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Discrete time optimization
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1 Finite Horizon and Fundamental equations

1.1 Introduction

In this chapter we will discuss optimization problems for discrete time processes. We will
consider systems/processes that change at discrete times t = 0, 1, . . . , T .

Suppose that the state of the system at time t is completely described by a real number
xt and assume that the initial state x0 is given and that from then on the system evolves
through time under the influence of a sequence of so-called controls ut, which can be
chosen freely from a given set U , called the control region.

Furthermore, we will always assume that the evolution of the system can be described by
a given difference equation

xt+1 = g(t, xt, ut) with x0 given and ut ∈ U .

It is easy to see, that if we choose values for u0, u1, . . . , uT−1 the difference equation gives

x1 = g(0, x0, u0)

x2 = g(1, x1, u1) = g(1, g(0, x0, u0), u1)

. . .

and we can compute recursively the states x1, x2, . . . , xT in terms of the initial state x0
and the controls u0, u1, . . . , uT−1.

Hence each choice of (u0, u1, . . . , uT−1) gives rise to a sequence (x0, x1, . . . , xT ). Let us
denote these corresponding pairs by ({xt}, {ut}) and call them admissible sequence pairs.
Of course, different choices of the control sequence will give different sequences of the
states.

Example 1.1 x0 = 0, T = 2, xt+1 = xt + ut and ut ∈ [−1, 1] = U ⊂ R

• controls (u0, u1) = (0, 0)

x0 = 1

x1 = x0 + u0 = 1 + 0 = 1

x2 = x1 + u1 = 1 + 0 = 1

• controls (u0, u1) = (1,−1)

x0 = 1

x1 = x0 + u0 = 1 + 1 = 2

x2 = x1 + u1 = 2− 1 = 1

Different pathes of the system through time have usually a different utility or value.
Assume that there is a function f(t, x, u) of three variables such that the utility associated
with a given path of the system is given by the sum

T∑
t=0

f(t, xt, ut).



3

The sum is called the objective function and it represents the sum of utilities obtained at
each point t = 0, 1, . . . , T of time.

Remarks 1.1 The objective function is sometimes defined by

T−1∑
t=0

f(t, xt, ut) + S(xT ),

where S measures the value associated with the terminal state xT of the system. This
seems to be quite natural, because in the state xT we are ready and there is (mostly) no
decision uT to make or a decision uT has no impact. But this objective function is a
special case of our definition with f(T, xT , uT ) = S(xT ).

For each admissible pair ({xt}, {ut}) the objective function has a definite value and we
can now describe the general problem:

Among all admissible pairs ({xt}, {ut}) find one, ({x∗t}, {u∗t}), that makes the
value of the objective function as large as possible or

max
T∑
t=0

f(t, xt, ut) subject to xt+1 = g(t, xt, ut), x0 given, ut ∈ U

This pair ({x∗t}, {u∗t}) is called optimal pair and the sequence u∗t is called optimal control.

Example 1.2 Let xt be an individual’s wealth at time t. At each time t = 0, 1, . . . , T
the individual has to decide the proportion ut ∈ [0, 1] = U of xt to consume, leaving the
remaining proportion (1 − ut) for savings. Assume that the wealth earns interest at rate
ρ− 1 > 0.

After ut·xt has been withdrawn for consumption, the remaining stock of wealth is (1−ut)xt.
Because of the interest, this grows to the amount

xt+1 = ρ(1− ut)xt

at the beginning of period t+ 1.

Suppose that the utility of consuming ct = ut · xt is given by U(t, ct) = U(t, ut · xt). The
total utility over all periods t = 0, 1, . . . , T is

T∑
t=0

U(t, ut · xt)

The dynamic optimization problem is:

max
T∑
t=0

U(t, ut · xt)

subject to

xt+1 = ρ(1− ut)xt,
x0 given,

ut ∈ [0, 1] = U .
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1.2 The optimal value function

Suppose we have to solve the general problem (∗)

max
T∑
t=0

f(t, xt, ut)

subject to

xt+1 = g(t, xt, ut),

x0 given,

ut ∈ U

and suppose that at time t = s the state of the system is xs = x ∈ R. The best we can do
in the remaining periods is to choose (us, us+1, . . . , uT−1) (and perhaps uT ) and thereby
(xs+1, xs+2, . . . , xT ) such that

T∑
t=s

f(t, xt, ut)

is maximal with xs = x.

Definition 1.1 The optimal value function at time s of the problem (∗) is

Js(x) = max
us,...,uT−1∈U

T∑
t=s

f(t, xt, ut)

where xs = x and xt+1 = g(t, xt, ut) for t > s.

Important property of Js Suppose that at time t = s we are in the state xs = x.
What is the optimal choice for us = u?

If we choose us = u, then at t = s

• we obtain the immediate reward f(s, x, u),

• the state of the system at time t = s+ 1 will be xs+1 = g(s, x, u) and

• the highest obtainable value for the reward

T∑
t=s+1

f(t, xt, ut)

starting from the state xs+1 is

Js+1(xs+1) = Js+1(g(s, x, u)).

Hence the best choice of u = us at time s must be the value of u that maximizes the sum

f(s, x, u) + Js+1(g(s, x, u))!
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So we get the basic tool for solving discrete dynamic optimization problems.

Theorem 1.1 (Fundamental equations of dynamic programming (finite horizon))
Let

max
T∑
t=0

f(t, xt, ut)

subject to

xt+1 = g(t, xt, ut),

x0 given,

ut ∈ U

be a discrete dynamic optimization problem and Jt(x) the optimal value function for t =
0, 1, . . . , T . Then the sequence of value functions J0, J1, . . . , Js, Js+1, . . . , JT−1, JT satisfies
the equations:

Js(x) = max
u∈U

[ f(s, x, u) + Js+1(g(s, x, u)) ] for s = 0, 1, . . . , T − 1

JT (x) = max
u∈U

f(T, x, u)
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Example 1.3 We use the theorem to solve the problem

max
3∑

t=0

(1 + xt − u2t ) subject to xt+1 = xt + ut, x0 = 0, ut ∈ R.

Here T = 3, f(t, x, u) = 1 + x− u2 and g(t, x, u) = x+ u. We start with J3.

• J3(x) = max
u∈U

(1 + x− u2) = 1 + x and u∗3(x) = 0

•

J2(x) = max
u∈U

[ f(2, x, u) + J3(g(2, x, u)) ]

= max
u∈U

[ f(2, x, u) + J3(x+ u) ]

= max
u∈U

[
1 + x− u2 + 1 + (x+ u)

]
= max

u∈U

[
2 + 2x+ u− u2

]
= 2.25 + 2x

because d
du

(2+2x+u−u2) = 1−2u = 0 if u = u∗2(x) = 0.5 and this point is a global

maximizer of the function (have a look at the second derivative of 2 + 2x+ u− u2).

•

J1(x) = max
u∈U

[ f(1, x, u) + J2(g(1, x, u)) ]

= max
u∈U

[ f(1, x, u) + J2(x+ u) ]

= max
u∈U

[
1 + x− u2 + 2.25 + 2(x+ u)

]
= max

u∈U

[
14/3 + 3x+ 2u− u2

]
= 4.25 + 3x

because d
du

(14/3+3x+2u−u2) = 2−2u = 0 if u = u∗1(x) = 1 and this point is a global

maximizer of the function (have a look at the second derivative of 14/3+3x+2u−u2).

•

J0(x) = max
u∈U

[ f(0, x, u) + J1(g(0, x, u)) ]

= max
u∈U

[ f(0, x, u) + J1(x+ u) ]

= max
u∈U

[
1 + x− u2 + 4.25 + 3(x+ u)

]
= max

u∈U

[
21 + 4x+ 3u− u2

]
= 7.5 + 4x

because d
du

(21+4x+3u−u2) = 3−2u = 0 if u = u∗0(x) = 1.5 and this point is a global

maximizer of the function (have a look at the second derivative of 21+4x+3u−u2).
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In this particular case the optimal controls are constants, independent of the state of the
system, generally this is not the case. The corresponding sequence of the states is:

x0 = x∗0 = 0

x∗1 = x0 + u∗0 = 1.5

x∗2 = x∗1 + u∗1 = 2.5

x∗3 = x∗2 + u∗2 = 3.

Alternative solution This simple problem can also be solved by ordinary methods. We
have to maximize the objective function and use the difference equation to eliminate x1, x2
and x3 (and use x0 = 0):

3∑
t=0

(1 + xt − u2t )

= (1 + x0 − u20) + (1 + x1 − u21) + (1 + x2 − u22) + (1 + x3 − u23)

= (1 + x0 − u20) + (1 + (x0 + u0)− u21) + (1 + (x1 + u1)− u22) + (1 + (x2 + u2)− u23)

= (1 + x0 − u20) + (1 + (x0 + u0)− u21) + (1 + ((x0 + u0) + u1)− u22)
+(1 + ((x1 + u1) + u2)− u23)

= . . .

= 4 + 3u0 − u20 + 2u1 − u21 + u2 − u22 − u23

=: I(u0, u1, u2, u3)

To maximize the function I, we have to determine the stationary points by solving the
system of equations:

∇I(u0, u1, u2, u3) =


3− 2u0
2− 2u1
1− 2u2
−2u3

 =


0
0
0
0

 .

We get (u0, u1, u2, u3) = (1.5, 1, 0.5, 0) and this point is the global maximizer of I, because
I is a concave function.
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2 Infinite Horizon and Bellmann equations

2.1 Introduction

In this part we will consider and study the following infinite horizon version of the standard
problem of discrete dynamic optimization:

max
∞∑
t=0

βtf(xt, ut)

subject to

xt+1 = g(xt, ut),

x0 given,

ut ∈ U ⊂ R.

The number β is a discount factor, this means 0 < β < 1. Because neither f nor g depend
expicitely on t, the problem is called autonomous. As before, a sequence pair ({xt}, {ut})
is called admissible, if each ut ∈ U , the initial state of the system is x0 and the difference
equation xt+1 = g(xt, ut) is satisfied for all t = 0, 1, . . . For simplicity, we will assume
that f satisfies a boundary condition

M1 ≤ f(x, u) ≤ M2

for all (x, u) with u ∈ U , where M1,M2 are constants. Because 0 < β < 1, the sum will
therefor always converge.

For any given time s = 0, 1, 2, . . . and any given state x = xs take any (infinite) control
sequence

u≥s = (us, us+1, . . . )

where ut ∈ U for t = s, s+ 1, . . .

The states generated by this control sequence are given by xt+1 = g(xt, ut) with x = xs.
The discounted sum of the infinite utility sequence at time s, starting from the state x
and obtained by applying the control sequence u≥s, is

Vs(x,u≥s) =
∞∑
t=s

βtf(xt, ut) = βs

∞∑
t=s

βt−sf(xt, ut)︸ ︷︷ ︸
=:V s(x,u≥s)

.

We notice the difference between the two functions explicitely:

• Vs measures all benefits from time s on, discounted to the fixed initial time t = 0

• V s measures all benefits from time s on, discounted to the variable time t = s.
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Now let

Js(x) = max
u≥s

Vs(x,u≥s) = βs max
u≥s

V s(x,u≥s)︸ ︷︷ ︸
=:Js(x)

Thus, Js(x) is the maximal (to time t = 0) discounted utility that can be obtained over
all periods from t = s to ∞, given that the system starts in the state x at time t = s.

Definition 2.1 Js(x) is called the optimal value function of the problem.

Lemma 2.1 For all s ≥ 0 we have Js(x) = J0(x).

Proof: Because the problem is autonomous and we start in the same state x, the future
looks exactly the same at either time 0 or time s. This is not true if the horizon is finite.
So finding

Js(x) = max
u≥s

V s(x,u≥s) or J0(x) = max
u≥0

V 0(x,u≥0)

requires solving the same optimization problem. 2

Of course, we have

Js(x) = βs Js(x) = βs J0(x)

and we define

J(x) := J0(x) = J0(x).

We see that if we know J(x) = J0(x), then we know Js(x) for all s. The following main
result is the analogous to the fundamental equations for finite horizon problems.
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2.2 The Bellman equation

Theorem 2.1 (Fundamental equations of dynamic programming (infinite horizon))
Let

max
∞∑
t=0

βtf(xt, ut)

subject to

xt+1 = g(xt, ut),

x0 given,

ut ∈ U ⊂ R

be a discrete dynamic optimization problem. The value function J(x) of this problem
satisfies the so-called Bellman equation:

J(x) = max
u∈U

[ f(x, u) + βJ(g(x, u)) ].

The Bellman equation is a so-called functional equation, because the unknown function
J appears on both sides of the equation. It is not clear, that such an equation has a
(unique) solution. You may understand that it is very difficult to use the equation to
solve the optimization problem, because maximizing the right-hand side to get J on the
left-hand side requires the function J . Hence it may be necessary to guess the structure
of J .
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Example 2.1 Consider the following problem

max
∞∑
t=0

βt

(
−2

3
x2t − u2t

)
subject to

xt+1 = xt + ut,

x0 given,

ut ∈ R.

We have f(x, u) = −2
3
x2 − u2 and g(x, u) = x+ u. The Bellman equation of the problem

is

J(x) = max
u∈R

[
−2

3
x2 − u2 + βJ(x+ u)

]
.

What to do now? How can we find a function J with this property? We guess (ingeniously)
the type of J and try J(x) = −αx2 for a suitable α ∈ R.

We get the equation

−αx2 = max
u∈R

[
−2

3
x2 − u2 + β(−α)(x+ u)2

]
and the funtion h(u) = −2

3
x2 − u2 − αβ(x+ u)2 realizes the global maximum in

u∗(x) = − αβ

(1− αβ)
x.

Using this value for u in the Bellman equation we get

−αx2 = −2

3
x2 −

(
− αβ

(1− αβ)
x

)2

− αβ
(
x− αβ

(1− αβ)
x

)2

We can cancel x2 and with Maple I found

α =
5β − 3±

√
25β2 − 6β + 9

6β
.


