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1 Einführung

Beobachtet man bestimmte Zahlenfolgen die z.B. das Wachstum irgendwelcher ökono-
mischer Grössen im Laufe der Zeit beschreiben (Zeitreihen), so erkennt man manchmal
bestimmte rückbezogene (rekursive) Bildungsgesetze, die jedes Glied der Folge als Funk-
tion seines (seiner) Vorgängers (Vorgänger) darstellt. Ein Beispiel ist die Zahlenfolge

y0 y1 y2 y3 y4 y5 . . .
0 1 3 7 15 31 . . .

Man kann erkennen, dass man jedes Glied dieser Zahlenfolge berechnen kann, indem man
den direkten Vorgänger nimmt, diesen verdoppelt und dann 1 addiert, also z.B.

1 = y1 = 2 · y0 + 1 = 2 · 0 + 1

3 = y2 = 2 · y1 + 1 = 2 · 1 + 1

7 = y3 = 2 · y2 + 1 = 2 · 3 + 1

Wir könnten also das (rekursive) Bildungsgesetz dieser Zahlenfolge durch zwei Angaben
darstellen.

1. Anfangswert: y0 = 0 und

2. Differenzengleichung: für alle k ≥ 1 gilt: yk = 2 · yk−1 + 1.

Durch diese beiden Festlegungen ist die gesamte Zahlenfolge eindeutig bestimmt. Ändert
man mindestens eine der beiden Angaben, ändert sich (im allgemeinen) auch die Zahlen-
folge.

Ein ganz wesentliches Problem beim Umgang mit Differenzengleichungen wird die Suche
nach Lösungen sein. Dazu versuchen wir ein (direktes, nicht rekursives) Rezept zur Kon-
struktion der Zahlenfolge zu finden. Für unser obiges Beispiel könnte eine solche Lösung
durch yk = 2k − 1 gegeben sein. Einen ganz wesentlichen Vorteil dieser direkten Darstel-
lung der Zahlenfolge gegenüber der Differenzengleichung können Sie erkennen, wenn Sie
z.B. y50 berechnen wollen. Welchen Rechenweg sollte man einschlagen?
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1.1 Vermögenswachstum

gegeben:

• Anfangsvermögen V0

• Zins p

• Konsumausgaben (pro Jahr) C

gesucht: Vermögen Vk im Jahr k für alle k = 1, 2, . . .

Lösung 1 (rekursiv, Differenzengleichung):

Vk+1 = (1 + p) Vk − C

Lösung 2 (direkt):

Vk = (1 + p)k
(
V0 −

C

p

)
+
C

p

Beweis: Wir wollen durch eine Probe beweisen, dass die Zahlenfolge tatsächlich
eine Lösung der Differenzengleichung ist. Das ist nicht offensichtlich. Es ist
schwierig oder sogar unmöglich die Lösung einer Differenzengleichung zu fin-
den, aber eine angebliche Lösung durch eine Probe zu überprüfen ist immer
möglich! Aus

Vk = (1 + p)k
(
V0 −

C

p

)
+
C

p

folgt sofort (durch Erhöhung des Indizes k um 1)

Vk+1 = (1 + p)k+1

(
V0 −

C

p

)
+
C

p
.

Diese beiden Darstellungen für Vk und Vk+1 setzen wir dann in die Differen-
zengleichung ein und prüfen, ob die entstandenen Gleichung wahr ist:

Vk+1 = (1 + p) Vk − C

(1 + p)k+1

(
V0 −

C

p

)
+
C

p
? =? (1 + p)

(
(1 + p)k

(
V0 −

C

p

)
+
C

p

)
− C

Tatsächlich ist diese Relation für alle k ≥ 0 wahr. Prüfen Sie das! 2
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1.2 Unbeschränktes Bevölkerungswachstum

gegeben:

• Anfangsbevölkerung N0

• Geburtenrate α

• Sterberate β

gesucht: Anzahl Individuen Nk im Jahr k für alle k = 1, 2, . . .

Lösung (rekursiv, Differenzengleichung):

Nk = Nk−1 − Todesfälle + Geburten

≈ Nk−1 + αNk−1 − βNk−1

= Nk−1 + (α− β)︸ ︷︷ ︸
=:r

Nk−1 = (1 + r)Nk−1

Die reelle Zahl r = α− β kann hier als Wachstumsrate angesehen werden und sicher gilt
−1 ≤ r ≤ 1. Die Lösung ist leicht durch Abwärtszählen zu finden:

Nk = (1 + r)Nk−1 = (1 + r)(1 + r)Nk−2 = . . . = (1 + r)kN0

1.3 Beschränktes (Bevölkerungs)wachstum

Modellansatz:

Wir starten mit der Modellgleichung für das unbeschränkte Bevölkerungswachstum Nk =
Nk−1 + rNk−1, ersetzten aber die konstante Wachstums r durch eine Funktion R =
R(Nk−1)

Nk = Nk−1 +R(Nk−1) Nk−1

Forderungen an die Funktion R = R(Nk−1): (?)

1. mit steigendem Nk−1 (Überbevölkerung) soll R(Nk−1) abnehmen

2. ist eine Obergrenze K erreicht (d.h. gilt Nk−1 = K), so soll R(Nk−1) = 0 gelten
(Bevölkerung im Gleichgewicht)

3. für Nk−1 → 0 (Überbevölkerungseffekte nehmen ab) nähert sich die Wachstumsrate
R(Nk−1) einem festen Wert r, der unbeschränkten Wachstumsrate an

lim
Nk−1→0

R(Nk−1) = R(0) = r



5

Die logistische Gleichung:

Ein einfaches Modell

R(Nk−1) = − r

K
Nk−1 + r = r

(
1− 1

K
Nk−1

)
führt zur so genannten diskreten logistischen Differenzengleichung

Nk = Nk−1 + r Nk−1

(
1− 1

K
Nk−1

)

Bemerkung 1.1 Wir wollen kurz untersuchen, ob die Funktion R die obigen drei Eigen-
schaften hat. Der Einfachheit halber schreiben wir x statt Nk−1.

R(Nk−1︸ ︷︷ ︸
x

) = r

1− 1

K
Nk−1︸ ︷︷ ︸

x

 = r
(

1− x

K

)

1. R ist monoton fallend (in x)

2. Falls x = K ist, so folgt R(K) = 0

3. limx→0 R(0) = r

Die diskrete logistische Differenzengleichung vereinfacht sich weiter, wenn wir die Bevölke-
rung nicht absolut sondern relativ zur Obergrenze K darstellen und mit dem konstanten

Faktor
r

1 + r
multiplizieren. Dazu setzen wir

Mk =
r

1 + r

Nk

K
bzw. Nk =

1 + r

r
K Mk

für alle k.

Das führt dann zur so genannten relativen diskreten logistischen Differenzengleichung

Mk = (1 + r) Mk−1 (1−Mk−1)

Sei M0 ein (relativer) Startwert (0 ≤ M0 ≤ 1), d.h. wir starten mit M0 · 100% der
Maximalbevölkerung.

Wir wollen die Zahlenfolgen für verschiedene Wahlen der Grösse r untersuchen und
tatsächlich können diese sehr unterschiedliche Eigenschaften haben. Vergessen Sie dabei
bitte nicht, dass diese Folgen das (relative) Wachstum einer Population in einem Ge-
biet mit beschränkten Resourcen beschreiben (möchten). Deshalb kann man jede dieser
Zahlenfolgen als eine Prognose für die Bevölkerungsentwicklung (in Abhängigkeit von r)
ansehen.
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1. −1 < r < 0

Ist die (unbeschränkte) Wachstumsrate kleiner als 0, so sagt uns die Differenzen-
gleichung ein Aussterben der Population voraus. Testen Sie das für verschiedene
Startwerte! Das stimmt mit unserer Anschauung überein.

2. 0 < r < 2

In diesem Fall konvergiert die Zahlenfolge gegen einen eindeutig bestimmten Grenz-
wert

r

1 + r
.

Auch das scheint realistisch zu sein. Testen Sie das für verschiedene Startwerte und
untersuchen Sie auch das Verhalten in den Bereichen 0 < r < 1 und 1 < r < 2!
Fällt Ihnen etwas auf?

3. 2 < r < 2.44

Hier treten neue Effekte auf. Die Zahlenfolge springt zwischen zwei so genannten
Häufungspunkten hin und her. Also gibt es nur noch jede zweite Zeitperiode eine
ähnliche Anzahl von Individuen. Testen Sie das für verschiedene Startwerte. Auch
diese Situation könnte für verschiedene Tierarten realistisch sein.

4. r = 2.45

Hier tritt wieder eine Verzweigung auf und die Zahlenfolge springt zwischen vier
Häufungspunkten hin und her. Testen Sie das für verschiedene Startwerte. Ist das
eine realistische Vorhersage? Eventuell.

5. Wächst der Wert von r noch weiter, so verdoppelt sich die Anzahl der Verzweigungen
in immer kürzer werdenden Abständen. Für den Wert

r = 2.5699456 . . .

gibt es sogar unendlich viele.

6. Für r = 3 tritt ein neuer Effekt auf, der sogenannte Schmetterlingseffekt. Eine mini-
male Änderung des Anfangswertes kann völlig andere Endergebnisse hervorbringen.
Finden Sie ein möglichst eindrucksvolles Beispiel dieser Situation.
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2 Wichtige Begriffe

Definition 2.1 Eine Differenzengleichung gibt Gesetzmässigkeiten in der zeitlichen Ent-
wicklung einer (unbekannten) Funktion yt an:

• Die Zeit wird dabei als diskret betrachtet (t = 0, 1, 2, . . .) d.h. yt wird nur an re-
gelmässig aufeinanderfolgenden Zeitpunkten betrachtet.

Bezeichnung: k statt t

• Die Differenzengleichung verknüpft die Werte der Funktion an zwei, drei oder mehr
Zeitpunkten.

yk = f(yk−1, yk−2, yk−3, . . .)

Beispiel 2.1

yk+1 = 3 yk − 5

yk+2 + 5yk+1 − 7yk = 9

yk − k(yk−1)
3 + yk−2 = 3k

sin(yk)− k yk−1 + ln(yk−4) = 3k

2.1 Die Ordnung einer Differenzengleichungen

Definition 2.2 Eine Differenzengleichung heisst von n-ter Ordnung wenn sie die unbe-
kannte Funktion yk an (n+ 1) aufeinanderfolgenden Zeitpunkten verknüpft, d.h.

yk = f(yk−1, yk−2, . . . , yk−n)

Beispiel 2.2

1. Ordnung: yk = 3yk−1 + 8

2. Ordnung: yk = yk−1 + yk−1 · yk−2
3. Ordnung: yk = yk−1 · yk−2 · yk−3
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2.2 Linear-Nichtlinear

Definition 2.3 Eine lineare Differenzengleichung (mit konstanten Koeffizienten) ist von
der Form

yk = A yk−1 +B yk−2 + C yk−3 . . .

mit reellen Zahlen A,B,C, . . .

Beispiel 2.3

Linear: yk = yk−1 + 6yk−2

Nichtlinear: yk = yk−1 · yk−2 · yk−3

2.3 Die Lösung einer Differenzengleichung

Definition 2.4

1. Die allgemeine Lösung einer Differenzengleichung ist die Menge aller Funktionen
(Folgen), die die angegebene Gesetzmässigkeit erfüllt.

Beispiel 2.4 Allgemeine Lösung von yk+1 = 2yk sind alle Folgen yk = C ·2k mit
einer beliebigen reellen Zahl C ∈ R. Hier sind drei dieser Zahlenfolgen aufgeführt
(C = 1, 2 und −1). Alle haben die Eigenschaft, dass ein Folgenglied genau das
Doppelte des Vorgängers ist.

C y0 y1 y2 y3 y4 y5 . . .
1 1 2 4 8 16 32 . . .
2 2 4 8 16 32 64 . . .
−1 −1 −2 −4 −8 −16 −32 . . .
3

2. Die Lösung eines Anfangswertproblems (AWP) ist das Element aus der allgemeinen
Lösung, das eine (oder zwei, . . .) Anfangsbedingung(en) erfüllt d.h. das Element, das
zu einem festgelegten Zeitpunkt einen gegebenen Wert annimmt.

Beispiel 2.5 Das AWP yk+1 = 2yk, y0 = 3 hat die Lösung yk = 3 · 2k.

Im Allgemeinen ist es sehr schwer oder sogar unmöglich Lösungen für beliebige Diffe-
renzengleichungen anzugeben. Deshalb beschränken wir uns im weiteren auf die einfache
(aber interessante) Klasse von linearen Differenzengleichungen.
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3 Lineare Differenzengleichungen 1. Ordnung

3.1 Die Normalform

Die Normalform einer linearen Differenzengleichung 1. Ordnung (mit konstanten Koeffi-
zienten) ist

yk = A · yk−1 +B

mit reellen Zahlen A,B mit A 6= 0.

Satz 1 Die allgemeine Lösung ist

yk =

 Ak · y0 +B
1− Ak

1− A
A 6= 1

y0 +Bk A = 1

oder auch

yk = Ak (y0 − y∗) + y∗ mit y∗ =
B

1− A
, A 6= 1

Beweisidee (falls A 6= 1) (Summenformel für geometrische Reihen)

yk = A · yk−1 +B = A(A · yk−2 +B) +B

= A2 · yk−2 + AB +B = A2 · (A · yk−3 +B) + AB +B

= A3 · yk−3 + A2B + AB +B

= . . .

= Ak · y0 + Ak−1B + Ak−2B + . . .+ A2B + AB +B

= Ak · y0 +B

k−1∑
i=0

Ai

= Ak · y0 +B
1− Ak

1− A

= Ak · y0 +
B

1− A
− BAk

1− A
= Ak

(
y0 −

B

1− A

)
+

B

1− A
2
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3.2 Untersuchung des Lösungsverhaltens

• Fall 1: A 6= 1 und yk − y∗ = Ak(y0 − y∗)

Fall yk − y∗ yk

A > 0 yk − y∗ yk
monoton monoton

A < 0 yk − y∗ yk
alternierend oszillierend

|A| > 1 |yk − y∗| = |A|k|y0 − y∗| yk
lim |A|k = +∞ explosiv

|A| < 1 |yk − y∗| = |A|k|y0 − y∗| yk
lim |A|k = 0 gedämpft

lim yk = y∗

A

1

0

−1

gedämpft

explosiv

explosiv

oszillierend

monoton

• Fall 2: A = 1

lim
k→∞

yk = lim
k→∞

(y0 +Bk)

= y0 +B lim
k→∞

k

=

{
+∞ B > 0
−∞ B < 0
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4 Lineare Differenzengleichungen 2. Ordnung

Definition 4.1 Eine Differenzengleichung der Gestalt

yk+2 + a1 yk+1 + a2 yk = 0

heisst homogene, eine solche der Gestalt

yk+2 + a1 yk+1 + a2 yk = r

heisst inhomogene lineare Differenzengleichung 2. Ordnung (mit konstanten Koeffizien-
ten). Die reelle Zahl r heisst Störglied.

4.1 Lösung der homogenen Gleichung

yk+2 + a1 yk+1 + a2 yk = 0

Ansatz: yk = mk, m 6= 0

Einsetzen:

0 = yk+2 + a1 yk+1 + a2 yk

= mk+2 + a1 m
k+1 + a2 m

k

= m2 + a1 m+ a2
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Lösung der charakteristischen Gleichung:

m1,2 =
−a1 ±

√
a21 − 4a2

2

Nun gibt es drei Möglichkeiten:

1. a21 − 4a2 > 0

Die charakteristische Gleichung hat zwei verschiedene reelle Lösungen m1 und m2.

y
(1)
k = mk

1 und y
(2)
k = mk

2

sind zwei linear unabhängige Lösungen der homogenen Differenzengleichung.

Allgemeine Lösung:

yk = c1 m
k
1 + c2 m

k
2

2. a21 − 4a2 = 0

Die charakteristische Gleichung hat eine reelle Lösung m1 = m2 = m = −a1
2

und

y
(1)
k = mk

ist eine Lösung der homogenen Differenzengleichung. Aber auch (Beweis durch Pro-

be) y
(2)
k = k mk ist eine Lösung der homogenen Differenzengleichung.

Allgemeine Lösung:

yk = c1 m
k + c2 k m

k = (c1 + c2 k) mk

3. a21 − 4a2 < 0 Die charakteristische Gleichung hat keine reelle Lösungen.

Allgemeine Lösung:

yk = Rk(c1 sin(kφ) + c2 cos(kφ))

wobei

• R =
√
a2

• cos(φ) = − a1
2
√
a2
, 0 ≤ φ < π
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4.2 Lösung der inhomogenen Gleichung

Superpositionsprinzip Die allgemeine Lösung der inhomogenen Gleichung

yk+2 + a1 yk+1 + a2 yk = r

ist gleich der Summe aus der allgemeinen Lösung der zugehörigen homogenen Gleichung
yk+2 + a1 yk+1 + a2 yk = 0 und einer speziellen Lösung der inhomogenen Gleichung:

yk = c1 y
(1)
k + c2 y

(2)
k + y∗k

• y(1)k , y
(2)
k zwei linear unabhängige Lösungen der homogenen Gleichung

• y∗k eine Lösung der inhomogenen Gleichung

Bestimmung einer (speziellen) Lösung y∗k der inhomogenen Gleichung

yk+2 + a1 yk+1 + a2 yk = r

1. 1 + a1 + a2 6= 0

Spezielle Lösung:

y∗k =
r

1 + a1 + a2
= konstant

2. 1 + a1 + a2 = 0, a1 6= −2

Spezielle Lösung:

y∗k =
r

2 + a1
· k

3. 1 + a1 + a2 = 0, a1 = −2

Spezielle Lösung:

y∗k =
r

2
· k2
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Aufgabe 4.1 Lösen Sie die folgenden Differenzengleichungen:

1. yk + 2yk−1 − 15yk−2 = 4 mit y0 = 0, y1 = 2

2. yk+2 + 10yk+1 + 25yk = 10 mit y0 = 1, y1 = 4

3. yk+2 − yk+1 + yk = 2 allgemeine Lösung

Lösungen

a) yk =
1

2
· 3k − 1

6
· (−5)k − 1

3

b) yk =

(
13

18
− 22

15
k

)
· (−5)k +

5

18

c) yk = c1 · sin(k · π
3

) + c2 · cos(k · π
3

) + 2
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5 *Systeme von linearen Differenzengleichungen*

Wir hatten bereist gesehen, dass ökonomische Wachstumsprobeme durch Systeme von
Differenzengleichungen beschrieben werden können. Sicher ist es vernünftiger zu glauben,
dass die zeitliche Entwicklung eines ökonomischen Parameters nicht nur von der Grösse
dieses Parameters alleine abhängt.

Definition 5.1 Seien y1 = y1,t, . . . , yn = yn,t Funktionen der Zeit. Dann ist ein lineares
System von Differenzengleichungen gegeben durch

y1,t+1 = a11(t)y1,t + . . .+ a1n(t)yn,t + b1(t)
...

...

yn,t+1 = an1(t)y1,t + . . .+ ann(t)yn,t + bn(t)

Dabei sind alle aij und bi Funktionen der Zeit. Wir definieren folgende Matrizen

yt =

 y1,t
...
yn,t

, A(t) =

 a11(t) . . . a1n(t)
...

...
an1(t) . . . ann(t)

 und bt =

 b1
...
bn


Dann kann man das obige System auch wie folgt schreiben:

yt+1 = A(t) yt + bt

Interessante Spezialfälle

• Ist A(t) = A konstant, so reduziert sich das System zu

yt+1 = A yt + bt

und wir können folgendes erkennen:

y1 = A y0 + b0

y2 = A y1 + b1 = A (A y0 + b0) + b1 = A2 y0 + Ab0 + b1

y3 = A3 y0 + A2b0 + Ab1 + b2

...
...

yt = At y0 +
t∑

k=1

At−k bk−1

• Ist A(t) = A und bt = b konstant, so gilt sogar

yt = At y0 + (At−1 + At−2 + . . .+ A+ I) b

Daraus folgt nach direkter Rechnung:

(At−1 + At−2 + . . .+ A+ I) (I − A) = I − At
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und falls det(I−A) 6= 0 (λ = 1 ist kein Eigenwert von A), dann existiert die Inverse
(I − A)−1 und somit

(At−1 + At−2 + . . .+ A+ I) = (I − At)(I − A)−1

und die Lösung des System kann wie folgt geschrieben werden:

yt = At y0 + (I − At)(I − A)−1 b

Beispiel 5.1 Wie starten mit dem System

y1,t+1 = y1,t +
1

2
y2,t + 1

y2,t+1 =
1

2
y1,t −

1

2
y2,t − 1

Wieder gilt:

yt =

(
y1,t
y2,t

)
, A =

(
1 1

2
1
2
−1

2

)
und b =

(
1
−1

)
und die allgemeine Lösung ist

yt =

(
1 1

2
1
2
−1

2

)t

y0

+

((
1 0
0 1

)
−
(

1 1
2

1
2
−1

2

)t
)((

1 0
0 1

)
−
(

1 1
2

1
2
−1

2

))−1 (
1
−1

)

• Ist A(t) = A and bt = 0 folgt

yt = At y0
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6 Übungsaufgaben

1. Eine Probe geht immer!!

Wir betrachten die Differenzengleichung 2. Ordnung yk = −yk−1 + 6yk−2.
Welche Zahlenfolgen sind Lösung dieser Differenzengleichung:

(a) yk = 0,

(b) yk = 9,

(c) yk = (−3)k,

(d) yk = 5 · 2k,

(e) yk = 3 · k und

(f) yk = (−3)k + 3 · 2k?

Begründen Sie Ihre Behauptung und schreiben Sie jeweils die ersten 5 Glieder jeder
dieser Zahlenfolgen auf.

2. Für eine beliebige reelle Zahl a 6= 0 betrachten wir die nichtlineare (d.h. dass wir
keinen unserer bekannten Lösungsalgorithmen anwenden können) Differenzenglei-
chung 1. Ordnung

yk+1 = 7 yk + a 7k+1.

Zeigen Sie, dass yk = a k 7k eine Lösung ist.

3. Bestimmen Sie die allgemeinen Lösungen der Differenzengleichungen

a) yk+1 + 2yk = 2 b) 3yk = yk−1 + 6

4. Gegeben ist das folgende lineare Anfangswertproblem

2yk+1 + 3yk = 5 mit y0 = 2.

Bestimmen Sie y1, y2 und y50.

5. Ein Preisanpassungsmodell postuliert die folgenden Zusammenhänge zwischen nach-
gefragter Menge Qd,t, Angebot Qs,t und Preis Pt:

i) Qd,t = α− βPt (α, β > 0)

ii) Qs,t = −γ + δPt (γ, δ > 0)

iii) Pt+1 = Pt − σ(Qs,t −Qd,t) (σ > 0)

Leiten Sie eine Differenzengleichung für Pt her und lösen Sie diese

(a) allgemein

(b) für α = 21, β = 2, γ = 3, δ = 6, σ = 0.3
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Lösungen einiger Übungsaufgaben

1. -

2. -

3. a) yk = (−2)k · (y0 − 2/3) + 2/3 b) yk = (1/3)k · (y0 − 3) + 3

4. Musterlösung

Natürlich könnten wir diese Aufgabe direkt lösen indem wir die Differenzengleichung
nach yk+1 auflösen, also yk+1 = −3

2
yk + 5

2
. Dann folgt (für k = 0) y1 = −3

2
y0 + 5

2
=

−3 + 5
2

= −1
2

und dann (für k = 1) y2 = −3
2
y1 + 5

2
= −3

2
·
(
−1

2

)
+ 5

2
= 13

4
. So könnte

man weiter machen, bis man das gewünschte Glied erhält. Natürlich sollte man den
folgenden eleganten Weg wählen.

Eine lineare Differenzengleichung 1. Ordnung wir schrittweise gelöst:

(a) Herstellen der Normalform

2yk+1 + 3yk = 5 ⇐⇒ 2yk+1 = −3yk + 5

⇐⇒ yk+1 = −3

2︸︷︷︸
A

yk +
5

2︸︷︷︸
B

(b) A und B ablesen und y∗ berechnen

A = −3

2

B =
5

2

y∗ =
B

1− A
=

5
2

1− (−3
2
)

= 1

(c) Allgemeine Lösung bestimmen

Nach der Lösungsformel für lineare Differenzengleichungen 1. Ordnung gilt:

yk = Ak(y0 − y∗) + y∗ =

(
−3

2

)k

(y0 − 1) + 1

(d) Lösung des Anfangswertproblems

Wir setzen die gegebene Anfangsbedingung y0 = 2 in die allgemeine Lösung
ein und erhalten

yk =

(
−3

2

)k

(y0 − 1) + 1 =

(
−3

2

)k

(2− 1) + 1 =

(
−3

2

)k

+ 1.
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Die Lösung des Anfangswertproblems ist also yk =
(
−3

2

)k
+ 1 und wir können die

gesuchten Glieder der Folge schnelle berechnen: y1 =
(
−3

2

)1
+ 1, y2 =

(
−3

2

)2
+ 1

und y50 =
(
−3

2

)50
+ 1.

5. a) Pt = (1− σ(β + δ))t
(
P0 −

α + γ

β + δ

)
+
α + γ

β + δ

b) Pt = (−1.4)t(P0 − 3) + 3


