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1 Introduction

Processes and ordinary differential equations The theory of ordinary differential
equations is one of the basic tools of mathematical science. The theory allows us to study
all kinds of evolutionary processes with the properties of

e determinacy,
e finite-dimensionality and

o differentiability.

Definition 1.1 A process is said to be deterministic if its entire future course and its
entire past are uniquely determined by its state at the present time. The set of all possible
states of a process is called its phase space.

Example 1.1

o C(lassical mechanical systems are deterministic and the phase space is the set of
instantaneous positions and velocities of all particles of the system.

e The motion of particles in quantum mechanics is not described by a deterministic
process.

e Heat propagation is a semi-deterministic process.

Definition 1.2 A process is said to be finite-dimensional if its phase space is finite-
dimensional (if the number of parameters required to describe its state is finite).

Example 1.2 A mechanical system of n particles is finite-dimensional. The dimension
of the phase space is 6n: ( Ti Yi % ) for the position of a particle and ( Ti Vi % )
for the velocity of a particle in space.

Definition 1.3 A process is said to be differentiable if its phase space has the structure of
a differentiable manifold and if its change of state with time is described by differentiable
functions.

You do not need to know, what a differentiable manifold is. You should understand that
if you have a differentiable process, then all (finitely many) parameters, describing the
state of the system completely, change differentiably in time.

We will focus our attention on deterministic, 2-dimensional and differentiable processes,
which can be described by two first-order differential equations in two variables.



Definition 1.4 Let f,g be functions in 3 variables. A normal system of 2 first-order
differential equations in 2 variables takes the form

de(t) .
dt - x - f(ﬂf,y,t)
dy(t) . _
Y = g(z,y,t)

A solution is a pair of differentiable functions (x(t),y(t)), defined on some interval I, that
satisfies both equations.

Theorem 1.1 If f, g, fz, fy: 9=, 9y are continuous then we have the follwing fact:

If to € I and xo,yp € R there is one and only one pair of functions (x(t),y(t)) that
satisfies the two equations and x(ty) = x¢ and y(to) = yo.

Example 1.3
z =1

= 2t

Integrate each equation directly: x(t) =t + Cy and y(t) = t* + Cy or y = (x — C1)* + Cs.

With the initial condition ro = 1 and yo = 2 we get the solution z(t) = t + 1 and
yt)=t*+2ory=(x—1)>2+2.
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Example 1.4 We look at the so-called (uncontrolled) predator-prey system de-
scribed by the so-called predator-prey equations

T = ar—Lfzry
= dxy—7y
with

o 1 = x(t) be the number of prey,
e y = y(t) the number of predator and

o a,3,7,0 € R parameters, describing the interaction of the two species.

Short explanation:

® T’

The prey is assumed to have an unlimited food supply and reproduces
exponentially unless subject to predation.

o —fay
The rate of predation upon the prey is assumed to be proportional to the
rate at which the predators and the prey meet.

e Oxy

The growth of the predator population is proportional to the rate at which
the predators and the prey meet.

°* —y
The predators are assumed to decay exponentially in the absence of prey.



We use the following notations:

B x(t) o x(t+dt)
z(t) = <y(t) ) z(t+dt) = (y(t+dt)
z(t + dt) — x(t) )
y(t +dt) —y()
#t) — lim Az(t,dt) _ lim z(t + dt) — z(t) _ ( :’?(t) )
t y(t)
If z(t) is a solution of the system, then the points z(t) trace out a curve K in the xy-plane.

dt—0 dt dt—0 d
The vector z(t), which describes how quickly x(¢) and y(t) change when ¢ is changed, is
the tangent vector to the curve K in the point (z(t),y(t)).

Az(t,dt) = z(t+dt)—z(t) = <

z(t)

Az (t, db)

z(t + dt)

\ .

2(t)

How can we find a general solution of the system
& = flt,z,y)
) = g(t,z,y)

We can not expect exact methods that work in complete generality! One important
method: Reduce the system to a (single) second-order differential equation in the following
way.

e Use the first equation to express y as a function y = h(t, x, 1),
e Differentiate this equation with respect to ¢t and

e Substitute the expressions for y and ¢ in the second equation.



Example 1.5 Find the general solution of the system

i = 2z+ey—é
(II) v = 4de'o+y

Solution:
o (I) » y=e's—e2r+1 = g=—e's+e'i+e 20 —e 2z
o in(Il) y=delaz+y < 0=0—4z —¢€
e General solution: x(t) = Cy + Coe™ + 3¢

e ylt)y=ett—e 20 +1=...



2 Phase plane analysis

We will indicate how geometric arguments can help to understand the structure of the
solutions of an autonomous system.

Definition 2.1 A system of differential equations is called autonomous (or time independent),
of f and g do not depend on t explicitely.

Autonomous systems have nice properties:

e A solution (z(t),y(t)) describes a curve or path in the zy-plane.

e The vector z(t) = x(t) is uniquely determined at each point (z(t),y(t)) (inde-
y(t)

pendent of ¢) and

e Two solution pathes do not intersect in the xy-plane.

To illustrate the dynamics of the autonomous system, we can, in principle, draw a vector

( fzy)
9(z,y)
the system (phase diagram).

) at each point (z,y) (vector field) and then we can draw solution curves for

Example 2.1 For the system & = 1;9 = 2 we have z(t) = ( ; ) for all (x,y) and the

solution curves (blue) point in this direction and must be straight lines.

I / 1,
i) 1

/ / f ‘
", //,// 7




Definition 2.2 A point (a,b) in the xy-plane with f(a,b) = g(a,b) = 0 is called an
equilibrium point or stationary point. The two curves defined by f(z,y) = 0 and g(z,y) =
0 are called the nullclines of the system.

At an equilibrium point F we have # = ¢ = 0 if the system is in E. Hence the system
will always be (and always was) at E. To draw the phase diagram, begin by drawing the

two nullclines.

e at each point on f(z,y) =0 — & = 0 (vertical velocity vector)

e at each point on g(z,y) =0 — y =0 (horizontal velocity vector)



3 Linear systems with constant coefficients

Consider the linear system with constant coefficients

T = apx+ apy+ b(t) o1
= an® + agy + ba(t) 09

Transformation (a2 # 0):

1. Differentiating ¢; w.r.t. t, then substituting y from ©g:
i = and + an(an + agny + by(t)) + bi(t)
2. Substituting ajpy = & — ajyz — by (t) (from oq) :
§ — (a1 + as)i + (a11a22 — Q12a21)T = Q12ba(t) — anaby (t) + by (1)

Second-order differential equation with constant coefficients with general solution
of type z(t) = Cyx1 + Coxg + 2P with C,Cy € R

3. The solution for y(t) can be found from a;5y = & — ay;x — by (t) and depends on the
same two constants C, Cs.

With b; = by = 0 the system reduces to the homogeneous system

T = anr + apy or x(t) _ [ e axp
U = A1 + a9y y(t) ag1 Q2
~

AN
-~ -~

~+

N——

<

8
—~

I
N

=z

Theorem 3.1 (Solution of z = A z) The set
L = {z|z = Az,tGI}

is an 2-dimensional vector space. A fundamental system (or fundamental matriz) of the

homogeneous system z = A z is a basis F(t) = ( z1(t),z2(t) ) (written as a matriz) of L.
In this case, the general solution can be written as

z(t) = c1z1(t) + cazo(t).

Definition 3.1 The determinant W (t) = det F(t) of a solution matriz F(t) ofz = Az
15 called Wronski-determinant.
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Remarks 3.1

o The 2 functions z,, 2z, : I — R? are linearly independent if and only if a1z, + caze =
0 for allt € I always implies oy = ay = 0.

e Let 71,29 be solutions of the system z = A z. Then these functions are linearly
independent if and only if W (ty) = det F(to) # 0 for at least one ty € I.

o The solution of z = A z can be written as

o If \ is an eigenvalue of A with associated eigenvector v, then z(t) = ve* is a

solution of z = A z, because

Az = Avel=)\ve =z

o If A has 2 different real eigenvalues \i, Ao with associated eigenvectors vi, vy then

At Aot

z1(t) = vie and  zo(t) = vae

are two basis solutions of z = A z.

11

Example 3.1 The matrix A = ( 9 4

) has the eigenvalues and eigenvectos

-2 4

2(t) = e%( 1) and  7o(t) = e3t(§)

and the general solution can be written as

a(t) = Aezt<1)+Be3t(;)

Hence the system ( Zj ) = ( Ll ) ( z ) has the two basis solutions
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Theorem 3.2 Let A € R?*? be a square matriz. We already know: There exists a basis
of C? consisting of generalized eigenvectors of A.

For all generalized eigenvectors v of degree I (=1 or 2) associated to the eigenvalue A of
A one basis solution of z = A z is given by:

<

e ifl=1
Z(t):{ekt [V +t(A —A) V] ifl=2 "~
Proof:

e If v is an eigenvector (I = 1) then we already know that e* v is a solution.

e If v is a generalized eigenvector of degree [ = 2 then we know that (A — A\I)*>v =0
or A(A — AI)v =X\A — AD)v.

For z(t) = e™ [v + (A — \I) v] we get

72(t) = MM [VHH(A-N) v]+eMA-A) v
= M [AV+HIAA = A) V]

and

Az(t) = M [Av+tA(A — ) V]
= M [AV+IANA =) V].



12

4

*Classification of all linear systems in plane*

We would like to investigate the systems

. a1 a2
Z = Z

21 Q22
~—_——

= A

Each solution can be viewed as a curve in the (z,y)-plane. The right side of the equation
defines a vector field in the plane and the solutions have to follow this vector field. We
now try to understand the structure of the solutions and the dependence of the solutions
from the matrix A. We determine the eigenvalues, the generalized eigenvectors and the
associated basis solutions z(t) and z,(f). Then all solutions are linear combinations

z(t) = c12z1(t) + o z2(t)

of the basis solutions. Of course, the basis solutions depend on the two eigenvalues of A
and there are 14 different cases (divided into 4 groups A, B, C and D). Let A;, Ay € C be
the eigenvalues of A, this means the solutions of the characteristic equation

paAN) = NX—trAA+detA = A\ —A) (Aa—A) = 0.

A) )\1,)\2 € R and )\1 7£ )\2

There are two linearly independent (real) eigenvectors v; and vy associated to A;
and A9 and the two basic solutions are

7. (t) = Ml vy and 7o(t) = e vy,

A solution path z(t) = e* v starts in z(0) = v and goes along a straight line in

the direction of v (if A > 0) or —v (if A < 0). If A =0 then z(t) = ¢ v = v for
all .

z(0)=v

0

All solutions of the systems are linear combinations z(t) = ¢; z1(t) +¢2 z2(t). There
are 5 cases, depending on the signs of the eigenvalues.
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A4) A< XA=0
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B) A=A\ =X € R and dim V(\) =2

We have Ax = Ax for all x e R? and A = A\ 1. For allc € R? z(t) = et c = eM c
is a solution. There are 3 different cases.

Bl) A<0

B3) A >0
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C) A=X\ =X €Rand dimV()) =1

If v is an eigenvector of A associated to A and u is a generalized eigenvector of
degree 2 ((A — AI)u = v), then there are the two basis solutions

z1(t) = eM'v and 75(t) = eM[u+t(A—A)u]
\_2:_4

The general solution is

z(t) = creMvieeMutrtv] = N [(e + cpt)v+cou

We see that for ¢t — fo0o the direction of the solution z(t) tends to the directions
+v. There are 3 different cases.
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C3) A>0
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D) =M €C-R

Let \y = a+if and Ay = \; = o — if8. It is easy to see that if Av = \;v then
AV = \yV, because A is a real matrix. This means that if v € C? is a (complex)
eigenvector of A associated to A; then v € C? is a (complex) eigenvector of A

associated to Ay = \;.

The complex basis solutions are (with a = R(v) and b = J(v))
xi(t) = Mty = @O (aib) = e (a4 ib)
= e™(cos Bt +isin Bt) (a+ib)
= e[ (cosfBt-a—sinfBt-b) +i(sin Bt -a+ cos 5t - b) |
Xo(t) = e[ (cosBt-a+sinfBt-b)—i(sinfBt-a+cosfBt-b)]
It is easy to prove that

71 ()
Zo (t)

(x1(t)) = €™ (cos Bt - a — sin 3t - b)
(x1(t)) = €™ (sin Bt - a+ cos Bt - b)

SO

are two linearly independent (over R) real solutions of the system z = Az. The

general real solution can be written as

z(t) = c1z1(t) + c2z9(t)

= e[ (cicosft+ cysinBt) -a+ (—cysin Bt + cycos ft) -b .
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There are 3 different cases.

D1) a<0
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D3) a>0
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