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1 Doppelintegrale

1.1 Herleitung

Wir wollen das Doppelintegral in anschaulicher Weise anhand eines geometrischen Pro-
blems einführen. Wir werden erkennen, dass das Doppelintegral, analog zum einfachen
(bestimmten) Integral, (Raum)Inhalte von Gebieten zwischen der Grundebene und dem
Graphen einer Funktion z = f(x, y) bestimmt.

Sei z = f(x, y) eine auf A definierte und stetige Funktion mit f(x, y) ≥ 0. Wir betrachten
den im folgenden Bild dargestellten, zylindrischen Körper.

Graph von f

x

y

z

A

• ,,Boden” = A

• ,,Deckel” = Graph von f über A

• ,,Mantel” = auf dem Rand von A errichtete senkrechte Strecken
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Wir wollen das Volumen V dieses zylindrischen Körpers bestimmen.

Vorgehen

1. Der Bereich A wird in n Teilbereiche A1, A2, . . . , An mit den zugehörigen Flächen-
inhalten ∆A1,∆A2, . . . ,∆An zerlegt. Ausserdem wählen wir in jedem Teilbereich
Ak irgendeinen Punkt (xk, yk) ∈ Ak. Der zylindrische Körper zerfällte dann in n
Röhren.

2. Wir betrachten nun (irgend)eine dieser Röhren, z.B. die k-te Röhre.

xk

yk

zk

Graph von f

Ak

x

y

z

• Ihr Boden ist eben mit dem Flächeninhalt ∆Ak.

• Ihr Deckel ist Teil des Graphen von f , also gekrümmt.

• Das Volumen Vk dieser Röhre ist ungefähr so gross wie

Vk ≈ f(xk, yk) ·∆Ak = zk ·∆Ak

• Mit den übrigen Röhren verfahren wir in gleicher Art und erhalten:

V =
n∑

k=1

Vk ≈
n∑

k=1

f(xk, yk) ·∆Ak

• Dieser Näherungswert kann verbessert werden, wenn die Anzahl der Röhren
erhöht wird. Im Grenzfall n → ∞ strebt die Fläche jedes Teilbereichs Ak

gegen 0.
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Definition 1.1 Der Grenzwert

lim
n→∞

∆Ak→0

n∑
k=1

f(xk, yk) ·∆Ak

heisst (falls er existiert) Doppelintegral und wird bezeichnet durch∫
A

∫
f(x, y) dA.

1.2 Eigenschaften des Doppelintegrals

Volumen Ist f(x, y) ≥ 0 für alle (x, y) ∈ A, dann stellt∫
A

∫
f(x, y) dA

das Volumen des senkrecht auf der Grundebene stehenden Zylinderabschnittes mit Grund-
fläche A und Deckfläche z = f(x, y) dar.

Flächeninhalt Mit f(x, y) = 1 ist ∫
A

∫
dA

der Flächeninhalt von A. (Oder: Das Volumen des senkrecht auf der Grundebene stehen-
den Zylinderabschnittes mit Grundfläche A und Deckfläche z = 1)

Linearität ∫
A

∫
(a · f + b · g) dA = a ·

∫
A

∫
f dA + b ·

∫
A

∫
g dA

Monotonie Falls für die beiden Funktionen f und g die Relation f(x, y) ≤ g(x, y) für
alle (x, y) ∈ A gilt, so gilt auch∫

A

∫
f dA ≤

∫
A

∫
g dA

Additivität Falls sich A durch eine (stückweise reguläre) Kurve in zwei Teilbereiche
A1 und A2 zerlegen lässt, gilt

∫
A

∫
f dA =

∫
A1

∫
f dA +

∫
A2

∫
f dA
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1.3 Berechnung eines Doppelintegrals für Rechtecke

In diesem Abschnitt wollen wir zeigen, dass das Doppelintegral∫
A

∫
f(x, y) dA.

durch zwei nacheinander auszuführende, gewöhnliche Integrationen berechnet werden
kann, falls der Integrationsbereich

A = [a, b]× [c, d] = { (x, y) ∈ R2 | a ≤ x ≤ b und c ≤ y ≤ d }

ein Rechteck ist. Das Problem der Berechnung des Doppelintegrals wird durch den fol-
genden Satz gelöst, bzw. auf zwei Integrationen bzgl. einer Variablen zurückgeführt.

Satz 1 (Satz von Fubini) Sei A = [a, b] × [c, d] ein Rechteck und z = f(x, y) stetig
auf A. Dann ist die Integralfunktion

F (x) :=

∫ d

c

f(x, y) dy =

∫ d

c

f(x, t) dt

stetig auf [a, b] und

∫
A

∫
f(x, y) dA =

∫ b

a

F (x) dx =

∫ b

a

(∫ d

c

f(x, y) dy

)
dx =

∫ d

c

(∫ b

a

f(x, y) dx

)
dy

Beispiel 1.1 Sei f(x, y) = x+ y2 und a = 1, b = 2, c = 0 und d = 3 also

A = { (x, y) | 1 ≤ x ≤ 2 und 0 ≤ y ≤ 3 }.

∫
A

∫
x+ y2 dA =

∫ 2

1

(∫ 3

0

(
x+ y2

)
dy

)
dx

=

∫ 2

1

( [
xy +

1

3
y3

]y=3

y=0

)
dx

=

∫ 2

1

(3x+ 9 ) dx =
27

2
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1.4 Berechnung eines Doppelintegrals für Normalbereiche

In diesem Abschnitt wollen wir zeigen, dass das Doppelintegral∫
A

∫
f(x, y) dA.

auch für allgemeinere Bereiche A durch zwei nacheinander auszuführende, gewöhnliche
Integrationen berechnet werden kann. Dabei soll der Integrationsbereich A stets ein so
genannter Normalbereich sein.

Definition 1.2 Wir nennen eine Teilmenge AI ∈ R2 einen Normalbereich vom Typ I,
wenn es a, b ∈ R und stetig differenzierbare Funktionen

u : [a, b] → R
o : [a, b] → R

mit u(x) ≤ o(x) gibt, so dass

AI = { (x, y) | a ≤ x ≤ b und u(x) ≤ y ≤ o(x) }

y

x

y = o(x)

y = u(x)

a b

AI

Satz 2 (Integration über Normalbereiche vom Typ I) Für stetige Funktionen f
auf einem Normalbereich AI vom Typ I gilt∫

AI

∫
f(x, y) dA =

∫ b

a

(∫ o(x)

u(x)

f(x, y) dy

)
dx
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Wir nennen eine Teilmenge AII ∈ R2 einen Normalbereich vom Typ II, wenn es c, d ∈ R
und stetig differenzierbare Funktionen

l : [c, d] → R
r : [c, d] → R

mit l(x) ≤ r(x) gibt, so dass

AII = { (x, y) | l(y) ≤ x ≤ r(y) und c ≤ y ≤ d }

x

x = l(y) x = r(y)

AII

y

d

c

Satz 3 (Integration über Normalbereiche vom Typ II) Für stetige Funktionen f
auf einem Normalbereich AII vom Typ II gilt∫

AII

∫
f(x, y) dA =

∫ d

c

(∫ r(y)

l(y)

f(x, y) dx

)
dy
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Beispiel 1.2 Sei a = −1, b = 1, u(x) = 0 und o(x) = −x2 + 4 und A = AI der
Normalbereich vom Typ I

A = { (x, y) | − 1 ≤ x ≤ 1 und 0 ≤ y ≤ −x2 + 4 }

x
−2 2−1 1

y
4

Der Flächeninhalt von A ist∫
A

∫
dA =

∫ 1

−1

(∫ −x2+4

0

dy

)
dx

=

∫ 1

−1

(
[ y ]y=−x2+4

y=0

)
dx

=

∫ 1

−1

(
−x2 + 4

)
dx =

22

3
≈ 7.3333

Nach der 1. Integration erhalten wir die wohlbekannte Formel zur Flächenberechnung unter
Graphen von Funktionen in einer Veränderlichen.

Weiterhin gilt:∫
A

∫
(x+ y) dA =

∫ 1

−1

(∫ −x2+4

0

(x+ y) dy

)
dx

=

∫ 1

−1

( [
xy +

1

2
y2

]y=−x2+4

y=0

)
dx

=

∫ 1

−1

(
x(−x2 + 4) +

1

2
(−x2 + 4)2 − (0 + 0)

)
dx

=

∫ 1

−1

(
1

2
x4 − x3 − 4x2 + 4x+ 8

)
dx

=

[
1

10
x5 − 1

4
x4 − 4

3
x3 + 2x2 + 8x

]1

−1

=
1

10
− 1

4
− 4

3
+ 2 + 8−

(
− 1

10
− 1

4
+

4

3
+ 2− 8

)
=

406

30
≈ 13.5333
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2 Die Leibniz-Formel

2.1 Endliche Intervalle

Sei z = f(x, y) eine Funktion und

F (x) =

∫ d

c

f(x, y) dy =

∫ d

c

f(x, t) dt.

Manchmal ist es nötig, Änderungen ∆F (x,∆x) dieser Funktion zu untersuchen. Hilfreich
ist hier natürlich die Ableitung F ′(x). Sicher gilt

F ′(x) = lim
∆x→0

F (x+ ∆x)− F (x)

∆x

= lim
∆x→0

∫ d

c

f(x+ ∆x, t)− f(x, t)

∆x
dt

=

∫ d

c

(
lim

∆x→0

f(x+ ∆x, t)− f(x, t)

∆x

)
dt

=

∫ d

c

fx(x, t) dt

Im Allgemeineren Fall könnten auch die beiden Integrationsgrenzen Funktionen von x
sein, also c = c(x) und d = d(x). Auch hier könnten wir daran interessiert sein, den Effekt
der Variablenänderung ∆x auf die Änderung der Funktion

F (x) =

∫ d(x)

c(x)

f(x, y) dy =

∫ d(x)

c(x)

f(x, t) dt

zu untersuchen. Die Bestimmung der Ableitung F ′ gestaltet sich aber hier etwas kompli-
zierter, denn auch die Integrationsgrenzen sind abhängig von x.

Satz 4 (Leibniz-Formel) Seien

• f und fx stetige Funktionen auf dem Rechteck [a, b]× [c, d],

• c = c(x) und d = d(x) differenzierbare Funktionen c, d : [a, b]→ [c, d] und

• F (x) =

∫ d(x)

c(x)

f(x, t) dt.

Dann gilt

F ′(x) = f(x, d(x)) · d′(x)− f(x, c(x)) · c′(x) +

∫ d(x)

c(x)

fx(x, t) dt.

Beispiel 2.1 Sei F (x) =

∫ x2

x

1

2
xt2︸︷︷︸

=f(x,t)

dt. Dann gilt:

F ′(x) =
1

2
x(x2)2 · 2x− 1

2
x(x)2 · 1 +

∫ x2

x

1

2
t2 dt =

7

6
x6 − 2

3
x3.
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2.2 Unendliche Intervalle

Seien f(x, t) und fx(x, t) stetige Funktionen für alle x ∈ [a, b] und alle t ≥ c. Weiterhin
wollen wir annehmen, dass das Integral

∫∞
c

f(x, t) dt für jedes x ∈ [a, b] konvergiert, also
endlich ist.

Weiterhin existiere eine Funktion p(t) mit
∫∞
c

p(t) dt < ∞ und |fx(x, t)| ≤ p(t) für alle
t ≥ c und alle x ∈ [a, b]. Dann gilt

d

dx

∫ ∞
c

f(x, t) dt =

∫ ∞
c

fx(x, t) dt.

Beispiel 2.2 Sei Γ(x) =

∫ ∞
0

e−t · tx−1 dt.

Tatsächlich konvergiert das Integral für jedes x > 0 und auch die Funktion fx hat die oben
geforderten Eigenschaften. Somit folgt:

d

dx
Γ(x) =

∫ ∞
0

e−t · tx−1 · ln t dt.
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3 Testfragen zur Vorlesung

Hinweis: Bevor Sie die Übungsaufgaben lösen, sollten Sie den Stoff der Vorlesung verstan-
den haben. Insbesondere sollten Sie die folgenden einfachen Fragen beantworten können.
Diese Fragen werden im Allgemeinen nicht in den Übungen besprochen, können aber
prüfungsrelevant sein.

1. Wie könnte man vorgehen, um das Volumen eines Bereichs näherungsweise zu be-
rechnen, der vom Graphen einer Funktion z = f(x, y) und eines Teils der Grunde-
bene eingeschlossen wird?

2. Was ist ein Normalbereich?

3. Wie werden Doppelintegrale über Normalbereichen berechnet?

4. Was besagt die Leibniz-Formel?
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4 Übungsaufgaben

4.1 Niveau 1

Sei f(x, y) = x+ 2y und A = { (x, y) | 0 ≤ x ≤ 1 und 2 ≤ y ≤ 3 }.

1. Skizzieren Sie die Menge A.

2. Berechnen Sie ∫
A

∫
dA.

3. Berechnen Sie ∫
A

∫
f(x, y) dA.

4.2 Niveau 2

Sei f(x, y) = x · cos(2y) und A = { (x, y) | 0 ≤ x ≤ 1 und 0 ≤ y ≤ π/4 }.

1. Skizzieren Sie die Menge A.

2. Berechnen Sie ∫
A

∫
dA.

3. Berechnen Sie ∫
A

∫
f(x, y) dA.

4.3 Niveau 3

Sei f(x, y) = x · y und A = { (x, y) | 0 ≤ x ≤ 1 und x ≤ y ≤
√
x }.

1. Skizzieren Sie die Menge A.

2. Berechnen Sie ∫
A

∫
dA.

3. Berechnen Sie ∫
A

∫
f(x, y) dA.

4. Bestimmen Sie

d

dx

∫ √x
x

f(x, y) dy



13

Lösungen der Übungsaufgaben

Niveau 1

Fläche 1 und Volumen:∫
A

∫
f(x, y) dA =

∫ 3

2

(∫ 1

0

(x+ 2y)dx

)
dy

=

∫ 3

2

([
1

2
x2 + 2xy

]x=1

x=0

)
dy

=

∫ 3

2

(
1

2
+ 2y

)
dy

= 5.5

Niveau 2

Fläche π/4 und Volumen 1/4

Niveau 3

Fläche 1/6 und Volumen 1/24


