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1 Overview about (static) optimization problems
In a general static optimization problem there is
e a real-valued function

f(X) = f(131,---,55n)

in n variables, the so-called objective function, whose value is to be optimized (max-
imized or minimized) and

e aset D C R", the so-called admissible set.
Then the problem is to find (global) maximum or minimum points x* € D of f:
max(min) f(x) subject to x € D.

From now on we will always assume that f is at least 2-times continuously
partial differentiable.

Because max f(x) = min —f(x) subject to x € D we could focus our attention (without
loss of generality) on minimizing problems.

Depending on the set D and the function f several different types of optimization problems
can arise. At the first level we will distinguish between so-called

1. unconstrained optimization problems:

D contains no boundary points of D. This means that the set D is an open subset

of R™ and a solution of the optimization problem (if it exists) is an interrior point
of D.

Example 1.1 Solve the following problems or explain why there are no solutions:
min z? subject to x € D = (—1,1)

min —z? subject to v € D = (—1,1)

min z? subject to x € D =R

min 1/x subject to v € D = (0, 1)

min —1/x subject to x € D = (0, 1)

min z? — z* subject to v € D = (—2,2)

minz? — z* subject tox € D = (—1,1)

minz? — z* subject to v € D = (—0.1,0.1)

minsin(1/z)/z subject to x € D = (0,1)

2. constrained optimization problems:

D contains some boundary points of D. A solution of the optimization problem
may be an interior point or a point on the boundary of D.



2 Unconstrained optimization problems

2.1 Local minimizer

Consider a function f : R® — R. Let D be some open subset of R” and x* € D a local
minimizer of f over D. This means that there exists an ¢ > 0 such that for all x € D
satisfying |x — x*| < € we have f(x*) < f(x).

The term ,,unconstrained” usually refers to the situation where all points x sufficiently
near x* are in . This is automatically true if D is an open set.

We already know:

Theorem 2.1 (First- and second order necessary conditions for optimality)

Suppose that V2 f is continuous in an open neighbourhood U of x* then

x* is a local minimizer of f = Vf(x*) = 0 and V?f(x*) is pos.semidef.

Note that these necessary conditions are not sufficient.

Theorem 2.2 (First- and second order sufficient conditions for optimality)

Suppose that V2 f is continuous in an open neighbourhood U of x* then

Vf(x*) = 0 and V?f(x*) is pos.def. == x* is a (strict) local minimizer of f

Proof:

Because V2f is continuous and positive definite at x*, we can choose an open
ball B = {x | ||x — x*|]| < €} C D where V?f remains positive definite.
Taking any nonzero vector v with ||v|| < €, we have x* +v € B and by
Taylor’s theorem:

O 4v) = J) VIV 5 VI ()

= )+ VIV ()

for some z = x* +¢-v with ¢t € (0,1).
Since z = x* +t - v € B, we have v V2f(z)v > 0 and therefore f(x* +v) >

f(x*). 0



2.2 Global minimizer

Of course, all local minimizers of a function f are candidates for global minimizing, but
obviously, an arbitrary function may not realise a global minimum in an open set D. For

instance, look at f(x) = —z? subject to x € D = (—1,1).

There are only general results in the case where f is a convex function on D. Because we

define convexity of the function f by the inequality

flx+(1=1)y)

for all x,y € D and all t € [0, 1], all points tx+ (1 — )y (points between x and y) should
lie in D. Hence D must be a convex set.

Theorem 2.3 Let f be a convex (resp. concave) and differentiable function on the convex

(and open) set D. Then

< )+ A =0)f(y)

x* is a global minimizer (resp. mazimizer) of f <= V f(x")

=0

Proof (for convex f):

° , 7:> 114
Clear!?

° 77é [44

Let Vf(x*) = 0 and suppose that x* is not a global minimizer of f on
D. Then we can find a point y € D with f(y) < f(x*).

Consider the line segment that joins x* to y, that is

z(t) =

ty + (1 —t)x* =

X"+ iy —x7)

for all ¢ € [0,1]. Of course, z € D because D is a convex set. Hence

Vi) (y —x7)

d * *
Gy =)
FO° + 1y = x)) = ')

fy)—fx") <0

Therefore, V f(x*) # 0! Contradiction.
Hence, x* is a global minimizer of f on D.



3 Constrained optimization problems

3.1 General remarks

In the previous case we have used the fact that for every direction v points of the form
x* + tv belong to D (for sufficiently small ¢). This is no longer true if D has a boundary
and x* is a point on this boundary.

Definition 3.1 Let D C R" andx* € D. A vectorv € R" is called a feasible direction in x*

if x*+tve D forallt with 0 <t <t.

not feasible

If not all directions v are feasible in x*, then the condition Vf(x*) = 0 is no longer
necessary for local optimality. But we can prove the following result.

Theorem 3.1 If x* is a local minimum of the continuous differentiable function f on D,
then

Of(x) = Vf(x)'v = 0
for every feasible direction v and
VI V(x> 0
for all feasible directions with Oy f(x*) = 0.

There are two cases:

1. 9D ¢ D

There are boundary points of D which are not elements of D. This case is too
difficult and we need a specific method, adapted to the concrete set D, to solve the
optimization problem. We will not follow up on this type of problem.

2.0DbcD
The complete boundary 0D of D is in D; this means that D is closed.



From now on let D be always closed.

We recall the following basic existence result for closed and bounded sets D:

Theorem 3.2 (Weierstrass-Theorem) If f is a continuous function and D is a closed
and bounded set then there exists a global minimum of f over D.

(General) Algorithm for finding a global minimum

1. Find all interior points of D satisfying V f(x*) = 0 (stationary points).
2. Find all points where V f does not exist (critical points).
3. Find all boundary points satisfying 0, f(x*) > 0 for all feasible directions v.

4. Compare all values at all these candidate points and choose one smallest one.

In almost all interesting optimization problems the admissible set D is given by a set of
inequalities (or equations):
D = {x€R"| 0(x) < 1, g2(%) < oo gm(%) < e} = {x €R" | g(x) < c}

with g = (g1,...,9m)7, 91, -, gm : R* = Rand ¢ = (cy,...,cm)T.

92)=0 g,(x)<0

9,(x)=0
9,(x)<0
vertex
9, (x)=00,x)=0|—=
gl(x) <0 vertex
9,(x)=09,(x)=0

g,(x)<0

g,x)<0

9,x)=0 vertex
9,0)=0g,x)=0
g,(x)<0

It is easy to see that one equation of the form g(x) = ¢ can be expressd by the two
inequalities g(x) < ¢ and —g(x) < —c. Hence all sets described by a set of equations
could be described by a set of inequalites and it would be enough to study sets described
by inequalities.

But for practical reasons we will discuss the two cases separately.



Definition 3.2 For the optimization problem

max(min)  y = f(z1,29,...,2,)

G1(x1, T2, ..., Tn) = g1(X)

<

= <
subject to 92($1,$2, 7$n) 92(X) S G
Gm(T1, 22, . Tp) = gm(X) < e

the function (in n + m variables)
L(l’l,"' ,In,)\l,...

shortly

Lix,A) = f(x) - Z)\j (9;(%) = ¢;)

J=1

1s called Lagrange function of the optimization problem.

f(x) = X (g(x) — )



32 D={xeR"|gx)=c}

Given the following optimization problem:

max(min) y= f(z1,29,...,2,) = f(x)
g1(r1, 72, ..., 7,) = g1(X) = 1
92(1’1,.7}27 cee an) = 92(X> = C2

subject to
gm(x17$27 s 7‘7;71) = gm(x) = Cm
Theorem 3.3 Suppose that

e f.q1,...,9m are defined on a set S C R"

*

o xX* = (z1,...,x}) is an interior point of S that solves the optimization problem

rrn

o f g1,...,9m are continuously partial differentiable in a ball around x*

e the Jacobi-matrixz of the constraint functions

0g1 og o

Dg(x) =
OGm OGm AGm
has rank m in x = x*.
Necessary condition
Then there exists unique numbers Xy, ..., X5 such that (x*, X*) = (z7,25,..., 25, A}, ..., \5)
s a stationary point of the Lagrange-function:
Ly (x*,A") = 0,..., L, (x*,A\") =0
and shortly VL(x*,A*) = 0
Ly, (x*,X\") = 0,...,Ly, (x*,A") =0
or expanded
VIx) = > X Vg(x) =0 (%)
j=1
Sufficient condition
If there exist numbers A3, ..., X5 and an admissible x* which together satisfy the necessary

condition, and if the Lagrange function L is concave (convex) in x and S is convezx, then

x* solves the mazximization (minimization) problem.



Proof:

Necessary condition We get a nice argument for condition (x) by studying the optimal
value function

fH(e) = max{f(x)|g(x)=c}

If fis a profit function and ¢ = (¢4, ..., ¢,) denotes a resource vector, then f*(c) is the
maximum profit obtainable given the available resource vector c.
In the following argument we assume that f*(c) is differentiable.

Fix a vector ¢* and let x* be the corresponding optimal solution. Then f(x*) = f*(c*)
and obviously for all x we have f(x) < f*(g(x)).

Hence

has a maximum in x = x*, so

00 . Of . N[OF o .
0= 226) = Lo Z[ L <c>Lg(x*) 0 )

Define

Xo= Sl(o) & flete) — f(e)

J (9cj

and equation (x) follows.

Sufficient condition Suppose that L = L(x) is a concave (resp. convex) function in
the variable x. The necessary condition means that x* is a stationary point of L, this
means VxL(x*) = 0. Then by Theorem 2.3 we know that x* is a global maximizer (resp.
minimizer) of L and this means that

Lix) = f0) =D Xilgx) — )

v

f(x) — Z Ai(g5(x) — <)

= L(x)

for all x € S. But for all admissible x we have g;(x) = ¢;. Hence f(x*) > f(x) for all
admissible x € S. O
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Example 3.1 Given the following optimization problem:

max  f(z1,22) = xf‘xg

subject to 9(z1,22) = P11 + poa =
Then step by step we get:

° L(xl, X, )\) = x‘le:g — )\(}91131 + Doy — C)

ozx?*lxg — APy
VL(’I.D‘T% )\) = Vf(ml,l'g) - Avg(l’17$2) = ﬁx‘l)‘ngl _ )\p2
—(p121 + P22 — )

axd 'l — Apy 0
. ﬁx?xg_l — Ap2 = 0 | or
—(p171 + P22 — ) 0
E1: axd el = Apy
E2: Ba:’f‘x’g_l = Ap2
E3: P1T1 +Paxes = C
o K1/E2
azf ') Ap1 QT P1 p1 B
B ay Ap2 By P2 P2
e 1y in B3
p:z:—l—p:c—c@px%—p(plﬁx)—c@x*— @
121 + P2y = 121 +p2 | ——21 ) = =
D2 & ! pi(a+B)
e I N Iy
LomB_mB_ o
= =Dy = =5 —
pa prapi(a+pf)  pla+p)

o 27 and x5 in Kl

: (L)l = >ﬂ
— pi(a+ f) pa(a + B) _ a® BB co+B-1
D1 pepl (o + B)oth-1

e Hesse matrix of L with respect to x

N 1)3301721"3 aﬁxafllﬁfl
v2L — Oé(a 1 2 1
<L) ( aff 2yt BB - 1)agay

o IfV2L(x) is positive definite (for all x1, 15 > 0) then L is concave and X* = (x*, x})
solves the mazximization problem.

Is V2L(x) positive definite?
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33 D={xeR"|gkx) <c}
Given the following optimization problem:

max  y = f(x1,29,...,7,) = f(X)

G1(x1, T2, ... ) = g1(%) < ¢

= <
subject to 921,22, .., ) = g2(X) < ¢
gm(xla X2y ... 7xn) = gm(X) S Cm

Definition 3.3 Let x* be the solution of the maximization problem. The constraint
g:(x) < ¢; is called

e binding (or activ) at x*, if g;(x*) = ¢; and

e not binding (or inactiv) at x*, if g:(x*) < ¢;.
Theorem 3.4 Suppose that

e f.q1,...,9m are defined on a set S C R"

o xX* = (z7,...,x}) is an interior point of S that solves the maximization problem
e f.g1,...,9m are continuously partial differentiable in a ball around x*
[ J

the constraints are ordered in such a way, that the first mqy constraints are binding
at xX* and all the remaining m — mqy constraints are not binding,

e the Jacobi-matrixz of the binding constraint functions
891 * agl *
—(x e X
9, ) o, %)
agmo * ag’mo *
—(x") ... —(x
9w, ) oz, %)
has rank mg in x = X*.
Necessary condition
Then there exist unique real numbers X* = (X\i,..., A% such that

1. Ly (x*,A%) = 0,..., L, (x,A") = 0,
2. A >0,..., M5, >0

3N g1(x*) — 1] =0, N [gm(X") — ] =0 and
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Proof:

Necessary condition We study the optimal value function

fHe) = max{f(x)]g(x) < c}

These value function must be nondecreasing in each variable ¢y, ..., ¢,. This is because
as ¢; increases with all other variables held fixed, the admissible set becomes larger; hence
f*(c) can not decrease.

In the following argument we assume that f*(c) is differentiable.

Fix a vector ¢* and let x* be the corresponding optimal solution. Then f(x*) = f*(c*).
For any x we have f(x) < f*(g(x)) because x obviously satisfies the constraints when
each cj is replaced by g;(x).

But then

[(gx) < [f(gx)+c —gx"))
—_——
>0
since g(x*) < ¢* and f* is nondecreasing.

Hence

o(x) = f(x)—f(gx)+c"—g(x)) <0

=:u(x)

for all x and since ¢(x*) = 0, ¢(x) has a maximum in x = x*, so

0p o _ O o NmOfT
8xl(x) B 8137;<X)_ - (9uj (U<X (‘91:2

- -2 ey P

0 =

Since f* is nondecreasing, we have

af*
o= > 0.
A o, (c) >0

and we should (but will not) prove that if g;(x*) < ¢ then \j = 0. O



