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1 Einstimmung

Gegeben sei eine Funktion z = f(x,y). Zusitzlich sei eine Nebenbedingung in Form einer
Gleichung gegeben. Wir suchen ein Extrema der Funktion unter Beriicksichtigung der
Nebenbedingung.

Beispiel 1.1 Es bezeichne p; und ps die Preise von zwei Giitern und I das verfiigbare
Einkommen einer Person. Weiterhin sei u(cy,ca) eine Nutzenfunktion, d.h. eine Funkti-
on, die den Nutzen (Grad der Bedirfnisbefriedigung der Person) als Funktion der konsu-
mierten Mengen c; und co der beiden Giiter darstellt. Wir suchen einen Konsumplan
(c,e3) (c5,¢5 > 0), welcher die Nutzenfunktion u(ci,ce) unter der Budgetrestriktion
pic1 + paco = I maximaert, also kurz

zu mazimierende Zielfunktion : wu(cy,co)

Nebenbedingung : ¢(c1,co) = prc1 +pace — 1 =0

Hier kann die Nebenbedingung leicht nach co aufgelost werden und man erhdlt die Gera-
dengleichung

C2 = —&01 + i
P2 2)
Da beide Preise positiv sind, ist die Gerade sicher fallend. Ausserdem erkennt man sofort,
dass eine Anderung des Einkommens den Anstieg nicht beeinflusst. Alle Punkte der blauen
Fliche haben die Figenschaften: ci,co > 0 und picy + pace < I, d.h. die entsprechenden
Giiterbiindel kann ich mir leisten.

Ci1

Py |
o, Ci+ =~

Cr =— p2



Beispiel 1.2 Ein Produzent mit der Produktionsfunktion f(K, A) will den Output b maéglichst
kostengiinstig herstellen. Es bezeichne:

K : Kapital(einsatz)

A : Arbeit(seinsatz)

r : Kostensatz fir Kapitalbenutzung
o w : Lohnsatz
Wir suchen einen Produktionsplan (K*, A*) (K*, A* > 0), welcher die Produktionskosten
C(K,A) = r-K4+w-A
unter der Nebenbedingung f(K, A) = b minimiert, also kurz

zu minimierende Zielfunktion : C(K,A)=r-K+w-A
Nebenbedingung : ¢(K,A) = f(K,A)—b=0




Allgemeine Formulierung:

Gesucht ist (27, 23), so dass die Zielfunktion
Yy = f(ajla aj?)
unter der Nebenbedingung
¢($17 x?) - O

maximiert (resp. minimiert) wird.

Maximum unter der
y A Maximum Nebenbedingung

>




2 Die Reduktionsmethode

In einfachen Féllen lédsst sich die Nebenbedingung ¢(z1, x2) = 0 nach z5 auflosen, d.h. es
gibt eine (explizit darstellbare) Funktion h(z;) so dass:

d(r1,22) =0 <= x5 = h(11).

Dann kann die Variable x5 aus der Zielfunktion eliminiert werden und man erhélt eine
Funktion, die nur noch von der Variablen x; abhéngt.

Beispiel 2.1 Wir betrachten die Nebenbedingung ¢(xq,x5) = 13 — €**2 = 0. Diese kann

leicht nach y aufgelist:

3
H(x1, 1) =22 —e*2 =0 = 29 =h(r)) = §ln(:)31)

und in jede Zielfunktion eingesetzt werden.

Das neue Problem ist dann die Maximierung (resp. Minimierung) der Funktion (in einer
Variablen)

F(z) = f(z1, h(z1))
mit den Methoden der fritheren Kapitel.

Beachte:

e Die Nebenbedingung ¢(x1,z3) = 0 stellt nicht immer einen funktionalen Zusam-
menhang zwischen x; und x5 dar. Deshalb ist die Reduktionsmethode nicht immer
anwendbar.

e Gravierend ist auch der Nachteil, dass die 6konomische Interpretation der Optima-
litdtsbedingungen bei Nutzung der Reduktionsmethode meist Probleme bereitet.

Beispiel 2.2 Mazimieren Sie die Funktion u(cy,ce) = 5In(cy + 3) + In(cy + 1) unter der
Nebenbedingung ¢(c1,c2) = 2¢1 + ¢ —5 = 0.

Losungsskizze:

e Nebenbedingung umformen (fir c¢y,co >0 und ¢; < 5/2):

2ci1 +co—5 =0 ~ o = 5—2¢

e Finsetzen in Zielfunktion:

F(c1) = u(e1,5—2¢1) = 5ln(eg +3)+In(b—2¢; +1) = 5ln(c; + 3) + In(6 — 2¢4)

o [ maximieren:

5 2
c+3 62
F"(2) <0, also ist ¢; = 2 eine lokale Mazimalstelle von F.

=0 & c¢=2undcy = 5-2-2 =1

Fl(a) =

e (2,1) ist eine lokale Mazimalstelle von w.



3 Die Methode der Lagrange-Multiplikatoren

Wir haben wieder ein Optimierungsproblem der allgemeinen Gestalt zu 16sen:

zu maximierende Zielfunktion : f(xy,x9) =y Fliche im Raum

Nebenbedingung : ¢(z1,29) =0 Kurve in der 27y — xo—Ebene

Maximum unter der
y A Maximum Nebenbedingung

»

Tatséchlich interessieren uns also nur die Punkte auf dem durch y = f(x1, z2) definierten
Graphen, deren x-y-Koordinaten die Nebenbedingung ¢(x1, z5) = 0 erfiillen. Geometrisch
sind das genau die Punkte auf dem Graphen, deren Projektionen in die 1 — 29— Ebene
auf der durch ¢(xy, z5) = 0 definierten Kurve liegen. Den Graphen von z = f(z,y) wollen
wir uns nun durch eine Schar von Niveaulinien veranschaulichen:

f(z1,29) = ¢ =konstant —und ¢y < < <cz<ey

Nehmen wir an, dass der Punkt M = (7, x3) der gesuchte Punkt ist, d.h. es gilt

é(z,03) = 0und

flal,z5) > f(xy,xe) fiir alle z1, x2 mit ¢(x1,x2) = 0.



X2

oX2) =C

C
\ | |
Cs c*

Cs

Im Punkt M = (z}, z}) beriihrt die Kurve ¢(z1, z5) = 0 eine Niveaulinie f(x,z,) =
c*, das heisst, die Kurve und die Niveaulinie haben in M die gleiche Tangentensteigung.
Daraus folgt mittels impliziter Differentiation, dass

fo (1, 25) _ fay (27, 25) foy _ Ouy

e —~ oder kurz ~—— oder for _ fo
fx2($1>$2) ¢;,;2(.1'1,:L’2)

frs  u Gor Pus

gelten muss. Dieses Verhéltnis wird mit A abgekiirzt.

Dann gilt:

Definition 3.1 Die Zahl N\ mit

In _
Puy

Jas

A==
Pz

heisst Lagrange-Multiplikator.

Es ist also

fCCl = >\¢I1 und fa:Q - )\¢x2 Odel"

fo, =Nz, =0 und  fo, — Ay, = 0



Insgesamt miissen also in unserem gesuchten Punkt M = (27, 2}) folgende drei Gleichun-
gen erfiillt sein:

I. 0= fﬂfl(x;x;)_)‘qbwl(x;xz)
2. 0= fm(x;x;)_)‘¢ftz(xﬂl<’x§)

3. 0= o¢(af,23)

Betrachtet man die drei Gleichungen fiir die drei Unbekannten z7, =3 und A so stellt
man fest: Thre rechten Seiten sind gerade die partiellen Ableitungen der Funktion

F(ajlyx%)\) = f(xlaxQ) _)\Qﬁ@fl»x?)
nach z, x5 und A. Das bringt uns zu einer kompakten Formulierung des oben konstruierten

Algorithmus, die wir im folgenden Satz zusammenfassen.

Satz 1 (Lagrange’sche Multiplikatorregel fiir 2 Variablen)

Zur Bestimmung der Extremwerte einer Funktion y = f(x1,x2) mit der Nebenbedingung
(1, x2) = 0 bildet man die Lagrange-Funktion

F($1,1’2,)\) = f(iUlyflfz)—)\¢($1,iU2)-

Aus dem Gleichungssystem (drei Gleichungen und drei Unbekannte)

F,, = 0
F,, = 0
F, = 0

werden dann die Koordinaten des moglichen Extremwertes sowie der Lagrange-Multiplikator
berechnet.

Aufgabe 3.1 In der Literatur wird das Verhdltnis der partiellen Ableitungen von Ziel-
und Nebenbedingungsfunktion oft auch mit —\ abgekiirzt:

fos s
S
Py Pus

Das fihrt zu einer anderen Lagrange-Funktion Fe,(x1,22,\) = f(x1,22) + X ¢(x1, 22).
Uberlegen Sie sich, dass F' und F., die selben Extremalpunktkandidaten liefern.

Y




Beispiel 3.1 Bestimmen Sie alle mdgliche Extremalstellen der Funktion f(x,y) = x* +
2y? unter der Nebenbedingung ¢(x,y) =y —2*> +1 = 0.

Losungsskizze

e Lagrange-Funktion

F(z,y,\) = 2> +2* —\-(y—2*+1)

e Partielle Ableitungen der Lagrange-Funktion
F, = 2x+2\x = 2z(1+ )
F, = 4y— )\
F)\ = —(y — £U2 —+ 1)
e Lisen der drei Gleichungen
I 0 =2z(1+MX)
17 0 =4y— A\
I 0 =y—a2*+1
Gleichung I bedeutet x =0 oder A = —1.

x x =0 i Gleichung III: y+1 = 0 oder y = —1. Mit Gleichung II folgt dann
noch A = —4. Fin erster Liosungskandidat ist somit

(0,-1) mit A= —4
x A= —1 i Gleichung II: y = —%. Setzen wir das in Gleichung III ein, folgt

1 3 3 3
—Z—Jl:2+1:0<:>:1/;2:2L &S oz o= Zder_i

Damit erhalten wir zwei weitere Losungskandidaten:
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4 *Erginzungen und Verallgemeinerungen™

Ergdnzung 1 Warum beriihren sich die Nebenbedingungskurve und die Niveaulinie im
Punkt (z7, z%)?

Beweis:

Falls ¢, (2}, x3) # 0 ist, ldsst sich die Funktion ¢(x,x2) = 0 lokal (in der Néhe von z7)
nach zy auflésen: x5 = h(z1) und es gilt dann ¢(z1, h(z1)) = 0.

e Damit gilt einerseits fiir die Nebenbedingung

0 = ¢(@1,h(21))|ay=a;
= ¢u, (77, M(T])) + buy (27, h(27)) - B (27)
- ¢r1 (f{, I;) + Qbm (IT, xz) ’ h,(l’I)

oder

_ G, (27, T5)
Guy (77, T3)

W(x}) =

e Nutzen wir diese lokale Darstellung von xs, so nimmt unsere Zielfunktion die Gestalt
F(z1) = f(21, h(z1))

an und eine notwendige Bedingung fiir die Existenz eines Maximums oder Minimums

in 27 ist
0 = F'(21)]z)=a
= fuy (27, 1(2])) + fu, (27, (27)) - B (])
= f$1 (Jf{’ "L‘;) + f$2<x>{’ "L‘;) : hl(‘r*l()
oder

et 3)

S P

Durch Kombination beider Gleichungen erh&lt man nun

foi (27, :)3;) _ G, (27, T5)
fxz(ffyxé‘) qu(l’“f,xg)
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Erginzung 2 Die Methode von Lagrange liefert notwendige, aber nicht hinrei-
chende Bedingungen fiir das Vorliegen eines Extremum und sie gibt uns keine Moglich-
keit, zwischen Maximum und Minimum zu unterscheiden. Ohne Beweis geben wir eine
hinreichende Bedingung an:

Satz 2
0 buy P .
- B 2 9 >0 Mazimum
¢LE1 le;m fl‘lxg - 2¢x1¢x2fa:1:r:2 fx1x1¢x2 fx2x2¢x1 { < 0 MZanUm

¢$2 f$2$1 f.Z’QJ?Q
~
~~

Determinante

J/

Erginzung 2 Die Lagrange’sche Multiplikatorregel ldsst sich direkt auf Funktionen in
mehreren Variablen mit einer Nebenbedingung iibertragen:

Satz 3 (Lagrange’sche Multiplikatorregel fiir n Variablen)

Zur Bestimmung der Extremwerte einer Funktion y = f(x1, s, -+, x,) mit der Nebenbe-
dingung ¢(xq1, 9, -, x,) = 0 bildet man die Lagrange-Funktion in n + 1 Variablen

F(l'l,l'g,"‘,$n,>\) = f(xla*TQa"'axn)_)\Qb(th%“'axn)'

Aus dem Gleichungssystem (n+ 1 Gleichungen und n + 1 Unbekannte)

F, =0
F,, =
F, =
F\ = 0

werden dann die Koordinaten des moglichen Extremwertes sowie der Lagrange-Multiplikator
berechnet.



12

5 Der Einhiillendensatz

In vielen 6konomischen Problemen fallt auf, dass die zu optimierenden Funktionen nicht
nur Variablen haben, iiber die zu maximieren oder minimieren ist, sondern auch (fest gege-
bene bzw. nicht von mir zu beeinflussende) Parameter wie z.B. Preise und Lohne. Obwohl
diese Parameter meist als fest angenommen werden, kann man sich natiirlich fragen, wie
die berechneten Maxima bzw. Minima von der Wahl dieser Parameter abhéngen.

Beispiel 5.1 Nehmen wir an, dass eine Firma x Finheiten eines Gutes produziert und
verkauft. Der Erlos ist dann eine Funktion des Preises p fir eine Einheit des Gutes E(z) =
p - x und die Kosten seien durch die Kostenfunktion K(z) = x* beschrieben. Hier ist p
der Parameter. Der Gewinn wird dann durch die Funktion

G(x) = Gla.p) = Bla)-K(z) = p-a—2°

gegeben. Die Gewinnfunktion hat fir ©* = p/2 ein Maximum (prifen Sie das nach!).
Genau genommen ist ©* eine Funktion des Preises p, d.h. wir kénnen x* = z*(p) = p/2
schreiben. Auch der maximale Gewinn G* = G*(p) ist eine Funktion des Parameters p:
2 2
p p p
G* — ok *\2 RES S
(p) = pa =) =p-5-7 1

Allgemein:

Die Funktion f hénge von der (einzigen) Variablen z und einem Parameter p ab. Natiirlich
kann man p selbst als Variable betrachten und deshalb schreiben wir einfach f(x,p). In
dieser Schreibweise ist ersichtlich, dass uns fiir die Untersuchung von f alle Moglichkeiten
der Differentialrechnung fiir Funktionen in zwei Verénderlichen zur Verfiigung stehen.

Nun soll f bzgl. £ maximiert (bzw. minimiert) werden und im Allgemeinen wird der Wert
x*, der f maximiert von p abhéngen. Wir bezeichnen das durch z* = z*(p).

Setzen wir x*(p) in f(z,p) ein, so erhalten wir die so gemannte Optimalwertfunktion

f(p) = f(z*(p),p)

Was geschieht mit dieser Funktion, wenn sich der Parameter p &ndert? Mit der Kettenregel
folgt:

d

ey do
d—pf(p) = d—pf(x (p),p)

— Ll @) S )0

= fu(2"(p),p) g + fo(z*(p), p)

Falls f nun ein (lokales) Extrema in einem inneren Punkt z*(p) im Definitionsbereich der
Variablen z hat, so gilt sicher f,(z*(p),p) = 0 und es folgt

d%f*@) = L= ().p)
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Beispiel 5.2 Warum ,, Finhiillendensatz,, ?

Fiir feste Stiickzahlen x betrachten wir die Funktionen G(x,p) = px — x®. Die Graphen
dieser Funktionen (fir jede Wahl von x) in der p-G-Ebene sind dann Geraden.

xr Gerade

1 Glx=1Lp =p-—1
2 Gx=2,p)=2p—14
3 Gx=3,p)=3p—9
4 G(r=4,p)=4p— 16

Zeichnen wir einige dieser Geraden (die Skizzen enthalten auch Geraden fir negative
Werte von x, die keine dkonomische Bedeutung haben), so entsteht das folgende Bild:

200

100

\ /4
\
N
N 4/
N\ 2/

30 -20 S A 20 30
AR~

e

o0

XX

)

-100

Man erkennt am Bild, dass alle diese Geraden von einem neuen Funktionsgraphen ein-
gehiillt werden. Dieser Graph gehirt zur Optimalwertfunktion G*(p) = p?/4. Das kann
man wie folgt einsehen:
1. Fiir alle x und alle p gilt natiirlich
G(z,p) < G*(p)
d.h. keine der Geraden wird jemals oberhalb des Graphen von G*(p) liegen.

2. Fiir jeden Preis p muss es weiterhin mindestens einen Wert x* geben, so dass

G(z%,p) = G(p)
gilt. Das ist natiirlich der Wert z* = z*(p), der das Maximierungsproblem fir den
gegebenen Preis p [0st.

3. Der Graph von G(z*,p) wird dann den von G*(p) gerade im Punkt (z*,G(z*,p)) =
(x*,G*(p)) bertihren. Beide Graphen haben somit auch die selbe Tangente in diesem
Punkt.
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Diese Regel kann direkt verallgemeinert werden.

Satz 4 Sei f(x,p) eine (stetig differenzierbare) Funktion fir x = (xy,...,x,) (n Varia-
blen) und p = (p1,...,pm) (m Parameter). Weiterhin seien wieder

e x*(p) die Losung des Maximierungsproblems

e f*(p) = f(x*(p),p) die Optimalwertfunktion.

Dann gilt fiir allei =1,...,n:

af* _of
Op; (p) B Ip;

(x*(p), p)

Beispiel 5.3 Wir betrachten die Gewinnfunktion einer Firma

G(K, A;pr,pa,p3) = pr- KAV —py K —p3- A

wobei K und A Kapital- bzw. Arbeitsinput, p1 der Stiickpreis des produzierten Gutes und
po und ps die Preise fiir Kapital und Arbeit sind. Was besagt der Finhiillendensatz, wenn
Sie G beziiglich K und A maximieren?

Losungsskizze:

e Optimaler Kapital- und Arbeitseinsatz:

K* = K*(p1,p2,p3) und A" = A%(p1,p2,p3)

Optimalwertfunktion.:

G* = G(K*7A*>plap27p3) = G*(p17p2:p3)

e Finhiillendensatz beziiglich py:
oG*
apl (p17p27p3) = (K*)3/4 (A*)1/4
o Finhiillendensatz beziiglich po:
oG*
= _K*
s (p1, P2, P3)

Erhoht sich der Preis po um 1 schrumpft der Gewinn um etwa K*.

Einhiillendensatz beziiglich ps:

o0G*
Ops

*

(p17p2;p3) = —A

Erhoht sich der Preis ps um 1 schrumpft der Gewinn um etwa A*.
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6 Deutung des Lagrange-Multiplikators

Wir betrachten wieder das Problem

Zielfunktion  :y = f(z1,x2)
Nebenbedingung  : g(x1,22) = ¢

in leicht abgewandelter Form. Dabei bringen wir die additive Konstante in der Funktion
¢ auf die rechte Seite. Wir wollen untersuchen was passiert, wenn wir die Konstante ¢
andern.

Die Losung dieses Problems (27, x3) und auch der zugehorige Lagrange-Multiplikator wer-
den im Allgemeinen von ¢ abhéngen. Es gilt also

(z1,23) = (#1(c),25(c)) und A = A(c)
und die Optimalwertfunktion ist

fr(e) = [flzi(e), x5(c))

Satz 5 Der Lagrange-Multiplikator ist die Rate, mit der sich der optimale Wert der Ziel-
funktion beziiglich der Anderung von c in der Nebenbedingung dndert.

Beweis:

Mit der Kettenregel und unter Ausnutzung der Zusammenhénge von Zielfunktion und
Nebenbedingung in Optimalpunkten folgt:

T = faleie) Gt st ) G
= A Gu (7], 73) d;j + A g (2, 23) %
d x* 1;*
= A%
C
= )\% —

Ist nun insbesondere de eine kleine Anderung von ¢, dann gilt:

Af*(e,de) = f*(c+dc)— f*(c) = df*(c,dc) = Nc) de
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Beispiel 6.1 Wir untersuchen die Funktion u(cy,cy) = 51n(ey +3) +1n(cg + 1) unter der
Nebenbedingung ¢(cq,co) = 2¢1 + co — I = 0. Insbesondere wollen wir den Einfluss von I
auf die optimale Lisung besser verstehen.

Zundchst losen wir das Problem mit Hilfe der Methode von Lagrange:
e Lagrange-Funktion
F(c1,e0,A) = 5In(e1 +3)+In(ca +1) — A(2¢1 + o — 1)

o Partielle Ableitungen der Lagrange-Funktion

5t
F., = —2A
c1+3
1
F., = —A
Co + 1
F)\ = —(261 + Cco — I)
o Lisen der drei Gleichungen
I 0= o 2
c1 + 3
1
7 0= - A
Cy + 1

IIT 0 = 2c;+cp—1

Gleichung II in I ergibt co = % (Gleichung IV). Setzen wir das in III ein, folgt
0 = 2¢1 4+ ¢y — I oder

5 1
=) =—]——.
€y (1) 12 12
Mit 1V folgt sofort:
1 1
o= cy(l)==1+=.
Cy (1) 6 + 6
Mt IT konnen wir auch A durch I ausdriicken:
6
A= ANI)= ——.
(1) I+7

e Die Optimalwertfunktion, die uns den mazimalen Nutzen im Falle des optimalen
Konsumplans ausgibt, ist dann ebenfalls eine Funktion von I:

5 35 1 7
= 5In|—1+ — In|l =1+ -
5n(12 —|—12)—|—n(6 —|—6>

o Tatsdchlich gilt (Priifen Sie das!):
du*(1) 6
dI I+7

und wie immer:

Au*(I,dl) = v (I +dI)—u"(I)

Q
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7 Testfragen zur Vorlesung

Hinweis: Bevor Sie die Ubungsaufgaben lésen, sollten Sie den Stoff der Vorlesung verstan-
den haben. Insbesondere sollten Sie die folgenden einfachen Fragen beantworten kénnen.
Diese Fragen werden im Allgemeinen nicht in den Ubungen besprochen, kénnen aber
priifungsrelevant sein.

1. Nennen Sie die allgemeine Formulierung eines Extremwertproblems mit Nebenbe-
dingung.

2. Erlautern Sie die Reduktionsmethode. Ist diese Methode immer anwendbar? Be-
griindung!

3. Welche Eigenschaft haben die Kurve ¢(z1,x2) = 0 und f(z,y) = f(27,23) in einem
Optimalpunkt M = (z7,23) ?

4. Was ist die Lagrange-Funktion und der Lagrange-Multiplikator?

5. Beschreiben Sie die Lagrange-Methode zur Bestimmung von lokalen Extrempunkten
unter Nebenbedingung.

6. Was besagt der Einhiillendensatz?

7. Welche Bedeutung hat der Lagrange-Multiplikator?
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8 Ubungsaufgaben

8.1 Niveau 1 und 2

Gegeben sei eine Produktionsfunktion P = P(K, A) vom Cobb-Douglas-Typ und eine
Kostenfunktion C' = C(K, A):

P(K,A) = 10 K'/* A%4 C(K,A) = 2K + 6A.
1. Fir welche Produktionsfaktorkombination (K, A) werden die Kosten C'(K, A) mi-
nimal, falls 80 Einheiten produziert werden sollen?

2. Es soll eine moglichst grosse Menge P produziert werden, wobei fiir die Gesamtko-
sten C'(K, A) genau Fr. 1°000.- zur Verfiigung stehen.

8.2 Niveau 2

1. Gegeben sei das Optimierungsproblem f(z,y) = xy? — 3e¥, x > 0 unter der Neben-
bedingung ¢(x,y) =y — In(z) = 0.
(a) Ermitteln Sie mit Hilfe der Lagrange-Methode die moglichen Extremalstellen.

(b) Klédren Sie mit Hilfe der Reduktionsmethode, ob ein lokales Maximum vorliegt.

2. Bestimmen Sie die globalen Extremwerte der Funktion

flay) = o* =y
auf der Kreisscheibe B = {(z,y) | #* + y* < 1}. Kénnen Sie sich den Graphen von
f vorstellen und die Losungen erraten?

Hinweis: Innere Punkte von B und Randpunkte getrennt untersuchen.

8.3 Niveau 3

Ein Konsument mit der Nutzenfunktion u(ci,cs) = ¢ - ¢ muss die Budgetrestriktion

pic1 + pace = I, p1,pe > 0 einhalten. Sei (¢}, ¢3) ein optimaler Konsumplan, wobei

* *

;= c(a,b,pr,p2,I)  und ¢ = c(a,b,p1,p2, I).
1. Zeigen Sie die Giiltigkeit der notwendigen Bedingung

2 _nm

31 D2
2. Bestimmen Sie ¢} und c3.

3. Bestimmen Sie die Optimalwertfunktion u*.

du*
dl -

4. Bestimmen Sie
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Lésungen der Ubungsaufgaben

Niveau 1

1. Hinweis: Zielfunktion ist C'(K,A) = 2K + 6A und Nebenbedingung P(K,A) =
L0KY/4A3* =80

K=A=38, Cy, =064

2. Hinweis: Zielfunktion ist P(K, A) = 10K'/4A%* und Nebenbedingung C(K, A) =
2K 4+ 6A = 1000

K =A=125 P, = 1250

Niveau 2

1. Hinweis: Es gilt y =lnx < eV ==z

Lokales Maximum bei (¢7®, —3) und lokales Minimum bei (e, 1)

2. (Losungsskizze) Im Inneren der Kreisscheibe muss fiir ein (lokales) Extema f,(x,y) =
20 = 0 und f,(z,y) = —2y = 0 gelten und das ist nur fiir den Punkt (0,0) erfiillt.
(Mittels der zweiten partiellen Ableitungen kénnte man zeigen, dass dieser Punkt
kein Extremwert von f ist. Das ist aber nicht notig.)

Auf dem Rand haben wir ein Extremwertproblem (Zielfunktion ist f) mit Neben-
bedingung ¢(z,y) = 2* +y*> — 1 = 0. Mit der Lagrange-Funktion F(z,y,\) =
2?2 —y* — Ma? +y? — 1) erhiilt man neben der Kreisgleichung die beiden notwendi-
gen Bedingungen F, = 2z — 22\ = 0 und F,, = —2y — 2y = 0. Losungspunkte sind
P, =(0,1), P, = (0,-1), P; = (1,0) und P; = (—1,0), wobei P; und P, Minima
sind und P; und P; Maxima.

Kandidat (z,y) | f(z,y)
(0,0)
(0,1)
(07 _1)
(1,0)
(_170)

Niveau 3



