
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22 —1] >

3
200 — x4+ 1
T 2m—|— ‘
3
— 27-1 > mﬁ—§x+1

3
— 0 > 2—537

S 4
@ a;‘ f—
3

Wir haben also gezeigt, dass im Bereich \/g ~ 0.709 < z alle z mit

% ~ 1.333 < x die Ungleichung l6sen. Unsere Ausgangsfunktion ist also

auf dem Intervall x € (g, oo) elastisch.

3 4
Insgesamt ist die Funktion somit auf <O, g) U (5’ oo) elastisch.

Wo ist die Funktion f unelastisch?

Natiirlich konnten wir den obigen direkten Weg wieder durchlaufen, um die
gesuchten Bereiche zu finden. Aber da wir oben gezeigt haben, wo |es,| > 1

3 4 3 4
gilt, muss im Komplement der gefundenen Menge (0, §> U <— oo) = {— —]

3 83

das logische Gegenteil, also |ef,| < 1 gelten. Bedenken wir noch, dass e 53 = —1
3 4

und €ra = 1 ist, muss unsere Funktion auf dem offenen Intervall (§’§)

unelastisch sein.
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e  Graphische Losung,,

Wir konnten die Aufgabe auch graphisch 16sen. In der Skizze sehen Sie den
Graphen der Funktion f (rot) und den Graphen der Funktion ey, (blau). Wenn
wir wissen wollen, wo unsere Funktion f unelastisch ist, miissen wir nur die
Werte z finden, an denen die Funktion €7, Werte zwischen —1 und 1 annimmt.
Dieser Bereich ist auf der x-Achse speziell gekennzeichnet.




