Discrete processes and difference equations

Keywords: differential and difference equations, linear difference equations (with constant coefficients), stability, systems of difference equations, linear systems of difference equations

Contents

1	Intr	roduction	2
2	Line	ear difference equations	3
3	Line	ear difference equations with constant coefficients	4
	3.1	General facts	4
	3.2	Stability	5
	3.3	First-order	6
		3.3.1 The general solution	6
		3.3.2 Economic application: Cobweb models	7
	3.4	Second-order and homogeneous	9
4	Systems of difference equations		10
	4.1	Introduction	10
	4.2	Linear systems	11
	4.3	Stability of linear systems	12

1 Introduction

Let x = x(t) be a quantity as a function of t. Suppose that for any Δt :

$$\Delta x = x(t + \Delta t) - x(t) = k \cdot x(t) \cdot \Delta t$$

If this equation is (approximately) correct for

• very small $\Delta t \ (\Delta t \to 0)$, then we get a differential equation

$$\frac{x(t + \Delta t) - x(t)}{\Delta t} = k \cdot x(t) \quad \longrightarrow \quad \dot{x} = k \cdot x(t)$$

• $\Delta t \approx 1$, then we get a difference equation (with $x_t = x(t)$)

$$x(t+1) - x(t) = k \cdot x(t) \longrightarrow x_{t+1} = k \cdot x_t + x_t = (k+1) \cdot x_t$$

Difference equations are the discrete time counterparts of differential equations in continuous time.

Definition 1.1 Let f be a function defined for all values of the variables. The general nth-order difference equation is

$$x_{t+n} = f(t, x_t, x_{t+1}, \dots, x_{t+n-1}) \quad t = 0, 1, 2, \dots \tag{(\star)}$$

If we require that $x_0, x_1, \ldots, x_{n-1}$ have given values (initial condition), then

$$x_n = f(0, x_0, x_1, \dots, x_{n-1})$$

$$x_{n+1} = f(1, x_1, x_2, \dots, x_n) = f(1, x_1, x_2, \dots, f(0, x_0, x_1, \dots, x_{n-1}))$$

...

The solution of the difference equation (\star) for all $t \ge n$ is uniquely determined (if it exists).

Definition 1.2 The general solution of (\star) is a function

$$x_t = g(t; C_1, C_2, \dots, C_n)$$

that depends on n arbitrary constants C_1, C_2, \ldots, C_n , satisfies (\star) and has the property that every solution of (\star) can be obtained by giving C_1, C_2, \ldots, C_n appropriate values.

Example 1.1 The general solution of $x_{t+2} = 5x_{t+1} - 6x_t + 4^t + t^2 + 3$ is

$$x_t = A 2^t + B 3^t + \frac{1}{2}4^t + \frac{1}{2}t^2 + \frac{3}{2}t + 4$$

2 Linear difference equations

Theorem 2.1 The general solution of the homogeneous linear difference equation

$$x_{t+n} + a_1(t) x_{t+n-1} + \dots + a_{n-1}(t) x_{t+1} + a_n(t) x_t = 0$$

with $a_n(t) \neq 0$ is given by

$$x_t = C_1 u_t^{(1)} + \dots + C_n u_t^{(n)}$$

where $u_t^{(1)}, \ldots, u_t^{(n)}$ are n linearly independent solutions of the equation and C_1, C_2, \ldots, C_n are abitrary constants.

If $u_t^{(1)}, \ldots, u_t^{(n)}$ are solutions of the homogeneous linear difference equation, then

$$u_t^{(1)}, \dots, u_t^{(n)} \text{ are lin. indep.} \longleftrightarrow \begin{vmatrix} u_0^{(1)} & \dots & u_0^{(n)} \\ u_1^{(1)} & \dots & u_1^{(n)} \\ \vdots & \vdots & \vdots \\ u_{n-1}^{(1)} & \dots & u_{n-1}^{(n)} \end{vmatrix} \neq 0$$

Explanation:

If the determinant is zero, then the columns are linearly dependent and since $u_t^{(1)}, \ldots, u_t^{(n)}$ are solutions of the homogeneous linear difference equation, this dependence will propagate to $u_t^{(1)}, \ldots, u_t^{(n)}$ for all t.

Theorem 2.2 The general solution of the nonhomogeneous linear difference equation

$$x_{t+n} + a_1(t) x_{t+n-1} + \dots + a_{n-1}(t) x_{t+1} + a_n(t) x_t = b_t$$

with $a_n(t) \neq 0$ is given by

$$x_t = C_1 u_t^{(1)} + \dots + C_n u_t^{(n)} + u_t^{*}$$

where $C_1 u_t^{(1)} + \cdots + C_n u_t^{(n)}$ is the general solution of the corresponding homogeneous equation and u_t^* is a particular solution of the nonhomogeneous equation.

3 Linear difference equations with constant coefficients

3.1 General facts

The general linear difference equation of nth order with constant coefficients takes the form

$$x_{t+n} + a_1 x_{t+n-1} + \dots + a_{n-1} x_{t+1} + a_n x_t = b_t \tag{1}$$

The corresponding homogeneous equation is

$$x_{t+n} + a_1 x_{t+n-1} + \dots + a_{n-1} x_{t+1} + a_n x_t = 0$$
(2)

We try to find a solution of the homogeneous equation of the form $x_t = m^t$. Inserting this solution and cancelling the common factor m^t yields the characteristic equation

$$m^{n} + a_{1} m^{n-1} + \dots + a_{n-1} m + a_{n} = 0.$$
 (3)

This polynomial has exactly n (complex) solutions (counted with multiplicity).

Suppose that equation (3) has exactly n different real solutions m_1, m_2, \ldots, m_n . Then $m_1^t, m_2^t, \ldots, m_n^t$ all satisfy equation (2) and these functions are linearly independent. The general solution is

$$x_t = C_1 m_1^t + \dots + C_n m_n^t$$

This is **not** the general solution of (2) if (3) has multiple and /or complex solutions.

General method of solving:

Find the solutions of (3) together with their multiplicity.

- A real solution m_i with multiplicity 1 gives the one solution m_i^t .
- A real solution m_j with multiplicity p > 1 gives the p solutions $m_j^t, tm_j^t, \ldots, t^{p-1}m_j^t$.
- A pair of complex roots $\alpha \pm i\beta$, each with multiplicity 1, gives the two solutions $r^t \cos \theta t$ and $r^t \sin \theta t$, where $r = \sqrt{\alpha^2 + \beta^2}$ and $\theta \in [0, \pi]$ satisfies $\cos \theta = \alpha/r$, $\sin \theta = \beta/r$.
- A pair of complex roots $\alpha \pm i\beta$, each with multiplicity q > 1, gives the 2q solutions $u, v, tu, tv, \ldots, t^{q-1}u, t^{q-1}v$, with $u = r^t \cos \theta t$ and $v = r^t \sin \theta t$, where $r = \sqrt{\alpha^2 + \beta^2}$ and $\theta \in [0, \pi]$ satisfies $\cos \theta = \alpha/r$, $\sin \theta = \beta/r$.

In order to find the general solution of the nonhomogeneous equation (1), it remains to find a particular solution u^* .

 $b_t \qquad u^*$ $a_0 + a_1 t + \dots + a_l t^l \qquad A_0 + A_1 t + \dots + A_l t^l$ $ce^{ut} \qquad Ce^{ut}$ $c_1 \sin vt + c_2 \cos vt \qquad C_1 \sin vt + C_2 \cos vt$

3.2 Stability

Definition 3.1 The equation

$$x_{t+n} + a_1 x_{t+n-1} + \dots + a_{n-1} x_{t+1} + a_n x_t = b_t$$

is called <u>globally asymptotically stable</u>, if the general solution $x_t = C_1 u_t^{(1)} + \cdots + C_n u_t^{(n)}$ of the associated homogeneous equation tends to 0 as $t \to \infty$ (for all values of the constants C_1, \ldots, C_n).

Then the effect of the initial conditions "dies out" as $t \to \infty$.

Theorem 3.1 The equation is globally asymptotically stable if and only if all roots of the characteristic polynomial of this equation have moduli strictly less than 1.

Example 3.1 Examine the stability of the difference equation $x_{t+2} - \frac{1}{3}x_t = \sin t$.

Solution:

- characteristic equation: $m^2 \frac{1}{3} = 0$; solutions: $m = \pm \sqrt{\frac{1}{3}}$
- general solution of the associated homogeneous difference equation:

$$x_t = C_1 \left(\sqrt{\frac{1}{3}}\right)^t + C_2 \left(-\sqrt{\frac{1}{3}}\right)^t$$

•
$$\lim_{t \to \infty} C_1 \left(\sqrt{\frac{1}{3}} \right)^t + C_2 \left(-\sqrt{\frac{1}{3}} \right)^t = 0$$

• equation is globally asymptotically stable

3.3 First-order

3.3.1 The general solution

We consider the linear first-order difference equation with constant coefficients $x_{t+1}+ax_t = b$ where a, b, x_0 are real numbers.

• General solution of the homogeneous equation $x_{t+1} + ax_t = 0$: With $x_t^h = m^t$ we get the characteristic equation

$$m+a = 0 \rightarrow m = -a \rightarrow x_t^h = Cm^t = C(-a)^t$$

• Particular solution of the nonhomogeneous equation $x_{t+1} + ax_t = b$: With $x_t^* = c$ we get

$$c + ac = b \rightarrow c = \frac{b}{1+a}$$
 if $a \neq -1$

If a = -1 a particular solution of $x_{t+1} - x_t = b$ is $x_t^* = bt$.

• The general solution of $x_{t+1} + ax_t = b$ with $a \neq -1$ is

$$x_t = C (-a)^t + \frac{b}{1+a} = \left(x_0 - \frac{b}{1+a}\right) (-a)^t + \frac{b}{1+a}$$

The general solution of $x_{t+1} - x_t = b$ is

$$x_t = C (-a)^t + bt = x_0 (-a)^t + bt$$

3.3.2 Economic application: Cobweb models

Let D_t be the demand, S_t the supply and p_t the price of a good at time t = 0, 1, 2, ... We use a linear model (a, b, c, d > 0) and assume that

- $D_t = f(p_t) = -ap_t + b$: The demand is a function of the price in the same period.
- $S_{t+1} = g(p_t) = cp_t d$: The supply is a function of the price in the preceding period.
- price formation: $S_{t+1} = D_{t+1}$ or $g(p_t) = f(p_{t+1})$ or

$$-ap_{t+1} + b = cp_t - d \longrightarrow p_{t+1} = -\frac{c}{a}p_t + \frac{b+d}{a}$$

The solution of this first order linear difference equation is

$$p_t = \left(p_0 - \frac{b+d}{a+c}\right) \left(-\frac{c}{a}\right)^t + \frac{b+d}{a+c}$$

The number

$$p^* = \frac{b+d}{a+c}$$

is the long-term balance price (we have $g(p^*) = f(p^*)$).

Essential properties of the solution depends only on the term $-\frac{c}{a}$.

Example 3.2 Investigate the solution p_t if

1. $\left|-\frac{c}{a}\right| < 1,$ 2. $\left|-\frac{c}{a}\right| = 1$ and 3. $\left|-\frac{c}{a}\right| > 1.$

3.4 Second-order and homogeneous

We consider the linear second-order homogeneous difference equation $x_{t+2}+ax_{t+1}+bx_t = 0$ where a, b, x_0, x_1 are real numbers. With $x_t = m^t$ we get the characteristic equation

$$m^2 + a \ m + b = 0 \rightarrow m_{1,2} = -\frac{a}{2} \pm \sqrt{\frac{a^2}{4} - b}$$

Theorem 3.2 The general solution of $x_{t+2} + ax_{t+1} + bx_t = 0$ depends on the characteristic equation as follows:

- 1. If $\frac{a^2}{4} b > 0$ then $x_t = C_1 m_1^t + C_2 m_2^t$. 2. If $\frac{a^2}{4} - b = 0$ then $x_t = (C_1 + C_2 t) m^t$ with $m = -\frac{a}{2}$.
- 3. If $\frac{a^2}{4} b < 0$ then $x_t = r^t (C_1 \cos \beta t + C_2 \sin \beta t)$ with $r = \sqrt{b}$ and $\cos \beta = -\frac{a}{2\sqrt{b}}$ and $\beta \in [0, \pi]$

Example 3.3 Difference equation: $x_{t+2} - 5x_{t+1} + 6x_t = 0$ Characteristic equation: $m^2 - 5m + 6 = 0$ and $m_1 = 2$, $m_2 = 3$ General solution: $x_t = C_1 2^t + C_2 3^t$

Example 3.4 Difference equation: $x_{t+2} - 6x_{t+1} + x_t = 0$ Characteristic equation: $m^2 - 6m + 1 = 0$ and $m_1 = m_2 = 3$ General solution: $x_t = (C_1 + C_2 t)3^t$

Example 3.5 Difference equation: $x_{t+2} - x_{t+1} + x_t = 0$ Characteristic equation: $m^2 - m + 1 = 0$ and $r = \sqrt{b} = 1$, $\cos \beta = 1/2$ so $\beta = \frac{\pi}{3}$ General solution: $x_t = C_1 \cos \frac{\pi}{3} t + C_2 \sin \frac{\pi}{3} t$

4 Systems of difference equations

4.1 Introduction

Definition 4.1 A system of first order difference equations in the n unknown functions $x_{1,t}, x_{2,t}, \ldots, x_{n,t}$ can be expressed in the so-called normal form

$$\begin{array}{rcl}
x_{1,t+1} &=& f_1(t, x_{1,t}, \dots, x_{n,t}) \\
\vdots & \vdots \\
x_{n,t+1} &=& f_n(t, x_{1,t}, \dots, x_{n,t})
\end{array} (*)$$

If $x_{1,0}, x_{2,0}, \ldots, x_{n,0}$ are specified, then $x_{1,1}, x_{2,1}, \ldots, x_{n,1}$ are found by substituting t = 0 in the system, next $x_{1,2}, x_{2,2}, \ldots, x_{n,2}$ are found by substituting t = 1 etc.

Theorem 4.1 The solution of the system is uniquely determined by the values of $x_{1,0}, x_{2,0}, \ldots, x_{n,0}$.

Definition 4.2 The general solution of the system (*) is given by n functions

$$x_{1,t} = g_1(t, C_1, \dots, C_n)$$

$$\vdots \qquad \vdots \qquad (**)$$

$$x_{n,t} = g_n(t, C_1, \dots, C_n)$$

with the property that an arbitrary solution is obtained from (**) by giving C_1, \ldots, C_n appropriate values.

Example 4.1 Find the general solution of the system

$$\begin{aligned} x_{t+1} &= \frac{1}{2}x_t + \frac{1}{3}y_t \ (I) \\ y_{t+1} &= \frac{1}{2}x_t + \frac{2}{3}y_t \ (II) \end{aligned}$$

Solution:

• (I)
$$x_{t+1} = \frac{1}{2}x_t + \frac{1}{3}y_t \leftrightarrow y_t = 3x_{t+1} - \frac{3}{2}x_t$$
 and $y_{t+1} = 3x_{t+2} - \frac{3}{2}x_{t+1}$

• in (II) $y_{t+1} = \frac{1}{2}x_t + \frac{2}{3}y_t$ we get:

$$3x_{t+2} - \frac{3}{2}x_{t+1} = \frac{1}{2}x_t + \frac{2}{3}\left(3x_{t+1} - \frac{3}{2}x_t\right) \iff x_{t+2} - \frac{7}{6}x_{t+1} + \frac{1}{6}x_t = 0$$

a linear homogeneous difference equation of order 2 with

- general solution: $x_t = C_1 + C_2 \left(\frac{1}{6}\right)^t$
- $y_t = 3x_{t+1} \frac{3}{2}x_t = \frac{3}{2}C_1 C_2\left(\frac{1}{6}\right)^t$

4.2 Linear systems

Definition 4.3 If the functions f_1, \ldots, f_n in (*) are linear, we obtain a <u>linear system</u>

$$\begin{aligned} x_{1,t+1} &= a_{11}(t)x_{1,t} + \dots + a_{1n}(t)x_{n,t} + b_1(t) \\ \vdots &\vdots \\ x_{n,t+1} &= a_{n1}(t)x_{1,t} + \dots + a_{nn}(t)x_{n,t} + b_n(t) \end{aligned}$$

If we define

$$\mathbf{x}_{t} = \begin{pmatrix} x_{1,t} \\ \vdots \\ x_{n,t} \end{pmatrix}, \mathbf{A}(t) = \begin{pmatrix} a_{11}(t) & \dots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \dots & a_{nn}(t) \end{pmatrix} and \mathbf{b}_{t} = \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix}$$

then the system is equivalent to

$$\mathbf{x}_{t+1} = \mathbf{A}(t) \mathbf{x}_t + \mathbf{b}_t \tag{(\star)}$$

Special cases:

• If $\underline{\mathbf{A}(t) = \mathbf{A}}$ is constant then the linear system (*) reduces to

$$\mathbf{x}_{t+1} = \mathbf{A} \mathbf{x}_t + \mathbf{b}_t$$

and we see:

$$\mathbf{x}_{1} = \mathbf{A} \mathbf{x}_{0} + \mathbf{b}_{0}$$

$$\mathbf{x}_{2} = \mathbf{A} \mathbf{x}_{1} + \mathbf{b}_{1} = \mathbf{A} (\mathbf{A} \mathbf{x}_{0} + \mathbf{b}_{0}) + \mathbf{b}_{1} = \mathbf{A}^{2} \mathbf{x}_{0} + \mathbf{A} \mathbf{b}_{0} + \mathbf{b}_{1}$$

$$\mathbf{x}_{3} = \mathbf{A}^{3} \mathbf{x}_{0} + \mathbf{A}^{2} \mathbf{b}_{0} + \mathbf{A} \mathbf{b}_{1} + \mathbf{b}_{2}$$

$$\vdots$$

$$\mathbf{x}_{t} = \mathbf{A}^{t} \mathbf{x}_{0} + \sum_{k=1}^{t} \mathbf{A}^{t-k} \mathbf{b}_{k-1}$$

• If $\underline{\mathbf{A}}(t) = \mathbf{A}$ and $\mathbf{b}_t = \mathbf{b}$ are constant, we have:

$$\mathbf{x}_t = \mathbf{A}^t \mathbf{x}_0 + (\mathbf{A}^{t-1} + \mathbf{A}^{t-2} + \dots + \mathbf{A} + \mathbf{I}) \mathbf{b}$$

By a direct calculation we see

$$(\mathbf{A}^{t-1} + \mathbf{A}^{t-2} + \dots + \mathbf{A} + \mathbf{I}) (\mathbf{I} - \mathbf{A}) = \mathbf{I} - \mathbf{A}^{t}$$

and if det $(\mathbf{I} - \mathbf{A}) \neq 0$ ($\lambda = 1$ is not an eigenvalue of \mathbf{A}), then $(\mathbf{I} - \mathbf{A})^{-1}$ exists and we get

$$(\mathbf{A}^{t-1} + \mathbf{A}^{t-2} + \dots + \mathbf{A} + \mathbf{I}) = (\mathbf{I} - \mathbf{A}^t)(\mathbf{I} - \mathbf{A})^{-1}$$

and

$$\mathbf{x}_t = \mathbf{A}^t \mathbf{x}_0 + (\mathbf{I} - \mathbf{A}^t)(\mathbf{I} - \mathbf{A})^{-1} \mathbf{b}$$

• If $\underline{\mathbf{A}}(t) = \mathbf{A}$ and $\mathbf{b}_t = \mathbf{0}$ are constant, we have:

$$\mathbf{x}_t = \mathbf{A}^t \mathbf{x}_0$$

4.3 Stability of linear systems

Definition 4.4 The linear system $\mathbf{x}_{t+1} = \mathbf{A} \mathbf{x}_t + \mathbf{b}_t$ is said to be <u>globally</u> asymptotically stable if the general solution of the corresponding homogeneous system $\mathbf{x}_{t+1} = \mathbf{A} \mathbf{x}_t$ tends to $\mathbf{0}$ if $t \to \infty$.

We see:

 $\mathbf{x}_{t+1} = \mathbf{A} \mathbf{x}_t + \mathbf{b}_t$ globally asymptotically stable

 $\longleftrightarrow \mathbf{x}_t = \mathbf{A}^t \ \mathbf{x}_0 \to \mathbf{0}$ for all \mathbf{x}_0

 $\longleftrightarrow \mathbf{A}^t \to \mathbf{0}_{n,n} \ (\text{matrix})$

 \longleftrightarrow all eigenvalues of **A** have moduli less than 1

 $\longrightarrow (\mathbf{I} - \mathbf{A})^{-1}$ exists!

Theorem 4.2 If all eigenvalues of **A** have moduli strictly less than 1, the difference equation $\mathbf{x}_{t+1} = \mathbf{A} \mathbf{x}_t + \mathbf{b}$ is globally asymptotically stable and every solution

$$\mathbf{x}_t = \mathbf{A}^t \mathbf{x}_0 + (\mathbf{I} - \mathbf{A}^t)(\mathbf{I} - \mathbf{A})^{-1} \mathbf{b}$$

tends to $(\mathbf{I} - \mathbf{A})^{-1} \mathbf{b}$ if $t \to \infty$.

Example 4.2 Investigate the stability of the linear system $\mathbf{x}_{t+1} = \mathbf{A} \ \mathbf{x}_t$ with $\mathbf{A} = \begin{pmatrix} \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{2}{3} \end{pmatrix}$.

Solution:

The eigenvalues of **A** are 1 and $\frac{1}{6}$, the system is not globally asymptotically stable.

Remark:

We know the general solution already: $\mathbf{x}_t = \begin{pmatrix} A + B\left(\frac{1}{6}\right)^t \\ \frac{3}{2}A - B\left(\frac{1}{6}\right)^t \end{pmatrix}$