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1 Matrices and vectors

1.1 Real Vectors

• n-dimensional space Rn

• elements x,y ∈ Rn are called n-vectors

x =


x1
x2
...
xn

 =
(
x1 x2 . . . xn

)T
and y =


y1
y2
...
yn


• scalar product and norm:

x • y = x1y1 + x2y2 + · · ·+ xnyn

||x|| =
√
x21 + x22 + · · ·+ x2n

x • y = ||x|| · ||y|| · cos∠(x,y)

• x1,x2, . . . ,xk ∈ Rn

– If a1, a2, . . . , ak ∈ R, then z = a1x1+a2x2+· · ·+akxk is called a linear combination
of x1,x2, . . . ,xk.

– x1,x2, . . . ,xk are called linearly dependent, if there exist b1, b2, . . . , bk ∈ R such
that b1x1 + b2x2 + · · ·+ bkxk = 0 and not all bj = 0.

– x1,x2, . . . ,xk are called linearly independent, if a linear combination of the
zero vector

b1x1 + b2x2 + · · ·+ bkxk = 0

is possible only with b1 = b2 = · · · = bk = 0.

1.2 Real Matrices

a1, a2, . . . , am ∈ Rn

a1 =


a11
a21
...
an1

 , a2 =


a12
a22
...
an2

 , . . . , am =


a1m
a2m

...
anm

 → A =


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
...

...
an1 an2 . . . anm


is called an n×m matrix.

Notation: A ∈ Rn×m
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• The inverse matrix A−1 of the n× n matrix A = (aij) is defined by

A−1 ·A = A ·A−1 = In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

• For the n×n matrix A let Aij denote the (n−1)×(n−1) submatrix of A generated
by cancelling the i-th row and the j-th column of A. Then the determinant det A
is given (recursively) by

det(A) = |A| = a11 det A11 − a12 det A12 + · · ·+ (−1)n+1a1n det A1n

• det(A ·B) = det(A) · det(B)

Example 1.1∣∣∣∣∣∣∣∣
1 1 3 3
1 2 1 2
1 −2 1 −2
0 1 −2 −1

∣∣∣∣∣∣∣∣

= 1 ·

∣∣∣∣∣∣
2 1 2
−2 1 −2

1 −2 −1

∣∣∣∣∣∣− 1 ·

∣∣∣∣∣∣
1 1 2
1 1 −2
0 −2 −1

∣∣∣∣∣∣+ 3 ·

∣∣∣∣∣∣
1 2 2
1 −2 −2
0 1 −1

∣∣∣∣∣∣− 3 ·

∣∣∣∣∣∣
1 2 1
1 −2 1
0 1 −2

∣∣∣∣∣∣ .
1.3 Linear transformations and matrices

Definition 1.1 A linear transformation is a map T : Rm → Rn such that for all x,y ∈
Rm and all λ, µ ∈ R we have:

T (λ · x + µ · y) = λ · T (x) + µ · T (y)

Each n×m matrix A defines a linear transformation by matrix multiplication

TA(x) = A · x = x1a1 + · · ·+ xmam.

The image of the vector x ∈ Rm is a linear combination of the column vectors of the
matrix A.
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1.4 Complex matrices and vectors

Sometimes it is helpful to allow complex matrices and vectors (matrices whose elements
are complex numbers). A complex matrix can be viewed as a combination of two real
matrices:

A =


a11 + ib11 a12 + ib12 . . . a1m + ib1m
a21 + ib21 a22 + ib22 . . . a2m + ib2m

...
...

...
...

an1 + ibn1 an2 + ibn2 . . . anm + ibnm



=


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
...

...
an1 an2 . . . anm

+ i ·


b11 b12 . . . b1m
b21 b22 . . . b2m
...

...
...

...
bn1 bn2 . . . bnm


1.5 Matrix calculus

1a. A + B = B + A 1b. AB 6= BA
2a. (A + B) + C = A + (B + C) 2b. (AB)C = A(BC)
3a. A + 0 = A 3b. AI = IA = A, ( A square )

4. AB = 0 6⇒ A = 0 or B = 0
5. AB = AC 6⇒ B = C

6. λ(A + B) = λA + λB λ ∈ R
7. A(B + C) = AB + AC
8. (A + B)C = AC + BC

9. (A−1)−1 = A
10. (AB)−1 = B−1A−1

11. (AT)T = A
12. (A + B)T = AT + BT

13. (AB)T = BTAT

14. (A−1)T = (AT)−1

For A =

(
a b
c d

)
with ad− bc 6= 0 is A−1 =

1

ad− bc

(
d −b
−c a

)
.

All these definitions and results can be generalized to vectors and matrices with complex
entries.
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2 Eigenvalues and eigenvectors

2.1 Definition and determination

Definition 2.1 If A is a real (or complex) n× n matrix, then a (complex) number λ is
an eigenvalue of A if there is a nonzero (complex) vector x ∈ Cn such that

Ax = λx

Then x is an eigenvector of A (associated with λ).

Remark: If x is an eigenvector associated with the eigenvalue λ, then so is αx for every
real number α 6= 0.

A (α x) = α A x = α (λ x) = λ (α x)

How to find eigenvalues? The equation can be written as

A x = λ x
⇔ A x− λ I x = 0
⇔ (A− λ I) x = 0

This is a homogeneous linear system of equations. It has a solution x 6= 0 if and only if
the matrix (A− λ I) is singular which means that it has determinant equal to 0.

(A− λ I) singular ⇔ det(A− λ I)︸ ︷︷ ︸
pA(λ)

= 0

pA(λ) = 0 is called the characteristic equation of A. The function pA(λ) is a polynomial
of degree n in λ, called the characteristic polynomial of A.

Determination of the eigenvalues and eigenvectors

1. The polynomial equation pA(λ) = 0 has always n complex solutions (counted with
multiplicity) and may have no real solutions. If λ1, . . . , λr ∈ C are the pairwise
distinct solutions (the eigenvalues of A) with the multiplicities k1, . . . , kr then the
characteristic polynomial can be written as

pA(λ) = (λ1 − λ)k1 (λ2 − λ)k2 . . . (λr − λ)kr .

The multiplicity ki of the zero λi is called algebraic multiplicity of the eigenvalue
λi. Generally, the determination of the (exact) zeros is impossible for n ≥ 5 and we
have to use numerical methods.

2. For each eigenvalue λi (1 ≤ i ≤ r) we compute the so called eigenspace for λi

V (λi) = { x ∈ Cn | (A− λiI) x = 0 }.
The dimension of the vector space V (λi) is called the geometric multiplicity of the
eigenvalue λi.

Definition 2.2 The spectral radius of a quadratic matrix A is the real number

ρ(A) := max{|λ1|, . . . , |λr| }.
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2.2 *Generalized Eigenvectors*

To solve some interesting problems we have to generalize the notion of eigenvectors.

Definition 2.3 A vector x ∈ Cn is called generalized eigenvector of degree l ∈ N associ-
ated to the eigenvalue λ of A, if

(A− λI)l x = 0 and (A− λI)l−1 x 6= 0.

Of course, an eigenvector is a generalized eigenvector of degree 1.

Example 2.1 The matrix

A =

 1 1 1
0 1 1
0 0 1


has the eigenvalue 1 of (algebraic) multiplicity 3 with dimV (1) = 1 (geometric multiplic-
ity). We have:

(A− I) e1 = 0 (A− I) e2 = e1 (A− I)2 e2 = 0

(A− I) e3 = e1 + e2 (A− I)2 e3 = e1 (A− I)3 e3 = 0

This means, that e1 is an eigenvector, e2 a generalized eigenvector of degree 2 and e3 a
generalized eigenvector of degree 3.

Theorem 2.1 Let A ∈ Cn×n be a complex (or real) matrix with

pA(λ) = (λ1 − λ)k1 (λ2 − λ)k2 . . . (λr − λ)kr .

• Let λ be an eigenvalue of A of (algebraic) multiplicity l. Then there exist l linearly
independent generalized eigenvectors (of degree ≤ l). This means:

dim{ x ∈ Cn | (A− λI)l x = 0 } = l.

• Generalized eigenvectors associated to pairwise different eigenvalues of A are linearly
independent.

• There exists a basis p1,p2, . . . ,pn of Cn consisting of generalized eigenvectors of A.
If P is the matrix with this basis as the columns, then

P−1 A P =


A1 0

A2

. . .

0 Ar


with Ai ∈ Cki×ki for all i = 1, 2, . . . , r.
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Example 2.2 Let n = 2 and A =

(
a b
c d

)
.

1. Characteristic polynomial:

pA(λ) = det

(
a− λ b
c d− λ

)
= λ2 − (a+ d)︸ ︷︷ ︸

=:tr(A)

λ+ ad− bc︸ ︷︷ ︸
=det(A)

= (λ1 − λ)(λ2 − λ)

with λ1,2 =
a+ d

2
±
√

(a+ d)2

4
− det(A) .

2. For each λi (i = 1, 2) we solve the linear system(
a− λi b
c d− λi

)(
x
y

)
=

(
0
0

)
If n = 2, we have four different cases:

1. λ1, λ2 ∈ R, λ1 6= λ2

Example:

(
1 2
2 1

)
2. λ = λ1 = λ2 ∈ R with dimV (λ) = 2

Example:

(
2 0
0 2

)
3. λ = λ1 = λ2 ∈ R with dimV (λ) = 1

Example:

(
2 1
0 2

)
4. λ2 = λ1 ∈ C− R

Example:

(
cosφ − sinφ
sinφ cosφ

)
with φ 6= kπ
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3 Diagonalization

Let A and P be n × n matrices with P invertible. Then A and P−1AP have the same
eigenvalues (because they have the same characteristic polynomial).

Definition 3.1 An n × n matrix A is diagonalizable if there is an invertible matrix P
and a diagonal matrix D such that

P−1AP = D.

Two natural questions:

1. Which square matrices are diagonalizable?

2. If A is diagonalizable, how do we find the matrix P?

Theorem 3.1 An n×n matrix A is diagonalizable if and only if it has a set of n linearly
independent eigenvectors p1, . . . ,pn. In this case,

P−1AP = diag(λ1, . . . , λn),

where P is the matrix with p1, . . . ,pn as its columns, and λ1, . . . , λn are the corresponding
eigenvalues.

Many of the matrices encountered in economics are (real) symmetric and for these matrices
we have the following important result.

Theorem 3.2 (Spectral Theorem for symmetric matrices) If the real n×n matrix
A is symmetric (A = AT), then:

1. All n eigenvalues λ1, . . . , λn are real.

2. Eigenvectors that correspond to different eigenvalues are orthogonal.

3. There exists an orthogonal and real matrix P ( P−1 = PT ) such that

P−1AP = diag(λ1, . . . , λn).

The columns p1, . . . ,pn of the matrix P are eigenvectors of unit length corresponding
to the eigenvalues λ1, . . . , λn.

Example 3.1 The matrix A =

(
1 1
−2 4

)
has the eigenvalues and eigenvectors

λ1 = 2 p1 =

(
1
1

)
λ2 = 3 p2 =

(
1
2

)
Hence P =

(
1 1
1 2

)
, P−1 =

(
2 −1
−1 1

)
and:

P−1AP =

(
2 −1
−1 1

)(
1 1
−2 4

)(
1 1
1 2

)
=

(
2 0
0 3

)
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4 Vector spaces

Definition 4.1 A (real) vector space is a set V together with two operations

+ : V × V → V (vector addition)

· : R× V → V (scalar multiplication)

such that for all u, v, w ∈ V and all α, β ∈ R:

• u+ (v + w) = (u+ v) + w

• u+ v = v + u

• There exists an element 0 ∈ V , called the zero element, such that v+ 0 = 0 + v = v
for all v ∈ V .

• For every v ∈ V there exists an element −v ∈ V , called the additive inverse of v,
such that v + (−v) = 0.

• α · (β · v) = (α · β) · v

• 1 · v = v (1 ∈ R)

• α · (u+ v) = α · u+ α · v

• (α + β) · v = α · v + β · v

Example 4.1 The space Rn with the well-known (componentwise) vector addition and
scalar multiplication is a real vector space.

Example 4.2 The space Cn with the well-known (componentwise) vector addition and
scalar multiplication is a real vector space.

Example 4.3 The set F of functions Rn → R can be given the structure of a (real)
vector space, where the operations are defined pointwise. For any f, g : Rn → R and any
α ∈ R define:

+ : F × F → F (f + g)(x) = f(x) + g(x)

· : R×F → F (α · f)(x) = α · f(x)
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5 Metric spaces

Definition 5.1 Let X be an arbitrary set (for instance a real vector space). A metric d on X
is a function

d : X ×X → R

such that for all x, y, z ∈ X:

1. d(x, y) = 0⇐⇒ x = y

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

The pair (X, d) is called a metric space.

Let x ∈ X and r > 0. Then

Br(x) := { y ∈ X | d(x, y) < r } ⊂ X

is called the open ball with center x and diameter r.

Example 5.1 For each set X

d(x, y) :=

{
0 if x = y
1 otherwise

is a metric, the so-called discrete metric.

Example 5.2 X = Rn and d(x, y) = ||x− y|| :=
√

(x1 − y1)2 + · · ·+ (xn − yn)2

Example 5.3 X = Rn and

d(x, y) :=

{
||x||+ ||y|| if x 6= y
0 if x = y

Definition 5.2 Let (X, d) be a metric space. A sequence x1, x2, . . . in X is called a
Cauchy sequence if for every real number ε > 0 there is an integer N = N(ε) such that
for all n,m > N we have

d(xn, xm) < ε.

(X, d) is called a complete metric space if every Cauchy sequence in X has a limit that is
also an element in X.

lim
n→∞

xn = x ∈ X

Example 5.4 The set of rational numbers Q with the metric d(x, y) = |x − y| is not
complete. Consider for instance the Cauchy sequence

x1 = 1 and xn+1 =
xn
2

+
1

xn
∈ Q.

The limit is
√

2 6∈ Q.

Example 5.5 The set R with the metric d(x, y) = |x− y| is complete.
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6 Normed vector spaces

6.1 Definition and examples

Definition 6.1 Given a real vector space V . A norm on V is a real valued function

|| . || : V → R

such that for all v, w ∈ V and all λ ∈ R:

1. ||v|| ≥ 0 and ||v|| = 0 ⇐⇒ v = 0

2. ||λ · v|| = |λ| · ||v||

3. ||v + w|| ≤ ||v||+ ||w|| (triangle inequality)

The pair (V, || . ||) is called a normed (vector) space.

The norm || . || induces always a metric on V by d(v, w) := ||v − w||. Hence, a normed
vector space is always a metric (vector) space (with this induced metric).

Definition 6.2 A Banach space is a complete normed vector space.

Example 6.1 V = Rn

• ||v||2 :=
√
v21 + · · ·+ v2n =

(
n∑
k=1

|vi|2
)1/2

(Euclidean norm)

• ||v||1 :=
n∑
k=1

|vi| (Manhattan norm)

• ||v||p :=

(
n∑
k=1

|vi|p
)1/p

(p-norm with p ≥ 1 a real number)

• ||v||∞ := max
i
|vi| (maximum norm)

Example 6.2 Let || . || be a norm on Rn. The space V = Rn×n of n × n-matrices with
coefficients in R is a real vector space. The map

|| . || : Rn×n → R defined by ||A|| := sup
v 6=0

||Av||
||v||

is called the (by the vector norm || . ||) induced matrix norm. It is possible to prove, but
not trivial, that

||A||∞ = max
i=1,...,n

n∑
j=1

|aij|

||A||1 = max
j=1,...,n

n∑
i=1

|aij|

||A||2 =
√
ρ(ATA)
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The following result shows that the induced matrix norm is actually a norm on the vector
space Rn×n.

Lemma 6.1 Let || . || be a norm on Rn resp. the induced matrix norm on Rn×n. Then

1. ||Av|| ≤ ||A|| · ||v|| for all A ∈ Rn×n and v ∈ Rn.

2. For all A ∈ Rn×n there is a vA ∈ Rn such that ||vA|| = 1 and ||AvA|| = ||A||.

3. The induced matrix norm is a norm on Rn×n.

(a) ||A|| ≥ 0 for all A ∈ Rn×n

(b) ||λ · A|| = |λ| · ||A|| for all A ∈ Rn×n and λ ∈ R
(c) ||A+B|| ≤ ||A||+ ||B|| for all A,B ∈ Rn×n

Continuous functions

A function f : Rn → Rn is continuous if small changes in the independent variables cause
only small changes in the function values. The precise ε− δ- definition is as follows:

Definition 6.3 Let f : D(⊂ Rn) → Rn be a function, a ∈ D and || . || a norm on Rn.
Then f is continuous at a if for every ε > 0 there exists δ = δ(ε) > 0 such that:

For all x ∈ D with ||a− x|| < δ ⇒ ||f(a)− f(x)|| < ε.

f is called continuous on D if f is continuous at every point a ∈ D.

The following property is much stronger.

Definition 6.4 Let f : D(⊂ Rn) → Rn be a function, a ∈ D and || . || a norm on Rn.
Then f is uniformly continuous on D if for every ε > 0 there exists δ = δ(ε) > 0 such
that:

For all x,y ∈ D with ||x− y|| < δ ⇒ ||f(x)− f(y)|| < ε.
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Example 6.3 Let C0(a, b) be the vector space of all continuous functions f on the interval
[a, b]. Then

||f ||0 := max
x∈[a,b]

|f(x)|

is a norm on C0(a, b).
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Example 6.4 Let Cn(a, b) be the vector space of all functions f on the interval [a, b]
which are continuous and have continuous derivatives up to order n. Then

||f ||n :=
n∑
k=0

max
x∈[a,b]

|f (k)(x)|

is a norm on Cn(a, b).

Thus, two functions in C1(a, b) are regarded as close together if both the functions and
their derivatives are close together, since

d(f, g) = ||f − g||1 = max
x∈[a,b]

|f(x)− g(x)|+ max
x∈[a,b]

|f ′(x)− g′(x)| < ε

implies that

|f(x)− g(x)| < ε and |f ′(x)− g′(x)| < ε for all x ∈ [a, b].
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6.2 A short look at convergence of functions

A sequence of points converge to a limit if they get physically closer and closer to it.
When do functions converge to a limit function? The simplest idea is the following:

Definition 6.5 A sequence of functions fn : [a, b] → R converges pointwise to a limit
function f : [a, b]→ R if for each x ∈ [a, b]

lim
n→∞

fn(x) = f(x).

Then f is called the pointwise limit of the sequence (fn) and we write

fn → f or lim
n→∞

fn = f.

The following requirement of convergence is stronger.

Definition 6.6 A sequence of functions fn : [a, b] → R converges uniformly to a limit
function f : [a, b] → R if for each ε > 0 there is an N = N(ε) such that for all n ≥ N
and all x ∈ [a, b]

|fn(x)− f(x)| < ε.

Then f is called the uniform limit of the sequence (fn) and we write

fn ⇒ f or unif lim
n→∞

fn = f.

The intuition about uniform convergence is crucial. Draw a tube T of vertical distance ε
around the graph of f . For n large enough, the graph of fn should lie completely in T .
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Clearly: If fn ⇒ f then fn → f .

The following standard example explains the difference of the two definitions.

Example 6.5 Define fn : (0, 1) → R by fn(x) = xn. For each x ∈ (0, 1) it is clear,
that fn(x) = xn → 0. The sequence of functions converges pointwise to the zero function
f(x) = 0.

But it does not converge uniformly! Take ε = 0.1. The point xn = n
√

0.5 ∈ (0, 1) is mapped
to 0.5 by fn.

We also see: The sequence of continuous functions fn(x) = xn on [0, 1] converges pointwise
(but not uniformly) to the noncontinuous function

f(x) =

{
0 if 0 ≤ x < 1
1 if x = 1

The pointwise limit of a sequence of continuous functions has not to be continuous.

We may ask the natural questions: Which properties of functions are preserved
under uniform convergence? The answers are found in

Reference 1: Charles Chapman Pugh, Real mathematical analysis, Spinger, Chapter 4
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We only remark the following:

Theorem 6.1 The uniform limit of continuous functions is continuous.

What is the connection between uniform convergence and the maximum norm on the
normed space C0(a, b)? Let fn, f : [a, b]→ R be continuous functions on [a, b]. If

d(fn, f) = ||fn − f ||0 = max
x∈[a,b]

|fn(x)− f(x)| → 0 then fn ⇒ f

and conversely.

Theorem 6.2 Convergence with respect to the norm || . ||0 is equivalent to uniform
convergence.

Theorem 6.3 The normed space (C0(a, b), || . ||0) is complete.
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7 Inner product spaces

Definition 7.1 Given a real vector space V . An inner product on V is a map

〈·, ·〉 : V × V → R

such that for all u, v, w ∈ V and all λ, µ ∈ R:

1. 〈u, v〉 = 〈v, u〉

2. 〈λ · u+ µ · v, w〉 = λ〈u,w〉+ µ〈v, w〉

3. 〈v, v〉 > 0 for all v 6= 0

The pair (V, 〈·, ·〉) is called an inner product (vector) space.

An inner product 〈·, ·〉 on V induces a norm on V by ||v|| :=
√
〈v, v〉. Inner product

spaces are normed spaces (and hence metric spaces).

Definition 7.2 A Hilbert space is a complete inner product space.

Example 7.1 V = Rn and 〈u,v〉 = u • v = u1v1 + · · ·+ unvn

Example 7.2 Let C0(a, b) be the vector space of all continuous functions f on the interval
[a, b]. Then

〈f, g〉 =

∫ b

a

f(t)g(t)dt

is an inner product on C0(a, b).

Example 7.3 Let V be the real vector space of all random variables X : Ω → R. Then
〈X, Y 〉 = E(X · Y ) is an inner product.


