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1 Finite Horizon and Fundamental equations

1.1 Introduction

In this chapter we will discuss optimization problems for discrete time processes. We will
consider systems/processes that change at discrete times t =0,1,...,T.

Suppose that the state of the system at time ¢ is completely described by a real number
x; and assume that the initial state z( is given and that from then on the system evolves
through time under the influence of a sequence of so-called controls u;, which can be
chosen freely from a given set U, called the control region.

Furthermore, we will always assume that the evolution of the system can be described by
a given difference equation

i1 = g(t, xy,uy) with xy given and u, € U.
It is easy to see, that if we choose values for ug, uq, ..., ur_1 the difference equation gives
ry = 9(07 X, UO)

Ty = g(Lxluul) = 9(179(07'7707“0)7“1)

and we can compute recursively the states x1,zs,...,xr in terms of the initial state xg
and the controls wug, uy, ..., ur_1.
Hence each choice of (ug,us,...,ur_1) gives rise to a sequence (g, x1,...,2Tr). Let us

denote these corresponding pairs by ({z;}, {u;}) and call them admissible sequence pairs.
Of course, different choices of the control sequence will give different sequences of the
states.

Example 1.1 20=0,T =2, 441 =x; +u and uy € [-1,1] =U C R

e controls (ug,u;) = (0,0)

g — 1
r1 = Tog+Uy = 1+0 =1
To = X1+ u = 1+0 =1

e controls (ug,u;) = (1,—1)

g = 1
ry = l’o—f—UO = ].—f—l :2
To = T1+ U =2-1=1

Different pathes of the system through time have usually a different utility or value.
Assume that there is a function f (¢, x,u) of three variables such that the utility associated
with a given path of the system is given by the sum

Z f(t, T, ut).

t=0



The sum is called the objective function and it represents the sum of utilities obtained at
each point t = 0,1,...,T of time.

Remarks 1.1 The objective function is sometimes defined by

S
-

ft, xp,ug) + S(ar),

t

I
=)

where S measures the value associated with the terminal state xr of the system. This
seems to be quite natural, because in the state xr we are ready and there is (mostly) no
decision ur to make or a decision ur has no impact. But this objective function is a
special case of our definition with f(T,zr,ur) = S(xr).

For each admissible pair ({z;},{u;}) the objective function has a definite value and we
can now describe the general problem:

Among all admissible pairs ({z;},{w;}) find one, ({z;},{u;}), that makes the
value of the objective function as large as possible or

T
maxz f(t,zs, uy) subject to xyp1 = g(t, x4, up), o given, v, € U
=0

This pair ({2}, {u;}) is called optimal pair and the sequence u; is called optimal control.

Example 1.2 Let z; be an individual’s wealth at time t. At each time t = 0,1,...,T
the individual has to decide the proportion u; € [0,1] = U of x; to consume, leaving the
remaining proportion (1 — uy) for savings. Assume that the wealth earns interest at rate
p—1>0.

After ug-xzy has been withdrawn for consumption, the remaining stock of wealth is (1—uy)x;.
Because of the interest, this grows to the amount

T = p(1 —up)xy

at the beginning of period t + 1.

Suppose that the utility of consuming ¢, = uy - x; is given by U(t,¢;) = U(t,uy - x¢). The
total utility over all periods t =0,1,...,T is

T

Z Ul(t,uy - )

t=0

The dynamic optimization problem is:

T
max Z U(t, Uy - xt)

t=0

subject to

Tip1 = p(1—up)zy,
Ty glven,

u €[0,1] =U.



1.2 The optimal value function

Suppose we have to solve the general problem (x)

T
max Z f(t, T, Ut)
t=0

subject to
Ti41 = g(taxtaut)v
T given,
Uy € U
and suppose that at time ¢t = s the state of the system is zy = x € R. The best we can do

in the remaining periods is to choose (us, usi1,...,ur_1) (and perhaps ur) and thereby
(Ts41, Tsy2, - - -, ) such that

is maximal with z, = x.

Definition 1.1 The optimal value function at time s of the problem (x) is

Js(z) = max Z f(t, @y, uy)

Ug,y.. U —1 €U

where s = x and x = g(t, x4, uy) fort > s.

Important property of J, Suppose that at time ¢ = s we are in the state x, = =x.
What is the optimal choice for us = u?

If we choose u, = u, then at t = s

e we obtain the immediate reward f(s,z,u),
e the state of the system at time ¢t = s + 1 will be x4y = g(s,x,u) and

e the highest obtainable value for the reward

T
Z f(t7 T, ut)
t=s+1
starting from the state x4 is
Jsr1(@si1) = Jora(g(s, ,u)).

Hence the best choice of u = ug at time s must be the value of u that maximizes the sum

f(S,.QT,U,) + J8+1(g(8,x,u))!
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So we get the basic tool for solving discrete dynamic optimization problems.

Theorem 1.1 (Fundamental equations of dynamic programming (finite horizon))
Let

T
maxz f(t, ze, uy)
=0

subject to
Ti41 = g(twrt;ut);
Ty given,

UtEU

be a discrete dynamic optimization problem and Jy(z) the optimal value function for t =

0,1,...,T. Then the sequence of value functions Jy, Jy, ..., Js, Jsi1,

., Jr_1, Jr satisfies
the equations:

Js(z) = mea(?( [f(s,m,u)—i—JsH(g(s,x,U))] fOT’SZO,l,...,T—l
Jr(x) = max f(T,z,u)

uelU




Example 1.3 We use the theorem to solve the problem
maxz + x; — t ) subject to xyy1 = x4+ U, To =0, uy € R.

Here T =3, f(t,z,u) =1+ x —u® and g(t,z,u) = x +u. We start with Js.

. J3(ac):ma§<(1+x—u2) = 14+ and ui(x) =0
ue —

JQ(I) - Iilea(}( [f(Z,x,u) + J3(g(27xau>)]
= max [ f(2,z,u) + J3(z +u) |
= max [1+z—u’+1+(z+u)]
uelU
= max[2+2x+u—u2}
uelU
= 225+ 2z

because -(2+ 2z +u—u?) =1—2u =0 if u = uj(z) = 0.5 and this point is a global
mazximizer of the function (have a look at the second derivative of 2 + 2z +u — u?).

Jl(x) = rileagi [f(laxﬂu)+J2(g(1 z ’LL))]
= max [ f(1 )+ Jo(x +u) |
= max [14+2—u’+225+2(z+u) |
uelU
= max [ 14/3 4 3z + 2u — u? |
uelU
= 425+ 3z

because 4-(14/3+3z+2u—u?) = 2—2u = 0 if u = uj(x) = 1 and this point is a global
mazimizer of the function (have a look at the second derivative of 14/3+3x+2u—u?).

FQ0, 2, u) + J1(9(0, 2,u)) |
f0,z,u) + Ji(x+u) |
= max [14+z—u’+425+3(z+u) |
= max [21+4x—|—3u—u2]

uelU

= 75+4z

because -L(21+4x+3u—u?) = 3—2u = 0 if u = uj(x) = 1.5 and this point is a global
mazximizer of the function (have a look at the second derivative of 21+ 4x + 3u—u?).




In this particular case the optimal controls are constants, independent of the state of the
system, generally this is not the case. The corresponding sequence of the states is:

*
90 = x5 = 0
xr; = wzo+u;, = 1.5
x5 = x]+u; = 2.5
x * x
Ty = Ty+u; = 3.

Alternative solution This simple problem can also be solved by ordinary methods. We
have to maximize the objective function and use the difference equation to eliminate x1, xo
and 3 (and use o =0):

3
Z 1—|—a:t—ut
t=0
= (1+$0—u(2))+(1+:1:1—u%)—l—(1+x2—u§)+(1+x3—u§)
= (L4wo—ug) + (14 (w0 +uo) — ug) + (1 + (z1 +ur) — uz) + (1 + (w2 + uz) — u3)

= (1420 —ud) + (1 + (zo + up) — u?) + (1 + ((zo + up) + uy) — u)
"—(1 + (($1 + Ul) + UQ) — U3)

2 2 2 _ 2
= 4+ 3up — uy + 2u; —uj + ux — uy; — u3

= [(Uo,ul,W,Us)

To maximize the function I, we have to determine the stationary points by solving the
system of equations:

3 — 2uy 0

2 —2u 0

VI(UO,UJ,UQ,U?,) = 1 —2'1,[; = 0
—2’LL3 0

We get (ug, u1,us,us3) = (1.5,1,0.5,0) and this point is the global maximizer of I, because
I is a concave function.



2 Infinite Horizon and Bellmann equations

2.1 Introduction

In this part we will consider and study the following infinite horizon version of the standard
problem of discrete dynamic optimization:

maxz B f (x4, uy)

t=0
subject to

Tep1 = (T4, wp),
T given,

The number [ is a discount factor, this means 0 < § < 1. Because neither f nor g depend
expicitely on ¢, the problem is called autonomous. As before, a sequence pair ({z;}, {u})
is called admissible, if each u; € U, the initial state of the system is xy and the difference
equation z;11 = g(y,u) is satisfied for all ¢ = 0,1,... For simplicity, we will assume
that f satisfies a boundary condition

Ml é f(l',U) S M2

for all (z,u) with uw € U, where M;, M, are constants. Because 0 < 8 < 1, the sum will
therefor always converge.

For any given time s = 0,1,2,... and any given state z = x5 take any (infinite) control
sequence

Uss = (Us, Usqt,- .- )

where u; € U fort =s,s+1,...

The states generated by this control sequence are given by x4 = ¢g(xy, u;) with z = x.
The discounted sum of the infinite utility sequence at time s, starting from the state z
and obtained by applying the control sequence usg, is

Vi(zusy) = > Bf(mew) = B B flew).
t=s t=s
::VSE;,uZS)

We notice the difference between the two functions explicitely:

e V, measures all benefits from time s on, discounted to the fixed initial time ¢ = 0

e /° measures all benefits from time s on, discounted to the variable time ¢ = s.
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Now let
Js(r) = max Vi(z,uss) = f'max V°(z,usg)
u>g u>s
::;;(x)

Thus, Js(z) is the maximal (to time ¢t = 0) discounted utility that can be obtained over
all periods from t = s to 0o, given that the system starts in the state x at time t = s.

Definition 2.1 Jy(z) is called the optimal value function of the problem.

Lemma 2.1 For all s > 0 we have J*(x) = J°(z).

Proof: Because the problem is autonomous and we start in the same state x, the future
looks exactly the same at either time 0 or time s. This is not true if the horizon is finite.
So finding

J¥(x) = max Vi(z,us,) or J%z) = max VO(z, uso)
u>;, u>o
requires solving the same optimization problem. a

Of course, we have
Jo(x) = B J(x) = B° J(2)

and we define

We see that if we know J(z) = Jy(x), then we know Jy(z) for all s. The following main
result is the analogous to the fundamental equations for finite horizon problems.
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2.2 The Bellman equation

Theorem 2.1 (Fundamental equations of dynamic programming (infinite horizon))
Let

maxi B f (2, uyp)
t=0

subject to
T = g(T, ),
Ty given,

be a discrete dynamic optimization problem. The value function J(x) of this problem
satisfies the so-called Bellman equation:

J(x) = max [ f(z,u) + B (g(z,u)) ]

uelU

The Bellman equation is a so-called functional equation, because the unknown function
J appears on both sides of the equation. It is not clear, that such an equation has a
(unique) solution. You may understand that it is very difficult to use the equation to
solve the optimization problem, because maximizing the right-hand side to get J on the
left-hand side requires the function J. Hence it may be necessary to guess the structure
of J.
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Example 2.1 Consider the following problem

- 2
maxz Ik ( —gxf —u? )
t=0
subject to
Tiy1 = Tt -+ U,
Ty grven,
Uy € R.

We have f(z,u) = —%xQ —u? and g(x,u) = x +u. The Bellman equation of the problem
18

J(z) = max [—ggg?—uuw(ﬁu)}

ueR

What to do now? How can we find a function J with this property? We guess (ingeniously)
the type of J and try J(x) = —ax® for a suitable o € R,

We get the equation

—az? = max { —§x2 —u* + B(—a)(z + u)? ]

u€eR
and the funtion h(u) = —21? — u* — aff(x + u)?* realizes the global mazimum in
ut(x) = __a x
(I—ap)"

Using this value for u in the Bellman equation we get

—ax? = —ng — (—a—ﬁx)Q —af (x — a—ﬁx)Q
3 (1 —ap) (1—apB)

We can cancel 22 and with Maple I found

5B —3+4/2532—-68+9
- 57 :




