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1 Introduction

Processes and ordinary differential equations The theory of ordinary differential
equations is one of the basic tools of mathematical science. The theory allows us to study
all kinds of evolutionary processes with the properties of

• determinacy,

• finite-dimensionality and

• differentiability.

Definition 1.1 A process is said to be deterministic if its entire future course and its
entire past are uniquely determined by its state at the present time. The set of all possible
states of a process is called its phase space.

Example 1.1

• Classical mechanical systems are deterministic and the phase space is the set of
instantaneous positions and velocities of all particles of the system.

• The motion of particles in quantum mechanics is not described by a deterministic
process.

• Heat propagation is a semi-deterministic process.

Definition 1.2 A process is said to be finite-dimensional if its phase space is finite-
dimensional (if the number of parameters required to describe its state is finite).

Example 1.2 A mechanical system of n particles is finite-dimensional. The dimension
of the phase space is 6n:

(
xi yi zi

)
for the position of a particle and

(
ẋi ẏi żi

)
for the velocity of a particle in space.

Definition 1.3 A process is said to be differentiable if its phase space has the structure of
a differentiable manifold and if its change of state with time is described by differentiable
functions.

You do not need to know, what a differentiable manifold is. You should understand that
if you have a differentiable process, then all (finitely many) parameters, describing the
state of the system completely, change differentiably in time.

We will focus our attention on deterministic, 2-dimensional and differentiable processes,
which can be described by two first-order differential equations in two variables.
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Definition 1.4 Let f, g be functions in 3 variables. A normal system of 2 first-order
differential equations in 2 variables takes the form

dx(t)

dt
= ẋ = f(x, y, t)

dy(t)

dt
= ẏ = g(x, y, t)

A solution is a pair of differentiable functions (x(t), y(t)), defined on some interval I, that
satisfies both equations.

Theorem 1.1 If f, g, fx, fy, gx, gy are continuous then we have the follwing fact:

If t0 ∈ I and x0, y0 ∈ R there is one and only one pair of functions (x(t), y(t)) that
satisfies the two equations and x(t0) = x0 and y(t0) = y0.

Example 1.3

ẋ = 1

ẏ = 2t

Integrate each equation directly: x(t) = t+ C1 and y(t) = t2 + C2 or y = (x− C1)
2 + C2.

With the initial condition x0 = 1 and y0 = 2 we get the solution x(t) = t + 1 and
y(t) = t2 + 2 or y = (x− 1)2 + 2.
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Example 1.4 We look at the so-called (uncontrolled) predator-prey system de-
scribed by the so-called predator-prey equations

ẋ = α x− β x y
ẏ = δ x y − γ y

with

• x = x(t) be the number of prey,

• y = y(t) the number of predator and

• α, β, γ, δ ∈ R parameters, describing the interaction of the two species.

Short explanation:

• αx:

The prey is assumed to have an unlimited food supply and reproduces
exponentially unless subject to predation.

• −βxy
The rate of predation upon the prey is assumed to be proportional to the
rate at which the predators and the prey meet.

• δxy
The growth of the predator population is proportional to the rate at which
the predators and the prey meet.

• −γy
The predators are assumed to decay exponentially in the absence of prey.
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We use the following notations:

z(t) =

(
x(t)
y(t)

)
z(t+ dt) =

(
x(t+ dt)
y(t+ dt)

)
∆z(t, dt) = z(t+ dt)− z(t) =

(
x(t+ dt)− x(t)
y(t+ dt)− y(t)

)
ż(t) = lim

dt→0

∆z(t, dt)

dt
= lim

dt→0

z(t+ dt)− z(t)

dt
=

(
ẋ(t)
ẏ(t)

)

If z(t) is a solution of the system, then the points z(t) trace out a curve K in the xy-plane.
The vector ż(t), which describes how quickly x(t) and y(t) change when t is changed, is
the tangent vector to the curve K in the point (x(t), y(t)).

(t)z

(t + dt)z

z∆ (t, dt)

z(t)

 

x

y

How can we find a general solution of the system

ẋ = f(t, x, y)

ẏ = g(t, x, y)

We can not expect exact methods that work in complete generality! One important
method: Reduce the system to a (single) second-order differential equation in the following
way.

• Use the first equation to express y as a function y = h(t, x, ẋ),

• Differentiate this equation with respect to t and

• Substitute the expressions for y and ẏ in the second equation.
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Example 1.5 Find the general solution of the system

(I) ẋ = 2x+ ety − et

(II) ẏ = 4e−tx+ y

Solution:

• (I) ↔ y = e−tẋ− e−t2x+ 1 → ẏ = −e−tẋ+ e−1ẍ+ e−t2x− e−t2ẋ

• in (II) ẏ = 4e−tx+ y ↔ 0 = ẍ− 4ẋ− et

• General solution: x(t) = C1 + C2e
4t + 1

3
et

• y(t) = e−tẋ− e−t2x+ 1 = . . .
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2 Phase plane analysis

We will indicate how geometric arguments can help to understand the structure of the
solutions of an autonomous system.

Definition 2.1 A system of differential equations is called autonomous (or time independent),
if f and g do not depend on t explicitely.

ẋ = f(x, y)

ẏ = g(x, y)

Autonomous systems have nice properties:

• A solution (x(t), y(t)) describes a curve or path in the xy-plane.

• The vector ż(t) =

(
ẋ(t)
ẏ(t)

)
is uniquely determined at each point (x(t), y(t)) (inde-

pendent of t) and

ż(t) =

(
ẋ(t)
ẏ(t)

)
=

(
f(x, y)
g(x, y)

)
• Two solution pathes do not intersect in the xy-plane.

To illustrate the dynamics of the autonomous system, we can, in principle, draw a vector(
f(x, y)
g(x, y)

)
at each point (x, y) (vector field) and then we can draw solution curves for

the system (phase diagram).

Example 2.1 For the system ẋ = 1; ẏ = 2 we have ż(t) =

(
1
2

)
for all (x, y) and the

solution curves (blue) point in this direction and must be straight lines.

1
2( )  

y

x
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Definition 2.2 A point (a, b) in the xy-plane with f(a, b) = g(a, b) = 0 is called an
equilibrium point or stationary point. The two curves defined by f(x, y) = 0 and g(x, y) =
0 are called the nullclines of the system.

At an equilibrium point E we have ẋ = ẏ = 0 if the system is in E. Hence the system
will always be (and always was) at E. To draw the phase diagram, begin by drawing the
two nullclines.

• at each point on f(x, y) = 0 → ẋ = 0 (vertical velocity vector)

• at each point on g(x, y) = 0 → ẏ = 0 (horizontal velocity vector)
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3 Linear systems with constant coefficients

Consider the linear system with constant coefficients

ẋ = a11x+ a12y + b1(t) �1
ẏ = a21x+ a22y + b2(t) �2

Transformation (a12 6= 0):

1. Differentiating �1 w.r.t. t, then substituting ẏ from �2:
ẍ = a11ẋ+ a12(a21x+ a22y + b2(t)) + ḃ1(t)

2. Substituting a12y = ẋ− a11x− b1(t) (from �1) :

ẍ− (a11 + a22)ẋ+ (a11a22 − a12a21)x = a12b2(t)− a22b1(t) + ḃ1(t)

Second-order differential equation with constant coefficients with general solution
of type x(t) = C1x1 + C2x2 + xp with C1, C2 ∈ R

3. The solution for y(t) can be found from a12y = ẋ− a11x− b1(t) and depends on the
same two constants C1, C2.

With b1 = b2 = 0 the system reduces to the homogeneous system

ẋ = a11x+ a12y
ẏ = a21x+ a22y

or

(
ẋ(t)
ẏ(t)

)
︸ ︷︷ ︸

= ż

=

(
a11 a12
a21 a22

)
︸ ︷︷ ︸

= A

(
x(t)
y(t)

)
︸ ︷︷ ︸

= z

Theorem 3.1 (Solution of ż = A z) The set

L =
{

z | ż = A z, t ∈ I
}

is an 2-dimensional vector space. A fundamental system (or fundamental matrix) of the
homogeneous system ż = A z is a basis F(t) = ( z1(t), z2(t) ) (written as a matrix) of L.
In this case, the general solution can be written as

z(t) = c1z1(t) + c2z2(t).

Definition 3.1 The determinant W (t) = det F(t) of a solution matrix F(t) of ż = A z
is called Wronski-determinant.
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Remarks 3.1

• The 2 functions z1, z2 : I → R2 are linearly independent if and only if α1z1+α2z2 =
0 for all t ∈ I always implies α1 = α2 = 0.

• Let z1, z2 be solutions of the system ż = A z. Then these functions are linearly
independent if and only if W (t0) = det F(t0) 6= 0 for at least one t0 ∈ I.

• The solution of ż = A z can be written as

z(t) = F(t)c.

• The solution of the initial value problem ż = A z and z(t0) = z0 can be written as

z(t) = F(t) F(t0)
−1z0︸ ︷︷ ︸

=c

.

• If λ is an eigenvalue of A with associated eigenvector v, then z(t) = veλt is a
solution of ż = A z, because

A z = A veλt = λveλt = ż.

• If A has 2 different real eigenvalues λ1, λ2 with associated eigenvectors v1,v2 then

z1(t) = v1e
λ1t and z2(t) = v2e

λ2t

are two basis solutions of ż = A z.

Example 3.1 The matrix A =

(
1 1
−2 4

)
has the eigenvalues and eigenvectos

λ1 = 2 v1 =

(
1
1

)
λ2 = 3 v2 =

(
1
2

)

Hence the system

(
ẋ
ẏ

)
=

(
1 1
−2 4

)(
x
y

)
has the two basis solutions

z1(t) = e2t
(

1
1

)
and z2(t) = e3t

(
1
2

)
and the general solution can be written as

z(t) = A e2t
(

1
1

)
+B e3t

(
1
2

)
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Theorem 3.2 Let A ∈ R2×2 be a square matrix. We already know: There exists a basis
of C2 consisting of generalized eigenvectors of A.

For all generalized eigenvectors v of degree l (= 1 or 2) associated to the eigenvalue λ of
A, one basis solution of ż = A z is given by:

z(t) =

{
eλt v if l = 1
eλt [v + t(A− λI) v] if l = 2

.

Proof:

• If v is an eigenvector (l = 1) then we already know that eλt v is a solution.

• If v is a generalized eigenvector of degree l = 2 then we know that (A− λI)2v = 0
or A(A− λI)v = λ(A− λI)v.

For z(t) = eλt [v + t(A− λI) v] we get

ż(t) = λeλt [v + t(A− λI) v] + eλt(A− λI) v

= eλt [A v + tλ(A− λI) v]

and

Az(t) = eλt [Av + tA(A− λI) v]

= eλt [A v + tλ(A− λI) v] .

2
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4 *Classification of all linear systems in plane*

We would like to investigate the systems

ż =

(
a11 a12
a21 a22

)
︸ ︷︷ ︸

= A

z

Each solution can be viewed as a curve in the (x, y)-plane. The right side of the equation
defines a vector field in the plane and the solutions have to follow this vector field. We
now try to understand the structure of the solutions and the dependence of the solutions
from the matrix A. We determine the eigenvalues, the generalized eigenvectors and the
associated basis solutions z1(t) and z2(t). Then all solutions are linear combinations

z(t) = c1 z1(t) + c2 z2(t)

of the basis solutions. Of course, the basis solutions depend on the two eigenvalues of A
and there are 14 different cases (divided into 4 groups A, B, C and D). Let λ1, λ2 ∈ C be
the eigenvalues of A, this means the solutions of the characteristic equation

pA(λ) = λ2 − trA λ+ det A = (λ1 − λ) (λ2 − λ) = 0.

A) λ1, λ2 ∈ R and λ1 6= λ2

There are two linearly independent (real) eigenvectors v1 and v2 associated to λ1
and λ2 and the two basic solutions are

z1(t) = eλ1t v1 and z2(t) = eλ2t v2.

A solution path z(t) = eλt v starts in z(0) = v and goes along a straight line in
the direction of v (if λ > 0) or −v (if λ < 0). If λ = 0 then z(t) = e0t v = v for
all t.

0

z(0) = v

λ < 0

λ = 0

λ > 0

All solutions of the systems are linear combinations z(t) = c1 z1(t) + c2 z2(t). There
are 5 cases, depending on the signs of the eigenvalues.
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A1) λ1 < λ2 < 0

A2) λ1 < 0 < λ2

A3) 0 < λ1 < λ2
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A4) λ1 < λ2 = 0

A5) λ1 = 0 < λ2
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B) λ = λ1 = λ2 ∈ R and dimV (λ) = 2

We have Ax = λx for all x ∈ R2 and A = λ I. For all c ∈ R2 z(t) = eAt c = eλt c
is a solution. There are 3 different cases.

B1) λ < 0

B2) λ = 0 Then z(t) = c is a constant solution for all c.

B3) λ > 0
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C) λ = λ1 = λ2 ∈ R and dimV (λ) = 1

If v is an eigenvector of A associated to λ and u is a generalized eigenvector of
degree 2 ((A− λI)u = v), then there are the two basis solutions

z1(t) = eλt v and z2(t) = eλt [ u + t (A− λI)u︸ ︷︷ ︸
=v

]

The general solution is

z(t) = c1 e
λt v + c2 e

λt [ u + tv ] = eλt [ (c1 + c2t)v + c2u ]

We see that for t → ±∞ the direction of the solution z(t) tends to the directions
±v. There are 3 different cases.

C1) λ < 0

C2) λ = 0
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C3) λ > 0

D) λ2 = λ1 ∈ C− R

Let λ1 = α + iβ and λ2 = λ1 = α − iβ. It is easy to see that if Av = λ1v then
Av = λ2v, because A is a real matrix. This means that if v ∈ C2 is a (complex)
eigenvector of A associated to λ1 then v ∈ C2 is a (complex) eigenvector of A
associated to λ2 = λ1.

The complex basis solutions are (with a = <(v) and b = =(v))

x1(t) = eλ1t v = e(α+iβ)t (a + ib) = eαteiβt (a + ib)

= eαt(cos βt+ i sin βt) (a + ib)

= eαt [ (cos βt · a− sin βt · b) + i(sin βt · a + cos βt · b) ]

x2(t) = eαt [ (cos βt · a + sin βt · b)− i(sin βt · a + cos βt · b) ]

It is easy to prove that

z1(t) = < (x1(t)) = eαt (cos βt · a− sin βt · b)

z2(t) = = (x1(t)) = eαt (sin βt · a + cos βt · b)

are two linearly independent (over R) real solutions of the system ż = Az. The
general real solution can be written as

z(t) = c1z1(t) + c2z2(t)

= eαt [ (c1 cos βt+ c2 sin βt) · a + (−c1 sin βt+ c2 cos βt) · b ] .
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There are 3 different cases.

D1) α < 0

D2) α = 0

D3) α > 0


