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1 The Taylor formula for a function in one variable

We start with the following important fact and try to approximate functions by polyno-
mials.

Theorem 1.1 Let I be an open interval, f : I → R a (k + 1)-times continuously differ-
entiable function, k ∈ N and a ∈ I. Then for all t ∈ I we have:

f(t) =
k∑

j=0

f j(a)

j!
(t− a)j︸ ︷︷ ︸

=:Pk(t,a)

+Rk(a, t− a)

with lim
t→a

f(t)− Pk(t, a)

(t− a)k
= lim

t→a

Rk(a, t− a)

(t− a)k
= 0.

This means, that Rk(a, t− a) tends faster to 0 as the function (t− a)k if t→ a.

Definition 1.1 The polynomial (in t) Pk(t, a) is called the k-th Taylor polynomial for f at a.

Theorem 1.2 Suppose that

f ′(a) = f (2)(a) = . . . = f (k−1)(a) = 0

f (k)(a) 6= 0

1. If k is even and f (k)(a) > 0, then f has a local minimum at a.

2. If k is even and f (k)(a) < 0, then f has a local maximum at a.

3. If k is odd, then f has neither a local maximum nor a local minimum at a.
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2 Differentiable functions of several variables

2.1 Partial derivative

Definition 2.1 Let y = f(x) = f(x1, . . . , xi, . . . , xn) be a function. For i = 1, 2, . . . , n
the i-th partial derivative of f is defined by

∂f

∂xi
(x) = fxi

(x) = lim
t→0

f(x + tei)− f(x)

t

The function f is called 2-times (k)-times partially differentiable, if all partial derivatives
of second order

fxixj
= (fxi

)xj
=

∂

∂xj

(
∂f

∂xi

)
(1 ≤ i, j ≤ n)

exist.

The following fact is sometimes important:

Theorem 2.1 If all partial derivatives of second order exist and are continuous functions,
then fxixj

= fxjxi
.

Definition 2.2 Let a = (a1, a2, . . . , an) ∈ D ⊂ Rn be a point in the domain of f . The
vector

∇f(a) =


fx1(a)
fx2(a)

...
fxn(a)


is called gradient of f in a. The n× n matrix

∇2f(a) =


fx1x1(a) fx1x2(a) . . . fx1xn(a)
fx2x1(a) fx2x2(a) . . . fx2xn(a)

...
...

...
...

fxnx1(a) fxnx2(a) . . . fxnxn(a)


is called Hesse matrix of f in a.
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Definition 2.3 Let a = (a1, a2, . . . , an) ∈ D ⊂ Rn be a point in the domain of a map f :

f : D −→ Rm

x =


x1
x2
...
xn

 7−→ f(x) =


f1(x)
f2(x)

...
fm(x)

 =


f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)

...
fm(x1, x2, . . . , xn)


The m× n matrix

Df(a) =



∂f1
∂x1

(a)
∂f1
∂x2

(a) . . .
∂f1
∂xn

(a)

...
...

. . .
...

∂fm
∂x1

(a)
∂fm
∂x2

(a) . . .
∂fm
∂xn

(a)


is called the Jacobi matrix of f in a.
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2.2 The differential and differentiable functions

Definition 2.4 The (total) differential df of f is defined by

df = df(x, dx) = fx1(x) · dx1 + · · ·+ fxn(x) · dxn

Definition 2.5 Let D ⊂ Rn be an open set, a and x = a+dx ∈ D. A function f : D → R
is called (totally) differentiable in a, if

f(x) = f(a) +∇f(a) • dx +R(a, dx)︸ ︷︷ ︸
∗

and lim
x→a

R(a, dx)

||x− a||
= 0︸ ︷︷ ︸

?

• The function t(x) = f(a) +∇f(a) • dx is called tangent hyperplane of f in a:

t(x) = f(a) +∇f(a) • (x− a) = f(a) + df(a, dx)

• A differentiable function can be approximated (very well) by a linear function and
the claim ? is essential.

• If we use the notation ∆f(a, dx) = f(a + dx) − f(a) for the real change of f and
x = a + dx we get

∆f(a, dx) = df(a, dx) +R(a, dx)
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2.3 The directional derivative

Definition 2.6 Let v ∈ Rn be a vector. The limit (if it exists)

∂vf(a) = lim
t→0

f(a + tv)− f(a)

t

is called the derivative of f in a along v.

If v is a vector of length 1 (unit vector) then ∂vf(a) is called the directional derivative of f
in a in direction v.

Theorem 2.2 Let D be open, f differentiable on D and v ∈ Rn with ||v|| = 1. Then

∂vf(a) = ∇f(a) • v =
n∑

i=1

fxi
(a) vi

Proof: Let f be totally differentiable in a, then

f(x) = f(a) +∇f(a) • (x− a) +R(a, dx) und lim
x→a

R(a, dx)

||x− a||
= 0

With x = a + tv we get:

f(x)− f(a) = f(a + tv)− f(a) = ∇f(a) • tv +R(a, dx).

Hence:

∂vf(a) = lim
t→0

f(a + tv)− f(a)

t

= lim
t→0

∇f(a) • tv +R(a, dx)

t

= ∇f(a) • v + lim
t→0

R(a, dx)

t

= ∇f(a) • v.

2
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Theorem 2.3 (Properties of the gradient ∇f(a))

• The gradient of f in a is orthogonal to the level set

L = Lf(a) = { x ∈ Rn | f(x) = f(a) }

(shortly f(x) = f(a)).

• The gradient of f in a points in the direction of the greatest rate of increase of the
function f in a.

Proof: For v ∈ Rn with ||v|| = 1 we have

∂vf(a) = ∇f(a) • v

= ||∇f(a)|| · ||v|| · cos∠(∇f(a),v)

= ||∇f(a)|| · cos∠(∇f(a),v)

If v is a tangent vector to a curve in the level set f(x) = f(a) then ∂vf(a) = 0 and
cos∠(∇f(a),v) = 0 or ∠(∇f(a),v) = π/2.

Because ||∇f(a)|| > 0 is constant and −1 ≤ cos∠(∇f(a),v) ≤ 1 we see that

• ∂vf(a) is maximal if cos∠(∇f(a),v) = 1 or ∠(∇f(a),v) = 0 (v and ∇f(a) have
the same direction),

• ∂vf(a) is minimal if cos∠(∇f(a),v) = −1 or ∠(∇f(a),v) = π (v and ∇f(a) have
the opposite direction).

2
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Sometimes it is useful to understand

∂v = v1
∂

∂x1
+ · · ·+ vn

∂

∂xn

as a so called differential operator. We denote by C l(D,R) the set of all l-times continu-
ously differentiable functions f : D → R. Then

∂v : C l(D,R) → C l−1(D,R)

f(x) 7→ v1
∂

∂x1
f(x) + · · ·+ vn

∂

∂xn
f(x) = ∇f(x) • v.

Then we can recursively define the operators ∂lv by

∂lvf(x) := ∂v(∂l−1v f(x))

We get:

∂vf(x) =
n∑

i=1

fxi
(x) · vi

∂2vf(x) = ∂v

(
n∑

i=1

fxi
(x) · vi

)

=
n∑

i=1

∂v (fxi
(x)) · vi

=
n∑

i=1

(
n∑

j=1

fxixj
(x) · vj

)
· vi

=
n∑

i,j=1

fxixj
(x) · vi · vj

= vT ∇2f(x) v.

Hence

∂2vf(x) = vT

 fx1x1(x) . . . fx1xn(x)
...

...
...

fxnx1(x) . . . fxnxn(x)

 v.
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2.4 The chain rule

Let D ⊂ Rn be open and f : D → R continuously partially differentiable, I ⊂ R and

x : I → D ⊂ Rn with x(t) =


x1(t)
x2(t)

...
xn(t)


with differentiable coordinate functions xi(t) für 1 ≤ i ≤ n. The image x(I) ⊂ D ⊂ Rn is
a curve and for all t ∈ I the vector

ẋ(t) = lim
dt→0

1

dt
(x(t+ dt)− x(t)) =


ẋ1(t)
ẋ2(t)

...
ẋn(t)


is the so called tangent vector at the curve x(I) in the point x(t).
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Theorem 2.4 The composition f ◦ x : I → R where f ◦ x(t) = f(x(t)) is differentiable
with

d

dt
f(x(t)) = ∇f(x(t)) • d

dt
x(t)

Expansion:

d

dt
f(x(t))

= ∇ f(x(t)) • d
dt

x(t)

=
d

dt
f(x1(t), x2(t), . . . , xn(t))

= fx1(x(t))
d

dt
x1(t) + fx2(x(t))

d

dt
x2(t) + · · ·+ fxn(x(t))

d

dt
xn(t)

= fx1(x(t)) ẋ1(t) + fx2(x(t)) ẋ2(t) + · · ·+ fxn(x(t)) ẋn(t)
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2.5 Implicit function theorem

Notation: (x, y) = (x1, . . . , xn, y) ∈ Rn+1

Theorem 2.5 Let M ⊂ Rn+1 be open, φ : M → R continuously partially differentiable
and a = (a1, . . . , an, an+1) ∈ M with φ(a) = 0 and φy(a) 6= 0. Then there is a neighbour-
hood U of (a1, . . . , an) and an open interval I ⊂ R with an+1 ∈ I such that:

1. R := { (x, y) ⊂ Rn+1 | x ⊂ U and y ∈ I } ⊂ M and φy(x) 6= 0 for all (x, y) ∈ R.

2. For each x ∈ U there exists exactly one y ∈ I with φ(x, y) = 0. The function
y := f(x) is partially differentiable ( f : U → I ) and

φ(x, y) = φ(x, f(x)) = 0 −→ ∂

∂xi
f(x) = −

∂

∂xi
φ(x, y)

∂

∂y
φ(x, y)

a2

x2

a1 x1

1x x2φ( , ) = 0

α

x2

a1 x1

1x x2φ( , ) = 0

a1= f(   )a2

U
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Let y := f(x) for all x ∈ U the function above. Then

φ(x, y) = φ(x, f(x)) = 0

By the chain rule we get:

0 =
∂

∂xi
0 =

∂

∂xi
φ(

x︷ ︸︸ ︷
x1, . . . , xn,

y︷ ︸︸ ︷
f(x1, . . . , xn))

=
n∑

j=1

∂

∂xj
φ (x, y) · ∂xj

∂xi
+

∂

∂y
φ(x, y) · ∂y

∂xi

=
∂

∂xi
φ(x, y) · ∂xi

∂xi
+

∂

∂y
φ(x, y) · ∂y

∂xi

=
∂

∂xi
φ(x, y) +

∂

∂y
φ(x, y) · ∂

∂xi
f(x)

Solving this equation for ∂
∂xi

f(x) proves the second part of the Theorem.

2

Example 2.1 We could prove that if φ is twice continuously differentiable and φ(x, y)
defines y as a twice differentiable function of x, then

y′′ = −φxx + 2φxy · y′ + φyy · (y′)2

φy

.
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3 The general Taylor formula

Theorem 3.1 Let D ⊂ Rn be an open and convex set and f : D → R a (k + 1)-times
continuously differentiable function, a,x ∈ D and v = dx = x− a. Then we have:

f(a + v) = f(x) =
k∑

j=0

1

j!
∂jvf(a)︸ ︷︷ ︸

=:Pk(x,a)

+Rk(a,v)

with lim
x→a

f(x)− Pk(x, a)

(x− a)k
= lim

x→a

Rk(a,v)

(x− a)k
= 0.

The polynomial (in x) Pk(x, a) is called the k-th Taylor polynomial for f at a.

Proof:

We define the function h in one real variable t by

h(t) := f(a + tv) = f(a1 + tv1, . . . , an + tvn)

By using the Taylor formula for h at t = 0 we get

h(t) =
k∑

j=0

hj(0)

j!
tj +Rk(0, t)

and

f(x) = f(a + v) = h(1) =
k∑

j=0

hj(0)

j!
+Rk(0, 1)

By using the chain rule we see that h(j)(0) = ∂jvf(a), for instance:

h(0) = f(a)

h′(t) = ∇f(a + tv) • v h′(0) = ∇f(a) • v = ∂vf(a)

h′′(t) = vT ∇2f(a + tv) v h′′(0) = vT ∇2f(a) v = ∂2vf(a)

2
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The Taylor formula can also be given in the following form.

Theorem 3.2 Let D ⊂ Rn be an open and convex set and f : D → R an (k + 1)-times
continuously differentiable function, a,x ∈ D and v = dx = x− a. Then we have:

f(a + v) =
k∑

j=0

1

j!
∂jvf(a) +

1

(k + 1)!
∂k+1
v f(a + cv)

for some real number c ∈ (0, 1). This means that the point a+cv lies between a and a+v
in the convex set D.

Example 3.1 The 1-st Taylor polynomial of f in a is the well-known tangent hyperplane:

P1(x, a) = f(a) +∇f(a) • (x− a) = f(a) +
n∑

j=1

fxj
(a)(xj − aj)

If f is 1-times continuously differentiable on a convex set then

f(a + v) = f(a) +∇f(a + cv) • v = f(a) +
n∑

j=1

fxj
(a + cv)(xj − aj)

for some c ∈ (0, 1).

Example 3.2 The 2-nd Taylor polynomial of f in a is:

P2(x, a) = f(a) +∇ f(a) • (x− a) +
1

2
(x− a)T ∇2f(a) (x− a)

If f is 2-times continuously differentiable on a convex set then

f(a + v) = f(a) +∇ f(a) • v +
1

2
vT ∇2f(a + cv) v

for some c ∈ (0, 1).
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4 Local minima in open sets

4.1 Introduction

Consider a function f : Rn → R. Let D be some open subset of Rn and x∗ ∈ D a local
minimum of f over D. This means that there exists an ε > 0 such that for all x ∈ D
satisfying |x− x∗| < ε we have f(x∗) ≤ f(x).

The term ,,unconstrained” usually refers to the situation where all points x sufficiently
near x∗ are in D. This is automatically true if D is an open set.

4.2 First-order necessary condition for optimality

Suppose that f is a continuously differentiable function and x∗ ∈ D is a local minimum.

Pick an arbitrary vector (direction) v ∈ Rn. Since we are in the unconstrained case, we
have x∗ + tv ∈ D for all t with −t0 < t < t0.

For the fixed v we can consider f(x∗ + tv) as a function of the real parameter t and we
define

g(t) := f(x∗ + tv).

Since x∗ is a minimum of f , it is clear that t = 0 is a minimum of g, such that g′(0) = 0.
We will try to re-express this result in terms of the original function f :

g(t) = f(x∗ + tv)

g′(t) = ∇f(x∗ + tv) • v

and

0 = g′(0) = ∇f(x∗) • v

Since v was arbitrary, we get the first-order necessary condition for optimality:

x∗ is a local minimum =⇒ ∇f(x∗) = 0
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4.3 Second-order necessary condition for optimality

We assume, as before, that x∗ ∈ D is a local minimum of f . For an arbitrary vector v let
g(t) = f(x∗ + tv). Then

g′(t) = ∇f(x∗ + tv) • v =
n∑

i=1

fxi
(x∗ + tv) · vi

g′′(t) =
n∑

i=1

(
d

dt
fxi

(x∗ + tv)

)
· vi

=
n∑

i=1

(
n∑

j=1

fxixj
(x∗ + tv) · vj

)
· vi

=
n∑

i,j=1

fxixj
(x∗ + tv) · vi · vj.

and

g′′(0) =
n∑

i,j=1

fxixj
(x∗) · vi · vj = vT ∇2f(x∗) v.

If x∗ is a local minimum of f then g(t) has a local minimum in t = 0. Hence

0 ≤ g′′(0) = vT ∇2f(x∗) v = (v1 v2 . . . vn)

 fx1x1(x
∗) . . . fx1xn(x∗)

...
...

...
fxnx1(x

∗) . . . fxnxn(x∗)




v1
v2
...
vn


for all v ∈ Rn. We conclude that the matrix ∇2f(x∗) must be postive semidefinite and
this is the second-order necessary condition for optimality:

x∗ is a local minimum =⇒ ∇2f(x∗) is positive semidefinite


