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1 Brouwer’s fixed point theorem

Theorem 1.1 (Brouwer’s fixed point theorem) Let D be a nonempty compact (closed
and bounded) convex set in Rn and F : D −→ D a continuous self mapping.

Then F has (at least) one fixed point x∗ in D.

This means, x∗ = (x∗1, . . . , x
∗
n)T ∈ D is a point such that

F1(x
∗) = F1(x

∗
1, . . . , x

∗
n) = x∗1

...

Fn(x∗) = Fn(x∗1, . . . , x
∗
n) = x∗n

This shows, that Brouwer’s fixed point theorem can be used to prove the existence of a
solution of a system of equations, if

• F is a self mapping from a suitable (compact and convex) domain D into itself and

• F is continuous.

Example 1.1 A convex and compact subset of R must be a closed and bounded interval
[a, b]. Brouwer’s theorem asserts that a continuous function F : [a, b] → [a, b] must have
a fixed point. Obviously!? Try to draw a graph of a continuous function starting in any
point at the left side of the square and ending at any point on the right side of the square,
which does not intersect the diagonal.
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There are a lot of economic applications of Brouwer’s theorem where D is the so called
standard unit simplex and we will restrict our further attention to this case.

Definition 1.1 The standard unit simplex ∆n−1 ⊂ Rn of dimension n− 1 is defined by

∆n−1 = { x = (x1, . . . , xn)T ∈ Rn | ∀ xi ≥ 0, x1 + · · ·+ xn = 1 }

The set ∆n−1 is (n − 1)-dimensional, convex and compact. If we try to apply Brouwer’s
fixed point theorem to a given continuous function F defined on ∆n−1, it is only neces-
sary to check that F is a self mapping. This means that you have to show that for all
(x1, . . . , xn) with

• x1, . . . , xn ≥ 0 and

• x1 + · · ·+ xn = 1

one has

• F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn) ≥ 0 and

• F1(x1, . . . , xn) + · · ·+ Fn(x1, . . . , xn) = 1.
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2 Application:

Pure exchange economy and equilibrium prices

We are looking at a system of m consumers, each of whom is initially endowed with fixed
quantities of n different commodities. The consumers merely engaged in exchange.

Trade takes place, because each consumer wishes to aquire a bundle of commodities that
is preferred to the initial endowment.

Assume a price vector p = (p1, . . . , pn) is announced. We see that one unit of commodity
j has the same value as pj/pi units of commodity i. For any commodity bundle c =
(c1, . . . , cn)

p • c =
n∑

i=1

pici = p1c1 + · · ·+ pncn

is the market value of this bundle.

We use the following notation. For each consumer j and commodity i:

• wj
i is j’s initial endowment of i,

• xj
i (p) is j’s final demand when the price vector is p,

• wi =
m∑

j=1

wj
i is the total endowment for i,

• xi(p) =
m∑

j=1

xj
i (p) is the aggregate demand for i.

• If we add the demands of all consumers for each commodity i and substract the total
initial endowment of i, then we get the so called excess demand gi(p) = xi(p)−wi

of commodity i.

The total value of consumer j’s initial endowment at price p is

m∑

i=1

piw
j
i

and the budget constraint for j

m∑

i=1

pix
j
i (p) =

m∑

i=1

piw
j
i .

Summing all budget constraints of the consumers we get Walra’s Law

m∑

i=1

pixi(p) =
m∑

i=1

piwi ⇔
m∑

i=1

pi ( xi(p)− wi )︸ ︷︷ ︸
=gi(p)

= 0
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Question:

Is it possible to find a price vector p∗ = (p∗1, . . . , p
∗
n), a so called equilibrium price, which

ensures that the aggregate demand does not exceed the corresponding aggregate endow-
ment:

∀i = 1, . . . , n : xi(p
∗) ≤ wi ⇔ gi(p

∗) ≤ 0?

The rule of free goods

In this case (using Walra’s Law) we see

m∑

i=1

p∗i︸︷︷︸
≥0

( xi(p
∗)− wi )︸ ︷︷ ︸
≤0︸ ︷︷ ︸

≤0

= 0

and

∀i = 1, . . . , n : p∗i ( xi(p
∗)− wi ) = 0.

We have proved the rule of free goods: If any commodity is in excess supply in equilib-
rium, its price must be 0:

xi(p
∗) < wi ⇒ p∗i = 0.

If there is a commodity for which the market demand is strictly less than the total stock,
then the equilibrium price must be 0.

Relative prices and ∆n−1

It is rather obvious that only price ratios, or relative prices, matter in this economy. Hence
we can restrict our attention to normalized prizes p with p1 + · · · + pn = 1 or shortly
p ∈ ∆n−1. Suppose that the functions g1, . . . , gn are continuous on ∆n−1 and assume that
for all p ∈ ∆n−1:

n∑

i=1

pi gi(p) = 0

and the modified question is:

Is there a vector p∗ ∈ ∆n−1 such that gi(p
∗) ≤ 0 for all i = 1, . . . , n?

We shall use Brouwer’s fixed point theorem to prove the existence. To do so, we construct
a continuous mapping from ∆n−1 into itself for which any fixed point gives equilibrium
prices.

• Consider first the mapping p′ = F(p) defined componentwise by

p′i = pi + gi(p).

This simple price adjustment mechanism has a certain economic appeal. It maps
the old price pi to the new adjusted price pi + gi(p) in such a way, that if the excess
demand gi(p) is positive, so that the market demand exceeds the total available
endowment, then the price will increase. But unfortunatly, this mapping is not a
self mapping of ∆n−1, generally p′1 + · · ·+ p′n 6= 1.
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• Consider now the modified mapping p′ = F(p) defined componentwise by

p′i =
1

d(p)
( pi + max{0, gi(p)} ) with d(p) = 1 +

n∑

k=1

max{0, gi(p)}.

This map F is a continuous self mapping of ∆n−1 into itselfe. By Brouwer’s fixed
point theorem there is a fixed point p∗ ∈ ∆n−1. This means that for all i = 1, . . . , n
we have

p∗i =
1

d(p∗)
( p∗i + max{0, gi(p∗)} )

or

p∗i · (d(p∗)− 1)︸ ︷︷ ︸
≥0

= max{0, gi(p∗)}

Suppose that d(p∗) > 1. Then for all i with p∗i we have max{0, gi(p
∗)} > 0 or

gi(p
∗) > 0 and

∑n
i=1 p

∗
i gi(p

∗) > 0. This is a contradiction to Walra’s Law.

Hence d(p∗) = 1 and we see that max{0, gi(p
∗)} = 0 or gi(p

∗) ≤ 0 for all i =
1, . . . , n.

p∗ ∈ ∆n−1 is an equilibrium price vector!
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3 Proof of Brouwer’s fixed point theorem

Sperner’s Lemma and
Brouwer’s Fixed-Point Theorem
Joel H. Shapiro
April 12, 2015

Abstract. These notes present a proof of the Brouwer Fixed-Point
Theorem using a remarkable combinatorial lemma due to Emanuel
Sperner. The method works in RN for all N, but for simplicity we’ll
restrict the discussion to N = 2.

Overview. In dimension two the Brouwer Fixed-Point Theorem states
that every continuous mapping taking a closed disc into itself has a
fixed point. Here we’ll give a proof of this special case of Brouwer’s
result, but for triangles, rather than discs; closed triangles are home-
omorphic to closed discs (Exercise 2.1 below) so our result will be
equivalent to Brouwer’s. We’ll base our proof on an apparently un-
related combinatorial lemma due to Emanuel Sperner, which—in
dimension two—concerns a certain method of labeling the vertices
of “regular” decompositions of triangles into subtriangles. We’ll give
two proofs of this special case of Sperner’s Lemma, one of which
has come to serve as a basis for algorithms designed to approximate
Brouwer fixed points.

1 Sperner’s Lemma

Throughout this discussion, “triangle” means “closed triangle,” the
convex hull of three points in Euclidean space that don’t all lie on
the same straight line. A “regular decomposition” of a triangle is a
collection of subtriangles whose union is the original triangle and for
which the intersection of any two distinct subtriangles is either a ver-
tex or a complete common edge. Figure 1 below illustrates a regular
and an irregular decomposition of a triangle into subtriangles.

Figure 1: Regular (left) and irregular
(right) decomposition of a triangle.

A “Sperner Labeling” of the subvertices (the vertices of the sub-
triangles) in a regular decomposition is an assignment of labels “1”,
“2”, or “3” to each subvertex in such a way that:

(a) No two vertices of the original triangle get the same label (i.e., all
three labels get used for the original vertices),

(b) Each subvertex lying on an edge of the original triangle gets
labels drawn only from the labels of that edge, e.g. subvertices
on the original edge labeled “1” and “2” (henceforth: a “{1, 2}
edge”) get only the labels “1” or “2”, but with no further restric-
tion. Subvertices lying in the interior of the original triangle can
be labeled without any restrictions.



8

sperner and brouwer 2

We’ll call a subtriangle whose vertices have labels “1”, “2”, and “3”
a completely labeled subtriangle. Figure 2 shows a triangle regularly
decomposed into Sperner-labeled subtriangles, five of which (the
shaded ones) are completely labeled.

Figure 2: A Sperner-labeled regular
decomposition into subtriangles

Theorem 1.1 (Sperner’s Lemma for dimension 2). In a Sperner-labeled
regular decomposition of a triangle there is at least one completely labeled
subtriangle; in fact, there is an odd number of them.

The one dimensional case. Here, instead of triangles split “regu-
larly” into subtriangles, we just have a closed finite line segment split
into closed sub-segments, any two of which intersect in at most a
common endpoint. One end of the original segment is labeled “1”
and the other is labeled “2”. The remaining subsegment endpoints
get these labels in any way whatever.

Sperner’s Lemma for this situation asserts that: There is an odd
number of subsegments (in particular, at least one!) whose endpoints get
different labels.

To prove this let’s imagine moving from the 1-labelled endpoint of
our initial interval toward the 2-labelled one. If there are no subin-
tervals, we’re done. Otherwise there has to be a first subinterval
endpoint whose label switches from “1” to “2”, thus yielding a com-
pletely labelled subinterval with final endpoint “2”. At the next
switch, if there is one, the initial endpoint is “2” and the final end-
point is “1”, thus yielding another completely labelled subinterval
which must, somewhere further on the line have an oppositely la-
belled companion (else we’d never be able to end up with the final
subinterval labelled “2”). Thus there must be an odd number of com-
pletely labelled subintervals. �

The two dimensional case. We start with a triangle ∆ regularly de-
composed into a finite collection of subtriangles {∆j}. Let ν(∆j)

denote the number of “{1, 2} edges” belonging to the boundary of
∆j, and set S = ∑j ν(∆j).

Claim. S is odd.

Proof of Claim. If a {1, 2} edge of ∆j does not belong to the boundary
of ∆ then it belongs to exactly one other subtriangle. If a {1, 2} edge
of ∆j lies on the boundary of ∆, then that edge belongs to no other
subtriangle. Thus S is twice the number of “non-boundary” {1, 2}
edges plus the number of “boundary” {1, 2} edges. But by the one
dimensional Sperner Lemma, the number of boundary {1, 2} edges is
odd. Thus S is odd.

Completing the proof of Sperner’s Lemma. Note that the {1, 2} edges
of subtriangles occur just once on the boundary of each completely
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labelled subtriangle, twice on the boundaries of triangles whose ver-
tices are labeled with just 1 and 2, and not at all in every other case.
Thus the odd number S is the number of completely labeled triangles
plus twice the number of subtriangles with {1, 2} edges, from which
we conclude that our Sperner-labeled regular decomposition of ∆ has
an odd number of completely labeled subtriangles. �

2 Proof of Brouwer’s Theorem for a triangle

We may assume, without loss of generality (see the exercise below),
that our triangle ∆ is the the standard 3-simplex; the set of vectors
x ∈ R3 whose coordinates are non-negative and sum to 1 (i.e. the
convex hull of the standard unit vectors in R3).

Exercise 2.1. Show that every closed triangle is homeomorphic to a
closed disc.

Suggestion: First argue that without loss of generality we can suppose
that our triangle T lies in R2, contains the origin in its interior, and is
contained in the closed disc D of radius 1 centered at the origin. Then
each point z ∈ T\{0} is uniquely represented as z = rζ for ζ ∈ ∂D and
r > 0. Let w = ρζ be the point at which the line through the origin and
z intersects ∂T. Show that the map that takes the origin to itself and
z 6= 0 to (r/ρ)ζ is a homeomorphism of T onto D.

Fix a continuous self-map f of ∆; for each x ∈ ∆ write

f (x) = ( f1(x), f2(x), f3(x)).

Thus for each index j = 1, 2, 3 we have a continuous “coordinate
function” f j : ∆→ [0, 1] with

f1(x) + f2(x) + f3(x) = 1

for each x ∈ ∆.

A Sperner labelling induced by f . Consider a regular decomposi-
tion of ∆ into subtriangles and suppose f fixes no subvertex. Then f
determines a Sperner labeling of subvertices. Here’s how! Fix a sub-
triangle vertex p. Since f (p) 6= p, at least one coordinate of f (p) is
dominated, i.e. strictly less than the corresponding coordinate of p.

Indeed, since we are assuming that f (p) 6= p, some coordinate of
f (p) is not equal to the corresponding one of p. If it’s strictly less than
the corresponding coordinate of p, we’re done. Otherwise it’s strictly
greater than that coordinate, so in order for all coordinates of f (p) to
sum to 1, some other coordinate of f (p) must be strictly less than the
corresponding one of p (otherwise ∑j f j(p) > ∑j pj = 1, contradicting
the fact that f (p) ∈ ∆).
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Choose a dominated coordinate; label the subvertex p with its index.

In this way the three original vertices e1 = (1, 0, 0), e2 = (0, 1, 0),
and e3 = (0, 0, 1), get the labels “1”, “2”, and “3” respectively; for
example f (e1) 6= e1, so the first coordinate of f (e1) must be strictly
less than 1 (else f (e1) would have to equal e1), and similarly for the
other two vertices of ∆. Any vertex on the {1, 2} edge of ∂∆ (the line
segment joining e1 to e2) has third coordinate zero, so this coordinate
cannot strictly decrease when that vertex is acted upon by f . Thus
(since that vertex is not fixed by f ) at least one of the other coordi-
nates must strictly decrease, so each vertex on the{1, 2} edge gets
only the labels “1” or “2”, as required by Sperner labeling. Similarly
for the other edges of ∂∆; the vertices on the (2,3)-edge get only labels
“2” and “3”, and the vertices on the (1,3)-edge get only labels “1” and
“3”. No further checking is required for the labels induced by f on
the interior vertices; Sperner labeling places no special restrictions
here. In this way f determines a Sperner labeling of the vertices of
subtriangles in any regular subdivision of ∆. (Note that the continu-
ity assumed for f has not yet been used.)

Approximate fixed points for f . Let ε > 0 be given. We’re going to
show that our continuous self-map f of ∆ has an ε-approximate fixed
point, i.e. a point p ∈ ∆ such that ‖ f (p)− p‖1 ≤ ε. Being continuous Here ‖v‖1 is the “1-norm” of v ∈ R3:

the sum of the absolute values of the
coordinates of v.

on the compact set ∆, the mapping f is uniformly continuous there,
so there exists δ > 0 such that x, y ∈ ∆ with ‖x − y‖1 < δ implies
‖ f (x) − f (y)‖1 < ε/8. Upon decreasing δ if necessary we may
assume that δ < ε/8. Now suppose ∆ is regularly decomposed
into subtriangles of ‖ · ‖1-diameter < δ, with no subvertex a fixed
point of f . Thus f creates a Sperner labelling of the subvertices of

If some subvertex is a fixed point of f ,
we’re done!

this decomposition. Let ∆ε be a completely labelled subtriangle as
promised by Sperner’s Lemma.

Claim. ∆ε contains an ε-approximate fixed point.

Proof of Claim. Let p, q, and r be the vertices of ∆ε, carrying the labels
“1”, “2”, and “3” respectively, so that f1(p) < p1, f2(q) < q2, and
f3(r) < r3. Thus:

‖p− f (p)‖1 = p1 − f1(p)︸ ︷︷ ︸
>0

+|p2 − f2(p)|+ |p3 − f3(p)|

= p1 − f1(p) + |q2 − f2(q) + p2 − q2 + f2(q)− f2(p)|
+ |r3 − f3(r) + p3 − r3 + f3(r)− f3(p)|

≤ p1 − f1(p)︸ ︷︷ ︸
>0

+ q2 − f2(q2)︸ ︷︷ ︸
>0

+ r3 − f3(r3)︸ ︷︷ ︸
>0

+ |p2 − q2|+ | f2(q)− f2(p)|
+ |p3 − r3|+ | f3(r)− f3(p)|,
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so ‖p− f (p)‖1 ≤ A + B, where

A := [p1 − f1(p)] + [q2 − f (q2)] + [r3 − f (r3)],

which is > 0 since this is true of each bracketed term, and

(1) B := |p2 − q2|+ | f2(q)− f2(p)|+ |p3 − r3|+ | f3(r)− f3(p)|.

Now each summand on the right-hand side of (1) is < ε/8, hence
B < ε/2. As for A, the same “adding-zero trick” we used above
yields

A = p1 + p2 + p3︸ ︷︷ ︸
=1

− f1(p) + f2(p) + f3(p)︸ ︷︷ ︸
=1

+ [q2 − p2] + [ f2(p)− f2(q)]

+ [r3 − p3] + [ f3(p)− f3(r)].

On the right-hand side of this equation, the top line equals zero and
each bracketed term has absolute value < ε/8, so by the triangle
inequality, A < ε/2. These estimates on A and B yield ‖p− f (p)‖ <
ε, i.e. the vertex p of ∆ε is an ε-approximate fixed point of f . �

The same argument shows that the
other two vertices of ∆ε are also ε-
approximate fixed points of f ; the
triangle inequality shows that every
point of ∆ε is a 5

4 ε-approximate fixed
point.

A fixed point for f . So far we know that each continuous self-map of
a (closed) triangle has an ε-approximate fixed point for every ε > 0.
That this implies our map has an actual fixed point is a special case
of the following lemma.

Lemma 2.2 (The Approximate Fixed-Point Lemma ). Suppose (X, d) is
a compact metric space and f : X → X is a continuous map. Suppose that
for every ε > 0 there exists a point xε ∈ X with d( f (xε), x) ≤ ε. Then f
has a fixed point.

Proof. We’re given that for each positive integer n there exists xn ∈ X
such that d( f (xn), xn) < 1/n. Since X is compact there is a subse-
quence nk ↗ ∞ and a point y ∈ X such that yk := xnk → y. By
continuity f (yk)→ f (y), hence by the continuity of the metric:

d(y, f (y)) = lim
k

d(yk, f (yk)) ≤ lim
k
(1/nk) = 0,

so y = f (y).

Exercise. Here’s another way to produce fixed points from completely
labelled subtriangles. Make a regular decomposition of ∆ into sub-
triangles of diameter < 1/n. For this decomposition of ∆, use f to
Sperner-label the subvertices, and let ∆n be a resulting completely
labelled subtriangle. Denote the vertices of ∆n by p(n), q(n), and r(n),
using the previous numbering scheme so that f1(p(n)) ≤ p(n)1 , etc.
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Show that it’s possible to choose a subsequence of integers nk ↗
∞ such that the corresponding subsequences of p’s, q’s, and r’s all
converge. Show that these three subsequences all converge to the
same point of ∆, and that this point is a fixed point of f .

3 Finding fixed points by “walking through rooms”

Finding fixed points “computationally” amounts to finding an algo-
rithm that produces sufficiently accurate approximate fixed points.
Thanks to the work just done in §2, what’s needed is an algorithm for
finding a completely labeled subtriangle. Here’s an alternate proof of
Sperner’s Lemma that speaks to this issue.

Suppose we have a closed triangle ∆ regularly decomposed into
subtriangles with the subvertices given a Sperner labelling. Imagine
that ∆ is a house, that its subtriangles are rooms, that each {1, 2}-
labeled segment of a subtriangle boundary is a door, and there are
no other doors. For example a {1, 2, 2}-labeled subtriangle has two
doors, some rooms have no doors (e.g., those with no sub-vertex
labeled “2”), and the completely labeled subtriangles are those rooms
with exactly one door.

Now imagine that you are outside the house. There is a door to the
inside; the Sperner labeling of the sub-vertices induces on the orig-
inal {1, 2} edge a one dimensional Sperner labeling, which must
produce a {1, 2}-labeled subinterval. Go through this door. Once
inside, either the room you’re in has no further door, in which case
you’re in a completely labeled subtriangle, or there is another door
to walk through. Keep walking, subject to the rule that you can’t
pass through a door more than once (i.e. the doors are “trap-doors”).
There are two possibilities. Either your walk terminates in a com-
pletely labeled room, in which case you’re done, or it doesn’t in
which case you find yourself back outside the house. In that case,
you’ve used up two doors on the {1, 2} edge of the original triangle:
one to go into the house, and the other to come back out. But accord-
ing to the one dimensional Sperner Lemma, there are an odd number
of such doors, so there’s one you haven’t used, through which you
can re-enter the house. Continue. In a finite number of steps you
must encounter a room with just one door—a completely labeled
one.

Figure 3: Finding a completely labeled
subtriangle by walking through rooms.

Figure 3 illustrates this process. Starting at point A one travels
through through three rooms, arriving outside at point B, in which
case the process starts again, this time terminating in C, a completely
labelled triangle (the only one for this particular labeling).
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Notes

The Brouwer Fixed-Point Theorem.1 Brouwer proved this result using 1 Brouwer, L.E.J.: Math. Ann. 71, 97–115
(1912)topological methods of his own devising. It is one of the most fa-

mous and widely applied theorems in mathematics; see Park2 for 2 Park, S.: Vietnam J. Math. 27, 187–222
(1999)an exhaustive survey of the legacy of this result, and Casti3 for a
3 Casti, J.L.: Five Golden Rules... John
Wiley & Sons (1965)popular exposition.

Sperner’s Lemma, higher dimensions. This result for all finite dimensions
appears in Sperner’s 1928 doctoral dissertation4. In dimensions > 2 4 Sperner, E.: Abh. a.d. Math. Sem. d.

Univ. Hamburg 6, 265–272 (1928)the analogue of a triangle is an “N-simplex” in RN ; the convex hull
of N + 1 points of RN in “general position,” i.e. no point belongs
to the convex hull of the others, and the analogue of our regular
decomposition of a triangle is a “triangulation” of an N-simplex into
“elementary sub-simplices,” each of which is itself an N-simplex.

Nice descriptions of this generalization occur in Franklin s book5, 5 Franklin, J.: Methods of Mathematical
Economics. Springer-Verlag (1980)and in E. F. Su’s expository article6, which also provides a proof of
6 Su, F.E.: Amer. Math. Monthly 106,
930–942 (1999)the general Brouwer theorem based on “walking through rooms.”

Su’s article also contains interesting applications of Sperner’s Lemma
to problems of “fair division.”

Walking through rooms. The argument seems to have its origin in a
1965 paper of Lemke7. This technique has been greatly refined to 7 Lemke, C.E.: Management Science

(Ser. A, Sciences) 11, 681–689 (1965)produce useful algorithms for finding approximate fixed points,
especially by Scarf, whose survey8 introduces the reader to the way 8 Scarf, H.E.: American Scientist 71,

289–296 (1983)in which economists view Brouwer’s theorem, and provides a nice
introduction to the algorithmic search for fixed points.

Fariborz Maseeh Department of Mathematics & Statistics
Portland State University
PO Box 751, Portland, OR 97207-0751
joels314(at)gmail.com

www.joelshapiro.org


