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1 Einstimmung

Gegeben sei eine Funktion z = f(x, y). Zusätzlich sei eine Nebenbedingung in Form einer
Gleichung gegeben. Wir suchen ein Extrema der Funktion unter Berücksichtigung der
Nebenbedingung.

Beispiel 1.1 Es bezeichne p1 und p2 die Preise von zwei Gütern und I das verfügbare
Einkommen einer Person. Weiterhin sei u(c1, c2) eine Nutzenfunktion, d.h. eine Funkti-
on, die den Nutzen (Grad der Bedürfnisbefriedigung der Person) als Funktion der konsu-
mierten Mengen c1 und c2 der beiden Güter darstellt. Wir suchen einen Konsumplan
(c∗1, c

∗
2) (c∗1, c

∗
2 ≥ 0), welcher die Nutzenfunktion u(c1, c2) unter der Budgetrestriktion

p1c1 + p2c2 = I maximiert, also kurz

zu maximierende Zielfunktion : u(c1, c2)

Nebenbedingung : φ(c1, c2) = p1c1 + p2c2 − I = 0

Hier kann die Nebenbedingung leicht nach c2 aufgelöst werden und man erhält die Gera-
dengleichung

c2 = −p1
p2
c1 +

I

p2
.

Da beide Preise positiv sind, ist die Gerade sicher fallend. Ausserdem erkennt man sofort,
dass eine Änderung des Einkommens den Anstieg nicht beeinflusst. Alle Punkte der blauen
Fläche haben die Eigenschaften: c1, c2 ≥ 0 und p1c1 + p2c2 ≤ I, d.h. die entsprechenden
Güterbündel kann ich mir leisten.

c1

c2

I
p2

I
p1

c2 p2

p1 c1
I
p2

= − +
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Beispiel 1.2 Ein Produzent mit der Produktionsfunktion f(K,A) will den Output b möglichst
kostengünstig herstellen. Es bezeichne:

• K : Kapital(einsatz)

• A : Arbeit(seinsatz)

• r : Kostensatz für Kapitalbenutzung

• w : Lohnsatz

Wir suchen einen Produktionsplan (K∗, A∗) (K∗, A∗ ≥ 0), welcher die Produktionskosten

C(K,A) = r ·K + w · A

unter der Nebenbedingung f(K,A) = b minimiert, also kurz

zu minimierende Zielfunktion : C(K,A) = r ·K + w · A
Nebenbedingung : φ(K,A) = f(K,A)− b = 0
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Allgemeine Formulierung:

Gesucht ist (x∗1, x
∗
2), so dass die Zielfunktion

y = f(x1, x2)
unter der Nebenbedingung

φ(x1, x2) = 0
maximiert (resp. minimiert) wird.

x2x1φ(      ) = 0,

1x

x2

y Maximum
Maximum unter der
Nebenbedingung



5

2 Die Reduktionsmethode

In einfachen Fällen lässt sich die Nebenbedingung φ(x1, x2) = 0 nach x2 auflösen, d.h. es
gibt eine (explizit darstellbare) Funktion h(x1) so dass:

φ(x1, x2) = 0 ⇐⇒ x2 = h(x1).

Dann kann die Variable x2 aus der Zielfunktion eliminiert werden und man erhält eine
Funktion, die nur noch von der Variablen x1 abhängt.

Beispiel 2.1 Wir betrachten die Nebenbedingung φ(x1, x2) = x31 − e2x2 = 0. Diese kann
leicht nach y aufgelöst:

φ(x1, x2) = x31 − e2x2 = 0 ⇐⇒ x2 = h(x1) =
3

2
ln(x1)

und in jede Zielfunktion eingesetzt werden.

Das neue Problem ist dann die Maximierung (resp. Minimierung) der Funktion (in einer
Variablen)

F (x1) = f(x1, h(x1))

mit den Methoden der früheren Kapitel.

Beachte:

• Die Nebenbedingung φ(x1, x2) = 0 stellt nicht immer einen funktionalen Zusam-
menhang zwischen x1 und x2 dar. Deshalb ist die Reduktionsmethode nicht immer
anwendbar.

• Gravierend ist auch der Nachteil, dass die ökonomische Interpretation der Optima-
litätsbedingungen bei Nutzung der Reduktionsmethode meist Probleme bereitet.

Beispiel 2.2 Maximieren Sie die Funktion u(c1, c2) = 5 ln(c1 + 3) + ln(c2 + 1) unter der
Nebenbedingung φ(c1, c2) = 2c1 + c2 − 5 = 0.

Lösungsskizze:

• Nebenbedingung umformen (für c1, c2 ≥ 0 und c1 ≤ 5/2):

2c1 + c2 − 5 = 0 ⇔ c2 = 5− 2c1

• Einsetzen in Zielfunktion:

F (c1) = u(c1, 5− 2c1) = 5 ln(c1 + 3) + ln(5− 2c1 + 1) = 5 ln(c1 + 3) + ln(6− 2c1)

• F maximieren:

F ′(c1) =
5

c1 + 3
− 2

6− 2c1
= 0 ⇔ c1 = 2 und c2 = 5− 2 · 2 = 1

F ′′(2) < 0, also ist c1 = 2 eine lokale Maximalstelle von F .

• (2, 1) ist eine lokale Maximalstelle von u.
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3 Die Methode der Lagrange-Multiplikatoren

Wir haben wieder ein Optimierungsproblem der allgemeinen Gestalt zu lösen:

zu maximierende Zielfunktion : f(x1, x2) = y Fläche im Raum

Nebenbedingung : φ(x1, x2) = 0 Kurve in der x1 − x2−Ebene

x2x1φ(      ) = 0,

1x

x2

y Maximum
Maximum unter der
Nebenbedingung

Tatsächlich interessieren uns also nur die Punkte auf dem durch y = f(x1, x2) definierten
Graphen, deren x-y-Koordinaten die Nebenbedingung φ(x1, x2) = 0 erfüllen. Geometrisch
sind das genau die Punkte auf dem Graphen, deren Projektionen in die x1 − x2− Ebene
auf der durch φ(x1, x2) = 0 definierten Kurve liegen. Den Graphen von z = f(x, y) wollen
wir uns nun durch eine Schar von Niveaulinien veranschaulichen:

f(x1, x2) = c = konstant und c0 < c1 < c∗ < c3 < c4

Nehmen wir an, dass der Punkt M = (x∗1, x
∗
2) der gesuchte Punkt ist, d.h. es gilt

φ(x∗1, x
∗
2) = 0 und

f(x∗1, x
∗
2) ≥ f(x1, x2) für alle x1, x2 mit φ(x1, x2) = 0.
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c4

c3

c*

0c

2x1xφ(      ) = 0,

x2

x1 x1

x2

c1

∗

∗

Dann gilt:

Im Punkt M = (x∗1, x
∗
2) berührt die Kurve φ(x1, x2) = 0 eine Niveaulinie f(x1, x2) =

c∗, das heisst, die Kurve und die Niveaulinie haben in M die gleiche Tangentensteigung.
Daraus folgt mittels impliziter Differentiation, dass

fx1(x
∗
1, x
∗
2)

fx2(x
∗
1, x
∗
2)

=
φx1(x

∗
1, x
∗
2)

φx2(x
∗
1, x
∗
2)

oder kurz
fx1
fx2

=
φx1
φx2

oder
fx1
φx1

=
fx2
φx2

gelten muss. Dieses Verhältnis wird mit λ abgekürzt.

Definition 3.1 Die Zahl λ mit

fx1
φx1

= λ =
fx2
φx2

heisst Lagrange-Multiplikator.

Es ist also

fx1 = λ φx1 und fx2 = λ φx2 oder

fx1 − λ φx1 = 0 und fx2 − λ φx2 = 0
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Insgesamt müssen also in unserem gesuchten Punkt M = (x∗1, x
∗
2) folgende drei Gleichun-

gen erfüllt sein:

1. 0 = fx1(x
∗
1, x
∗
2)− λ φx1(x∗1, x∗2)

2. 0 = fx2(x
∗
1, x
∗
2)− λ φx2(x∗1, x∗2)

3. 0 = φ(x∗1, x
∗
2)

Betrachtet man die drei Gleichungen für die drei Unbekannten x∗1, x
∗
2 und λ so stellt

man fest: Ihre rechten Seiten sind gerade die partiellen Ableitungen der Funktion

F (x1, x2, λ) = f(x1, x2)− λ φ(x1, x2)

nach x1, x2 und λ. Das bringt uns zu einer kompakten Formulierung des oben konstruierten
Algorithmus, die wir im folgenden Satz zusammenfassen.

Satz 1 (Lagrange’sche Multiplikatorregel für 2 Variablen)

Zur Bestimmung der Extremwerte einer Funktion y = f(x1, x2) mit der Nebenbedingung
φ(x1, x2) = 0 bildet man die Lagrange-Funktion

F (x1, x2, λ) = f(x1, x2)− λ φ(x1, x2).

Aus dem Gleichungssystem (drei Gleichungen und drei Unbekannte)

Fx1 = 0

Fx2 = 0

Fλ = 0

werden dann die Koordinaten des möglichen Extremwertes sowie der Lagrange-Multiplikator
berechnet.

Aufgabe 3.1 In der Literatur wird das Verhältnis der partiellen Ableitungen von Ziel-
und Nebenbedingungsfunktion oft auch mit −λ abgekürzt:

fx1
φx1

= −λ fx2
φx2

= −λ.

Das führt zu einer anderen Lagrange-Funktion Fneu(x1, x2, λ) = f(x1, x2) + λ φ(x1, x2).
Überlegen Sie sich, dass F und Fneu die selben Extremalpunktkandidaten liefern.
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Beispiel 3.1 Bestimmen Sie alle mögliche Extremalstellen der Funktion f(x, y) = x2 +
2y2 unter der Nebenbedingung φ(x, y) = y − x2 + 1 = 0.

Lösungsskizze

• Lagrange-Funktion

F (x, y, λ) = x2 + 2y2 − λ · (y − x2 + 1)

• Partielle Ableitungen der Lagrange-Funktion

Fx = 2x+ 2λx = 2x(1 + λ)

Fy = 4y − λ
Fλ = −(y − x2 + 1)

• Lösen der drei Gleichungen

I 0 = 2x(1 + λ)

II 0 = 4y − λ
III 0 = y − x2 + 1

Gleichung I bedeutet x = 0 oder λ = −1.

∗ x = 0 in Gleichung III: y + 1 = 0 oder y = −1. Mit Gleichung II folgt dann
noch λ = −4. Ein erster Lösungskandidat ist somit

(0,−1) mit λ = −4

∗ λ = −1 in Gleichung II: y = −1
4
. Setzen wir das in Gleichung III ein, folgt

−1

4
− x2 + 1 = 0 ⇔ x2 =

3

4
⇔ x =

√
3

4
oder −

√
3

4

Damit erhalten wir zwei weitere Lösungskandidaten:(√
3

4
,−1

4

)
mit λ = −1(

−
√

3

4
,−1

4

)
mit λ = −1
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4 *Ergänzungen und Verallgemeinerungen*

Ergänzung 1 Warum berühren sich die Nebenbedingungskurve und die Niveaulinie im
Punkt (x∗1, x

∗
2)?

Beweis:

Falls φx2(x
∗
1, x
∗
2) 6= 0 ist, lässt sich die Funktion φ(x1, x2) = 0 lokal (in der Nähe von x∗1)

nach x2 auflösen: x2 = h(x1) und es gilt dann φ(x1, h(x1)) = 0.

• Damit gilt einerseits für die Nebenbedingung

0 = φ′(x1, h(x1))|x1=x∗1
= φx1(x

∗
1, h(x∗1)) + φx2(x

∗
1, h(x∗1)) · h′(x∗)

= φx1(x
∗
1, x
∗
2) + φx2(x

∗
1, x
∗
2) · h′(x∗1)

oder

h′(x∗1) = −φx1(x
∗
1, x
∗
2)

φx2(x
∗
1, x
∗
2)
.

• Nutzen wir diese lokale Darstellung von x2, so nimmt unsere Zielfunktion die Gestalt

F (x1) = f(x1, h(x1))

an und eine notwendige Bedingung für die Existenz eines Maximums oder Minimums
in x∗1 ist

0 = F ′(x1)|x1=x∗1
= fx1(x

∗
1, h(x∗1)) + fx2(x

∗
1, h(x∗1)) · h′(x∗1)

= fx1(x
∗
1, x
∗
2) + fx2(x

∗
1, x
∗
2) · h′(x∗1)

oder

h′(x∗1) = −fx1(x
∗
1, x
∗
2)

fx2(x
∗
1, x
∗
2)

Durch Kombination beider Gleichungen erhält man nun

fx1(x
∗
1, x
∗
2)

fx2(x
∗
1, x
∗
2)

=
φx1(x

∗
1, x
∗
2)

φx2(x
∗
1, x
∗
2)
.

2
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Ergänzung 2 Die Methode von Lagrange liefert notwendige, aber nicht hinrei-
chende Bedingungen für das Vorliegen eines Extremum und sie gibt uns keine Möglich-
keit, zwischen Maximum und Minimum zu unterscheiden. Ohne Beweis geben wir eine
hinreichende Bedingung an:

Satz 2∣∣∣∣∣∣
0 φx1 φx2
φx1 fx1x1 fx1x2
φx2 fx2x1 fx2x2

∣∣∣∣∣∣︸ ︷︷ ︸
Determinante

= 2φx1φx2fx1x2 − fx1x1φ2
x2
− fx2x2φ2

x1

{
> 0 Maximum
< 0 Minimum

Ergänzung 2 Die Lagrange’sche Multiplikatorregel lässt sich direkt auf Funktionen in
mehreren Variablen mit einer Nebenbedingung übertragen:

Satz 3 (Lagrange’sche Multiplikatorregel für n Variablen)

Zur Bestimmung der Extremwerte einer Funktion y = f(x1, x2, · · · , xn) mit der Nebenbe-
dingung φ(x1, x2, · · · , xn) = 0 bildet man die Lagrange-Funktion in n+ 1 Variablen

F (x1, x2, · · · , xn, λ) = f(x1, x2, · · · , xn)− λ φ(x1, x2, · · · , xn).

Aus dem Gleichungssystem (n+ 1 Gleichungen und n+ 1 Unbekannte)

Fx1 = 0

Fx2 = 0

· · · · · ·
Fxn = 0

Fλ = 0

werden dann die Koordinaten des möglichen Extremwertes sowie der Lagrange-Multiplikator
berechnet.
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5 Der Einhüllendensatz

In vielen ökonomischen Problemen fällt auf, dass die zu optimierenden Funktionen nicht
nur Variablen haben, über die zu maximieren oder minimieren ist, sondern auch (fest gege-
bene bzw. nicht von mir zu beeinflussende) Parameter wie z.B. Preise und Löhne. Obwohl
diese Parameter meist als fest angenommen werden, kann man sich natürlich fragen, wie
die berechneten Maxima bzw. Minima von der Wahl dieser Parameter abhängen.

Beispiel 5.1 Nehmen wir an, dass eine Firma x Einheiten eines Gutes produziert und
verkauft. Der Erlös ist dann eine Funktion des Preises p für eine Einheit des Gutes E(x) =
p · x und die Kosten seien durch die Kostenfunktion K(x) = x2 beschrieben. Hier ist p
der Parameter. Der Gewinn wird dann durch die Funktion

G(x) = G(x, p) = E(x)−K(x) = p · x− x2

gegeben. Die Gewinnfunktion hat für x∗ = p/2 ein Maximum (prüfen Sie das nach!).
Genau genommen ist x∗ eine Funktion des Preises p, d.h. wir können x∗ = x∗(p) = p/2
schreiben. Auch der maximale Gewinn G∗ = G∗(p) ist eine Funktion des Parameters p:

G∗(p) = p · x∗ − (x∗)2 = p · p
2
− p2

4
=

p2

4
.

Allgemein:

Die Funktion f hänge von der (einzigen) Variablen x und einem Parameter p ab. Natürlich
kann man p selbst als Variable betrachten und deshalb schreiben wir einfach f(x, p). In
dieser Schreibweise ist ersichtlich, dass uns für die Untersuchung von f alle Möglichkeiten
der Differentialrechnung für Funktionen in zwei Veränderlichen zur Verfügung stehen.

Nun soll f bzgl. x maximiert (bzw. minimiert) werden und im Allgemeinen wird der Wert
x∗, der f maximiert von p abhängen. Wir bezeichnen das durch x∗ = x∗(p).

Setzen wir x∗(p) in f(x, p) ein, so erhalten wir die so gemannte Optimalwertfunktion

f ∗(p) = f(x∗(p), p)

Was geschieht mit dieser Funktion, wenn sich der Parameter p ändert? Mit der Kettenregel
folgt:

d

dp
f ∗(p) =

d

dp
f(x∗(p), p)

= fx(x
∗(p), p)

dx∗(p)

dp
+ fp(x

∗(p), p)
dp

dp

= fx(x
∗(p), p)

dx∗(p)

dp
+ fp(x

∗(p), p)

Falls f nun ein (lokales) Extrema in einem inneren Punkt x∗(p) im Definitionsbereich der
Variablen x hat, so gilt sicher fx(x

∗(p), p) = 0 und es folgt

d

dp
f ∗(p) = fp(x

∗(p), p)
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Beispiel 5.2 Warum ,,Einhüllendensatz,,?

Für feste Stückzahlen x betrachten wir die Funktionen G(x, p) = px − x2. Die Graphen
dieser Funktionen (für jede Wahl von x) in der p-G-Ebene sind dann Geraden.

x Gerade
1 G(x = 1, p) = p− 1
2 G(x = 2, p) = 2p− 4
3 G(x = 3, p) = 3p− 9
4 G(x = 4, p) = 4p− 16

Zeichnen wir einige dieser Geraden (die Skizzen enthalten auch Geraden für negative
Werte von x, die keine ökonomische Bedeutung haben), so entsteht das folgende Bild:

Man erkennt am Bild, dass alle diese Geraden von einem neuen Funktionsgraphen ein-
gehüllt werden. Dieser Graph gehört zur Optimalwertfunktion G∗(p) = p2/4. Das kann
man wie folgt einsehen:

1. Für alle x und alle p gilt natürlich

G(x, p) ≤ G∗(p)

d.h. keine der Geraden wird jemals oberhalb des Graphen von G∗(p) liegen.

2. Für jeden Preis p muss es weiterhin mindestens einen Wert x∗ geben, so dass

G(x∗, p) = G∗(p)

gilt. Das ist natürlich der Wert x∗ = x∗(p), der das Maximierungsproblem für den
gegebenen Preis p löst.

3. Der Graph von G(x∗, p) wird dann den von G∗(p) gerade im Punkt (x∗, G(x∗, p)) =
(x∗, G∗(p)) berühren. Beide Graphen haben somit auch die selbe Tangente in diesem
Punkt.
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Diese Regel kann direkt verallgemeinert werden.

Satz 4 Sei f(x,p) eine (stetig differenzierbare) Funktion für x = (x1, . . . , xn) (n Varia-
blen) und p = (p1, . . . , pm) (m Parameter). Weiterhin seien wieder

• x∗(p) die Lösung des Maximierungsproblems

• f ∗(p) = f(x∗(p),p) die Optimalwertfunktion.

Dann gilt für alle i = 1, . . . , n:

∂f ∗

∂pi
(p) =

∂f

∂pi
(x∗(p),p)

Beispiel 5.3 Wir betrachten die Gewinnfunktion einer Firma

G(K,A; p1, p2, p3) = p1 ·K3/4A1/4 − p2 ·K − p3 · A

wobei K und A Kapital- bzw. Arbeitsinput, p1 der Stückpreis des produzierten Gutes und
p2 und p3 die Preise für Kapital und Arbeit sind. Was besagt der Einhüllendensatz, wenn
Sie G bezüglich K und A maximieren?

Lösungsskizze:

• Optimaler Kapital- und Arbeitseinsatz:

K∗ = K∗(p1, p2, p3) und A∗ = A∗(p1, p2, p3)

• Optimalwertfunktion:

G∗ = G(K∗, A∗, p1, p2, p3) = G∗(p1, p2, p3)

• Einhüllendensatz bezüglich p1:

∂G∗

∂p1
(p1, p2, p3) = (K∗)3/4 (A∗)1/4

• Einhüllendensatz bezüglich p2:

∂G∗

∂p2
(p1, p2, p3) = −K∗

Erhöht sich der Preis p2 um 1 schrumpft der Gewinn um etwa K∗.

• Einhüllendensatz bezüglich p3:

∂G∗

∂p3
(p1, p2, p3) = −A∗

Erhöht sich der Preis p3 um 1 schrumpft der Gewinn um etwa A∗.
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6 Deutung des Lagrange-Multiplikators

Wir betrachten wieder das Problem

Zielfunktion : y = f(x1, x2)

Nebenbedingung : g(x1, x2) = c

in leicht abgewandelter Form. Dabei bringen wir die additive Konstante in der Funktion
φ auf die rechte Seite. Wir wollen untersuchen was passiert, wenn wir die Konstante c
ändern.

Die Lösung dieses Problems (x∗1, x
∗
2) und auch der zugehörige Lagrange-Multiplikator wer-

den im Allgemeinen von c abhängen. Es gilt also

(x∗1, x
∗
2) = (x∗1(c), x

∗
2(c)) und λ = λ(c)

und die Optimalwertfunktion ist

f ∗(c) = f(x∗1(c), x
∗
2(c))

Satz 5 Der Lagrange-Multiplikator ist die Rate, mit der sich der optimale Wert der Ziel-
funktion bezüglich der Änderung von c in der Nebenbedingung ändert.

df ∗(c)

dc
= λ(c)

Beweis:

Mit der Kettenregel und unter Ausnutzung der Zusammenhänge von Zielfunktion und
Nebenbedingung in Optimalpunkten folgt:

df ∗(c)

dc
= fx1(x

∗
1, x
∗
2)
dx∗1
dc

+ fx2(x
∗
1, x
∗
2)
dx∗2
dc

= λ · gx1(x∗1, x∗2)
dx∗1
dc

+ λ · gx2(x∗1, x∗2)
dx∗2
dc

= λ
dg(x∗1, x

∗
2)

dc

= λ
dc

dc
= λ

2

Ist nun insbesondere dc eine kleine Änderung von c, dann gilt:

∆f ∗(c, dc) = f ∗(c+ dc)− f ∗(c) ≈ df ∗(c, dc) = λ(c) dc



16

Beispiel 6.1 Wir untersuchen die Funktion u(c1, c2) = 5 ln(c1 + 3) + ln(c2 + 1) unter der
Nebenbedingung φ(c1, c2) = 2c1 + c2 − I = 0. Insbesondere wollen wir den Einfluss von I
auf die optimale Lösung besser verstehen.

Zunächst lösen wir das Problem mit Hilfe der Methode von Lagrange:

• Lagrange-Funktion

F (c1, c2, λ) = 5 ln(c1 + 3) + ln(c2 + 1)− λ(2c1 + c2 − I)

• Partielle Ableitungen der Lagrange-Funktion

Fc1 =
5

c1 + 3
− 2λ

Fc2 =
1

c2 + 1
− λ

Fλ = −(2c1 + c2 − I)

• Lösen der drei Gleichungen

I 0 =
5

c1 + 3
− 2λ

II 0 =
1

c2 + 1
− λ

III 0 = 2c1 + c2 − I

Gleichung II in I ergibt c2 = 2c1+1
5

(Gleichung IV). Setzen wir das in III ein, folgt
0 = 2c1 + c2 − I oder

c∗1 = c∗1(I) =
5

12
I − 1

12
.

Mit IV folgt sofort:

c∗2 = c∗2(I) =
1

6
I +

1

6
.

Mit II können wir auch λ durch I ausdrücken:

λ = λ(I) =
6

I + 7
.

• Die Optimalwertfunktion, die uns den maximalen Nutzen im Falle des optimalen
Konsumplans ausgibt, ist dann ebenfalls eine Funktion von I:

u∗(I) = u(c∗1, c
∗
2) = 5 ln

(
5

12
I − 1

12
+ 3

)
+ ln

(
1

6
I +

1

6
+ 1

)
= 5 ln

(
5

12
I +

35

12

)
+ ln

(
1

6
I +

7

6

)
• Tatsächlich gilt (Prüfen Sie das!):

du∗(I)

dI
=

6

I + 7
= λ

und wie immer:

∆u∗(I, dI) = u∗(I + dI)− u∗(I) ≈ du∗(I)

dI
dI =

6

I + 7
dI
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7 Testfragen zur Vorlesung

Hinweis: Bevor Sie die Übungsaufgaben lösen, sollten Sie den Stoff der Vorlesung verstan-
den haben. Insbesondere sollten Sie die folgenden einfachen Fragen beantworten können.
Diese Fragen werden im Allgemeinen nicht in den Übungen besprochen, können aber
prüfungsrelevant sein.

1. Nennen Sie die allgemeine Formulierung eines Extremwertproblems mit Nebenbe-
dingung.

2. Erläutern Sie die Reduktionsmethode. Ist diese Methode immer anwendbar? Be-
gründung!

3. Welche Eigenschaft haben die Kurve φ(x1, x2) = 0 und f(x, y) = f(x∗1, x
∗
2) in einem

Optimalpunkt M = (x∗1, x
∗
2) ?

4. Was ist die Lagrange-Funktion und der Lagrange-Multiplikator?

5. Beschreiben Sie die Lagrange-Methode zur Bestimmung von lokalen Extrempunkten
unter Nebenbedingung.

6. Was besagt der Einhüllendensatz?

7. Welche Bedeutung hat der Lagrange-Multiplikator?
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8 Übungsaufgaben

8.1 Niveau 1 und 2

Gegeben sei eine Produktionsfunktion P = P (K,A) vom Cobb-Douglas-Typ und eine
Kostenfunktion C = C(K,A):

P (K,A) = 10 K1/4 A3/4 C(K,A) = 2K + 6A.

1. Für welche Produktionsfaktorkombination (K,A) werden die Kosten C(K,A) mi-
nimal, falls 80 Einheiten produziert werden sollen?

2. Es soll eine möglichst grosse Menge P produziert werden, wobei für die Gesamtko-
sten C(K,A) genau Fr. 1’000.- zur Verfügung stehen.

8.2 Niveau 2

1. Gegeben sei das Optimierungsproblem f(x, y) = xy2 − 3ey, x > 0 unter der Neben-
bedingung φ(x, y) = y − ln(x) = 0.

(a) Ermitteln Sie mit Hilfe der Lagrange-Methode die möglichen Extremalstellen.

(b) Klären Sie mit Hilfe der Reduktionsmethode, ob ein lokales Maximum vorliegt.

2. Bestimmen Sie die globalen Extremwerte der Funktion

f(x, y) = x2 − y2

auf der Kreisscheibe B = {(x, y) | x2 + y2 ≤ 1}. Können Sie sich den Graphen von
f vorstellen und die Lösungen erraten?

Hinweis: Innere Punkte von B und Randpunkte getrennt untersuchen.

8.3 Niveau 3

Ein Konsument mit der Nutzenfunktion u(c1, c2) = ca1 · cb2 muss die Budgetrestriktion
p1c1 + p2c2 = I, p1, p2 > 0 einhalten. Sei (c∗1, c

∗
2) ein optimaler Konsumplan, wobei

c∗1 = c∗1(a, b, p1, p2, I) und c∗2 = c∗2(a, b, p1, p2, I).

1. Zeigen Sie die Gültigkeit der notwendigen Bedingung

2

3

c∗2
c∗1

=
p1
p2
.

2. Bestimmen Sie c∗1 und c∗2.

3. Bestimmen Sie die Optimalwertfunktion u∗.

4. Bestimmen Sie
du∗

dI
.
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Lösungen der Übungsaufgaben

Niveau 1

1. Hinweis: Zielfunktion ist C(K,A) = 2K + 6A und Nebenbedingung P (K,A) =
10K1/4A3/4 = 80

K = A = 8, Cmin = 64

2. Hinweis: Zielfunktion ist P (K,A) = 10K1/4A3/4 und Nebenbedingung C(K,A) =
2K + 6A = 1000

K = A = 125, Pmax = 1250

Niveau 2

1. Hinweis: Es gilt y = lnx ↔ ey = x

Lokales Maximum bei (e−3,−3) und lokales Minimum bei (e, 1)

2. (Lösungsskizze) Im Inneren der Kreisscheibe muss für ein (lokales) Extema fx(x, y) =
2x = 0 und fy(x, y) = −2y = 0 gelten und das ist nur für den Punkt (0, 0) erfüllt.
(Mittels der zweiten partiellen Ableitungen könnte man zeigen, dass dieser Punkt
kein Extremwert von f ist. Das ist aber nicht nötig.)

Auf dem Rand haben wir ein Extremwertproblem (Zielfunktion ist f) mit Neben-
bedingung φ(x, y) = x2 + y2 − 1 = 0. Mit der Lagrange-Funktion F (x, y, λ) =
x2 − y2 − λ(x2 + y2 − 1) erhält man neben der Kreisgleichung die beiden notwendi-
gen Bedingungen Fx = 2x− 2xλ = 0 und Fy = −2y− 2yλ = 0. Lösungspunkte sind
P1 = (0, 1), P2 = (0,−1), P3 = (1, 0) und P4 = (−1, 0), wobei P1 und P2 Minima
sind und P3 und P4 Maxima.

Kandidat (x, y) f(x, y)
(0, 0)
(0, 1)

(0,−1)
(1, 0)

(−1, 0)

Niveau 3

-


