Universitit Basel 4
Wirtschaftswissenschaftliches Zentrum
Abteilung Quantitative Methoden

Mathematik 1

Dr. Thomas Zehrt Kurvendiskussionen
Inhaltsverzeichnis
1 Hohere Ableitungen 2
2 Mittelwertsatz und Monotonie 3
3 Konvexe und konkave Funktionen 5
4 Lokale und globale Extremalstellen 7
5 Wendestellen 10
6 Taylor-Polynome 11
6.1 Darstellung von Polynomen . . . . . . . .. .. ... .. ... ... ..., 11
6.2 Problemstellung und Einfithrungsbeispiel . . . . . . . ... .. ... .. .. 12
6.3 Taylor-Polynom und ihre Eigenschaften . . . . . . . . . ... ... ... .. 14
6.4 *Die Taylor-Formel®™ . . . . . ... ... ... ... .. ... ... ... 17
7 Diskussion von Funktionen 19
7.1 Was lesen wir aus der Funktionsgleichung y = f(x)? . . . . . . .. ... .. 19
7.2 Was lesen wir aus den Ableitungen? . . . . . . . . . ... ... 21
8 Testfragen zur Vorlesung 23
9 Ubungsaufgaben 25
9.1 Niveau 1l . . . . . . . . e 25
9.2 Niveau 2 . . . . . . . . 25

9.3 Niveau 3 . . . . . . 25



1 Hohere Ableitungen

Gegeben sei eine differenzierbare Funktion y = f(x). Falls die Ableitung f’(z) von f(x)
selbst wieder eine differenzierbare Funktion ist, kénnen wir auch diese Funktion erneut
ableiten und erhalten die zweite Ableitung von f(x) usw. Eine Funktion y = f(z), die
man auf diese Weise n-mal ableiten kann, heisst n-mal differenzierbar.

Ableitung Funktion Beispiel
0. Ableitung | y = f(x) r? — 5x + 23
: , df .
1. Ableitung = T Ableitung von f 2x — 5
x
: " d2f . 1
2. Ableitung = ) Ableitung von f 2
x
) ~ w _ d"f - (1)
n-te Ableitung | [\ = 7 Ableitung von f 0
x?’L

Schreibweisen fiir die n-te Ableitung:

dn d" f(z)

) = 1 @) = S f) = i

Eines der wichtigsten Ziele des Kapitels ist es, aus den Ableitungen einer Funktion Riick-
schliisse auf deren Verlauf zu ziehen.



2 Mittelwertsatz und Monotonie

Satz 1 (Mittelwertsatz) Sei f eine Funktion, die auf einem Intervall I = |a,b] diffe-
renzierbar ist. Dann gibt es einen Punkt T zwischen a und b, so dass

f(b) = f(a) = f'(&)- (b—a)  oder f’<f>=%;f(a)

oder: Zu jeder Sekante findet man eine parallele Tangente an die Kurve.

f(b)

f(@)

a X b

Abbildung 1: Tangente und Sekante

tane) = LU ) —

Beispiel 2.1 Priifen Sie den Mittelwertsatz fiir f(x) = x* — z auf dem Intervall [0,2].
Zundchst gilt

f2) = 2°-2 =6
f(o) = 0°~0 =0
Sekantenanstieg = —— = 3

Nun miissen wir nur noch einen Punkt x im Intervall [0,2] finden, so dass f'(x) =3 gilt.

fl(x) = 32 -1 =3 +— z=+4/3

Somit ist der Punkt T = /4/3 der gesuchte Punkt im Intervall [0,2].



Daraus erhalten wir unmittelbar die folgenden Resultate:

f monoton steigend — fl(x)>0 Vz (fir alle z)
f monoton fallend — f(x)<0 Va
f(z) = konstant — fl(r)=0 Va
f(z) = h(z) + konstant <= f'(z) =h'(z) Vx

Beweisidee:
Sei f monoton steigend

— fiir alle z1, 22 mit 7 < x gilt somit f(zq) < f(x2)

f(x2) — f(x1)

To — 1

— fiir alle z1, x5 mit 1 < x5 gilt >0

— fiir alle z1, x5 gibt es einen Punkt z zwischen z; und x5 so dass

f(z2) — f(z1)

To — 1

>0

fl@) =
— fiir alle = gilt f'(x) > 0.

Die ersten beiden Resultate liefern niitzliche Kriterien fiir Monotoniebeweise. Die beiden
letzten Resultate sind fiir die Integralrechnung von zentraler Bedeutung.

Beispiel 2.2 Die Angebotsfunktion
Alp) = 2+p—2yp+1 =2+p—2p+1)"

ist monoton steigend, denn es gilt fiir alle Preise p > 0




3 Konvexe und konkave Funktionen

) > 0 fur alle x

f”(fE 0
<= f’(z) monoton steigend
— f

<

m = f'(z) monoton steigend

Graph liegt unter der Sehne.

y y=f(x)

<

Graph liegt iiber der Tangente.

y y=f(x)

N

() konvexe Funktion (Linkskurve)

f"(z) <0 fiir alle x
<= f’(x) monoton fallend
<= f(z) konkave Funktion (Rechtskurve)

y
[
m=

m = f’(x) monoton fallend

Graph liegt {iber der Sehne.

% y=f(x)

Graph liegt unter der Tangente.

y=f(x)




Beispiel 3.1 Entscheiden Sie, wo die Funktion f(z) = 21 1 konvex ist und bestimmen
x
Sie alle Punkte, an denen die zweite Ableitung verschwindet (Wendepunkte).
Loésungsskizze:
Ableitungen
x
1 21 1— 22
f/(l’) - 2 - 2 2 2 2
22+1  (22+41) (z241)
6z 813 2z (2% — 3
f”(ﬁ) = T3 2+ 2 3 (2 3)
(22 +1) (22 +1) (22 +1)
f"(x) =0 losen
6z 813
0 = — +
(22 +1)2 ' (22 + 1)
<0 = —6z(x®+1)+82°
<0 = 22°—6x

<0 = 2z(2* —3)

und Losungen sind x1 =0, xo = V3 und T3 = —V/3. Das sind die drei Wendepunkte der
Funktion. Eigentlich miisste man noch tiberpriifen, ob die dritte Ableitung von f an diesen
drei Stellen nicht verschwindet. Wir wollen hier darauf verzichten. An diesen drei Stellen
andert sich das Krimmungsverhalten von f von konver auf konkav bzw. von konkav auf
konvex, d.h. hier dndert sich das Vorzeichen von f”.

Die reelle Achse zerfdllt somit in vier Intervalle. Das Vorzeichen von f” kann an einem
beliebigen Punkt des jeweiligen Intervalls bestimmt werden.

(=00, —V3)  f"<0— f konkaw
f"(=V3) =0
(—V3,0)  f">0— f konwex
f'(0)=0
0,V3)  f"<0— f konkav
f"(V3) =0
(V3,00)  f">0— f konvex



4 Lokale und globale Extremalstellen

Die Funktion f : [a,b] — R sei differenzierbar. Zur Ermittlung lokaler Extremalstellen
stehen uns folgende Kriterien zur Verfiigung:

1. Notwendiges Kriterium

Ist der Punkt 2* € (a,b) eine lokale Extremalstelle so gilt f'(z*) = 0, oder kurz

x* € (a,b) lokale Extremalstelle — f'(z*) =0

2. Hinreichendes Kriterium

Gilt fiir den Punkt z* € (a,b) einerseits f'(z*) = 0 und andererseits f”(z*) < 0
(bzw. f"(z*) > 0), so ist 2* ein lokales Maximum (bzw. Minimum). Kurz:

[a) =0

F(a%) <0 (>0) } — z*ein lokales Maximum (bzw. Minimum)

Zur Ermittlung globaler Extremalstellen einer Funktion f : [a,b] — R miissen die
Funktionswerte an den lokalen Extremalstellen (Extrema) mit den Randwerten f(a) und
f(b) verglichen werden. Diese Stellen kénnen die Extrema der Funktion auf diesem Inter-
vall sein, obwohl die Ableitung der Funktion in diesen Randpunkten nicht verschwindet.
Im folgenden Abschnitt werden wir sehen, dass sich dieses aufwendige Vorgehen bei 6ko-
nomischen Problemen héufig vermeiden l&sst.

y=f(x)

globales Maximum

|lokale Extremalstellen



Beispiel 4.1

Bestimmen Sie die (globalen) Extremalstellen der Funktion f(x) = x* — 2z + 3 auf dem
Intervall I =10,2].

Losungsskizze

o Lokale Extremstellen

fllz) = 20—-2 =0 < z=1

x1 = 1 st der einzige Kandidat fiir eine lokale FExtremalstelle und damit auch ein
Kandidat fir eine globale Extemalstelle. Da f"(1) = 2 ist, handelt es sich um ein
lokales Minimum. Diese Untersuchung ist aber eigentlich hier nicht notig.

e Die beiden Randpunkte des Intervalls xo = 0 und x3 = 2 sind immer Kandidaten
fiir globale Extremalstellen.

o Wir berechnen nun die Funktionswerte an allen Kandidatenstellen. Der (oder ein)
grosste(r) Wert gehort zum globalen Mazimum, der (oder ein) kleinste(r) Wert
gehort zum globalen Minimum.

f(1) =2 =z =1 ist globales Minimum
f(0) =3  x=0 ist globales Mazimum
f(2) = 3  x=2ist auch globales Maximum



Globale Extrema bei konvexen und konkaven Funktionen

Die Funktion f : [a,b] — R sei differenzierbar und konvex (konkav) und z* € (a, b). Dann
gilt das notwendige und hinreichende Kriterium:

f'(z*) =0 <= z* globale Minimalstelle (Maximalstelle)

Beispiel 4.2 Ermitteln Sie fiir die Gewinnfunktion eines Monopolisten

wobes

1
plx) = 21 — ¢ und  K(x) = 10z —641In(x + 1),

dasjenige Produktionsniveau x*, welches zum globalen Maximum fiihrt.

Losungsskizze:

Funktion G bilden:
G(r) = z-pz) - K(z) = x- (21 — %x) — 10z + 641In(z + 1)

1
= 64ln(z+1) — 5:@2 + 11z

G ableiten
64
G’ = — 11
(x) 1 T+

G'(x) =0 losen

4

0 —z+11 =0 < xz =15 oder x = =5

r+1

Nur die Losung x = 15 ist relevant (x ist eine Stickzahl). Wir wissen allerdings noch
nicht, ob der Punkt eine lokale Maximalstelle bzw. eine lokale Minimalstelle oder ein
Sattelpunkt ist. Globale Aussagen sind (noch) nicht méglich. Wenn wir allerdings
zeigen konnten, dass die Funktion G (iberall) konkav ist hdtten wir auch bewie-
sen,dass x = 15 eine lokale und globale (fiir alle positiven Werte x) Mazimumstelle
15t.

Gy = - = _(ﬁﬂ)

(x+1)2 (x4 1)2

ist fur alle x # —1 negativ. Somit ist G dort auch tberall konkav und x* = 15 ist
unser gesuchtes globales Gewinnmaximum.
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5 Wendestellen

Ein Punkt (zo, f(x¢)), in dem die Tangente den Graphen “schneidet“, heisst Wendepunkt.
Die Koordinate x( heisst Wendestelle. Eine notwendige und hinreichende Bedingung dafiir,
dass xg eine Wendestelle ist, ist

xo Wendestelle <= f"(x¢) =0 und f"(x¢) # 0

Xo X
f1’<0 e f17:0 % f’1>0

Abbildung 2: Wendepunkt

Beispiel 5.1 Wir wollen alle Wendepunkte der Funktion f(x) = x3e™" bestimmen.

Losungsskizze:

e Ableitungen von f

flx) = a%e®

f(x) = 3z%e ™ —ad%e™® = 2% (3 — 1)

f"(x) = 6xe™® —6x%e %+ ade® = ze (6 — 6z + 2?)
f"(x) = 6e —18ze "+ 9x%e ™ — 2% = e *(6— 18z + 9z? — %)

o f"(x) =0 losen

0 = xe *(6 — 6z + 2?) & 21=0 23=3+V3undzs=3—V3

o Test der dritten Ableitung: f"(x1) # 0, f"(x2) # 0 und f"(x3) # 0.
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6 Taylor-Polynome

6.1 Darstellung von Polynomen
Normalerweise schreiben wir ein Polynom p in der Form
p(z) = ap+ax+ayx®+ ... +aa" = ag+ai(z—0)+ax(z— 07 +... +a,(xr—0)"

auf. Wir konnten hier auch sagen, dass wir das Polynom p um den Entwicklungspunkt
o = 0 darstellen. Manchmal ist es allerdings von Vorteil, wenn wir Polynome beziiglich
anderer Entwicklungspunkte x, darstellen.

Beispiel 6.1
Entwicklungspunkt xqg =1 Entwicklungspunkt xqg = —1 x9 =0

2 =12 +3(x—-1)+4 = 2@+1)2-5@x+1)+6 = 222—z+3
Alle drei Darstellungen beschreiben das selbe Polynom. Uberpriifen Sie das.

Der Vorteil der Darstellung eines Polynoms p beziiglich eines Entwicklungspunktes x
offenbart sich, wenn wir an den Werten der Ableitung von p im Punkt x, interessiert
sind, also an den Werten p(zo), p'(z0), p” (x0), - - -

Vergleichen wir kurz den Rechenaufwand bei der Bestimmung des Wertes p'(x) fur die
beiden Darstellungen

p(z) = ag+a1r + a2’ + ...+ anx™ = by +bi(x —x0) + bo(x — 30)? + ...+ by(x — 1)

Entwicklungspunkt 0:

p(r) = ay+2a0x+ ... +naa™ !

p/(:L'O) = a1+ 2a10+ ...+ nanngl = ...

Entwicklungspunkt x:

P(z) = by+2by(z —20) + ...+ nby(x — 30)" "

P(z0) = by +2by (w9 —20) + ...+ nby (zo — 0)"" = by.
Die Koeffizienten bg, b1, b, . .. sind bis auf einen Faktor schon die Funktionswerte

(o), 9/ (w0), 1" (x0), . ..
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6.2 Problemstellung und Einfithrungsbeispiel

Sei f(z) eine mindestens n-mal differenzierbare Funktion und zy ein Punkt. Oft ist es
giinstig, diese eventuell sehr komplizierte Funktion in der N#he des Punktes (z¢, f(x0))
durch eine sehr einfache Funktion zu ersetzen. Solch einfache Funktionen kénnen Polyno-
me sein und man versucht eines zu finden, was die Funktion f zumindest in der Nédhe des
Punktes (zg, f(x0)) gut approximiert.

Direkte Konstruktion von Taylorpolynomen

Beispiel 6.2 Wir suchen ein Polynome 2-ten Grades, das die Funktion
K(z) = 504 6z + 20e 110
an der Stelle xo = 10 madglichst gut approrimieren.
FEin Polynom Py(z) vom Grad 2 hat die allgemeine Gestalt
Py(1) = ag+ ayx + ayx®  oder Py(z) = by + by(z — 10) + by(z — 10)?

je nach dem, welchen Entwicklungspunkt wir wéihlen. und wir kénnen die drei Konstanten
so festlegen, dass im Nullpunkt der Funktionswert, die 1. Ableitung und die 2. Ableitung
(Krimmung) der Funktion K mit den entsprechenden Werten des Polynoms tibereinstim-
men, also K(10) = P,(10), K'(10) = P5(10) und K"(10) = Py (10). Da wir mit Ableitun-
gen arbeiten, ist die Darstellung von Py mit Entwicklungspunkt xo = 10 gut geeignet.

K(10) = 50+ 6z +20e 10| = 130 = P5(10) = by

K'(10) = 6—2e 110 = 4 = Py(10) = by

K"(10) = 0.2¢~01e=10)| = 02 = PjJ(10) = 2b,.

=10

Somit ist

Py(z) = by +bi(x —10) + by(x — 10)*> = 130 + 4(z — 10) + 0.1(z — 10)*.

250

200

150

K(x) = 50 + 6 x 4 20 e 1(x~10)

P(x) = 130 +4 (x — 10) + 0.1 (x — 10)?

50
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Beispiel 6.3 Wir suchen ein Polynome 2-ten Grades, das die Funktion

flz) = —e®—x+1

an der Stelle o = 0 mdglichst gut approximieren.

FEin Polynom Py(x) vom Grad 2 hat die allgemeine Gestalt Py(x) = ag + a1z + asx? und
wir konnen die drei Konstanten so festlegen, dass im Nullpunkt der Funktionswert, die
1. Ableitung und die 2. Ableitung (Krimmung) der Funktion f mit den entsprechenden
Werten des Polynoms iibereinstimmen, also f(0) = P(0), f(0) = P3(0) und f"(0) =
Py (0):

fl0) = —e"—0+1 =0 = P(0) = a
ap = f(0) =0

f(0) = e®—1=0= Py0) = ay

ar = f/<0) =0
f//(o) — 0 — 1 = PQH(O) = 2ay

Somit ist




14

6.3 Taylor-Polynom und ihre Eigenschaften

Definition 6.1 Das n-te Taylor-Polynom P,(z) von f mit Entwicklungspunkt xq ist de-
finiert als

P (2
_y [P

P,(x) X

r—20)" = f(xo) + ; (x —zo)+ ...+
k=0 '

Das n-te Taylor-Polynom P, (z) hat im Punkt z, die folgende schéne Eigenschaft:

P,(z9) = f(xg) gemeinsamer Punkt an der Stelle
P! (x0) = f'(x0)  gemeinsame Tangente

Pl(xg) = f"(zo) gleiche Krimmung

Pi(wo) = f(0)

denn fiir die [-te Ableitung von P, (z) fur [ =0,1,2,...,n gilt:

d (I f®
Pygl) (l‘) |x:a,’() = @ (Z f kaO) (fE - C(”O)k>
k=0

— f®(z) &
= > T g
k=0 ’

T=x0

T=x0

= f(l)(iﬂo)
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Wir konnen nun (geniigend oft differenzierbare) reelle Funktionen y = f(z) in der Néhe
eines Punktes xy durch ein Taylor-Polynom y = P(x) approximieren:

f/l(xo)

or (@ = 20)°

Py(x) = f(xo) + f'(20)(w — mo) +

Es gilt:

Py(z0) = f(wo)
Py(wg) = f'(w0)
Py (xg) = f"(x0)

Warum hilft nun die 2. Ableitung bei der Typbestimmung einer Extremal-
stelle? Insbesondere glauben wir, dass sich P, und f nahe bei zy sehr dhnlich sind. Das
quadratische Polynom P, sollte also die Kriitmmung von f nahe bei xy (meist) recht gut
beschreiben und wir kénnen tatséchlich das wohl bekannte Kriterium zur Unterscheidung
zwischen lokalen Maximalstellen und lokalen Minimalstellen herleiten und bestétigen.

Sei also xy = z* ein stationdrer Punkt von f, d.h. f'(z*) = 0. Dann gilt fiir alle x nahe
bei x*:

und man erkennt sofort:

o Ist f"(z*) >0, so ist f”(;*) (z —2*)* > 0 und
@)~ e+ P e s g
~- .

fiir alle x nahe bei z*. Also muss z* eine lokale Minimalstelle sein.

o Ist f(z*) <0, so ist f”(;*) (z —2*)> <0 und
@)~ e+ P e < g
<0

fiir alle x nahe bei z*. Also muss z* eine lokale Maximalstelle sein.

o Ist f”(2*) = 0 konnen wir zunéchst nichts aussagen! Wir miissten hohere Ableitun-
gen von f untersuchen. Als Beispiel hierfiir konnten Sie die drei Funktionen 23, z*
und —az* untersuchen. Alle drei Funktionen haben sowohl den stationdren Punkt
x* = 0 als auch eine verschwindende zweite Ableitung im Punkt 0, realisieren aber

Sattelpunkt, lokale Minimalstelle bzw. lokale Maximalstelle.
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Beispiel 6.4 Wir wollen die Taylorpolynom O-ten, 1-ten, 2-ten und 3-ten Grades der
Funktion f(x) =2+ In(x) mit Entwicklungspunkt xo = 1 bestimmen.

Loésungsskizze:

e Ableitungen von f im Punkt xo = 1 bestimmen

fO@)= 2+In(z) — fO1) = 2
fPa)y= 2t = ) =1
)= —2? — f@1)=-1
FO () 2070 = fO(1) = 2
e Taylor-Polynome bilden
(1) (2) 3)

) = 1+ W D0 e T gy
= 2 + % (x—1)+ _71 (x— 1)+ % (x—1)°
-2+ @D- g @ g @)

\:Pg(w)
—Pi(x)

=Py (x)

Insbesondere enthdilt das Polynom P alle Taylor-Polynome kleineren Grades!
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6.4 *Die Taylor-Formel*

Natiirlich wissen wir nicht, wie gut unser Taylor-Polynom unsere Funktion approximiert.
Wir brauchten dazu eine Aussage iiber die Differenz der beiden Funktionswerte f(z) —
P,(z) =: Ry11(z, zo). Fundamental wichtig fiir die Losung dieses Problems ist der folgende
Satz.

Satz 2 (Taylor-Formel) Fir jede auf einem offenen Intervall I mindestens (n+1)-mal
stetig differenzierbare Funktion f und alle x,xq € I gilt:

(n)
! n(!%) (# — 20)" +Rus1(, o)

(. /

mit dem Restglied nach

1 xT
Cauchy Ryl 20) = / (2 — £ F (1) de

zo

f("H)(Z)

(n+1)! ™

Lagrange  R,11(z,20) = (x — xg mit z zwischen x und

Beweisidee:

Wir wollen zunéchst die erste Formel mit dem Restglied nach Cauchy mittels
Induktion beweisen. Fiir n = 0, d.h. f ist einmal stetig differenzierbar, gilt die
Formel

f@) = flao)+ / F(t)dt

Ist die Funktion f zweimal stetig differenzierbar, so integrieren wir partiell

und setzen
u=t—z u =1 v=f" v =f"
[ gmar = g-a gk - [ @oa) g
0 \u//‘/\.v./ —— 0 W_/\f./

— —wo- 00~ [ a-oroa

Zo

= (z—mo)f'(t) + /z (x —t)f"(t)dt

o

fl@) = S0+ @ -a)f 0+ e — 0 ()t

o

Fortlaufende partielle Integration fiithr zur angegebenen Formel mit der Rest-
glieddarstellung nach Cauchy.
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Die Lagrange-Form des Restgliedes ergibt sich nun aus dem Mittelwertsatz
der Integralrechnung. Danach gibt es einen Wert 2z zwischen xy und x so dass

xX 1 X
o [ e = L) [ a
n! S n! 2
_ f(nH)(Z) n+1
O
Beispiel 6.5 Mit dem Lagrangeschen Restglied gilt
2 2d " e*
r =1 Z o o n+1
¢ TR T I P DT
und fir |z| <1 ergibt sich die Abschdtzung
2 3 n z
ex_l_x_l'__x__”'_x_ — € |x|n+1§ € |x’n+1.
213l n! (n+1)! (n+1)!
Bei einen tolerierten Fehler, etwa £1077, ist n (in Abhingigkeit von x) so zu bestimmen,
dass
€ n+1 -7
< 10
s

gilt. Fiir x = 0.1 st das bereits fiir n =5 erfillt, fir x =1 muss man n = 10 wdhlen.
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7

Diskussion von Funktionen

Infolge der Verfiigbarkeit von EDV-Programmen zur graphischen Darstellung von Funk-
tionen hat die Kurvendiskussion an Bedeutung eingebiisst. Treten allerdings Funktionen
mit Parametern auf (z.B. f(x) = 22?/e"), so ist eine qualitative Analyse des Funktions-
verlaufes nach wie vor von Bedeutung.

7.1

1.

Was lesen wir aus der Funktionsgleichung y = f(x)?

Definitionsbereich

Beispiele:

1
flz) = G ist definiert fir {z € R| = # 6}

xr —

flz) = v4—2? ist definiert fiir {z €e R| x| <2}

. Nullstellen Lose die Gleichung f(z) = 0 nach x auf.

Beispiele:

hat die Lésungen —2 und 3.

Symmetrien

Gilt die Gleichung f(x) = f(—=z) fir alle z, so ist f eine gerade Funktion, also
symmetrisch beziiglich der y-Achse. Wir miissen also nur einen Teil der Funktion
untersuchen (z.B. den positiven), um die gesamte Funktion zu verstehen.

Beispiele:
f(z) = 2% +42°
f(=z) = (-2)* +4(-2)°
= 2%+ 42F
= f(z)
f(x) = cos(x)
f(=x) = cos(—x)
= cos(z)
f(z)
Gilt die Gleichung f(—z) = —f(z) fir alle x, so ist f eine ungerade Funktion,

also symmetrisch beziiglich des Nullpunktes. Wir miissen also auch hier nur einen
Teil der Funktion untersuchen (z.B. den positiven), um die gesamte Funktion zu
verstehen.
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Beispiele:

flz) = 2°+2aP
f(=z) = (=)’ + (-2)°
= —(2* +2°)
—f(x)

f(z) = sin(z)
f(=z) = sin(—x)

= —sin(x)

= —f(@)

4. Asymptotisches Verhalten (Verhalten fiir z — +00)

Zwei Funktionen f(z) und g(z) verhalten sich asymptotisch gleich, wenn gilt:

lim (£(z) = g(x)) = 0
lim (f(z) —g(z)) = 0
T——00
Beispiel:
Die beiden Funktionen
202 —
fz) = oot und  g(z) =2x—1
x

verhalten sich asymptotisch gleich, denn es gilt:
lim (f(z) —g(z)) = lim

22 — 3
22 —x+3 —295—1—1)

) <2x2—x+3—2x —|—x>
= lim
3

Tr—00

= lim — =
r—00 I
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7.2 Was lesen wir aus den Ableitungen?
1. Was lesen wir aus der 1. Ableitung?

f'(x) >0 = Funktion wachsend

f'(rg) =0 == Funktion hat an der Stelle zy horizontale Tangente
f'(r) <0 =  Funktion fallend

2. Was lesen wir aus der 2. Ableitung?

f"(z) >0 = Funktion konvex
f"(r) <0 = Funktion konkav

3. Was lesen wir aus der 1. und 2. Ableitung?

f'(rg) =0und f"(z9) <0 =
f'(xo) =0und f"(x9) >0 =

To ist lokale Maximalstelle

xo ist lokale Minimalstelle

4. Was lesen wir aus der 2. und 3. Ableitung?

f"(xo) =0und f"(xzg) #0 = ¢ ist Wendepunkt



£L‘2

Beispiel 7.1 Fiihren Sie eine Kurvendiskussion der Funktion f(x) = 1 durch.
T —

1. Definitionsbereich

D = {zeR|z#1}
2. Nullstellen

flz) =0 <= z=0
3. Symmetrien

(—x)? 72
= = +
flea) = S = e 2 ()
Nein!
4. Asymptotisches Verhalten
lim & 4t
im = lim = n im = —
z—oo  — 1 z—>ool—1/;1: & h z——0co I — 1 o0
5. Ableitungen
27 x?
/ — J—
Fe) = T -Gy
2 4o 2

f(x) = x—l_(x—l)2+(x—1)3

f'(z) = 0 <= x;=0o0der zy =2

f"(0) < 0 also ;=0 ist lokale Maximalstelle
f"(2) > 0 also 22 =2 ist lokale Minimalstelle
6. Verhalten an der Polstelle x = 1
x? 12
lim = — = 400 rechtseitiger Grenzwert bei 1
=1+ r — 1 +0
x? 12
lim = = — rechtseitiger Grenzwert bei 1

z—1- x —1 -0
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8 Testfragen zur Vorlesung

Hinweis: Bevor Sie die Ubungsaufgaben lésen, sollten Sie den Stoff der Vorlesung verstan-
den haben. Insbesondere sollten Sie die folgenden einfachen Fragen beantworten kénnen.
Diese Fragen werden im Allgemeinen nicht in den Ubungen besprochen, kénnen aber
priifungsrelevant sein.

1. Konnen Sie alle aus der Schule bekannten (elementaren) Funktionen (ohne weitere
Rechnungen) schnell skizzieren?

2. Konnen Sie die Funktion

In(2)

n(p) = ln(1—+p)

fiir p > 0 schnell und grob (Vorzeichen und Monotonie) skizzieren? Wissen Sie noch,
welchen kausalen Zusammenhang diese Funktion beschreibt?

3. Definieren Sie die Begriffe konvexe Funktion, konkave Funktion, lokale und globale
Extemalstelle, lokale und globale Maximalstelle und Wendestelle.

4. Wie lautet der Mittelwertsatz? Kennen Sie unmittelbare Folgerungen aus dem Mit-
telwertsatz?

5. Geben Sie die Definition fiir konvexe Funktion und konkave Funktion. Geben Sie
mindestens drei weitere Eigenschaften von konvexen Funktionen und mindestens
drei weitere Eigenschaften von konkaven Funktionen an. Nennen Sie jeweils zwei
Beispiele fiir Funktionen, die die folgenden Eigenschaften haben:

e streng monoton wachsend und konvex,

e streng monoton fallend und konvex,

e streng monoton wachsend und konkav bzw.
e streng monoton fallend und konkav.

6. Nennen Sie ein notwendiges Kriterium fiir das Vorliegen eines lokalen Maximums
(Minimums).

7. Nennen Sie ein hinreichendes Kriterium fiir das Vorliegen eines lokalen Maximums
(Minimums).

8. Uberlegen Sie, ob die folgenden Aussagen richtig oder falsch sind. Begriinden (be-
weisen) Sie Thre Antwort.
(a) Eine Nullstelle der ersten Ableitung ist stets eine lokale Extremalstelle.

(b) Ist xg eine lokale Extremalstelle von f, so hat die erste Ableitung von f in z
eine Nullstelle.

(c) Ist xy eine lokale Extremalstelle von f, so ist die Tangente an den Graphen
von f im Punkt (zo, f(zo)) parallel zur y-Achse.

(d) Ist zo eine lokale Extremalstelle von f, so ist die Tangente an den Graphen
von f im Punkt (z¢, f(x)) parallel zur z-Achse.



24

9.

10.

Welche Eigenschaft(en) hat das Taylor-Polynom

2 P (5, .
B = 3 L0 )

k
k=0
von f mit Entwicklungspunkt zy (im Hinblick auf f und x¢)?

Angenommen, Sie kennen von einer (geniigend oft) differenzierbaren Funktion f nur
die beiden Werte f(1) = 1 und f’(1) = 0.2. Bestimmen Sie einen moglichst guten
Néherungswert fiir f(1.1)!

Hinweis:
f(1.1) ~ Pi(1.1)

fO)+FHE1-1)
14+02-01 = 1.02
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9 Ubungsaufgaben

9.1 Niveau 1

Untersuchen Sie die folgenden Funktionen auf dem gegebenen Intervall (Monotonie, lokale
und globale Extremalstellen).

=z '+ 727t we(l,2

h(z) = = 2-(Inx)™' €210

9.2 Niveau 2

1. Bestimmen Sie die Taylor-Polynome P (x), P»(x) und Ps(x) fiir die Funktion f(z) =
In(1 — ) an der Stelle 25 = 0.

2. Wo sind die gegebenen Funktionen konvex bzw. konkav?

(a) K(z)=30-2—10-In(z+1), z>0
(b) g(x) =In(z*+1), x€R

9.3 Niveau 3

Die Nachfrage nach einem Gut als Funktion des monatlichen Einkommens sei gegeben
durch die Funktion

0 falls z < 1
f(x) =4 10(z —1)°

falls x > 1

wobei x das monatliche Einkommen (in tausend Fr.) und y die nachgefragte Menge (in
tausend Stiick) bezeichnet.

1. Diskutieren und skizzieren Sie die Funktion f.
2. Berechnen Sie fiir > 1 die Einkommenselastizitét ¢, der Nachfrage.

3. Welche prozentuale Erhohung/Verringerung der Nachfrage bringt eine 1%-ige Erhohung
des Einkommens bei z = 2,3, 5,77 (Hinweis: €7, nutzen)



26

Lésungen der Ubungsaufgaben

Niveau 1

1. a) Keine stationdre Stelle auf [1,2], streng monoton fallend auf [1,2], Globales

Maximum bei 1, globales Minimum bei 2

b) Globales Minimum bei e, globales Maximum bei 10

Inz -1
-1 _9
W'(z) = (Inz)™ —(Inz)™® = W
—1 2 2—Inz
h// — _
@) z(Inz)? * z(lnz)3 z(Inz)3
Niveau 2
2 5 5
L P(z) = -z, P2(33)=—:E—x— undP;;(g:):_g;_x__w_
2 2 3
2. a) konvex, denn K"(x) = 10 > ( firallez € R
| ’ T (@t 1)

b) weder konvex noch konkav. Genauer konnte man zeigen, dass zunéchst

2 222 1—a?
1 — 1 - — 2—
g'(x) x2+1 ( ZL‘2—|—1) (22 +1)?
gilt. Dann 16st man die Gleichung ¢”(z) = 0 und erhélt die beiden Losungen = = +1.

Die Funktion ¢” &ndert also hochstens an diesen beiden Punkten das Vorzeichen.
Bestimmt man nun noch das Vorzeichen von ¢” an drei gut gewihlten Punkten,

erhélt man folgendes:

g ist konkav auf (—oo,—1), da ¢"(x) < 0 fur alle x € (—o0, —1)
g ist konvex auf (—1,1), da ¢"(z) > 0 fiir alle z € (—1,1)

g ist konkav auf (1,00), da ¢"(z) < 0 fur alle z € (1, 00)

Niveau 3

a)

¢) 2%,0%, —2.5%, —4.667%



