Dr. Thomas Zehrt

Discrete processes, difference equations and discrete time optimization

Solve the following problems and hand in your solutions of the (*) - marked questions. The solutions will be marked.

Difference equations

1. (*) Find the general solution and the particular solution such that $y_0 = 3$ and $y_1 = 2$ of the difference equation

$$y_{t+2} - 6y_{t+1} + 8y_t = 0.$$

2. Investigate the global asymptotic stability of the following difference equations:

(a)
$$y_{t+2} - y_{t+1} - y_t = 0$$

(b) $y_{t+2} - \frac{1}{8}y_{t+1} + \frac{1}{6}y_t = t^2 e^t$

3. Find the general solution of the difference equation

$$y_{t+3} - 3y_{t+2} + 3y_{t+1} - y_t = 24(t+2).$$

- 4. (*) Solve the (nonlinear) difference equation $y_{t+1} y_t + t y_{t+1} y_t = 0$. (Hint: Divide by $y_{t+1} y_t$)
- 5. Solve the (nonlinear) difference equation $y_{t+2} y_t^2 = y_{t+1}^3$. (Hint: ln)
- 6. A and B play a game. In each step of the game A can win a penny from B with probability p while B can win a penny from A with probability q = 1-p. We assume that no tie can occur. Suppose that the game is started with A and B having a and b pennies respectively, the total being a + b = N, and that the game ends when one or the other has M pennies. p_k denotes the probability that A wins the game when he has k pennies.
 - (a) Formulate a difference equation for p_k .
 - (b) Formulate boundary conditions for p_k .
 - (c) Obtain the probability p_a that A wins the game, if
 - $p \neq q$ and
 - $p = q = \frac{1}{2}$.

Discrete time optimization

1. (*) Use the fundamental equations of dynamic programming to solve the problem

$$\max \sum_{t=0}^{2} \left(1 - \left(x_{t}^{2} + 2u_{t}^{2} \right) \right)$$

subject to
$$x_{t+1} = x_{t} - u_{t},$$

$$x_{0} = 5,$$

$$u_{t} \in \mathbb{R}.$$

Compute $J_s(x)$ and $u_s^*(x)$ for s = 2, 1, 0.

2. Consider the problem

$$\max \sum_{t=0}^{T} \left(\frac{1}{1-r}\right)^{t} \cdot \sqrt{u_{t}x_{t}}$$

subject to
$$x_{t+1} = \rho(1-u_{t})x_{t},$$

$$x_{0} > 0,$$

$$u_{t} \in [0,1] \subset \mathbb{R}$$

where r is the rate of discount. Compute $J_s(x)$ and $u_s^*(x)$ for s = T, T - 1, T - 2.