
Universität Basel 3
Wirtschaftswissenschaftliches Zentrum

Abteilung Quantitative Methoden

Mathematik 1
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1 Marginale Funktionen

1.1 Einführung

Gegeben sei eine ökonomische Funktion y = f(x).

Wir wissen bereits, dass der Quotient

∆f(x,∆x)

∆x
=

f(x+ ∆x)− f(x)

∆x

die durchschnittliche Änderung von f darstellt, wenn man x um ∆x ändert. Der Grenzwert

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)

∆x

kann als momentane Änderung von f angesehen werden. Die Ableitung f ′(x) wird (in
ökonomischen Zusammenhängen) auch marginale Funktion genannt.

Bemerkung 1.1 Setzen wir ∆x = 1, so können wir die Ableitung von f (ungefähr) als
die Änderung von f ansehen, falls x auf x+ 1 erhöht wird:

f ′(x)︸ ︷︷ ︸
tan(τ)

= lim
∆x→0

f(x+ ∆x)− f(x)

∆x
≈ f(x+ 1)− f(x)

1
= f(x+ 1)− f(x)︸ ︷︷ ︸

tan(σ)

τ σ

x+1x

f(x+1)

f(x)
1

1.2 Marginale Funktionen in der Mikroökonomie

Es sei K = K(x) eine Kostenfunktion (d.h. K(x) sind die Kosten zur Erzeugung von x
Einheiten eines Gutes). Die Ableitung K ′(x) nennen wir auch Grenzkostenfunktion.
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Interpretation:

K ′(x) kann (in erster Näherung) als die zusätzlichen Kosten interpretiert werden, die
benötigt werden, um den Output von x auf x+ 1 Einheiten zu erhöhen.

Wir betrachten das rechtwinklige Dreieck mit den Eckpunkten P,Q und R. Dann gilt

K ′(x) = tan(τ) =
|QR| (Gegenkathete)

|PR| (Ankathete)
=
|QR|

1
= |QR|

τ

τ

x x+1

P

P’

Q

R

Tasächliche 

Kostenänderung

K’(x)    
Kostenänderung

          in 1. Näherung

Abbildung 1: Grenzkostenfunktion

oder auch

K ′(x) = lim
∆x→0

K(x+ ∆x)−K(x)

∆x

≈︸︷︷︸
∆x=1

K(x+ 1)−K(x)

1
= K(x+ 1)−K(x)

Dabei sind K(x + 1)−K(x) die zusätzlichen Kosten die anfallen, wenn der Output von
x auf x+ 1 Stück erhöht wird.
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Beispiel 1.1 Vergleichen Sie die Werte K ′(x) und K(x+1)−K(x) für die Kostenfunktion
K(x) = x3 + 5000 an den gegebenen Stellen.

x Steigerung K(x+ 1)−K(x) K ′(x)

0 0→ 1 1 0

10 10→ 11 331 300

20 20→ 21 1200

30 30→ 31 2700

Es gilt z.B.

K ′(x) = 3 x2 und K ′(10) = 3 · 102 = 300

und

K(10 + 1)−K(10) = K(11)−K(10)

= 113 + 5000− 103 − 5000

= 331.

Ergänzen Sie die fehlenden Werte in der Tabelle.

1.3 Marginale Funktionen in der Makroökonomie

C = C(Y ) bezeichnet den Konsum als Funktion des
Volkseinkommens Y

S = S(Y ) = Y − C(Y ) bezeichnet das Sparen

c(Y ) =
dC(Y )

dY
wird marginale Konsumquote (oder Grenzneigung

zum Konsum) genannt

s(Y ) =
dS(Y )

dY
= 1− c(Y ) wird marginale Sparquote (oder Grenzneigung

zum Sparen) genannt

Welche Eigenschaften sollte eine Konsumfunktion C(Y ) haben? Zumindest sollte sie
streng monoton wachsend sein, denn ein grösseres Volkseinkommen Y sollte auch den
Konsum steigern.
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1.4 Marginale Funktionen und Optimierungsprobleme

Wir wollen nun die Grenzkosten K ′(x) verwenden, um den Output x∗ zu bestimmen, der

1. zu minimalen Durchschnittskosten oder

2. zu maximalem Profit

führt.

1. Minimale Durchschnittskosten

Die Durchschnittskosten lassen sich durch K(x)
x

ausdrücken. Wie wir noch aus der
Schule wissen (!?), ist eine notwendige Bedingung für die Existenz eines Minimums
in x∗ das Verschwinden der ersten Ableitung. Also muss gelten:

0 =
d

dx

(
K(x)

x

)∣∣∣∣
x=x∗

=
K ′(x∗) · x∗ −K(x∗) · 1

x∗2

=
K ′(x∗)

x∗
− K(x∗)

x∗2
;

oder

K ′(x∗) =
K(x∗)

x∗
.

Also sind die Durchschnittskosten minimal, wenn die Grenzkosten gleich den Durch-
schnittskosten sind.

2. Maximaler Profit

Wir betrachten den Preis p einer Einheit des Gutes als konstant. Dann ist der Profit
P (x) für x Einheiten des Gutes gegeben durch

P (x) = Erlös − Totale Kosten

= p · x−K(x).

Die notwendige Bedingung für das Vorliegen eines Maximums in x∗ ist wieder das
Verschwinden der ersten Ableitung in x∗.

0 =
d

dx
P (x)

∣∣∣∣
x=x∗

= p−K ′(x∗).

oder

K ′(x∗) = p.

Der Profit ist maximal, wenn die Grenzkosten gleich dem Preis einer Einheit des
Gutes sind.



6

2 Das (totale) Differential

Es sei f eine differenzierbare Funktion, d.h. für jedes x des Definitionsbereiches existiert
der Grenzwert

lim
∆x→0

f(x+ ∆x)− f(x)

∆x
= lim

∆x→0

∆f(x,∆x)

∆x
= f ′(x).

Diese Situation kann aber auch anders beschrieben werden. Es gilt

∆f(x,∆x)

∆x︸ ︷︷ ︸
Sekantenanstieg

= f ′(x)︸ ︷︷ ︸
Tangentenanstieg

+ R(x,∆x) oder

∆f(x,∆x) = f ′(x) ·∆x+R(x,∆x) ·∆x

wobei der Rest R(x,∆x) die Eigenschaft hat:

lim
∆x→0

R(x,∆x) = 0.

Definition 2.1 Der Ausdruck f ′(x) ·∆x heisst das Differential von f an der Stelle x für
den Zuwachs ∆x. Gewöhnlich setzt man auch dx = ∆x und schreibt

df = df(x, dx) = f ′(x) · dx.

Das Differential einer Funktion ist also zunächst einmal selbst eine Funktion, die auf die
Eingabe von x und dx wartet.

Weiterhin gilt für die Tangente t an f im Punkt x (wir schreiben den neuen Punkt als
x+ dx):

t(x+ dx) = f(x) + f ′(x) dx.

Somit:

t(x+ dx)− t(x) = f(x) + f ′(x) dx− f(x) = f ′(x) dx = df(x, dx).

Das Differential df(x, dx) kann also als Änderung der Tangente angesehen werden, falls
sich x um dx ändert.

Beispiel 2.1 Die Funktion f(x) = x2 ist differenzierbar und es gilt

∆f(x,∆x)

∆x
=

(x+ ∆x)2 − x2

∆x

=
x2 + 2x∆x+ (∆x)2 − x2

∆x

=
2x∆x+ (∆x)2

∆x
= 2x+ ∆x

∆f(x,∆x) = 2x∆x+ (∆x)2 = 2xdx︸ ︷︷ ︸
df(x,dx)

+ (dx)2︸ ︷︷ ︸
R(x,dx)
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Geometrische Interpretation:

= t(x+dx)−t(x)
df(x,dx)

= f’(x)dx

f(x,dx)∆
= f(x+dx)−f(x)

f

f(x+dx)

R(x,dx) dx

x+dxx

t(x+dx)

t

     f(x)t(x)   =

Abbildung 2: Das Differential

∆x = dx Die beiden Ausdrücke sind gleich. Sie messen die
Änderung der unabhängigen Variablen x.

∆f = ∆f(x, dx) misst die tatsächliche Änderung der Funktion wenn
man x um dx ändert.

df = df(x, dx) misst die Änderung der linearen Approximation
(Tangente in x), wenn man x um dx ändert.

∆f(x, dx) = df(x, dx) +R(x, dx)dx mit lim
dx→0

R(x, dx) = 0

∆f(x,∆x) ≈ df(x,∆x) = f ′(x)dx für kleine Änderungen dx

t(x+ dx) = f(x) + f ′(x)dx Tangente an f im Punkt x



8

Beispiel 2.2 Wir betrachten die Kostenfunktion K(x) = 50 + 20x +
2′500

x+ 20
. Die zu

produzierende Menge x wächst von 30 auf 31.

Wir wollen dK(30, 1) mit ∆K(30, 1) vergleichen. Es gilt x = 30 und ∆x = 1 sowie

K ′(x) = 20− 2500

(x+ 20)2
und K ′(30) = 19

Dann gilt

∆K(30, 1) = K(31)−K(30) = 19.02

dK(30, 1) = K ′(30) · 1 = 19.

Ein Vorteil des Differentials offenbart sich, wenn wir mehrere Änderungen von f bei
gleichem Ausgangspunkt x = 30 und verschiedenen Werten ∆x bestimmen sollten. Bei
exakter Rechnung müssten wir jeweils einen neuen Funktionswert von f bestimmen. Das
ist recht aufwändig. Nutzen wir dagegen das Differential müssen wir den Wert K ′(30) = 19
nur mit der neuen Änderung ∆x multiplizieren. Das ist einfacher. Oder?

∆x ∆K(30,∆x) = K(30 + ∆x)−K(30) dK(30,∆x)

1 50 + 20 · 31 +
2′500

31 + 20
−
(

50 + 20 · 30 +
2′500

30 + 20

)
19 · 1

2 50 + 20 · 32 +
2′500

32 + 20
−
(

50 + 20 · 30 +
2′500

30 + 20

)
19 · 2

10 50 + 20 · 40 +
2′500

40 + 20
−
(

50 + 20 · 30 +
2′500

30 + 20

)
19 · 10
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*Ausblick* Neben der Möglichkeit, mit Hilfe des Differentials Funktionsänderungen zu
approximieren, bietet das Differential auch viele theoretische Anwendungsmöglichkeiten.

In einer geschlossenen Volkswirtschaft ohne Staatstätigkeit (keine Staatsausgaben, keine
Nettoexporte) gilt die Gleichung:

Y = C + I.

Dabei ist

Y = Y (I) das Volkseinkommen d.h. der Wert aller in einem Land
hergestellten Waren und Dienstleistungen.

C = C(Y ) der Konsum, d.h. die Ausgaben der Haushalte für Waren und
Dienstleistungen mit Ausnahme des Erwerbs von Grundstücken
und Gebäuden (und deren Neubau).

I die Investitionen, d.h. die Ausgaben für Kapitalausstattung,
Lagerbestände und Bauten.

Wie wirkt sich eine zusätzliche Investition auf das Volkseinkommen aus?

Es gilt

dY (I) = Y ′(I)dI

Y ′(I) =
d

dI
( C(Y (I)) + I ) =

dC

dY

dY

dI
+ 1 =

dC

dY
Y ′(I) + 1

also

Y ′(I) =
1

1− dC
dY

=
1
dS
dY

,

wobei S = Y − C = I die Spartätigkeit bezeichnet. Mit den in der Literatur häufig
verwendeten Bezeichnungen

c(Y ) =
dC

dY
s(Y ) =

dS

dY

erhält man somit

dY (I) =
1

1− c(Y )
dI =

1

s(Y )
dI.

Der Ausdruck

µ =
1

1− c(Y )
dI =

1

s(Y )
dI

wird dabei als Multiplikator bezeichnet.
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3 Elastizitäten

Grenzkosten, Grenzneigung zum Konsum usw. hängen vom Massstab ab, in dem die
Grössen Kosten, Konsum usw. gemessen werden. Besonders in wirtschaftlichen Verglei-
chen ist es aber wünschenswert, eine Grösse zu definieren, die Änderungen der Funkti-
onswerte massstabsunabhängig darstellt.

Wir betrachten den Quotienten

rel. Änderung der Funktionswerte

rel. Änderung der unabh. Variablen
=

f(x+ ∆x)− f(x)

f(x)
∆x

x

=
f(x+ ∆x)− f(x)

∆x
· x

f(x)
.

Definition 3.1 Falls f differenzierbar ist, so existiert

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)

∆x

und wir definieren die Elastizität der Funktion f oder die Rate der relativen Änderung

von f bezogen auf die relative Änderung von x:

εf,x = εf,x(x) := lim
∆x→0

f(x+ ∆x)− f(x)

∆x
· x

f(x)
= f ′(x) · x

f(x)
= x · f

′(x)

f(x)
.

Beispiel 3.1

f(x) = ax ⇒ εf,x = x
a

ax
= 1

Beispiel 3.2

f(x) = eλx ⇒ εf,x = x
λeλx

eλx
= λx.

Interpretation der Elastizität:

∆f(x,∆x)

f(x)︸ ︷︷ ︸
relative f -Änderung

≈ εf,x · ∆x

x︸︷︷︸
relative x-Änderung

.
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Beispiel 3.3 Wir betrachten die Funktion f(x) = x3 +5000 für x = 20 und ∆x = 1. Wir
ändern also x von 20 auf 21 absolut um 1 und relativ um

∆x

x
=

1

20
= 0.05 = 5%

Wie ändert sich in diesem Fall f absolut und relativ? Eine exakte Rechnung ergibt:

absolute Änderung ∆f(20, 1) = f(21)− f(20) = 1′261

relative Änderung
∆f(20, 1)

f(20)
=

1′261

13′000
= 0.097 = 9.7%

Was liefert die Elastizität?

εf,x(x) = x
f ′(x)

f(x)
= x

3x2

x3 + 5000
und εf,x(20) = 1.846

Setzen wir das in die Relation der Elastizität ein, erhalten wir eine Näherung für die
relative Änderung der Funktion f :

∆f(20, 1)

f(20)
≈ εf,x(20) · 1

20
= 1.846 · 0.05 = 0.092 = 9.2%
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Definition 3.2 Eine relative Änderung der unabhängigen Variablen x bewirkt also un-
gefähr eine εf,x- fache relative Änderung der Funktion. Ist nun

1. |εf,x| > 1, so heisst f elastisch (eine relative Änderung von x wirken sich überpro-
portional auf f aus);

2. |εf,x| < 1, so heisst f unelastisch (eine relative Änderung von x wirken sich un-
terproportional auf f aus)

Beispiel 3.4 Wir betrachten die Nachfragefunktion

q = q(p) = 9− 3p.

Die unabhängige Variable ist hier also p. Weiterhin sollten sowohl p (Preise) als auch q
(Nachfrage) ausschliesslich positive Werte annehmen, d.h. p > 0 und q = 9 − 3p > 0.
Somit sind in diesem Modell nur Preise p mit 0 < p < 3 sinnvoll.

Dann gilt für die Elastizität

εq,p := p · −3

9− 3p
=
−3p

9− 3p
=
−p

3− p
.

Für welche Werte p ist die Funktion q nun elastisch? Dazu müssen wir die Ungleichung
|εq,p| > 1 nach p auflösen. Die Betragszeichen dürfen dabei nicht einfach weggelassen
werden! Sie müssen beachten, dass innerhalb des Bereichs 0 < p < 3 der Zähler −p sicher
negativ und der Nenner 3− p sicher positiv ist.

|εq,p| =

∣∣∣∣ −p3− p

∣∣∣∣ =
p

3− p
> 1

gilt genau dann, wenn p > 1.5. Also ist die Funktion q im Bereich 1.5 < p < 3 elastisch.
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4 Wachstumsraten

Es sei y = f(t) eine differenzierbare Funktion der Zeit. Wir betrachten die durchschnitt-
liche relative Änderung der Funktion im Laufe der Zeit:(

∆f(t,∆t)

f(t)

)
∆t

=

(
∆f(t,∆t)

∆t

)
f(t)

≈ f ′(t)

f(t)

Definition 4.1 Die Wachstumsrate ist definiert durch

rf (t) :=
f ′(t)

f(t)
.

Beispiel 4.1 Exponentialfunktionen weisen konstante Wachstumsraten auf. Sei also

y(t) = 12 · e2t ⇒ rf (t) =
12 · 2 · e2t

12 · e2t
= 2

Beispiel 4.2 Wir betrachten eine so genannte logistische Funktion.

y(t) =
4

1 + 2 · e−3t
⇒ rf (t) =

6e−3t

1 + 2e−3t

Interpretation der Wachstumsrate:

∆f(t,∆t)

f(t)︸ ︷︷ ︸
relative f -Änderung

≈ rf (t) · ∆t︸︷︷︸
echte t-Änderung

.

Es gilt rf (t) = [ln f(t)]′, was hilfreich ist, um bestimmte Wachstumsraten zu berechnen.
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5 Das Newton-Verfahren

Die in den Übungen gestellten Aufgaben erwecken den Eindruck, als könne man jede Auf-
gabe exakt und analytisch lösen, wenn man sich nur genug anstrengt und die richtige Idee
hat. Dieser Eindruck ist falsch! Bei den allermeisten ökonomisch-mathematischen Proble-
men wird man (aus verschiedenen Gründen) keine exakte Lösung bestimmen können.

Wir wollen uns dazu das schon bekannte Problem der Evaluation eines Projektes ansehen.
Seien also a0, a1, a2, . . . , an die Erträge eines Projektes in aufeinander folgenden Jahren
(neg. Zahlen sind Verluste bzw. Investitionen und positive Zahlen sind Gewinne bzw.
Rückzahlungen). Der Barwert dieser Erträge ist dann eine Funktion der Zinsrate p ∈ [0, 1]:

B(p) = a0 +
a1

1 + p
+

a2

(1 + p)2
+ . . .+

an
(1 + p)n

Gesucht ist hier häufig die so genannte interne Ertragsrate, die als der Zinssatz p0 definiert
ist, bei dem der Barwert aller Erträge gleich 0 ist.

Zum Lösen der Gleichung

a0 +
a1

1 + p
+

a2

(1 + p)2
+ . . .+

an
(1 + p)n

= 0

sollte man zuerst x = 1 + p substituieren und die Gleichung dann mit xn = (1 + p)n

multiplizieren. Wir erhalten dann die folgende polynomiale Gleichung:

a0x
n + a1x

n−1 + a2x
n−2 + . . .+ an = 0

Für n = 1 (lineare Gleichung) könnte die Lösung schnell und exakt bestimmt werden.

Für n = 2 (quadratische Gleichung) könnten wir die abc-Formel nutzen:

x1,2 =
−a1 ±

√
a2

1 − 4a0a2

2a0

.

Beim Ziehen der Wurzel werden wir die dort höchstwahrscheinlich auftretende irrationale
Zahl runden müssen, aber wir können auch hier noch von einer (fast) exakten Lösung
sprechen.

Für n = 3 könnte man sich noch mit der so genannten Cardanischen Formel behelfen,
die eigentlich von N. Tartaglia (1500-1557) entdeckt, aber von C. Cardano (1501-1576)
in seinem Buch Ars Magna (in einer verallgemeinerten Form) veröffentlicht wurde (und
deshalb ihm zugeschrieben wurde). Eine stets existierende reelle Lösung der reduzierten
kubischen Gleichung y3 + py + q = 0 kann damit wie folgt bestimmt werden:

y1 =
3

√
−q

2
+

√(q
2

)2

+
(p

3

)3

+
3

√
−q

2
−
√(q

2

)2

+
(p

3

)3

.

Für n ≥ 5 gibt es (beweisbar) keine allgemeinen Lösungsformeln (durch endliche Wur-
zelausdrücke)!! Hier muss man auf numerische Verfahren zurück greifen. Wir wollen hier
das so genannte Newton-Verfahren kurz besprechen.
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Sei f : [a, b] −→ R eine (genügend oft) stetig differenzierbare Funktion. Wir wollen ein
schnelles Verfahren konstruieren, um eine Nullstelle von f zu finden. Dazu sei xn ∈ [a, b]
ein Näherungswert nahe bei der gesuchten Nullstelle xnull. Dann ist die Tangente an f im
Punkt (xn, f(xn)) gegeben durch

T (x) = f(xn) + f ′(xn)(x− xn).

Wir bestimmen nun die Nullstelle xn+1 der Tangent, die eine (hoffentlich) bessere Nähe-
rung an xnull ist. Es muss also gelten:

0 = T (xn+1) = f(xn) + f ′(xn)(xn+1 − xn) oder xn+1 = xn −
f(xn)

f ′(xn)
.
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Für einen zunächst beliebigen Startwert x0 betrachten wir also die rekursiv definierte
Folge

xn+1 := xn −
f(xn)

f ′(xn)
n = 0, 1, 2, . . .

Unsere Hoffnung ist auch hier, dass die so erzeugte Folge gegen eine Nullstelle xnull von f
konvergiert. Der folgende Satz bestätigt unsere Hoffnung in den meisten Fällen, in denen
xnull eine einfache Nullstelle ist (f ′(xnull) 6= 0).

Satz 1 Das Newton-Verfahren konvergiert für Startwert x0 nahe der Nullstelle, falls xnull
einfache Nullstelle von f ist.

Beispiel 5.1 Mit dem Startwert x0 = 2 gilt für die Funktion f(x) = x3 − 2x− 5:

x1 = x0 −
f(x0)

f ′(x0)
= 2− 23 − 2 · 2− 5

3 · 22 − 2
= 2.1

x2 = x1 −
f(x1)

f ′(x1)
= 2.1− 2.13 − 2 · 2.1− 5

3 · 2.12 − 2
=
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6 Testfragen zur Vorlesung

Hinweis: Bevor Sie die Übungsaufgaben lösen, sollten Sie den Stoff der Vorlesung verstan-
den haben. Insbesondere sollten Sie die folgenden einfachen Fragen beantworten können.
Diese Fragen werden im Allgemeinen nicht in den Übungen besprochen, können aber
prüfungsrelevant sein.

1. Beschreiben (benennen) Sie alle Terme in den folgenden Relation

∆f(x,∆x) ≈ f ′(x) ·∆x

∆f(x,∆x)

f(x)
≈ rf (x) ·∆x

∆f(x,∆x)

f(x)
≈ εf,x(x) · ∆x

x

und beschreiben Sie (kurz) in Worten die Aussage dieser Relationen.

2. Erläutern Sie (kurz) in Worten die Bedeutung der folgenden Ausdrücke: ∆x, dx,

∆f(x), df(x), ∆x
x

, ∆f(x)
f(x)

, ∆f(x)
∆x

und df(x)
dx

.

3. Beschreiben Sie (kurz) in Worten und/ oder mit einer Skizze den Unterschied zwi-
schen den beiden Ausdrücken ∆f(x) und df(x).

4. Sei c 6= 0 eine reelle Zahl. Zeigen Sie, dass die Funktion f(x) = xc eine konstante
Elastizität hat.

5. Seien a > 0, a 6= 1 und b 6= 0 zwei reelle Zahlen. Zeigen Sie, dass die Funktion
f(x) = abx eine konstante Wachstumsrate hat.

6. Beschreiben Sie das Newton-Verfahren.
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7 Übungsaufgaben

7.1 Niveau 1

1. Sei f(p) = 100−2p für 0 ≤ p < 50. Berechnen Sie die Preiselastizität der Nachfrage
für die Nachfragefunktion. In welchem Bereich ist die Nachfragefunktion elastisch
resp. unelastisch? Skizzieren Sie die Funktion f (ohne Taschenrechner).

2. Gegeben ist die Kostenfunktion (vergl. Beispiel im Skript)

K(x) = −70 + 20x+
1′600

x+ 20
, x ≥ 0

(a) Berechnen Sie das Differential dK für die Kostenzunahme bei einer Produk-
tionserhöhung von x0 auf x0 + ∆x für

i. x0 = 30 und ∆x = 1

ii. x0 = 30 und ∆x = 10

(b) Vergleichen Sie den Näherungswert dK mit der exakten Kostenzunahme ∆K.

3. Bestimmen Sie die Wachstumsraten für die folgenden Funktionen:

(a) f(t) = 4t

(b) f(t) = t3.

4. Berechnen Sie eine Nullstelle des Polynoms f(x) = x3−2x−5, indem Sie ausgehend
vom Startwert x0 = 2 zwei Iterationsschritte des Newton-Verfahrens durchführen.

7.2 Niveau 2

1. Sei f(p) = 100 − 2p für 0 ≤ p < 50. Um wieviel % verändert sich die Nachfrage
(approximativ), wenn der Preis von p = 40 um 1%, 2%, 4%, 5%, 10% bzw. 13%
erhöht wird? Hinweis: Benutzen Sie die Elastizität!

2. Für welche α > 0 ist die folgende Nachfragefunktion q(p) =
1

pα
, p > 0 elastische?

3. Gegeben sei die FunktionE(x) = x

(
1

x3/2
+ 4

)
. Bestimmen Sie dE(x, dx), dE(1, dx)

und dE(1, 1/5).

7.3 Niveau 3

1. Man beweise: Für die Wachstumsrate r(t) einer Funktion f(t) gilt:

r(t) =
d

dt
( ln(f(t)) ) .

Bestätigen Sie mit Hilfe dieser Formel die Ergebnisse aus der vorhergehenden Auf-
gabe und berechnen Sie die Wachstumsrate von

f(t) =
t2

(t+ 1)3
, t > 0.
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2. Bestimmen Sie die Differentiale der folgenden Funktionen:

(a) E(x) = x · p(x) x > 0

(b) N(I) = I − I · s(I) I ≥ 0

(c) k(x) =
K(x)

x
x > 0

(d) G(x) = x · p(x)−K(x) x > 0



19

Lösungen der Übungsaufgaben

Niveau 1

1. Nachfragefunktion elastisch für p > 25

2. a) i) 19.36 a) ii) 193.6 b) i) 19.372549 b) ii) 194.6666667

3. a) r(t) = ln(4) b) r(t) =
3

t

4. x2 = 2.095

Niveau 2

1. −4%, −8%, . . .

2. α > 1

3. dE(x, dx) = (−1
2
x−3/2 + 4) dx, dE(1, dx) = 3.5 dx und dE(1, 1/5) = 0.7.

Niveau 3

1. r(t) =
2− t
t(t+ 1)

2. Wir schreiben der Einfachheit halber z.B. E anstelle von E(x) bzw. dE anstelle von
dE(x, dx), wenn es klar ist, von welcher Variablen die Funktion abhängt.

a) dE = (x · p)′ dx = (1 · p+ x · p′) dx = p · dx+ x · p′ dx = p · dx+ x · dp
b) dN = [1− I · s′(I)− s(I)]dI = dI − Ids− sdI

c) dk =
1

x
[K ′(x)− k(x)]dx =

1

x
[dK − k(x)dx]

d) dG = [x · p′(x) + p(x)−K ′(x)]dx = xdp+ pdx− dK



20

Zusatzaufgaben mit Lösung

Wenn Sie den Stoff noch weiter vertiefen wollen, können Sie die folgenden Zusatzaufgaben
bearbeiten. Insbesondere die zweite Aufgabe hat eine ausführliche Musterlösung.

1. Schätzen Sie für die folgenden Funktionen unter Nutzung des Differentials df(x0,∆x),
dg(x0,∆x) bzw. dh(x0,∆x) die (näherungsweise) Funktionswertveränderung ge-
genüber dem Wert im Punkt x0 = 1.5 bei einem Zuwachs um ∆x = 1, ∆x = 0.1
bzw. ∆x = 0.01 und vergleichen Sie mit den exakten Änderungen ∆f(x0,∆x),
∆g(x0,∆x) bzw. ∆h(x0,∆x).

(a) f(x) =
2

15 + e−x

(b) g(x) = 3x+
1

10
sin(x)

(c) h(x) =
1

100
e2x−1

2. An welcher Stelle x > 0 beträgt die Elastizität der Funktion f(x) = 2x − 3

2
+

1

x
Eins? Bestimmen Sie die Elastizitätsbereiche der Funktion.

Lösungen

1. Wir verwenden für die Näherung der Funktionswertänderungen mittels Differential
die wohlbekannte Beziehung:

df(x0,∆x) ≈ ∆f(x0,∆x).

Für die drei Funktionen gilt an der Stelle x0 = 1.5:

f ′(x) =
2e−x

(15 + e−x)2
f(x0) = 0.13138 f ′(x0) = 0.00192

g′(x) = 3 +
1

10
cos(x) g(x0) = 4.59975 g′(x0) = 3.00707

h′(x) =
1

50
e2x−1 h(x0) = 0.07389 h′(x0) = 0.14778

Für die Näherungen gilt:

∆x ∆f(x0,∆x) df(x0,∆x) ∆g(x0,∆x) dg(x0,∆x) ∆h(x0,∆x) dh(x0,∆x)

1 0.00123 0.00192 2.96010 3.00707 0.47209 0.14778
0.1 0.00018 0.00019 0.30021 0.30071 0.01636 0.01478
0.01 0.00002 0.00002 0.03006 0.03007 0.00149 0.00148

Es gibt stets eine recht gute Übereinstimmung für ∆x = 0.01 und eine recht schlechte
für ∆x = 1.
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2. • Elastizität der Funktion

f(x) = 2x− 3

2
+

1

x

f ′(x) = 2− 1

x2

εf,x =
f ′(x)x

f(x)
=

(
2− 1

x2

)
x

2x− 3

2
+

1

x

=
2x2 − 1

2x2 − 3

2
x+ 1

Dabei wurde im letzten Schritt der Bruch mit x erweitert, um in Zähler und
Nenner der Einfachheit halber Polynome zu erzeugen.

• Wo ist die Elastizität gleich 1?

1 =
2x2 − 1

2x2 − 3

2
x+ 1

⇐⇒ 2x2 − 1 = 2x2 − 3

2
x+ 1

⇐⇒ 3

2
x = 2

⇐⇒ x =
4

3

• Wo ist die Funktion f elastisch?

∣∣∣∣∣∣∣
2x2 − 1

2x2 − 3

2
x+ 1

∣∣∣∣∣∣∣ > 1

⇐⇒
∣∣2x2 − 1

∣∣ >

∣∣∣∣2x2 − 3

2
x+ 1

∣∣∣∣
Nun muss man diese Ungleichung mit Beträgen lösen (Vorkurs). Dazu werden
zunächst die kritischen Punkte beider Ausdrücke (Nullstellen, hier wechselt das
Vorzeichen) in den Beträgen bestimmt.

– Der Ausdruck 2x2−1 ist in den Punkten x = ±
√

1
2

gleich Null und da wir

die Funktion f nur für x > 0 untersuchen, interessiert uns nur die positive
Nullstelle. Wir sehen auch sofort

2x2 − 1

 ≤ 0 für 0 < x ≤
√

1
2

> 0 für
√

1
2
< x



22

– Der Ausdruck 2x2 − 3
2
x+ 1 hat keine Nullstellen (Mitternachtformel oder

quadratische Ergänzung). Weiterhin kann man leicht zeigen, dass sogar
2x2 − 3

2
x+ 1 > 0 für alle x > 0 gilt.

Mit diesen Überlegungen können wir nun die Betragsstriche in der obigen Un-
gleichung beseitigen. Natürlich ist dabei eine Fallunterscheidung nötig.

(a) Bereich 1: 0 < x ≤
√

1

2
≈ 0.709

In diesem Betreich ist der linke Ausdruck nicht positiv und der rechte
positiv. Es gilt somit (nur in diesem Bereich!!):

∣∣2x2 − 1
∣∣ >

∣∣∣∣2x2 − 3

2
x+ 1

∣∣∣∣
⇐⇒ −

(
2x2 − 1

)
> 2x2 − 3

2
x+ 1

⇐⇒ 0 > 4x2 − 3

2
x =

(
4x− 3

2

)
x

⇐⇒ 0 > 4x− 3

2

⇐⇒ 3

8
= 0.375 > x

Dabei haben wir in der dritten Zeile benutzt, dass ein Produkt genau dann
kleiner als Null ist, wenn beide Faktoren verschiedene Vorzeichen haben.
Ausserdem kann x nur nicht-negative Werte annehmen.

Wir haben also gezeigt, dass im Bereich 0 < x ≤
√

1

2
≈ 0.709 alle x mit

3

8
= 0.375 > x die Ungleichung lösen. Unsere Ausgangsfunktion ist also

auf dem Intervall x ∈
(

0,
3

8

)
elastisch.

(b) Bereich 2:

√
1

2
≈ 0.709 < x

In diesem Betreich ist der linke Ausdruck positiv und der rechte positiv.
Es gilt somit (nur in diesem Bereich!!):
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∣∣2x2 − 1
∣∣ >

∣∣∣∣2x2 − 3

2
x+ 1

∣∣∣∣
⇐⇒ 2x2 − 1 > 2x2 − 3

2
x+ 1

⇐⇒ 0 > 2− 3

2
x

⇐⇒ x >
4

3

Wir haben also gezeigt, dass im Bereich
√

1
2
≈ 0.709 < x alle x mit

4
3
≈ 1.333 < x die Ungleichung lösen. Unsere Ausgangsfunktion ist also

auf dem Intervall x ∈
(

4

3
,∞
)

elastisch.

Insgesamt ist die Funktion somit auf

(
0,

3

8

)
∪
(

4

3
,∞
)

elastisch.

• Wo ist die Funktion f unelastisch?

Natürlich könnten wir den obigen direkten Weg wieder durchlaufen, um die
gesuchten Bereiche zu finden. Aber da wir oben gezeigt haben, wo |εf,x| > 1

gilt, muss im Komplement der gefundenen Menge

(
0,

3

8

)
∪
(

4

3
,∞
)

=

[
3

8
,
4

3

]
das logische Gegenteil, also |εf,x| ≤ 1 gelten. Bedenken wir noch, dass εf, 3

8
= −1

und εf, 4
3

= 1 ist, muss unsere Funktion auf dem offenen Intervall

(
3

8
,
4

3

)
unelastisch sein.
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• ,,Graphische Lösung,,

Wir könnten die Aufgabe auch graphisch lösen. In der Skizze sehen Sie den
Graphen der Funktion f (rot) und den Graphen der Funktion εf,x (blau). Wenn
wir wissen wollen, wo unsere Funktion f unelastisch ist, müssen wir nur die
Werte x finden, an denen die Funktion εf,x Werte zwischen −1 und 1 annimmt.
Dieser Bereich ist auf der x-Achse speziell gekennzeichnet.


