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1 Höhere Ableitungen

Gegeben sei eine differenzierbare Funktion y = f(x). Falls die Ableitung f ′(x) von f(x)
selbst wieder eine differenzierbare Funktion ist, können wir auch diese Funktion erneut
ableiten und erhalten die zweite Ableitung von f(x) usw. Eine Funktion y = f(x), die
man auf diese Weise n-mal ableiten kann, heisst n-mal differenzierbar.

Ableitung Funktion Beispiel

0. Ableitung y = f(x) x2 − 5x+ 23

1. Ableitung f ′ =
df

dx
Ableitung von f 2x− 5

2. Ableitung f ′′ =
d2f

dx2
Ableitung von f ′ 2

· · · · · · · · ·

n-te Ableitung f (n) =
dnf

dxn
Ableitung von f (n−1) 0

Schreibweisen für die n-te Ableitung:

f (n)(x) = f
′′···′(x) =

dn

dxn
f(x) =

dnf(x)

dxn

Eines der wichtigsten Ziele des Kapitels ist es, aus den Ableitungen einer Funktion Rück-
schlüsse auf deren Verlauf zu ziehen.
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2 Mittelwertsatz und Monotonie

Satz 1 (Mittelwertsatz) Sei f eine Funktion, die auf einem Intervall I = [a, b] diffe-
renzierbar ist. Dann gibt es einen Punkt x̄ zwischen a und b, so dass

f(b)− f(a) = f ′(x̄) · (b− a) oder f ′(x̄) =
f(b)− f(a)

b− a

oder: Zu jeder Sekante findet man eine parallele Tangente an die Kurve.

x

β α

f(a)

f(b)

a b

Abbildung 1: Tangente und Sekante

tan(α) =
f(b)− f(a)

b− a
= tan(β) = f ′(x̄)

Beispiel 2.1 Prüfen Sie den Mittelwertsatz für f(x) = x3 − x auf dem Intervall [0, 2].

Zunächst gilt

f(2) = 23 − 2 = 6

f(0) = 03 − 0 = 0

Sekantenanstieg =
6− 0

2− 0
= 3

Nun müssen wir nur noch einen Punkt x im Intervall [0, 2] finden, so dass f ′(x) = 3 gilt.

f ′(x) = 3x2 − 1 = 3 ←→ x = ±
√

4/3

Somit ist der Punkt x̄ =
√

4/3 der gesuchte Punkt im Intervall [0, 2].
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Daraus erhalten wir unmittelbar die folgenden Resultate:

f monoton steigend ⇐⇒ f ′(x) ≥ 0 ∀x (für alle x)

f monoton fallend ⇐⇒ f ′(x) ≤ 0 ∀x

f(x) = konstant ⇐⇒ f ′(x) = 0 ∀x

f(x) = h(x) + konstant ⇐⇒ f ′(x) = h′(x) ∀x

Beweisidee:

Sei f monoton steigend

→ für alle x1, x2 mit x1 < x2 gilt somit f(x1) < f(x2)

→ für alle x1, x2 mit x1 < x2 gilt
f(x2)− f(x1)

x2 − x1
≥ 0

→ für alle x1, x2 gibt es einen Punkt x̄ zwischen x1 und x2 so dass

f ′(x̄) =
f(x2)− f(x1)

x2 − x1
≥ 0

→ für alle x gilt f ′(x) ≥ 0.

Die ersten beiden Resultate liefern nützliche Kriterien für Monotoniebeweise. Die beiden
letzten Resultate sind für die Integralrechnung von zentraler Bedeutung.

Beispiel 2.2 Die Angebotsfunktion

A(p) = 2 + p− 2
√
p+ 1 = 2 + p− 2(p+ 1)1/2

ist monoton steigend, denn es gilt für alle Preise p ≥ 0

A′(p) = 1− 1√
p+ 1

≥ 0.
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3 Konvexe und konkave Funktionen

f ′′(x) ≥ 0 für alle x f ′′(x) ≤ 0 für alle x
⇐⇒ f ′(x) monoton steigend ⇐⇒ f ′(x) monoton fallend
⇐⇒ f(x) konvexe Funktion (Linkskurve) ⇐⇒ f(x) konkave Funktion (Rechtskurve)

y=f ( x )

m=0

m=−2

m=0.8

m=1.2

y

x x

y

y=f(x)

m=1

m=2

m=0

m=−2

m = f ′(x) monoton steigend m = f ′(x) monoton fallend

Graph liegt unter der Sehne. Graph liegt über der Sehne.

y

x

y=f(x) y

x

y=f(x)

Graph liegt über der Tangente. Graph liegt unter der Tangente.

y

x

y=f(x) y

x

y=f(x)
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Beispiel 3.1 Entscheiden Sie, wo die Funktion f(x) =
x

x2 + 1
konvex ist und bestimmen

Sie alle Punkte, an denen die zweite Ableitung verschwindet (Wendepunkte).

Lösungsskizze:

Ableitungen

f(x) =
x

x2 + 1

f ′(x) =
1

x2 + 1
− 2x2

(x2 + 1)2
=

1− x2

(x2 + 1)2

f ′′(x) = − 6x

(x2 + 1)2
+

8x3

(x2 + 1)3
=

2x(x2 − 3)

(x2 + 1)3

f ′′(x) = 0 lösen

0 = − 6x

(x2 + 1)2
+

8x3

(x2 + 1)3

↔ 0 = −6x(x2 + 1) + 8x3

↔ 0 = 2x3 − 6x

↔ 0 = 2x(x2 − 3)

und Lösungen sind x1 = 0, x2 =
√

3 und x3 = −
√

3. Das sind die drei Wendepunkte der
Funktion. Eigentlich müsste man noch überprüfen, ob die dritte Ableitung von f an diesen
drei Stellen nicht verschwindet. Wir wollen hier darauf verzichten. An diesen drei Stellen
ändert sich das Krümmungsverhalten von f von konvex auf konkav bzw. von konkav auf
konvex, d.h. hier ändert sich das Vorzeichen von f ′′.

Die reelle Achse zerfällt somit in vier Intervalle. Das Vorzeichen von f ′′ kann an einem
beliebigen Punkt des jeweiligen Intervalls bestimmt werden.

(−∞,−
√

3) f ′′ < 0→ f konkav

f ′′(−
√

3) = 0

(−
√

3, 0) f ′′ > 0→ f konvex

f ′′(0) = 0

(0,
√

3) f ′′ < 0→ f konkav

f ′′(
√

3) = 0

(
√

3,∞) f ′′ > 0→ f konvex
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4 Lokale und globale Extremalstellen

Die Funktion f : [a, b] → R sei differenzierbar. Zur Ermittlung lokaler Extremalstellen
stehen uns folgende Kriterien zur Verfügung:

1. Notwendiges Kriterium

Ist der Punkt x∗ ∈ (a, b) eine lokale Extremalstelle so gilt f ′(x∗) = 0, oder kurz

x∗ ∈ (a, b) lokale Extremalstelle =⇒ f ′(x∗) = 0

2. Hinreichendes Kriterium

Gilt für den Punkt x∗ ∈ (a, b) einerseits f ′(x∗) = 0 und andererseits f ′′(x∗) < 0
(bzw. f ′′(x∗) > 0), so ist x∗ ein lokales Maximum (bzw. Minimum). Kurz:

f ′(x∗) = 0
f ′′(x∗) < 0 (> 0)

}
=⇒ x∗ein lokales Maximum (bzw. Minimum)

Zur Ermittlung globaler Extremalstellen einer Funktion f : [a, b] → R müssen die
Funktionswerte an den lokalen Extremalstellen (Extrema) mit den Randwerten f(a) und
f(b) verglichen werden. Diese Stellen können die Extrema der Funktion auf diesem Inter-
vall sein, obwohl die Ableitung der Funktion in diesen Randpunkten nicht verschwindet.
Im folgenden Abschnitt werden wir sehen, dass sich dieses aufwendige Vorgehen bei öko-
nomischen Problemen häufig vermeiden lässt.

b

y

x

globales Maximum

lokale Extremalstellen

a

y=f(x)
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Beispiel 4.1

Bestimmen Sie die (globalen) Extremalstellen der Funktion f(x) = x2 − 2x + 3 auf dem
Intervall I = [0, 2].

Lösungsskizze

• Lokale Extremstellen

f ′(x) = 2x− 2 = 0 ↔ x = 1

x1 = 1 ist der einzige Kandidat für eine lokale Extremalstelle und damit auch ein
Kandidat für eine globale Extemalstelle. Da f ′′(1) = 2 ist, handelt es sich um ein
lokales Minimum. Diese Untersuchung ist aber eigentlich hier nicht nötig.

• Die beiden Randpunkte des Intervalls x2 = 0 und x3 = 2 sind immer Kandidaten
für globale Extremalstellen.

• Wir berechnen nun die Funktionswerte an allen Kandidatenstellen. Der (oder ein)
grösste(r) Wert gehört zum globalen Maximum, der (oder ein) kleinste(r) Wert
gehört zum globalen Minimum.

f(1) = 2 x = 1 ist globales Minimum

f(0) = 3 x = 0 ist globales Maximum

f(2) = 3 x = 2 ist auch globales Maximum
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Globale Extrema bei konvexen und konkaven Funktionen

Die Funktion f : [a, b]→ R sei differenzierbar und konvex (konkav) und x∗ ∈ (a, b). Dann
gilt das notwendige und hinreichende Kriterium:

f ′(x∗) = 0 ⇐⇒ x∗ globale Minimalstelle (Maximalstelle)

Beispiel 4.2 Ermitteln Sie für die Gewinnfunktion eines Monopolisten

G(x) = x · p(x)−K(x)

wobei

p(x) = 21− 1

2
x und K(x) = 10x− 64 ln(x+ 1),

dasjenige Produktionsniveau x∗, welches zum globalen Maximum führt.

Lösungsskizze:

• Funktion G bilden:

G(x) = x · p(x)−K(x) = x ·
(

21− 1

2
x

)
− 10x+ 64 ln(x+ 1)

= 64 ln(x+ 1)− 1

2
x2 + 11x

• G ableiten

G′(x) =
64

x+ 1
− x+ 11

• G′(x) = 0 lösen

64

x+ 1
− x+ 11 = 0 ↔ x = 15 oder x = −5

Nur die Lösung x = 15 ist relevant (x ist eine Stückzahl). Wir wissen allerdings noch
nicht, ob der Punkt eine lokale Maximalstelle bzw. eine lokale Minimalstelle oder ein
Sattelpunkt ist. Globale Aussagen sind (noch) nicht möglich. Wenn wir allerdings
zeigen könnten, dass die Funktion G (überall) konkav ist hätten wir auch bewie-
sen,dass x = 15 eine lokale und globale (für alle positiven Werte x) Maximumstelle
ist.

•

G′′(x) = − 64

(x+ 1)2
− 1 = −

(
64

(x+ 1)2
+ 1

)
ist für alle x 6= −1 negativ. Somit ist G dort auch überall konkav und x∗ = 15 ist
unser gesuchtes globales Gewinnmaximum.
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5 Wendestellen

Ein Punkt (x0, f(x0)), in dem die Tangente den Graphen “schneidet“, heisst Wendepunkt.
Die Koordinate x0 heisst Wendestelle. Eine notwendige und hinreichende Bedingung dafür,
dass x0 eine Wendestelle ist, ist

x0 Wendestelle ⇐⇒ f ′′(x0) = 0 und f ′′′(x0) 6= 0

x0

y

x
f’’=0f’’<0 f’’>0

Abbildung 2: Wendepunkt

Beispiel 5.1 Wir wollen alle Wendepunkte der Funktion f(x) = x3e−x bestimmen.

Lösungsskizze:

• Ableitungen von f

f(x) = x3e−x

f ′(x) = 3x2e−x − x3e−x = x2e−x(3− x)
f ′′(x) = 6xe−x − 6x2e−x + x3e−x = xe−x(6− 6x+ x2)
f ′′′(x) = 6e−x − 18xe−x + 9x2e−x − x3e−x = e−x(6− 18x+ 9x2 − x3)

• f ′′(x) = 0 lösen

0 = xe−x(6− 6x+ x2) ↔ x1 = 0, x2 = 3 +
√

3 und x3 = 3−
√

3

• Test der dritten Ableitung: f ′′′(x1) 6= 0, f ′′′(x2) 6= 0 und f ′′′(x3) 6= 0.
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6 Taylor-Polynome

6.1 Darstellung von Polynomen

Normalerweise schreiben wir ein Polynom p in der Form

p(x) = a0 + a1x+ a2x
2 + . . .+ anx

n = a0 + a1(x− 0) + a2(x− 0)2 + . . .+ an(x− 0)n

auf. Wir könnten hier auch sagen, dass wir das Polynom p um den Entwicklungspunkt
x0 = 0 darstellen. Manchmal ist es allerdings von Vorteil, wenn wir Polynome bezüglich
anderer Entwicklungspunkte x0 darstellen.

Beispiel 6.1

Entwicklungspunkt x0 = 1 Entwicklungspunkt x0 = −1 x0 = 0

2(x− 1)2 + 3(x− 1) + 4 = 2(x+ 1)2 − 5(x+ 1) + 6 = 2x2 − x+ 3

Alle drei Darstellungen beschreiben das selbe Polynom. Überprüfen Sie das.

Der Vorteil der Darstellung eines Polynoms p bezüglich eines Entwicklungspunktes x0
offenbart sich, wenn wir an den Werten der Ableitung von p im Punkt x0 interessiert
sind, also an den Werten p(x0), p

′(x0), p
′′(x0), . . .

Vergleichen wir kurz den Rechenaufwand bei der Bestimmung des Wertes p′(x0) für die
beiden Darstellungen

p(x) = a0 + a1x+ a2x
2 + . . .+ anx

n = b0 + b1(x− x0) + b2(x− x0)2 + . . .+ bn(x− x0)n.

Entwicklungspunkt 0:

p′(x) = a1 + 2a2x+ . . .+ nanx
n−1

p′(x0) = a1 + 2a2x0 + . . .+ nanx
n−1
0 = . . .

Entwicklungspunkt x0:

p′(x) = b1 + 2b2(x− x0) + . . .+ nbn(x− x0)n−1

p′(x0) = b1 + 2b2 (x0 − x0)︸ ︷︷ ︸
=0

+ . . .+ nbn (x0 − x0)n−1︸ ︷︷ ︸
=0

= b1.

Die Koeffizienten b0, b1, b2, . . . sind bis auf einen Faktor schon die Funktionswerte

p(x0), p
′(x0), p

′′(x0), . . .!
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6.2 Problemstellung und Einführungsbeispiel

Sei f(x) eine mindestens n-mal differenzierbare Funktion und x0 ein Punkt. Oft ist es
günstig, diese eventuell sehr komplizierte Funktion in der Nähe des Punktes (x0, f(x0))
durch eine sehr einfache Funktion zu ersetzen. Solch einfache Funktionen können Polyno-
me sein und man versucht eines zu finden, was die Funktion f zumindest in der Nähe des
Punktes (x0, f(x0)) gut approximiert.

Direkte Konstruktion von Taylorpolynomen

Beispiel 6.2 Wir suchen ein Polynome 2-ten Grades, das die Funktion

K(x) = 50 + 6x+ 20e−0.1(x−10)

an der Stelle x0 = 10 möglichst gut approximieren.

Ein Polynom P2(x) vom Grad 2 hat die allgemeine Gestalt

P2(x) = a0 + a1x+ a2x
2 oder P2(x) = b0 + b1(x− 10) + b2(x− 10)2

je nach dem, welchen Entwicklungspunkt wir wählen. und wir können die drei Konstanten
so festlegen, dass im Nullpunkt der Funktionswert, die 1. Ableitung und die 2. Ableitung
(Krümmung) der Funktion K mit den entsprechenden Werten des Polynoms übereinstim-
men, also K(10) = P2(10), K ′(10) = P ′2(10) und K ′′(10) = P ′′2 (10). Da wir mit Ableitun-
gen arbeiten, ist die Darstellung von P2 mit Entwicklungspunkt x0 = 10 gut geeignet.

K(10) = 50 + 6x+ 20e−0.1(x−10)
∣∣
x=10

= 130 = P2(10) = b0

K ′(10) = 6− 2e−0.1(x−10)
∣∣
x=10

= 4 = P ′2(10) = b1

K ′′(10) = 0.2e−0.1(x−10)
∣∣
x=10

= 0.2 = P ′′2 (10) = 2b2.

Somit ist

P2(x) = b0 + b1(x− 10) + b2(x− 10)2 = 130 + 4(x− 10) + 0.1(x− 10)2.
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Beispiel 6.3 Wir suchen ein Polynome 2-ten Grades, das die Funktion

f(x) = −e−x − x+ 1

an der Stelle x0 = 0 möglichst gut approximieren.

Ein Polynom P2(x) vom Grad 2 hat die allgemeine Gestalt P2(x) = a0 + a1x + a2x
2 und

wir können die drei Konstanten so festlegen, dass im Nullpunkt der Funktionswert, die
1. Ableitung und die 2. Ableitung (Krümmung) der Funktion f mit den entsprechenden
Werten des Polynoms übereinstimmen, also f(0) = P2(0), f ′(0) = P ′2(0) und f ′′(0) =
P ′′2 (0):

f(0) = −e−0 − 0 + 1 = 0 = P2(0) = a0

a0 = f(0) = 0

f ′(0) = e−0 − 1 = 0 = P ′2(0) = a1

a1 = f ′(0) = 0

f ′′(0) = −e−0 = −1 = P ′′2 (0) = 2a2

a2 =
f ′′(0)

2
= −1

2
.

Somit ist

P2(x) = −1

2
x2.
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6.3 Taylor-Polynom und ihre Eigenschaften

Definition 6.1 Das n-te Taylor-Polynom Pn(x) von f mit Entwicklungspunkt x0 ist de-
finiert als

Pn(x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)k = f(x0) +

f ′(x0)

1!
(x− x0) + . . .+

f (n)(x0)

n!
(x− x0)n

Das n-te Taylor-Polynom Pn(x) hat im Punkt x0 die folgende schöne Eigenschaft:

Pn(x0) = f(x0) gemeinsamer Punkt an der Stelle x0
P ′n(x0) = f ′(x0) gemeinsame Tangente
P ′′n (x0) = f ′′(x0) gleiche Krümmung
· · · · · · · · · · · ·
P

(n)
n (x0) = f (n)(x0)

denn für die l-te Ableitung von Pn(x) für l = 0, 1, 2, . . . , n gilt:

P (l)
n (x)

∣∣
x=x0

=
dl

dxl

(
n∑

k=0

f (k)(x0)

k!
(x− x0)k

)∣∣∣∣∣
x=x0

=
n∑

k=0

f (k)(x0)

k!

dl

dxl
(x− x0)k

∣∣∣∣∣
x=x0

= f (l)(x0)
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Wir können nun (genügend oft differenzierbare) reelle Funktionen y = f(x) in der Nähe
eines Punktes x0 durch ein Taylor-Polynom y = P2(x) approximieren:

P2(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2

Es gilt:

P2(x0) = f(x0)

P ′2(x0) = f ′(x0)

P ′′2 (x0) = f ′′(x0)

Warum hilft nun die 2. Ableitung bei der Typbestimmung einer Extremal-
stelle? Insbesondere glauben wir, dass sich P2 und f nahe bei x0 sehr ähnlich sind. Das
quadratische Polynom P2 sollte also die Krümmung von f nahe bei x0 (meist) recht gut
beschreiben und wir können tatsächlich das wohl bekannte Kriterium zur Unterscheidung
zwischen lokalen Maximalstellen und lokalen Minimalstellen herleiten und bestätigen.

Sei also x0 = x∗ ein stationärer Punkt von f , d.h. f ′(x∗) = 0. Dann gilt für alle x nahe
bei x∗:

f(x) ≈ P2(x) = f(x∗) +
f ′′(x∗)

2
(x− x∗)2︸ ︷︷ ︸

>0

und man erkennt sofort:

• Ist f ′′(x∗) > 0, so ist
f ′′(x∗)

2
(x− x∗)2 > 0 und

f(x) ≈ f(x∗) +
f ′′(x∗)

2
(x− x∗)2︸ ︷︷ ︸
>0

> f(x∗)

für alle x nahe bei x∗. Also muss x∗ eine lokale Minimalstelle sein.

• Ist f ′′(x∗) < 0, so ist
f ′′(x∗)

2
(x− x∗)2 < 0 und

f(x) ≈ f(x∗) +
f ′′(x∗)

2
(x− x∗)2︸ ︷︷ ︸
<0

< f(x∗)

für alle x nahe bei x∗. Also muss x∗ eine lokale Maximalstelle sein.

• Ist f ′′(x∗) = 0 können wir zunächst nichts aussagen! Wir müssten höhere Ableitun-
gen von f untersuchen. Als Beispiel hierfür könnten Sie die drei Funktionen x3, x4

und −x4 untersuchen. Alle drei Funktionen haben sowohl den stationären Punkt
x∗ = 0 als auch eine verschwindende zweite Ableitung im Punkt 0, realisieren aber
Sattelpunkt, lokale Minimalstelle bzw. lokale Maximalstelle.
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Beispiel 6.4 Wir wollen die Taylorpolynom 0-ten, 1-ten, 2-ten und 3-ten Grades der
Funktion f(x) = 2 + ln(x) mit Entwicklungspunkt x0 = 1 bestimmen.

Lösungsskizze:

• Ableitungen von f im Punkt x0 = 1 bestimmen

f (0)(x) = 2 + ln(x) → f (0)(1) = 2

f (1)(x) = x−1 → f (1)(1) = 1

f (2)(x) = −x−2 → f (2)(1) = −1

f (3)(x) = 2x−3 → f (3)(1) = 2

• Taylor-Polynome bilden

P3(x) = f(1) +
f (1)(1)

1!
(x− 1) +

f (2)(1)

2!
(x− 1)2 +

f (3)(1)

3!
(x− 1)3

= 2 +
1

1
(x− 1) +

−1

2
(x− 1)2 +

2

6
(x− 1)3

= 2︸︷︷︸
=P0(x)

+ (x− 1)

︸ ︷︷ ︸
=P1(x)

− 1

2
(x− 1)2

︸ ︷︷ ︸
=P2(x)

+
1

3
(x− 1)3

Insbesondere enthält das Polynom P3 alle Taylor-Polynome kleineren Grades!
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6.4 *Die Taylor-Formel*

Natürlich wissen wir nicht, wie gut unser Taylor-Polynom unsere Funktion approximiert.
Wir bräuchten dazu eine Aussage über die Differenz der beiden Funktionswerte f(x) −
Pn(x) =: Rn+1(x, x0). Fundamental wichtig für die Lösung dieses Problems ist der folgende
Satz.

Satz 2 (Taylor-Formel) Für jede auf einem offenen Intervall I mindestens (n+1)-mal
stetig differenzierbare Funktion f und alle x, x0 ∈ I gilt:

f(x) = f(x0) +
f (1)(x0)

1!
(x− x0) + · · ·+ f (n)(x0)

n!
(x− x0)n︸ ︷︷ ︸

=: Pn(x)

+Rn+1(x, x0)

mit dem Restglied nach

Cauchy Rn+1(x, x0) =
1

n!

∫ x

x0

(x− t)n f (n+1)(t) dt

Lagrange Rn+1(x, x0) =
f (n+1)(z)

(n+ 1)!
(x− x0)n+1 mit z zwischen x und x0

Beweisidee:

Wir wollen zunächst die erste Formel mit dem Restglied nach Cauchy mittels
Induktion beweisen. Für n = 0, d.h. f ist einmal stetig differenzierbar, gilt die
Formel

f(x) = f(x0) +

∫ x

x0

f ′(t)dt

Ist die Funktion f zweimal stetig differenzierbar, so integrieren wir partiell
und setzen

u = t− x u′ = 1 v = f ′ v′ = f ′′∫ x

x0

1︸︷︷︸
u′

· f ′(t)︸︷︷︸
v

dt = (t− x)︸ ︷︷ ︸
u

· f ′(t)︸︷︷︸
v

|xx0
−
∫ x

x0

(t− x)︸ ︷︷ ︸
u

· f ′′(t)︸ ︷︷ ︸
v′

dt

= −(x0 − x)f ′(t)−
∫ x

x0

(t− x)f ′′(t)dt

= (x− x0)f ′(t) +

∫ x

x0

(x− t)f ′′(t)dt

f(x) = f(x0) + (x− x0)f ′(t) +

∫ x

x0

(x− t)f ′′(t)dt

Fortlaufende partielle Integration führ zur angegebenen Formel mit der Rest-
glieddarstellung nach Cauchy.
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Die Lagrange-Form des Restgliedes ergibt sich nun aus dem Mittelwertsatz
der Integralrechnung. Danach gibt es einen Wert z zwischen x0 und x so dass

1

n!

∫ x

x0

(x− t)n f (n+1)(t) dt =
1

n!
f (n+1)(z)

∫ x

x0

(x− t)n dt

=
f (n+1)(z)

(n+ 1)!
(x− x0)n+1

2

Beispiel 6.5 Mit dem Lagrangeschen Restglied gilt

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+

ez

(n+ 1)!
xn+1

und für |x| ≤ 1 ergibt sich die Abschätzung∣∣∣∣ex − 1− x− x2

2!
− x3

3!
− · · · − xn

n!

∣∣∣∣ =
ez

(n+ 1)!
|x|n+1 ≤ e

(n+ 1)!
|x|n+1.

Bei einen tolerierten Fehler, etwa ±10−7, ist n (in Abhängigkeit von x) so zu bestimmen,
dass

e

(n+ 1)!
|x|n+1 ≤ 10−7

gilt. Für x = 0.1 ist das bereits für n = 5 erfüllt, für x = 1 muss man n = 10 wählen.
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7 Diskussion von Funktionen

Infolge der Verfügbarkeit von EDV-Programmen zur graphischen Darstellung von Funk-
tionen hat die Kurvendiskussion an Bedeutung eingebüsst. Treten allerdings Funktionen
mit Parametern auf (z.B. f(x) = x2a/ebx), so ist eine qualitative Analyse des Funktions-
verlaufes nach wie vor von Bedeutung.

7.1 Was lesen wir aus der Funktionsgleichung y = f(x)?

1. Definitionsbereich

Beispiele:

f(x) =
1

x− 6
ist definiert für {x ∈ R | x 6= 6}

f(x) =
√

4− x2 ist definiert für {x ∈ R | |x| ≤ 2}

2. Nullstellen Löse die Gleichung f(x) = 0 nach x auf.

Beispiele:

f(x) = x2 − x− 6 = 0

hat die Lösungen −2 und 3.

3. Symmetrien

Gilt die Gleichung f(x) = f(−x) für alle x, so ist f eine gerade Funktion, also
symmetrisch bezüglich der y-Achse. Wir müssen also nur einen Teil der Funktion
untersuchen (z.B. den positiven), um die gesamte Funktion zu verstehen.

Beispiele:

f(x) = x2 + 4x6

f(−x) = (−x)2 + 4(−x)6

= x2 + 4x6

= f(x)

f(x) = cos(x)

f(−x) = cos(−x)

= cos(x)

= f(x)

Gilt die Gleichung f(−x) = −f(x) für alle x, so ist f eine ungerade Funktion,
also symmetrisch bezüglich des Nullpunktes. Wir müssen also auch hier nur einen
Teil der Funktion untersuchen (z.B. den positiven), um die gesamte Funktion zu
verstehen.
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Beispiele:

f(x) = x3 + x5

f(−x) = (−x)3 + (−x)5

= −(x3 + x5)

= −f(x)

f(x) = sin(x)

f(−x) = sin(−x)

= − sin(x)

= −f(x)

4. Asymptotisches Verhalten (Verhalten für x→ ±∞)

Zwei Funktionen f(x) und g(x) verhalten sich asymptotisch gleich, wenn gilt:

lim
x→∞

(f(x)− g(x)) = 0

lim
x→−∞

(f(x)− g(x)) = 0

Beispiel:

Die beiden Funktionen

f(x) =
2x2 − x+ 3

x
und g(x) = 2x− 1

verhalten sich asymptotisch gleich, denn es gilt:

lim
x→∞

(f(x)− g(x)) = lim
x→∞

(
2x2 − x+ 3

x
− 2x+ 1

)
= lim

x→∞

(
2x2 − x+ 3− 2x2 + x

x

)
= lim

x→∞

3

x
= 0.
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7.2 Was lesen wir aus den Ableitungen?

1. Was lesen wir aus der 1. Ableitung?

f ′(x) > 0 =⇒ Funktion wachsend

f ′(x0) = 0 =⇒ Funktion hat an der Stelle x0 horizontale Tangente

f ′(x) < 0 =⇒ Funktion fallend

2. Was lesen wir aus der 2. Ableitung?

f ′′(x) > 0 =⇒ Funktion konvex

f ′′(x) < 0 =⇒ Funktion konkav

3. Was lesen wir aus der 1. und 2. Ableitung?

f ′(x0) = 0 und f ′′(x0) < 0 =⇒ x0 ist lokale Maximalstelle

f ′(x0) = 0 und f ′′(x0) > 0 =⇒ x0 ist lokale Minimalstelle

4. Was lesen wir aus der 2. und 3. Ableitung?

f ′′(x0) = 0 und f ′′′(x0) 6= 0 =⇒ x0 ist Wendepunkt
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Beispiel 7.1 Führen Sie eine Kurvendiskussion der Funktion f(x) =
x2

x− 1
durch.

1. Definitionsbereich

D = { x ∈ R | x 6= 1 }

2. Nullstellen

f(x) = 0 ⇐⇒ x = 0

3. Symmetrien

f(−x) =
(−x)2

−x− 1
=

x2

−x− 1
6= ±f(x)

Nein!

4. Asymptotisches Verhalten

lim
x→∞

x2

x− 1
= lim

x→∞

x

1− 1/x
= ∞ und lim

x→−∞

x2

x− 1
= −∞

5. Ableitungen

f ′(x) =
2x

x− 1
− x2

(x− 1)2

f ′′(x) =
2

x− 1
− 4x

(x− 1)2
+

2x2

(x− 1)3

f ′(x) = 0 ⇐⇒ x1 = 0 oder x2 = 2

f ′′(0) < 0 also x1 = 0 ist lokale Maximalstelle

f ′′(2) > 0 also x2 = 2 ist lokale Minimalstelle

6. Verhalten an der Polstelle x = 1

lim
x→1+

x2

x− 1
=

12

+0
= +∞ rechtseitiger Grenzwert bei 1

lim
x→1−

x2

x− 1
=

12

−0
= −∞ rechtseitiger Grenzwert bei 1
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8 Testfragen zur Vorlesung

Hinweis: Bevor Sie die Übungsaufgaben lösen, sollten Sie den Stoff der Vorlesung verstan-
den haben. Insbesondere sollten Sie die folgenden einfachen Fragen beantworten können.
Diese Fragen werden im Allgemeinen nicht in den Übungen besprochen, können aber
prüfungsrelevant sein.

1. Können Sie alle aus der Schule bekannten (elementaren) Funktionen (ohne weitere
Rechnungen) schnell skizzieren?

2. Können Sie die Funktion

n(p) =
ln(2)

ln(1 + p)

für p ≥ 0 schnell und grob (Vorzeichen und Monotonie) skizzieren? Wissen Sie noch,
welchen kausalen Zusammenhang diese Funktion beschreibt?

3. Definieren Sie die Begriffe konvexe Funktion, konkave Funktion, lokale und globale
Extemalstelle, lokale und globale Maximalstelle und Wendestelle.

4. Wie lautet der Mittelwertsatz? Kennen Sie unmittelbare Folgerungen aus dem Mit-
telwertsatz?

5. Geben Sie die Definition für konvexe Funktion und konkave Funktion. Geben Sie
mindestens drei weitere Eigenschaften von konvexen Funktionen und mindestens
drei weitere Eigenschaften von konkaven Funktionen an. Nennen Sie jeweils zwei
Beispiele für Funktionen, die die folgenden Eigenschaften haben:

• streng monoton wachsend und konvex,

• streng monoton fallend und konvex,

• streng monoton wachsend und konkav bzw.

• streng monoton fallend und konkav.

6. Nennen Sie ein notwendiges Kriterium für das Vorliegen eines lokalen Maximums
(Minimums).

7. Nennen Sie ein hinreichendes Kriterium für das Vorliegen eines lokalen Maximums
(Minimums).

8. Überlegen Sie, ob die folgenden Aussagen richtig oder falsch sind. Begründen (be-
weisen) Sie Ihre Antwort.

(a) Eine Nullstelle der ersten Ableitung ist stets eine lokale Extremalstelle.

(b) Ist x0 eine lokale Extremalstelle von f , so hat die erste Ableitung von f in x0
eine Nullstelle.

(c) Ist x0 eine lokale Extremalstelle von f , so ist die Tangente an den Graphen
von f im Punkt (x0, f(x0)) parallel zur y-Achse.

(d) Ist x0 eine lokale Extremalstelle von f , so ist die Tangente an den Graphen
von f im Punkt (x0, f(x0)) parallel zur x-Achse.
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9. Welche Eigenschaft(en) hat das Taylor-Polynom

P2(x) =
2∑

k=0

f (k)(x0)

k!
(x− x0)k

von f mit Entwicklungspunkt x0 (im Hinblick auf f und x0)?

10. Angenommen, Sie kennen von einer (genügend oft) differenzierbaren Funktion f nur
die beiden Werte f(1) = 1 und f ′(1) = 0.2. Bestimmen Sie einen möglichst guten
Näherungswert für f(1.1)!

Hinweis:

f(1.1) ≈ P1(1.1)

= f(1) + f ′(1)(1.1− 1)

= 1 + 0.2 · 0.1 = 1.02
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9 Übungsaufgaben

9.1 Niveau 1

Untersuchen Sie die folgenden Funktionen auf dem gegebenen Intervall (Monotonie, lokale
und globale Extremalstellen).

g(x) =
1

x
+

7

x4
= x−1 + 7 · x−4 x ∈ [1, 2]

h(x) =
x

ln(x)
= x · (lnx)−1 x ∈ [2, 10]

9.2 Niveau 2

1. Bestimmen Sie die Taylor-Polynome P1(x), P2(x) und P3(x) für die Funktion f(x) =
ln(1− x) an der Stelle x0 = 0.

2. Wo sind die gegebenen Funktionen konvex bzw. konkav?

(a) K(x) = 30 · x− 10 · ln(x+ 1), x > 0

(b) g(x) = ln(x2 + 1), x ∈ R

9.3 Niveau 3

Die Nachfrage nach einem Gut als Funktion des monatlichen Einkommens sei gegeben
durch die Funktion

f(x) =

 0 falls x < 1
10(x− 1)2

ex
falls x ≥ 1

wobei x das monatliche Einkommen (in tausend Fr.) und y die nachgefragte Menge (in
tausend Stück) bezeichnet.

1. Diskutieren und skizzieren Sie die Funktion f .

2. Berechnen Sie für x ≥ 1 die Einkommenselastizität εf,x der Nachfrage.

3. Welche prozentuale Erhöhung/Verringerung der Nachfrage bringt eine 1%-ige Erhöhung
des Einkommens bei x = 2, 3, 5, 7? (Hinweis: εf,x nutzen)
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Lösungen der Übungsaufgaben

Niveau 1

1. a) Keine stationäre Stelle auf [1, 2], streng monoton fallend auf [1, 2], Globales
Maximum bei 1, globales Minimum bei 2

b) Globales Minimum bei e, globales Maximum bei 10

h′(x) = (lnx)−1 − (lnx)−2 =
lnx− 1

(lnx)2

h′′(x) =
−1

x(lnx)2
+

2

x(lnx)3
=

2− lnx

x(lnx)3

Niveau 2

1. P1(x) = −x, P2(x) = −x− x2

2
und P3(x) = −x− x2

2
− x3

3

2. a) konvex, denn K ′′(x) =
10

(x+ 1)2
> 0 für alle x ∈ R

b) weder konvex noch konkav. Genauer könnte man zeigen, dass zunächst

g′′(x) =
2

x2 + 1

(
1− 2x2

x2 + 1

)
= 2

1− x2

(x2 + 1)2

gilt. Dann löst man die Gleichung g′′(x) = 0 und erhält die beiden Lösungen x = ±1.
Die Funktion g′′ ändert also höchstens an diesen beiden Punkten das Vorzeichen.
Bestimmt man nun noch das Vorzeichen von g′′ an drei gut gewählten Punkten,
erhält man folgendes:

g ist konkav auf (−∞,−1), da g′′(x) < 0 für alle x ∈ (−∞,−1)

g ist konvex auf (−1, 1), da g′′(x) > 0 für alle x ∈ (−1, 1)

g ist konkav auf (1,∞), da g′′(x) < 0 für alle x ∈ (1,∞)

Niveau 3

a)

b) εf,x =
x(3− x)

x− 1

c) 2%, 0%,−2.5%,−4.667%


