

Discrete time optimization

Keywords: Discrete time optimization for finite and infinite horizon, optimal value function, fundamental equations, Bellman equation

Contents

1	Finite Horizon and Fundamental equations	2
1.1	Introduction	2
1.2	The optimal value function	4
2	Infinite Horizon and Bellmann equations	9
2.1	Introduction	9
2.2	The Bellman equation	11

1 Finite Horizon and Fundamental equations

1.1 Introduction

In this chapter we will discuss optimization problems for discrete time processes. We will consider systems/processes that change at discrete times $t = 0, 1, \dots, T$.

Suppose that the state of the system at time t is completely described by a real number x_t and assume that the initial state x_0 is given and that from then on the system evolves through time under the influence of a sequence of so-called controls u_t , which can be chosen freely from a given set U , called the control region.

Furthermore, we will always assume that the evolution of the system can be described by a given difference equation

$$x_{t+1} = g(t, x_t, u_t) \text{ with } x_0 \text{ given and } u_t \in U.$$

It is easy to see, that if we choose values for u_0, u_1, \dots, u_{T-1} the difference equation gives

$$\begin{aligned} x_1 &= g(0, x_0, u_0) \\ x_2 &= g(1, x_1, u_1) = g(1, g(0, x_0, u_0), u_1) \\ &\dots \end{aligned}$$

and we can compute recursively the states x_1, x_2, \dots, x_T in terms of the initial state x_0 and the controls u_0, u_1, \dots, u_{T-1} .

Hence each choice of $(u_0, u_1, \dots, u_{T-1})$ gives rise to a sequence (x_0, x_1, \dots, x_T) . Let us denote these corresponding pairs by $(\{x_t\}, \{u_t\})$ and call them admissible sequence pairs. Of course, different choices of the control sequence will give different sequences of the states.

Example 1.1 $x_0 = 0, T = 2, x_{t+1} = x_t + u_t$ and $u_t \in [-1, 1] = U \subset \mathbb{R}$

- *controls* $(u_0, u_1) = (0, 0)$

$$\begin{aligned} x_0 &= 1 \\ x_1 &= x_0 + u_0 = 1 + 0 = 1 \\ x_2 &= x_1 + u_1 = 1 + 0 = 1 \end{aligned}$$

- *controls* $(u_0, u_1) = (1, -1)$

$$\begin{aligned} x_0 &= 1 \\ x_1 &= x_0 + u_0 = 1 + 1 = 2 \\ x_2 &= x_1 + u_1 = 2 - 1 = 1 \end{aligned}$$

Different pathes of the system through time have usually a different utility or value. Assume that there is a function $f(t, x, u)$ of three variables such that the utility associated with a given path of the system is given by the sum

$$\sum_{t=0}^T f(t, x_t, u_t).$$

The sum is called the objective function and it represents the sum of utilities obtained at each point $t = 0, 1, \dots, T$ of time.

Remarks 1.1 *The objective function is sometimes defined by*

$$\sum_{t=0}^{T-1} f(t, x_t, u_t) + S(x_T),$$

where S measures the value associated with the terminal state x_T of the system. This seems to be quite natural, because in the state x_T we are ready and there is (mostly) no decision u_T to make or a decision u_T has no impact. But this objective function is a special case of our definition with $f(T, x_T, u_T) = S(x_T)$.

For each admissible pair $(\{x_t\}, \{u_t\})$ the objective function has a definite value and we can now describe the general problem:

Among all admissible pairs $(\{x_t\}, \{u_t\})$ find one, $(\{x_t^*\}, \{u_t^*\})$, that makes the value of the objective function as large as possible or

$$\max \sum_{t=0}^T f(t, x_t, u_t) \text{ subject to } x_{t+1} = g(t, x_t, u_t), x_0 \text{ given, } u_t \in U$$

This pair $(\{x_t^*\}, \{u_t^*\})$ is called optimal pair and the sequence u_t^* is called optimal control.

Example 1.2 Let x_t be an individual's wealth at time t . At each time $t = 0, 1, \dots, T$ the individual has to decide the proportion $u_t \in [0, 1] = U$ of x_t to consume, leaving the remaining proportion $(1 - u_t)$ for savings. Assume that the wealth earns interest at rate $\rho - 1 > 0$.

After $u_t \cdot x_t$ has been withdrawn for consumption, the remaining stock of wealth is $(1 - u_t)x_t$. Because of the interest, this grows to the amount

$$x_{t+1} = \rho(1 - u_t)x_t$$

at the beginning of period $t + 1$.

Suppose that the utility of consuming $c_t = u_t \cdot x_t$ is given by $U(t, c_t) = U(t, u_t \cdot x_t)$. The total utility over all periods $t = 0, 1, \dots, T$ is

$$\sum_{t=0}^T U(t, u_t \cdot x_t)$$

The dynamic optimization problem is:

$$\begin{aligned} & \max \sum_{t=0}^T U(t, u_t \cdot x_t) \\ & \text{subject to} \\ & x_{t+1} = \rho(1 - u_t)x_t, \\ & x_0 \text{ given,} \\ & u_t \in [0, 1] = U. \end{aligned}$$

1.2 The optimal value function

Suppose we have to solve the general problem (*)

$$\begin{aligned} & \max \sum_{t=0}^T f(t, x_t, u_t) \\ & \text{subject to} \\ & \quad x_{t+1} = g(t, x_t, u_t), \\ & \quad x_0 \text{ given,} \\ & \quad u_t \in U \end{aligned}$$

and suppose that at time $t = s$ the state of the system is $x_s = x \in \mathbb{R}$. The best we can do in the remaining periods is to choose $(u_s, u_{s+1}, \dots, u_{T-1})$ (and perhaps u_T) and thereby $(x_{s+1}, x_{s+2}, \dots, x_T)$ such that

$$\sum_{t=s}^T f(t, x_t, u_t)$$

is maximal with $x_s = x$.

Definition 1.1 *The optimal value function at time s of the problem (*) is*

$$J_s(x) = \max_{u_s, \dots, u_{T-1} \in U} \sum_{t=s}^T f(t, x_t, u_t)$$

where $x_s = x$ and $x_{t+1} = g(t, x_t, u_t)$ for $t > s$.

Important property of J_s Suppose that at time $t = s$ we are in the state $x_s = x$. What is the optimal choice for $u_s = u$?

If we choose $u_s = u$, then at $t = s$

- we obtain the immediate reward $f(s, x, u)$,
- the state of the system at time $t = s + 1$ will be $x_{s+1} = g(s, x, u)$ and
- the highest obtainable value for the reward

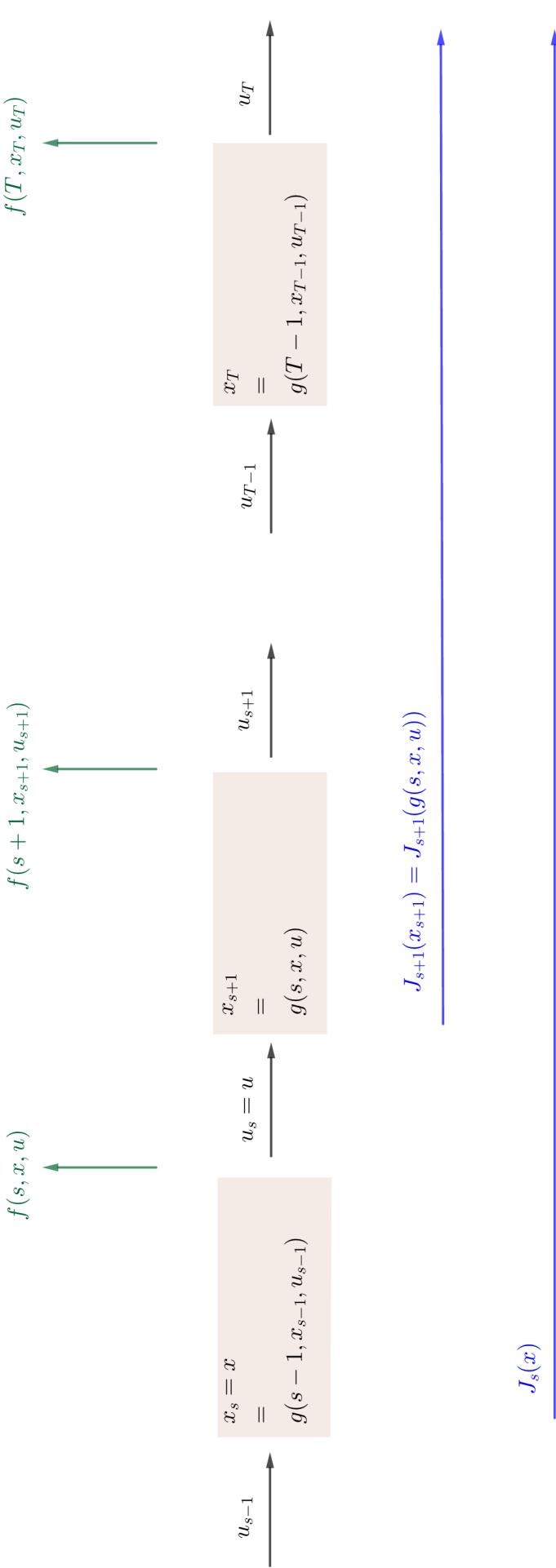
$$\sum_{t=s+1}^T f(t, x_t, u_t)$$

starting from the state x_{s+1} is

$$J_{s+1}(x_{s+1}) = J_{s+1}(g(s, x, u)).$$

Hence the best choice of $u = u_s$ at time s must be the value of u that maximizes the sum

$$f(s, x, u) + J_{s+1}(g(s, x, u))!$$



So we get the basic tool for solving discrete dynamic optimization problems.

Theorem 1.1 (Fundamental equations of dynamic programming (finite horizon))
Let

$$\begin{aligned} & \max \sum_{t=0}^T f(t, x_t, u_t) \\ & \text{subject to} \\ & x_{t+1} = g(t, x_t, u_t), \\ & x_0 \text{ given,} \\ & u_t \in U \end{aligned}$$

be a discrete dynamic optimization problem and $J_t(x)$ the optimal value function for $t = 0, 1, \dots, T$. Then the sequence of value functions $J_0, J_1, \dots, J_s, J_{s+1}, \dots, J_{T-1}, J_T$ satisfies the equations:

$$\begin{aligned} J_s(x) &= \max_{u \in U} [f(s, x, u) + J_{s+1}(g(s, x, u))] \quad \text{for } s = 0, 1, \dots, T-1 \\ J_T(x) &= \max_{u \in U} f(T, x, u) \end{aligned}$$

Example 1.3 We use the theorem to solve the problem

$$\max \sum_{t=0}^3 (1 + x_t - u_t^2) \text{ subject to } x_{t+1} = x_t + u_t, x_0 = 0, u_t \in \mathbb{R}.$$

Here $T = 3$, $f(t, x, u) = 1 + x - u^2$ and $g(t, x, u) = x + u$. We start with J_3 .

- $J_3(x) = \max_{u \in U} (1 + x - u^2) = 1 + x \text{ and } u_3^*(x) = 0$

•

$$\begin{aligned} J_2(x) &= \max_{u \in U} [f(2, x, u) + J_3(g(2, x, u))] \\ &= \max_{u \in U} [f(2, x, u) + J_3(x + u)] \\ &= \max_{u \in U} [1 + x - u^2 + 1 + (x + u)] \\ &= \max_{u \in U} [2 + 2x + u - u^2] \\ &= 2.25 + 2x \end{aligned}$$

because $\frac{d}{du}(2 + 2x + u - u^2) = 1 - 2u = 0$ if $u = u_2^*(x) = 0.5$ and this point is a global maximizer of the function (have a look at the second derivative of $2 + 2x + u - u^2$).

•

$$\begin{aligned} J_1(x) &= \max_{u \in U} [f(1, x, u) + J_2(g(1, x, u))] \\ &= \max_{u \in U} [f(1, x, u) + J_2(x + u)] \\ &= \max_{u \in U} [1 + x - u^2 + 2.25 + 2(x + u)] \\ &= \max_{u \in U} [14/3 + 3x + 2u - u^2] \\ &= 4.25 + 3x \end{aligned}$$

because $\frac{d}{du}(14/3 + 3x + 2u - u^2) = 2 - 2u = 0$ if $u = u_1^*(x) = 1$ and this point is a global maximizer of the function (have a look at the second derivative of $14/3 + 3x + 2u - u^2$).

•

$$\begin{aligned} J_0(x) &= \max_{u \in U} [f(0, x, u) + J_1(g(0, x, u))] \\ &= \max_{u \in U} [f(0, x, u) + J_1(x + u)] \\ &= \max_{u \in U} [1 + x - u^2 + 4.25 + 3(x + u)] \\ &= \max_{u \in U} [21 + 4x + 3u - u^2] \\ &= 7.5 + 4x \end{aligned}$$

because $\frac{d}{du}(21 + 4x + 3u - u^2) = 3 - 2u = 0$ if $u = u_0^*(x) = 1.5$ and this point is a global maximizer of the function (have a look at the second derivative of $21 + 4x + 3u - u^2$).

In this particular case the optimal controls are constants, independent of the state of the system, generally this is not the case. The corresponding sequence of the states is:

$$\begin{aligned} x_0 &= x_0^* = 0 \\ x_1^* &= x_0 + u_0^* = 1.5 \\ x_2^* &= x_1^* + u_1^* = 2.5 \\ x_3^* &= x_2^* + u_2^* = 3. \end{aligned}$$

Alternative solution This simple problem can also be solved by ordinary methods. We have to maximize the objective function and use the difference equation to eliminate x_1, x_2 and x_3 (and use $x_0 = 0$):

$$\begin{aligned} & \sum_{t=0}^3 (1 + x_t - u_t^2) \\ &= (1 + x_0 - u_0^2) + (1 + x_1 - u_1^2) + (1 + x_2 - u_2^2) + (1 + x_3 - u_3^2) \\ &= (1 + x_0 - u_0^2) + (1 + (x_0 + u_0) - u_1^2) + (1 + (x_1 + u_1) - u_2^2) + (1 + (x_2 + u_2) - u_3^2) \\ &= (1 + x_0 - u_0^2) + (1 + (x_0 + u_0) - u_1^2) + (1 + ((x_0 + u_0) + u_1) - u_2^2) \\ &\quad + (1 + ((x_1 + u_1) + u_2) - u_3^2) \\ &= \dots \\ &= 4 + 3u_0 - u_0^2 + 2u_1 - u_1^2 + u_2 - u_2^2 - u_3^2 \\ &=: I(u_0, u_1, u_2, u_3) \end{aligned}$$

To maximize the function I , we have to determine the stationary points by solving the system of equations:

$$\nabla I(u_0, u_1, u_2, u_3) = \begin{pmatrix} 3 - 2u_0 \\ 2 - 2u_1 \\ 1 - 2u_2 \\ -2u_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

We get $(u_0, u_1, u_2, u_3) = (1.5, 1, 0.5, 0)$ and this point is the global maximizer of I , because I is a concave function.

2 Infinite Horizon and Bellmann equations

2.1 Introduction

In this part we will consider and study the following infinite horizon version of the standard problem of discrete dynamic optimization:

$$\begin{aligned} & \max \sum_{t=0}^{\infty} \beta^t f(x_t, u_t) \\ & \text{subject to} \\ & x_{t+1} = g(x_t, u_t), \\ & x_0 \text{ given,} \\ & u_t \in U \subset \mathbb{R}. \end{aligned}$$

The number β is a discount factor, this means $0 < \beta < 1$. Because neither f nor g depend explicitly on t , the problem is called autonomous. As before, a sequence pair $(\{x_t\}, \{u_t\})$ is called admissible, if each $u_t \in U$, the initial state of the system is x_0 and the difference equation $x_{t+1} = g(x_t, u_t)$ is satisfied for all $t = 0, 1, \dots$. For simplicity, we will assume that f satisfies a **boundary condition**

$$M_1 \leq f(x, u) \leq M_2$$

for all (x, u) with $u \in U$, where M_1, M_2 are constants. Because $0 < \beta < 1$, the sum will therefore always converge.

For any given time $s = 0, 1, 2, \dots$ and any given state $x = x_s$ take any (infinite) control sequence

$$\mathbf{u}_{\geq s} = (u_s, u_{s+1}, \dots)$$

where $u_t \in U$ for $t = s, s+1, \dots$

The states generated by this control sequence are given by $x_{t+1} = g(x_t, u_t)$ with $x = x_s$. The discounted sum of the infinite utility sequence at time s , starting from the state x and obtained by applying the control sequence $\mathbf{u}_{\geq s}$, is

$$V_s(x, \mathbf{u}_{\geq s}) = \sum_{t=s}^{\infty} \beta^t f(x_t, u_t) = \underbrace{\beta^s \sum_{t=s}^{\infty} \beta^{t-s} f(x_t, u_t)}_{=: V^s(x, \mathbf{u}_{\geq s})}.$$

We notice the difference between the two functions explicitly:

- V_s measures all benefits from time s on, discounted to the fixed initial time $t = 0$
- V^s measures all benefits from time s on, discounted to the variable time $t = s$.

Now let

$$J_s(x) = \max_{\mathbf{u}_{\geq s}} V_s(x, \mathbf{u}_{\geq s}) = \beta^s \underbrace{\max_{\mathbf{u}_{\geq s}} V^s(x, \mathbf{u}_{\geq s})}_{=: J^s(x)}$$

Thus, $J_s(x)$ is the maximal (to time $t = 0$) discounted utility that can be obtained over all periods from $t = s$ to ∞ , given that the system starts in the state x at time $t = s$.

Definition 2.1 $J_s(x)$ is called the optimal value function of the problem.

Lemma 2.1 For all $s \geq 0$ we have $J^s(x) = J^0(x)$.

Proof: Because the problem is autonomous and we start in the same state x , the future looks exactly the same at either time 0 or time s . This is not true if the horizon is finite. So finding

$$J^s(x) = \max_{\mathbf{u}_{\geq s}} V^s(x, \mathbf{u}_{\geq s}) \quad \text{or} \quad J^0(x) = \max_{\mathbf{u}_{\geq 0}} V^0(x, \mathbf{u}_{\geq 0})$$

requires solving the same optimization problem. □

Of course, we have

$$J_s(x) = \beta^s J^s(x) = \beta^s J^0(x)$$

and we define

$$J(x) := J_0(x) = J^0(x).$$

We see that if we know $J(x) = J_0(x)$, then we know $J_s(x)$ for all s . The following main result is the analogous to the fundamental equations for finite horizon problems.

2.2 The Bellman equation

Theorem 2.1 (Fundamental equations of dynamic programming (infinite horizon))
Let

$$\max \sum_{t=0}^{\infty} \beta^t f(x_t, u_t)$$

subject to

$$x_{t+1} = g(x_t, u_t),$$

x₀ given,

$$u_t \in U \subset \mathbb{R}$$

be a discrete dynamic optimization problem. The value function $J(x)$ of this problem satisfies the so-called Bellman equation:

$$J(x) = \max_{u \in U} [f(x, u) + \beta J(g(x, u))].$$

The Bellman equation is a so-called functional equation, because the unknown function J appears on both sides of the equation. It is not clear, that such an equation has a (unique) solution. You may understand that it is very difficult to use the equation to solve the optimization problem, because maximizing the right-hand side to get J on the left-hand side requires the function J . Hence it may be necessary to guess the structure of J .

Example 2.1 Consider the following problem

$$\max \sum_{t=0}^{\infty} \beta^t \left(-\frac{2}{3}x_t^2 - u_t^2 \right)$$

subject to

$$x_{t+1} = x_t + u_t,$$

x_0 given,

$$u_t \in \mathbb{R}.$$

We have $f(x, u) = -\frac{2}{3}x^2 - u^2$ and $g(x, u) = x + u$. The Bellman equation of the problem is

$$J(x) = \max_{u \in \mathbb{R}} \left[-\frac{2}{3}x^2 - u^2 + \beta J(x + u) \right].$$

What to do now? How can we find a function J with this property? We guess (ingeniously) the type of J and try $J(x) = -\alpha x^2$ for a suitable $\alpha \in \mathbb{R}$.

We get the equation

$$-\alpha x^2 = \max_{u \in \mathbb{R}} \left[-\frac{2}{3}x^2 - u^2 + \beta(-\alpha)(x + u)^2 \right]$$

and the function $h(u) = -\frac{2}{3}x^2 - u^2 - \alpha\beta(x + u)^2$ realizes the global maximum in

$$u^*(x) = -\frac{\alpha\beta}{(1 - \alpha\beta)}x.$$

Using this value for u in the Bellman equation we get

$$-\alpha x^2 = -\frac{2}{3}x^2 - \left(-\frac{\alpha\beta}{(1 - \alpha\beta)}x \right)^2 - \alpha\beta \left(x - \frac{\alpha\beta}{(1 - \alpha\beta)}x \right)^2$$

We can cancel x^2 and with Maple I found

$$\alpha = \frac{5\beta - 3 \pm \sqrt{25\beta^2 - 6\beta + 9}}{6\beta}.$$