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1 Matrices and vectors

1.1 Real Vectors

e n-dimensional space R"

e clements x,y € R" are called n-vectors

Iy n
o) Y2

:(xl To ... xn)T and y = )
Tn Yn

e scalar product and norm:

Xey = Tyt XY+ -+ Tpln
x| = \fai+tad+ta?

xey = [[x]|-|[y[l-cos £(x,y)

® X1,Xso,...,Xx € R"”
— Ifay,as,...,ar € R, then z = a;xX14asx2+- - -+apXy is called a linear combination
of X1,Xsa, ..., Xk.
— X1,Xg,..., Xy are called linearly dependent, if there exist by, b, ..., b, € R such

that byxy + boXg + - -+ + bpxy = 0 and not all b; = 0.

— X1,X2,...,X, are called linearly independent, if a linear combination of the

zero vector
b1X1+b2X2+"'+kak:0

is possible only with by = by = --- = b, = 0.

1.2 Real Matrices

ar,as, ...

a; =

n
,a, € R
ay 12 A1m a;ix Qa2 ... QAim
a21 22 Qom Q21 Q22 ... QAgm
;A = 3 y = — A = . .
an1 (07%%)) Apm ap1 Ap2 ... Apm

is called an n x m matrix.

Notation:

A e ]Rnxm



e The inverse matrix A~! of the n x n matrix A = (a;;) is defined by

10...0
0 1 0
AT A=AA1T =1, = o .
00 --- 1

e For the n x n matrix A let Aj; denote the (n—1) x (n—1) submatrix of A generated
by cancelling the ¢-th row and the j-th column of A. Then the determinant det A
is given (recursively) by

det(A) = |A| = ay;det Ay — ajadet Agp + - - + (=1)"ay, det Ay,

o det(A - B) = det(A) - det(B)

Example 1.1

11 3 3

r 2 1 2

1 -2 1 =2

0o 1 -2 -1
2 1 2 1 1 2 1 2 2 1 2 1
=1-/-2 1 -2}|-1-41 1 -2|+3-]1 -2 -2 |-3-|1 =2 1
1 -2 -1 0 -2 -1 0 1 -1 0o 1 -2

1.3 Linear transformations and matrices

Definition 1.1 A linear transformation is a map T : R™ — R"™ such that for all X,y €
R™ and all A\, n € R we have:

TA-x+p-y) =XTx) +p-T(y)

Each n x m matrix A defines a linear transformation by matrix multiplication
Ta(x) = A-x = za; + - + Tpa,.

The image of the vector x € R™ is a linear combination of the column vectors of the
matrix A.



1.4 Complex matrices and vectors

Sometimes it is helpful to allow complex matrices and vectors (matrices whose elements
are complex numbers). A complex matrix can be viewed as a combination of two real
matrices:

a1 + ibu a9 + ’iblg A A1 + Zblm
agr +iba  age +iby ... gy + iboy
A = : . .
Qn1 + anl Qn2 + an? cee Qpm Tt anm
a1 a2 ... A1m bn b12 Ce blm
a91 A2 ... Ao2m . b21 b22 Ce bgm
= ) . ) : +- )
Apl QAp2 - v G bni b2 ... bum

1.5 Matrix calculus

la. A+B=B+A 1b. AB # BA

2a. (A+B)+C=A+(B+C0C) 2b. (AB)C = A(BC)

3a. A+0=A 3b. AI=TIA = A, ( A square)
4. AB=0 2 A=0o B=0

5. AB=AC =% B=C

6. MA+B) = M+)IB XeR

7. AB+C) = AB+AC

8. (A+B)C = AC+BC

9. (A Ht = A

10. (AB)! = BlA!

11. (ADT = A

12. (A+B)T = AT+BT

13. (AB)T = BTAT

4. (AHT = (AT)!

[ a b . a1 d —b

ForA—(C d)w1thad—bc#OlsA _ad—bc<—c a)'

All these definitions and results can be generalized to vectors and matrices with complex
entries.



2 Eigenvalues and eigenvectors

2.1 Definition and determination

Definition 2.1 If A is a real (or complex) n X n matriz, then a (complex) number \ is
an eigenvalue of A if there is a nonzero (complex) vector x € C* such that

Ax = Mx

Then x is an eigenvector of A (associated with \).

Remark: If x is an eigenvector associated with the eigenvalue A, then so is ax for every
real number « # 0.

A(ax) = aAx = a(Ax) = N(ax)

How to find eigenvalues? The equation can be written as

Ax = A\x
& Ax—)2Ix = 0
& (A-2D)x = 0

This is a homogeneous linear system of equations. It has a solution x # 0 if and only if
the matrix (A — A I) is singular which means that it has determinant equal to 0.

(A — A1) singular < det(A—AI)=0
Q)
pa

pa(A) = 0 is called the characteristic equation of A. The function p4(A) is a polynomial
of degree n in A, called the characteristic polynomial of A.

Determination of the eigenvalues and eigenvectors

1. The polynomial equation p4(A) = 0 has always n complex solutions (counted with
multiplicity) and may have no real solutions. If Aj,... A, € C are the pairwise
distinct solutions (the eigenvalues of A) with the multiplicities &y, ..., k&, then the
characteristic polynomial can be written as

paA) = =N A=k (N = V).

The multiplicity k; of the zero \; is called algebraic multiplicity of the eigenvalue
Ai. Generally, the determination of the (exact) zeros is impossible for n > 5 and we
have to use numerical methods.

2. For each eigenvalue \; (1 <i <r) we compute the so called eigenspace for \;
Vi) = {xeC"|(A-X\I)x=0}.

The dimension of the vector space V();) is called the geometric multiplicity of the
eigenvalue \;.

Definition 2.2 The spectral radius of a quadratic matriz A is the real number
p(A) = max{{hl,.... [\ }.




2.2 *Generalized Eigenvectors*

To solve some interesting problems we have to generalize the notion of eigenvectors.

Definition 2.3 A vector x € C" is called generalized eigenvector of degree | € N associ-
ated to the eigenvalue A of A, if

(A-=XD)!'x =0 and (A-XD)"'x # 0.
Of course, an eigenvector is a generalized eigenvector of degree 1.

Example 2.1 The matriz

A_:

o O =
O = =
— =

has the eigenvalue 1 of (algebraic) multiplicity 3 with dim V' (1) =1 (geometric multiplic-
ity). We have:

(A—I)e1:0 (A—I)92:e1 (A—I)262:0
(A-T)e; = e; + e (A-T)%e; = e (A-T)Pe; =0

This means, that e; is an eigenvector, es a generalized eigenvector of degree 2 and ez a
generalized eigenvector of degree 3.

Theorem 2.1 Let A € C"*" be a complex (or real) matriz with
paA) = =N M= NF2 (= N

e Let \ be an eigenvalue of A of (algebraic) multiplicity l. Then there exist | linearly
independent generalized eigenvectors (of degree <1). This means:

dm{xcC"|(A-X)!)x =0} = L

o (Generalized eigenvectors associated to pairwise different eigenvalues of A are linearly
independent.

o There exists a basis p1, P2, - - -, Pn 0f C" consisting of generalized eigenvectors of A.
If P is the matriz with this basis as the columns, then

0

with A; € CE>%i for alli=1,2,...,7.



Example 2.2 Letn =2 and A = (Z 3)

1. Characteristic polynomial:

a— A\ b
pA(A) = det( c d—/\)

— 2 _ _ — — _
= N —(a+d)A+ad—bc A=A —A)
=:tr(A) =det(A)

d e
with Ay = a—;— i\/(az P det(4) .

2. For each \; (i =1,2) we solve the linear system

() 0) - G

If n =2, we have four different cases:

1A e €R, A £ N

1 2
Ezample: (2 1 >

2. A=A =\ € R with dimV()\) =2

2 0
Ezample: (0 2>

3. A=A =X\ € R with dimV()\) = 1

2 1
Ezxample: (0 2)

4. X=X, €eC—-R
cos¢p —sing

Ezxample: ( sing  coso

) with ¢ # kr



3 Diagonalization

Let A and P be n x n matrices with P invertible. Then A and P AP have the same
eigenvalues (because they have the same characteristic polynomial).

Definition 3.1 An n x n matriz A is diagonalizable if there is an invertible matriz P
and a diagonal matriz D such that

P 'AP = D.
Two natural questions:

1. Which square matrices are diagonalizable?

2. If A is diagonalizable, how do we find the matrix P?

Theorem 3.1 Ann xn matriz A is diagonalizable if and only if it has a set of n linearly
independent eigenvectors pi,...,Pn- In this case,

P AP = diag(\y,..., \n),

where P is the matrix with p1, ..., Pn as its columns, and A\, ..., \, are the corresponding
eigenvalues.

Many of the matrices encountered in economics are (real) symmetric and for these matrices
we have the following important result.

Theorem 3.2 (Spectral Theorem for symmetric matrices) If the real nxn matriz
A is symmetric (A = AT), then:

1. Alln eigenvalues Ay, ..., \, are real.
2. Eigenvectors that correspond to different eigenvalues are orthogonal.
3. There exists an orthogonal and real matriz P ( P~ = PT ) such that

PIAP = diag(\i,..., \).

The columns p1, ..., Pn of the matriz P are eigenvectors of unit length corresponding
to the eigenvalues Ay, ..., \,.
: 11 . .
Example 3.1 The matrix A = 9 4 has the eigenvalues and eigenvectors

1

)\1*2 p1<1)

1

)\2_3 p2_<2)
_ (11 -1 _ 2 - )
HenceP—(l 2),P —(_1 )and.

. B 2 —1
poar - (2 1)



4 Vector spaces

Definition 4.1 A (real) vector space is a set V together with two operations

+:VxV — V (vector addition)
R xV — 'V (scalar multiplication)

such that for all u,v,w € V and all o, 5 € R:

o u+ (v+w)=(ut+v)+w
e ut+v=v+tu

o There exists an element 0 € V', called the zero element, such that v+0=04+v =v
forallveV.

For every v € V there exists an element —v € V', called the additive inverse of v,
such that v+ (—v) = 0.

e l-v=v(1eR)
e a-(utv)=a-ut+a-v

o (a+p) v=a-v+p-v

Example 4.1 The space R™ with the well-known (componentwise) vector addition and
scalar multiplication is a real vector space.

Example 4.2 The space C" with the well-known (componentwise) vector addition and
scalar multiplication is a real vector space.

Example 4.3 The set F of functions R" — R can be given the structure of a (real)

vector space, where the operations are defined pointwise. For any f,qg: R" — R and any
a € R define:

+: FxF—=F (f+9)(x)=f(z)+g(x)
RxF—=F (- fllz)=a- f(x)



10

5 Metric spaces

Definition 5.1 Let X be an arbitrary set (for instance a real vector space). A metric d on X
s a function

d: X xX — R
such that for all x,y,z € X:

1. d(z,y) =0<=z=y
2. d(z,y) = d(y, )
3. d(z,z) < d(x,y) +d(y, z) (triangle inequality)

The pair (X, d) is called a metric space.
Let x € X andr > 0. Then
B.(z) = {yeX|dzy) <r} c X

18 called the open ball with center x and diameter r.

Example 5.1 For each set X

d(mjy)::{o ifr=uy

1 otherwise

18 a metric, the so-called discrete metric.

Example 5.2 X =R" and d(z,y) = ||z — y|| == /(21 —y1)2+ - + (¥ — Yn)?
Example 5.3 X =R" and

d(z,y) ::{ |0|~"U||+||y|| Zijz

Definition 5.2 Let (X, d) be a metric space. A sequence xi,o,... in X is called a
Cauchy sequence if for every real number € > 0 there is an integer N = N(€) such that
for all n,m > N we have

d(zp, Tm) < €

(X,d) is called a complete metric space if every Cauchy sequence in X has a limit that is
also an element in X.

Im z, = x€ X
n—o0

Example 5.4 The set of rational numbers Q with the metric d(x,y) = |x — y| is not
complete. Consider for instance the Cauchy sequence
1

xn
:z,'l:lcmdan:?—i-x—EQ.

The limit is /2 ¢ Q.

Example 5.5 The set R with the metric d(z,y) = |x — y| is complete.
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6 Normed vector spaces

6.1 Definition and examples

Definition 6.1 Given a real vector space V.. A norm onV is a real valued function
. 1:V - R
such that for all v,w € V and all A € R:
1 ||v]| >0 and ||| =0 <= v =0
2. IA- ol = [A] - [[ol]
3. v+ wl|| < ||v|| + |Jw]] (triangle inequality)

The pair (V.|| . ||) is called a normed (vector) space.

The norm || . || induces always a metric on V' by d(v,w) := ||[v — w]||. Hence, a normed
vector space is always a metric (vector) space (with this induced metric).

Definition 6.2 A Banach space is a complete normed vector space.

Example 6.1 V =R"

. 1/2
o [Vl == \Jvi4- 402 = (Z |vi|2> (Euclidean norm)
k=1

n

o ||V} = Z |vi| (Manhattan norm)
k=1

n 1/p
o [v]|, = (Z |vi|p> (p-norm with p > 1 a real number)

k=1
¢ ||V||w = max |v;| (mazimum norm)
(2
Example 6.2 Let || . || be a norm on R™. The space V.= R" " of n x n-matrices with

coefficients in R is a real vector space. The map

A
| .|| : R™™ — R defined by  ||A]| :=sup llAvi]
vzo V]|
is called the (by the vector norm || . ||) induced matriz norm. It is possible to prove, but

not trivial, that
n
1Al = max > as]
i=1,..,n
j=1

n
Al = max 3 Jay
J=1,.. i—1

1Al = Vp(ATA)
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The following result shows that the induced matriz norm is actually a norm on the vector
space R™™,

Lemma 6.1 Let || .|| be a norm on R"™ resp. the induced matriz norm on R™ ™. Then

1 ||Av]| < ||A|| - ||v]] for all A € R™"™ and v € R™.
2. For all A € R™" there is a va € R™ such that ||val| =1 and ||Av4|| = ||A]].

3. The induced matriz norm is a norm on R™ "™,

(a) ||A]|| > 0 for all A € R™"
() |IN-All =\ - ||A|| for all A € R™™ and A € R
(c) ||A+ Bl| < ||A|| + ||B]| for all A, B € R™*™

Continuous functions

A function f : R” — R” is continuous if small changes in the independent variables cause
only small changes in the function values. The precise € — §- definition is as follows:

Definition 6.3 Let f : D(C R") — R" be a function, a € D and || . || a norm on R".
Then f is continuous at a if for every e > 0 there exists 6 = §(e) > 0 such that:

For allx € D with |la—x|| <d = [|[f(a) —f(x)]| <e.

f is called continuous on D if f is continuous at every point a € D.

The following property is much stronger.

Definition 6.4 Let f : D(C R") — R" be a function, a € D and || . || a norm on R™.

Then £ is uniformly continuous on D if for every e > 0 there exists 6 = 0(¢) > 0 such
that:

For allx,y € D with ||[x —y|| <d = ||f(x) —f(y)|| <e.
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Example 6.3 Let C°(a,b) be the vector space of all continuous functions f on the interval
la,b]. Then

[1f1lo :== max [f(z)|
z€a,b]

is a norm on C°(a,b).

[1£1lo

d(f,9) =11 = allo
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Example 6.4 Let C"(a,b) be the vector space of all functions f on the interval [a,b]
which are continuous and have continuous derivatives up to order n. Then

n

£l =) max |f®) ()]
k

z€la,b
=0 [a.0)
1S @G norm on C’"(a, b).

Thus, two functions in C*(a,b) are regarded as close together if both the functions and
their derivatives are close together, since

d(f,g) =If —glh = max | f(x) — g(x)] + max |f'(x) —g'(z)] < e
implies that

|f(z) —g(x)] < €and |f'(z)—4¢'(x)| < € for all x € [a,b].
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6.2 A short look at convergence of functions

A sequence of points converge to a limit if they get physically closer and closer to it.
When do functions converge to a limit function? The simplest idea is the following:

Definition 6.5 A sequence of functions f, : [a,b] — R converges pointwise to a limit
function f : [a,b] — R if for each x € |a, b

Then f is called the pointwise limit of the sequence (f,) and we write

fo = f  or lim f,=f.
n—oo
The following requirement of convergence is stronger.
Definition 6.6 A sequence of functions f, : [a,b] — R converges uniformly to a limit

function f : [a,b] — R if for each € > 0 there is an N = N(e) such that for alln > N
and all x € [a, D]

[fulz) = f(z)] < e

Then f is called the uniform limit of the sequence (f,) and we write

fn=f or unif lim f, = f.
n—oo

The intuition about uniform convergence is crucial. Draw a tube T' of vertical distance €
around the graph of f. For n large enough, the graph of f, should lie completely in 7.
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Clearly: If f,, = f then f, — f.

The following standard example explains the difference of the two definitions.

Example 6.5 Define f, : (0,1) — R by f,.(x) = a™. For each x € (0,1) it is clear,
that f,(x) = 2™ — 0. The sequence of functions converges pointwise to the zero function
f(z) =0.

But it does not converge uniformly! Take e = 0.1. The point x, = V0.5 € (0,1) is mapped
to 0.5 by f,.

) 01 02 03 04 05 06

We also see: The sequence of continuous functions f,(x) = x™ on [0, 1] converges pointwise
(but not uniformly) to the noncontinuous function

f(x):{o if 0<z<1

1 if x=1
The pointwise limit of a sequence of continuous functions has not to be continuous.

We may ask the natural questions: Which properties of functions are preserved
under uniform convergence? The answers are found in

Reference 1: Charles Chapman Pugh, Real mathematical analysis, Spinger, Chapter /
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We only remark the following:
Theorem 6.1 The uniform limit of continuous functions is continuous.

What is the connection between uniform convergence and the maximum norm on the
normed space C°(a,b)? Let f,, f : [a,b] — R be continuous functions on [a, b]. If

d(fu, f) = lIfa = fllo = max | fu(z) = f(x)] — Othen f, = f

and conversely.

Theorem 6.2 Convergence with respect to the norm || . ||o is equivalent to uniform
convergence.

Theorem 6.3 The normed space (C°(a,b),|| . ||o) is complete.
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7 Inner product spaces

Definition 7.1 Given a real vector space V. An inner product on 'V is a map

(,y:VxV = R
such that for all uw,v,w € V and all A\, u € R:
1. (u,v) = (v, u)
A ut p-v,w) = AMu, w) + pfo, w)

2.
3. (v,v)y >0 forallv#0

The pair (V, (-,-)) is called an inner product (vector) space.

An inner product (-,-) on V induces a norm on V' by ||v|| := 4/(v,v). Inner product
spaces are normed spaces (and hence metric spaces).

Definition 7.2 A Hilbert space is a complete inner product space.
Example 7.1 V =R" and (u,v) =uev =ujv; + -+ uyv,

Example 7.2 Let C°(a,b) be the vector space of all continuous functions f on the interval
la,b]. Then

()= [ s

is an inner product on C%(a,b).

Example 7.3 Let V be the real vector space of all random variables X : Q0 — R. Then
(X,Y) =E(X-Y) is an inner product.



