
UNIVERSITÄT BASEL Frühjahrsemester 2012
WWZ, Abt. Quantitative Methoden 23. März 2012
Prof. Dr. Christian Kleiber
Linda Walter
Jean-Michel Benkert

Datenmanagement in R: Eine Einführung

Diese Einführung soll den Studierenden den Einstieg in praktische Anwendungen mit R er-
leichtern. In der Regel ist der erste Schritt bei empirischer, ökonometrischer oder statistischer
Arbeit die Datenbeschaffung. Da die Datenbeschaffung stark von der jeweiligen Untersuchung
abhängt, wollen wir uns hier nicht weiter damit beschäftigen, sondern befassen uns mit dem
nächsten Schritt: Daten in R einlesen.
Um sinnvoll mit Daten in R arbeiten zu können, müssen die Daten in der Regel zunächst
entsprechend aufbereitet werden. In dieser Einführung werden wir also sehen, wie Daten in R
eingelesen werden und wie diese dann bearbeitet und schliesslich gesichert werden können. Der
verwendete Datensatz stammt aus einer Arbeit von Durlauf und Johnson (1995) [1] und lässt
sich im Datenarchiv des Journal of Applied Econometrics unter http://www.econ.queensu.

ca/jae/1995-v10.4/durlauf-johnson/ finden.
R-Code wird im vorliegenden Dokument in dieser Schrift geschrieben. Wenn Sie R instal-
lieren und die Voreinstellung verwenden, steht im Prompt am Anfang der Zeile ein >, resp.
ein +, wenn die Eingabe von Code über mehrere Zeilen erfolgt. In diesem Dokument haben wir
den Prompt verändert. Am Anfang der Zeile steht nun R>, was die Eingabe von Code in R
verdeutlicht. Beim Nachrechnen müssen weder R> noch + am Anfang der Zeile in R eingege-
ben werden. Im Text wird mit zwei Klammern () verdeutlicht, wann es sich um Funktionen
handelt (Beispiel: head()). In die Klammern () werden bei der Anwendung der Funktion die
Argumente geschrieben, die der Funktion übergeben werden (Beispiel: head(DataDJ)).

Inhaltsverzeichnis

1 Vorbereitungen 2

2 Daten einlesen 2
2.1 rda-Dateien und RData-Dateien . 2
2.2 csv-Dateien . 3
2.3 txt-Dateien . 3
2.4 Zwischenablage . 3

3 Daten aufbereiten 3
3.1 Fehlende Werte . 5
3.2 Formatierung . 5

4 Daten sichern 8
4.1 rda-Dateien und RData-Dateien . 8
4.2 csv-Dateien . 8
4.3 txt-Dateien . 8

5 Schlussbemerkung 8

1

http://www.econ.queensu.ca/jae/1995-v10.4/durlauf-johnson/
http://www.econ.queensu.ca/jae/1995-v10.4/durlauf-johnson/

1 Vorbereitungen

In einem ersten Schritt sollte das aktuelle Arbeitsverzeichnis wie gewünscht definiert werden.
In R kann das aktuelle Arbeitsverzeichnis mit der Funktion getwd() abgefragt werden:

R> getwd()

[1] "C:/Documents and Settings/Default User/My Documents"

Bei uns liegt das Arbeitsverzeichnis im My Documents-Ordner. Das Arbeitsverzeichnis kann
unter Windows via Datei → Verzeichnis wechseln oder allgemein mit der Funktion setwd()

geändert werden:

R> setwd("Z:/MeinOrdner")

Gerade bei grösseren Projekten kann es sich lohnen für das Projekt ein eigenes, neues Arbeits-
verzeichnis anzulegen.

2 Daten einlesen

Es gibt verschiedene Möglichkeiten um Daten in R einzulesen. Das R Development Core Team
liefert diesbezüglich unter http://cran.r-project.org/doc/manuals/R-data.pdf selbst eine
Anleitung, in welcher im Wesentlichen alle Möglichkeiten zum Import von Daten erläutert
werden. Wir werden hier nur eine Auswahl davon betrachten.

2.1 rda-Dateien und RData-Dateien

rda und RData-Dateien sind das R-eigene Dateiformat, wobei rda das ältere der beiden Formate
ist. Beide Formate sind allerdings im Wesentlichen identisch und können genau gleich verwendet
werden. Liegen die Daten als rda- oder RData-Datei vor, kann die Datei mit der Funktion load()

ganz einfach geladen werden:

R> load("Z:/MeinOrdner/DataDJ.rda")

Wenn sich die Datei im aktuellen Arbeitsverzeichnis Z:/MeinOrdner befindet, spart man Tip-
parbeit, denn der Pfad muss nicht angegeben werden:

R> load("DataDJ.rda")

In Betriebssystemen wie MS Windows oder Mac OS X geht das auch über die Menüleiste im
GUI: Datei → Lade Workspace anklicken. Bei Dateityp muss R images - old extension (*.rda)
ausgewählt werden. Dieser letzte Schritt müsste für eine RData-Datei natürlich nicht gemacht
werden. Dann noch die Datei auswählen und öffnen klicken.

Mit dem Aufruf von ls() kann überprüft werden, was in der rda-Datei resp. momentan im
Arbeitsspeicher enthalten ist:

R> ls()

[1] "DataDJ"

2

http://cran.r-project.org/doc/manuals/R-data.pdf

2.2 csv-Dateien

Liegen die Daten als Excel-Datei (siehe z.B. DataDJ.xls) vor, sollte man die Daten, die man
einlesen möchte, als csv- oder Textdatei speichern. csv-Dateien können in Excel via Datei →
Speichern unter gespeichert werden. Als Dateityp muss CSV (Trennzeichen-getrennt)(*.csv)
angegeben werden. Aus der csv-Datei muss alles Überflüssige entfernt werden, bevor man sie
in R einliest.

Das Einlesen der Daten erfolgt mit der Funktion read.csv(). Das Argument sep=";" gibt an,
dass die Daten mit einem Komma voneinander getrennt sind. header=TRUE gibt an, dass die
erste Zeile der csv-Datei die Überschriften der Variablen enthält:

R> DataDJ <- read.csv("Z:/MeinOrdner/DataDJ.csv", sep=";", header=TRUE)

Falls das Arbeitsverzeichnis dem Ordner Z:/MeinOrdner entspricht, muss der Pfad wiederum
nicht angegeben werden:

R> DataDJ <- read.csv("DataDJ.csv", sep=";", header=TRUE)

2.3 txt-Dateien

Wie bereits erwähnt, sollte man Excel-Dateien als csv- oder Textdatei speichern, um sie in R
einzulesen. Textdateien können in Excel via Datei → Speichern unter gespeichert werden. Als
Dateityp muss Text (Tabstop-getrennt)(*.txt) angegeben werden. Auch aus der txt-Datei muss
alles Überflüssige entfernt werden, bevor man sie in R einliest.

Das Einlesen der Daten erfolgt mit der Funktion read.table(). Das Argument header=TRUE

gibt wieder an, dass die erste Zeile der txt-Datei die Überschriften der Variablen enthält. Die
Daten sind jetzt durch ein Leerzeichen voneinander getrennt, daher sep="":

R> DataDJ <- read.table("Z:/MeinOrdner/DataDJ.txt", sep="", header=TRUE)

Falls das Arbeitsverzeichnis dem Ordner Z:/MeinOrdner entspricht, muss der Pfad wiederum
nicht angegeben werden:

R> DataDJ <- read.table("DataDJ.txt", sep="", header=TRUE)

2.4 Zwischenablage

Diese Variante kann insbesondere bei kleinen Datensätzen von Vorteil sein. Die gewünschten
Daten werden z.B. in Excel mittels Ctrl+C in der Zwischenablage gespeichert und werden dann
mit folgender Funktion in R geladen:

R> DataDJ <- read.table("clipboard", header=TRUE)

3 Daten aufbereiten

Wir werden im Folgenden die eingelesenen Rohdaten so aufbereiten, dass sie im gleichen Format
vorhanden sind wie im entsprechenden Datensatz GrowthDJ im R-Paket AER.
In einem ersten Schritt wollen wir uns nun ein Bild über die vorhanden Daten verschaffen. Dazu
geeignet ist die Funktion str, welche auf kompakte Weise die interne Struktur eines R-Objekts
wiedergibt.

R> str(DataDJ)

3

'data.frame': 121 obs. of 11 variables:

$ NUMBER: int 1 2 3 4 5 6 7 8 9 10 ...

$ NONOIL: int 1 1 1 1 1 1 1 1 1 1 ...

$ INTER : int 1 0 0 1 0 0 1 0 0 0 ...

$ OECD : int 0 0 0 0 0 0 0 0 0 0 ...

$ GDP60 : int 2485 1588 1116 959 529 755 889 838 908 1009 ...

$ GDP85 : int 4371 1171 1071 3671 857 663 2190 789 462 2624 ...

$ GDPGRO: num 4.8 0.8 2.2 8.6 2.9 1.2 5.7 1.5 -0.9 6.2 ...

$ POPGRO: num 2.6 2.1 2.4 3.2 0.9 1.7 2.1 1.7 1.9 2.4 ...

$ IONY : num 24.1 5.8 10.8 28.3 12.7 5.1 12.8 10.5 6.9 28.8 ...

$ SCHOOL: num 4.5 1.8 1.8 2.9 0.4 0.4 3.4 1.4 0.4 3.8 ...

$ LIT60 : int 10 5 5 -999 2 14 19 7 6 16 ...

Es handelt sich bei DataDJ um ein Objekt der Klasse data.frame. Wir können uns DataDJ als
eine 121× 11-Matrix vorstellen, wie die Funktion dim() schnell bestätigt:

R> dim(DataDJ)

[1] 121 11

Das Besondere an einem data.frame ist, dass in unterschiedlichen Spalten die Elemente auch
von unterschiedliche Datentypen (numeric, logical, character) sein dürfen, was bspw. bei ei-
ner matrix nicht möglich ist. Offenbar sind alle Variablen in DataDJ vom Typ numeric (integer
ist eine Unterklasse von numeric). Zu jeder der 11 Variablen werden zudem die ersten Beob-
achtungen angezeigt.
Ein anderer Weg um die ersten paar Beobachtungen eines Datensatzes anzuzeigen, ist die Funk-
tion head() zu verwenden:

R> head(DataDJ)

NUMBER NONOIL INTER OECD GDP60 GDP85 GDPGRO POPGRO IONY SCHOOL LIT60

1 1 1 1 0 2485 4371 4.8 2.6 24.1 4.5 10

2 2 1 0 0 1588 1171 0.8 2.1 5.8 1.8 5

3 3 1 0 0 1116 1071 2.2 2.4 10.8 1.8 5

4 4 1 1 0 959 3671 8.6 3.2 28.3 2.9 -999

5 5 1 0 0 529 857 2.9 0.9 12.7 0.4 2

6 6 1 0 0 755 663 1.2 1.7 5.1 0.4 14

Die Funktion head() zeigt per Voreinstellung die ersten 6 Zeilen resp. Elemente an. Wenn
man beispielsweise nur die ersten vier Zeilen sehen möchte, kann man diese über den Aufruf
head(DataDJ, n=4) erhalten.
Alternativ können wir uns mit der Funktion summary() deskriptive Statistiken ansehen:

R> summary(DataDJ)

NUMBER NONOIL INTER OECD GDP60

Min. : 1 Min. :0.00 Min. :0.00 Min. :0.000 Min. : -999

1st Qu.: 31 1st Qu.:1.00 1st Qu.:0.00 1st Qu.:0.000 1st Qu.: 907

Median : 61 Median :1.00 Median :1.00 Median :0.000 Median : 1842

Mean : 61 Mean :0.81 Mean :0.62 Mean :0.182 Mean : 3488

3rd Qu.: 91 3rd Qu.:1.00 3rd Qu.:1.00 3rd Qu.:0.000 3rd Qu.: 3766

Max. :121 Max. :1.00 Max. :1.00 Max. :1.000 Max. :77881

4

GDP85 GDPGRO POPGRO IONY

Min. : -999 Min. :-999.0 Min. :-999.0 Min. : 4.1

1st Qu.: 974 1st Qu.: 2.6 1st Qu.: 1.1 1st Qu.:12.0

Median : 2544 Median : 3.8 Median : 2.3 Median :17.7

Mean : 4965 Mean : -29.1 Mean :-113.6 Mean :18.2

3rd Qu.: 6868 3rd Qu.: 5.2 3rd Qu.: 2.8 3rd Qu.:24.1

Max. :25635 Max. : 9.2 Max. : 6.8 Max. :36.9

SCHOOL LIT60

Min. :-999.0 Min. :-999

1st Qu.: 2.3 1st Qu.: 7

Median : 4.8 Median : 29

Mean : -19.4 Mean :-108

3rd Qu.: 8.1 3rd Qu.: 75

Max. : 12.1 Max. : 100

3.1 Fehlende Werte

Fehlende Werte sind in empirischen Datensätzen häufig, deshalb wurde dieser Datensatz als
Beispiel ausgewählt. U.a. weist die Variable DataDJ$gdp60 ein Minimum von −999 auf. Die
Erklärung findet sich in der Dokumentation des Datensatzes. Dort wird erklärt:

”
A value of

-999 indicates that the observation is missing“. Wir lesen deshalb die Daten nochmals ein und
ersetzen beim Einlesen den Wert −999 gleich mit NA (für not available).

R> DataDJ <- read.table("DataDJ.txt", sep="", header=TRUE,

+ na.strings = "-999")

Es kann auch ein Vektor von Strings eingegeben werden. Wenn man nicht-vorhandene Daten-
punkte mittels dieser Variante entsprechend markieren möchte, ist allerdings Vorsicht ange-
bracht. Es wäre bspw. möglich, dass der Wert −999 nicht für jede Variable nicht-vorhandene
Datenpunkte angibt, sondern für gewisse Variablen tatsächlich ein korrekter Wert ist. R würde
in diesem Fall jedoch nicht differenzieren und alle Werte ersetzen. Darauf muss der Benutzer
selbst achten.
Alternativ hätten wir den Datensatz wie bisher einlesen und die betroffenen Werte wie folgt als
NA kennzeichnen können:

R> DataDJ$gdp60[DataDJ$gdp60==-999] <- NA

Dies hätten wir für jede betroffene Variable so gemacht.

3.2 Formatierung

Bevor wir die Daten nun aufbereiten, schauen wir uns an, in welchem Format wir sie am Ende
haben möchten. Dazu installieren wir zunächst das R-Paket AER,

R> install.packages("AER")

laden es,

R> library("AER")

laden die Daten

R> data("GrowthDJ", package = "AER")

5

und sehen uns die Struktur von GrowthDJ an:

R> str(GrowthDJ)

'data.frame': 121 obs. of 10 variables:

$ oil : Factor w/ 2 levels "yes","no": 2 2 2 2 2 2 2 2 2 2 ...

$ inter : Factor w/ 2 levels "no","yes": 2 1 1 2 1 1 2 1 1 1 ...

$ oecd : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...

$ gdp60 : num 2485 1588 1116 959 529 ...

$ gdp85 : num 4371 1171 1071 3671 857 ...

$ gdpgrowth : num 4.8 0.8 2.2 8.6 2.9 1.2 5.7 1.5 -0.9 6.2 ...

$ popgrowth : num 2.6 2.1 2.4 3.2 0.9 1.7 2.1 1.7 1.9 2.4 ...

$ invest : num 24.1 5.8 10.8 28.3 12.7 5.1 12.8 10.5 6.9 28.8 ...

$ school : num 4.5 1.8 1.8 2.9 0.4 0.4 3.4 1.4 0.4 3.8 ...

$ literacy60: num 10 5 5 NA 2 14 19 7 6 16 ...

Als erstes fällt auf, dass es eine Variable weniger gibt: die Variable NUMBER fehlt. Diese Variable
läuft von 1 bis 121, numeriert also die Daten durch. Als ersten Schritt werden wir nun diese
Variable, also Spalte, aus dem Datensatz DataDJ entfernen. Da NUMBER in der ersten Spalte
liegt, können wir dies mit folgendem Aufruf erreichen:

R> DataDJ <- DataDJ[, -1]

Mit [i,j] geben wir an, welche Zeilen i und welche Spalten j wir auswählen möchten. [,-1]
bedeutet, dass wir alle Zeilen auswählen möchten (deshalb steht nichts vor dem Komma) und
die erste Spalte weggelassen werden soll (drücken wir mit dem Minus-Zeichen aus).
Jedoch kann es gerade bei grösseren Datensätzen sehr aufwändig und mühsam sein, den Index
der zu entfernenden Spalte herauszufinden. Die Funktion match() übernimmt dies für uns. An
dieser Stelle erinneren wir an die Hilfefunktion in R, aufrufbar mit ?match, welche uns in diesem
Fall die Beschreibung der Funktion liefert.

R> DataDJ <- DataDJ[-match(c("NUMBER"), names(DataDJ))]

In diesem einfachen Beispiel, in welchem nur eine Spalte und dazu noch die erste entfernt werden
muss, wirkt dies umständlich, kann aber bei grösseren Datensätzen viel Arbeit ersparen.
Bevor wir uns anspruchsvolleren Datenmanipulationen zuwenden, passen wir noch kurz die
Namen an. Die bisherigen Namen können mit der Funktion names() abgefragt werden:

R> names(DataDJ)

[1] "NONOIL" "INTER" "OECD" "GDP60" "GDP85" "GDPGRO" "POPGRO" "IONY"

[9] "SCHOOL" "LIT60"

R> names(GrowthDJ)

[1] "oil" "inter" "oecd" "gdp60" "gdp85"

[6] "gdpgrowth" "popgrowth" "invest" "school" "literacy60"

Wir überschreiben die Namen in DataDJ wie folgt:

R> colnames(DataDJ) <- c("oil", "inter", "oecd", "gdp60", "gdp85",

+ "gdpgrowth", "popgrowth", "invest", "school", "literacy60")

6

Im Unterschied zu DataDJ enthält GrowthDJ nicht nur numerische Datentypen, sondern auch
sogenannte Faktoren. In Faktoren kann man kategorische Informationen speichern, wie bspw.
das Geschlecht. Ein Faktor kann auch mehr als zwei Ausprägungen umfassen.
Tatsächlich sind DataDJ$oil zur Zeit keine Faktoren sondern nur dummy-codierte numerische
Vektoren. Mit der Funktion factor() lässt sich ein Vektor wie folgt in einen Faktor umwandeln:

R> DataDJ$oil <- factor(DataDJ$oil, levels=c(0,1), labels = c("yes", "no"))

R> DataDJ$inter <- factor(DataDJ$inter, levels=c(0,1), labels = c("no", "yes"))

R> DataDJ$oecd<- factor(DataDJ$oecd, levels=c(0,1), labels = c("no", "yes"))

Für DataDJ$oil haben wir 0 der Kategorie
”
yes“ und 1 der Kategorie

”
no“ zugeordnet. Der

Grund dafür ist, dass im eingelesenen DataDJ Datensatz die Variable NONOIL hiess und laut Do-
kumentation also diejenigen Länder markierte, welche keine Ölvorkommen besitzen. Im Grow-

thDJ Datensatz sind allerdings Länder markiert, welche Ölvorkommen besitzen. Daher die Ver-
tauschung. Man beachte, dass R aus internen Gründen nicht 0 und 1, sondern 1 und 2 ausgibt.
Ein Überblick über die aufbereiteten Daten erhält man wieder mit summary() und str() und
wir sehen, dass die Datensätze jetzt übereinstimmen:

R> summary(DataDJ)

oil inter oecd gdp60 gdp85 gdpgrowth

yes:23 no :46 no :99 Min. : 383 Min. : 412 Min. :-0.90

no :98 yes:75 yes:22 1st Qu.: 973 1st Qu.: 1209 1st Qu.: 2.80

Median : 1962 Median : 3484 Median : 3.90

Mean : 3682 Mean : 5683 Mean : 4.09

3rd Qu.: 4274 3rd Qu.: 7719 3rd Qu.: 5.30

Max. :77881 Max. :25635 Max. : 9.20

NA's : 5 NA's : 13 NA's : 4.00

popgrowth invest school literacy60

Min. : 0.30 Min. : 4.1 Min. : 0.40 Min. : 1.0

1st Qu.: 1.70 1st Qu.:12.0 1st Qu.: 2.40 1st Qu.: 15.0

Median : 2.40 Median :17.7 Median : 4.95 Median : 39.0

Mean : 2.28 Mean :18.2 Mean : 5.53 Mean : 48.2

3rd Qu.: 2.90 3rd Qu.:24.1 3rd Qu.: 8.18 3rd Qu.: 83.5

Max. : 6.80 Max. :36.9 Max. :12.10 Max. :100.0

NA's :14.00 NA's : 3.00 NA's : 18.0

R> summary(GrowthDJ)

oil inter oecd gdp60 gdp85 gdpgrowth

yes:23 no :46 no :99 Min. : 383 Min. : 412 Min. :-0.90

no :98 yes:75 yes:22 1st Qu.: 973 1st Qu.: 1209 1st Qu.: 2.80

Median : 1962 Median : 3484 Median : 3.90

Mean : 3682 Mean : 5683 Mean : 4.09

3rd Qu.: 4274 3rd Qu.: 7719 3rd Qu.: 5.30

Max. :77881 Max. :25635 Max. : 9.20

NA's : 5 NA's : 13 NA's : 4.00

popgrowth invest school literacy60

Min. : 0.30 Min. : 4.1 Min. : 0.40 Min. : 1.0

1st Qu.: 1.70 1st Qu.:12.0 1st Qu.: 2.40 1st Qu.: 15.0

Median : 2.40 Median :17.7 Median : 4.95 Median : 39.0

Mean : 2.28 Mean :18.2 Mean : 5.53 Mean : 48.2

7

3rd Qu.: 2.90 3rd Qu.:24.1 3rd Qu.: 8.18 3rd Qu.: 83.5

Max. : 6.80 Max. :36.9 Max. :12.10 Max. :100.0

NA's :14.00 NA's : 3.00 NA's : 18.0

4 Daten sichern

Wenn man die Daten aufbereitet hat, möchte man sie oft auch sichern, um sie auch in Zu-
kunft in dieser Form verwenden zu können. Natürlich lassen sich Daten in R in verschiedene
Dateiformate exportieren; wir werden die nützlichsten kurz erläutern.

4.1 rda-Dateien und RData-Dateien

Falls die Daten zu einem späteren Zeitpunkt wieder in R verwendet werden sollen, ist es nahe-
liegend die Daten im R-eigenen Binärformat (Endungen .rda und .RData) zu speichern, da so
beim späteren Laden mögliche Komplikationen vermieden werden. Wir verwenden hierbei die
Funktion save():

R> save(DataDJ, file = "DataDJ2.rda")

file = "DataDJ2.rda" bestimmt den Dateinamen der rda-Datei, in welcher wir das Objekt
DataDJ speichern. Die Datei wurde jetzt im aktuellen Arbeitsverzeichnis gespeichert. Durch
die Angabe eines Pfades kann eine Datei auch ausserhalb des aktuellen Arbeitsverzeichnisses
gespeichert werden.

4.2 csv-Dateien

Natürlich können Daten auch in das csv-Format exportiert werden. Dafür verwenden wir die
Funktion write.csv() oder write.csv2(). Um die Unterschiede zwischen den beiden Funk-
tionen einzusehen, verweisen wir auf die Dokumentation (?write.csv).

R> write.csv(DataDJ, file = "DataDJ2.csv")

4.3 txt-Dateien

Die sinnvollste Variante ist der Export der Daten als Text-Datei, da Text-Dateien in jedes
Programm wieder eingelesen werden können. In R ist dies mit der Funktion write.table()

möglich:

R> write.table(DataDJ, file = "DataDJ2.txt", col.names = TRUE, sep = " ",

+ dec = ".", na = "NA")

Wir bestimmen hier, ob die Namen der Variablen gelistet werden sollen (col.names), wie
die einzelnen Variablen voneinander getrennt werden (sep), welcher String den Dezimalpunkt
darstellt (dec) und wie nicht vorhandene Datenpunkte benannt werden (na).

5 Schlussbemerkung

Dieser Text soll als Leitfaden und erste, kleine Einführung ins Datenmanagement in R dienen.
Tatsächlich kann man Daten in R auf zahlreiche verschiedene Arten einlesen, bearbeiten und
speichern. Am besten lernt man die Möglichkeiten von R kennen, wenn man sich selbst an
einen Datensatz wagt und versucht die Daten ein wenig zu manipulieren und in einem nächsten
Schritt graphisch darzustellen.
Ein Blick in die Dokumentation einer Funktion kann in der Regel die meisten Probleme schon
beseitigen (aufrufbar mit ? und dem Funktionsnamen, z.B. ?write.table).

8

Literatur

[1] Steven N. Durlauf und Paul A. Johnson, “Multiple Regimes and Cross-Country Growth
Behavior”, Journal of Applied Econometrics, Vol. 10, No. 4, 1995, pp. 365-384.

9

	Vorbereitungen
	Daten einlesen
	rda-Dateien und RData-Dateien
	csv-Dateien
	txt-Dateien
	Zwischenablage

	Daten aufbereiten
	Fehlende Werte
	Formatierung

	Daten sichern
	rda-Dateien und RData-Dateien
	csv-Dateien
	txt-Dateien

	Schlussbemerkung

