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1 The Taylor formula for a function in one variable

We start with the following important fact and try to approximate functions by polyno-

mials.

Theorem 1.1 Let I be an open interval, f : I — R a (k+ 1)-times continuously differ-
entiable function, k € N and a € I. Then for allt € I we have:

o tig ‘
flt) = Z fj(! ) (t —a)’ +Ry(a,t — a)

J/

=:Py(t,a)

with lim (t) = Pi(t,a) = li —Rk(a’t —a)

t—a (t — a)k tg% (t — a)k =0

This means, that Ry(a,t — a) tends faster to 0 as the function (¢ — a)* if t — a.

Definition 1.1 The polynomial (int) Py(t,a) is called the k-th Taylor polynomial for f at a.

Theorem 1.2 Suppose that
fl@) = O = o = J4a) = 0
f®(a) # 0
1. If k is even and f*)(a) > 0, then f has a local minimum at a.
2. If k is even and f®)(a) < 0, then f has a local mazimum at a.

3. If k is odd, then f has neither a local maximum nor a local minimum at a.



2 Differentiable functions of several variables

2.1 Partial derivative

Definition 2.1 Let y = f(x) = f(z1,...,24,...,2,) be a function. Fori = 1,2,...,n
the i-th partial derivative of f is defined by

(%) = fu(x) = lim

ox; t—0 t

The function f is called 2-times (k)-times partially differentiable, if all partial derivatives
of second order

exist.

The following fact is sometimes important:

Theorem 2.1 If all partial derivatives of second order exist and are continuous functions,
then fxlxj = f:vjxl

Definition 2.2 Let a = (ay,as,...,a,) € D C R™ be a point in the domain of f. The
vector

fui(a)
Vi(a) - fos(a)
fen (@)

is called gradient of f in a. The n X n matrix

forz (@) fozs(@) oo frm,(a)
sz(a) _ fxzm (a) f:czxz (a) . fwzxn (a)
fxnzl (a) fInIZ (a) R fxnmn (a)

15 called Hesse matriz of f in a.



Definition 2.3 Let a = (ay,aq,...,a,) € D C R™ be a point in the domain of a map £:

f:D — R™

T fi(x) filwy, mg, . )
< — i) . f(X) _ fQ(X) _ f2<$1, 132., Ce 71'”)

Tp fm(x) fm(xlax% 7xn)

The m X n matriz

N N1 N

8_x1(a) a—@(a) o (a)
Df(a) =

0 fm Afm Ifm

1s called the Jacobi matriz of £ in a.




2.2 The differential and differentiable functions

Definition 2.4 The (total) differential df of f is defined by

df = df(x,dx) = fu,(x)-dxy+ -+ fo,(X) - dzx,

Definition 2.5 Let D C R"™ be an open set, a and x = a+dx € D. A function f : D — R
is called (totally) differentiable in a, if

f(x) = f(a)+ Vf(a)edx+ R(a, dxz and )l(l_I)IEl‘ —ﬁ)((aLd;? -0

*

-~

e The function t(x) = f(a) + Vf(a) e dx is called tangent hyperplane of f in a:

tx) = fla)+Vf(a)e(x—a) = f(a)+df(a,dx)

e A differentiable function can be approximated (very well) by a linear function and
the claim « is essential.

e If we use the notation Af(a,dx) = f(a+ dx) — f(a) for the real change of f and
X = a+ dx we get

Af(a,dx) = df(a,dx)+ R(a,dx)



2.3 The directional derivative

Definition 2.6 Let v € R"™ be a vector. The limit (if it exists)

ot - TEE) S

t—0 t

1s called the deriwative of f in a along v.

If v is a vector of length 1 (unit vector) then O f(a) is called the directional derivative of f

i a in direction v.

Theorem 2.2 Let D be open, f differentiable on D and v € R"™ with ||v|| = 1. Then

Ovf(a) = Vf(a)ev = Z fu(a) v,

Proof: Let f be totally differentiable in a, then
F(x) = f(a)+ Vf(a)s (x—a) + Rla,dx) und lim 1028

With x = a + tv we get:
fx)=fla) = fla+tv)—f(a) = Vf(a)etv+ R(a dx).

Hence:

i) — i L) (@)

t—0 t

— lim Vf(a)etv+ R(a,dx)

t—0 t

= Vf(a)ev+lim Rla, dx)

t—0 t

= Vf(a)ev.

=0

x—a [[x —al|



Theorem 2.3 (Properties of the gradient V f(a))

e The gradient of f in a is orthogonal to the level set
L = Liay = {xeR"|f(x)=f(a) }

(shortly f(x) = f(a)).

e The gradient of f in a points in the direction of the greatest rate of increase of the
function f in a.

Proof: For v € R” with ||v|| = 1 we have

Oy f(a) = Vf(a)ev
= |IVi@Il-lv][ - cos £(V f(a),v)

= |IVf(@)l - cos £(V[(a),v)
If v is a tangent vector to a curve in the level set f(x) = f(a) then Oy f(a) = 0 and
cos Z(Vf(a),v) =0or L(Vf(a),v)=m/2.
Because ||V f(a)|| > 0 is constant and —1 < cos Z(V f(a),v) < 1 we see that

e O,f(a) is maximal if cos Z(V f(a),v) = 1 or Z(Vf(a),v) =0 (v and V f(a) have
the same direction),

e O, f(a) is minimal if cos Z(Vf(a),v) = —1 or £(V f(a),v) =7 (v and V f(a) have
the opposite direction).



Sometimes it is useful to understand

0. — i_|_..._|_ i
Vo UlaZL’l U”@mn

as a so called differential operator. We denote by C'(D,R) the set of all I-times continu-
ously differentiable functions f : D — R. Then

oy : C(D,R) — C'"*(D,R)
)

0
FO) = v f0 4 g f() = VG0 ev.

Then we can recursively define the operators 9! by
Oy f(x) = 0(0, " f(x))

We get:

Hence



2.4 The chain rule
Let D C R™ be open and f : D — R continuously partially differentiable, I C R and

ZL‘l(t)

T n : . 232(15)
x: I —-DCR" with x(t) = ,

xp(t)

with differentiable coordinate functions z;(t) fiir 1 <i <mn. The image x(/) C D C R" is
a curve and for all ¢t € I the vector

i1 (1)
To(t
() = m - (x(t -+ de) — x(1)) = ()
T (t)

is the so called tangent vector at the curve x(I) in the point x(¢).

. 1
x(t) = }lln)}) pr (x(t + dt) — x(t))

x(t +dt) — x(t)

1
p (x(t+dt) —x(t))
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Theorem 2.4 The composition fox : 1 — R where fox(t) = f(x(t)) is differentiable

with
SR = VAD) 0 0 x(0)
Expansion:
& Fx(0)
=V Sx(0) o 5 (0
= @), mal0), )
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2.5 Implicit function theorem

Notation: (x,y) = (21,...,7,,y) € R*™!

Theorem 2.5 Let M C R be open, ¢ : M — R continuously partially differentiable
and a= (ay,...,an, ant1) € M with ¢p(a) =0 and ¢ (a) # 0. Then there is a neighbour-
hood U of (a1, ...,a,) and an open interval I C R with a,1 € I such that:

1. Re={(x,y) CR"™ |xCUandyel} C M and ¢,(x) # 0 for all (x,y) € R.

2. For each x € U there exists exactly one y € I with ¢(x,y) = 0. The function
y = f(x) is partially differentiable ( f : U — I ) and

0 P(x,9)
o(x,y) = d(x,f(x) =0 — ai flx) = _agi
' 8_ ¢(X7 y)

P, %) =0

X2

& =f(a) |

X1

c &
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Let y := f(x) for all x € U the function above. Then

ox,y) = ox f(x) =0
By the chain rule we get:

< Y

0 = aiio - aii ST )
_ G k) G+ o o) 5
= aii ¢(X,y)-g§z+§y (X,y)-gi
— g o)+ 0xn) 5 S

Solving this equation for % f(x) proves the second part of the Theorem.
O

Example 2.1 We could prove that if ¢ is twice continuously differentiable and ¢(x,y)
defines y as a twice differentiable function of x, then

"o ¢m¢ + 2¢fcy : y/ + ¢yy ) (y/)2
y = — .
by
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3 The general Taylor formula

Theorem 3.1 Let D C R" be an open and convex set and f : D — R a (k + 1)-times
continuously differentiable function, a,x € D and v = dx = x — a. Then we have:

flatv) = f00 = 3 5 8f @) +Rulay)

- P
with lim 1) k(x,2) = lim By (a, V) =
x—a (X — a)’f x—a (x — a)k

The polynomial (in x) Py(x,a) is called the k-th Taylor polynomial for [ at a.

Proof:

We define the function h in one real variable ¢ by
h(t) = fla+tv) = flag+tvy, ..., a, + tv,)

By using the Taylor formula for i at t = 0 we get

ko1
ht) = Z hj(!()) t/ + Ri(0,1)

and

fx) = fla+v) = h1) = 3

R'(t) = vI Vif(a+tv)v  Rh'(0) = vI Vif(a)v = 02f(a)
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The Taylor formula can also be given in the following form.

Theorem 3.2 Let D C R"™ be an open and convez set and f: D — R an (k + 1)-times
continuously differentiable function, a,x € D and v = dx = x — a. Then we have:

LA 1
flatv) =Y (@) +

J=0

m Q’f*lf(a + CV)

for some real number ¢ € (0,1). This means that the point a+ cv lies between a and a+v
in the convex set D.

Example 3.1 The 1-st Taylor polynomial of f in a is the well-known tangent hyperplane:
Pi(x,a) = f(a) +Vf(a) e (x—a) = f(a)+ ) fo,(a)(z; —ay)
j=1

If f is 1-times continuously differentiable on a convex set then
flatv) = fl@)+Vfa+ev)ev = fla)+ Y folatev)(z; —ay)
j=1

for some c € (0,1).
Example 3.2 The 2-nd Taylor polynomial of f in a is:
By(x,a) = f(a)+V f(a)e(x—a)+ % (x—a)" V*f(a) (x-a)
If f is 2-times continuously differentiable on a convex set then
fa+v) = f@)+V f(a) ev+2vT Vif(a+tev) v

2

for some ¢ € (0,1).
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4 Local minima in open sets

4.1 Introduction

Consider a function f : R® — R. Let D be some open subset of R” and x* € D a local
minimum of f over D. This means that there exists an ¢ > 0 such that for all x € D
satisfying |x — x*| < € we have f(x*) < f(x).

The term ,,unconstrained” usually refers to the situation where all points x sufficiently
near x* are in . This is automatically true if D is an open set.
4.2 First-order necessary condition for optimality

Suppose that f is a continuously differentiable function and x* € D is a local minimum.

Pick an arbitrary vector (direction) v € R". Since we are in the unconstrained case, we
have x* +tv € D for all t with —ty <t < ty.

For the fixed v we can consider f(x* + tv) as a function of the real parameter ¢ and we
define

g(t) = f(xX*+tv).

Since x* is a minimum of f, it is clear that ¢t = 0 is a minimum of g, such that ¢’(0) = 0.
We will try to re-express this result in terms of the original function f:

g(t) = f(x"+tv)

git) = VX +tv)ev

and

Since v was arbitrary, we get the first-order necessary condition for optimality:

x* is a local minimum = Vf(x*) = 0
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4.3 Second-order necessary condition for optimality

We assume, as before, that x* € D is a local minimum of f. For an arbitrary vector v let
g(t) = f(x* +tv). Then
Jgit) = Vi +tv)ev = Z Jo,(XT V) -y,
i=1

n

g0 = 3 (%fm(x* +tv>)

=1
= > <Z faia; (X5 4 1V) .vj> g
=1 j=1

S AR

ij—1
and
g"(0) = Z faiw,(X) 05 -0y = vI V2 f(x*) v.
ij—1

If x* is a local minimum of f then g¢(¢) has a local minimum in ¢ = 0. Hence

Jore(X°) o oy, (X7) Z;
0 <g"0) = vIV2f(x)v = (vivg ... v,) : : :
Joner (X)) oo e, (X7) v,

for all v € R™. We conclude that the matrix V2 f(x*) must be postive semidefinite and
this is the second-order necessary condition for optimality:

x* is a local minimum == V?f(x*) is positive semidefinite




