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1 Rn, vectors and matrices

1.1 Vectors

• n-dimensional space Rn

• elements x,y ∈ Rn are called n-vectors

x =


x1
x2
...
xn

 =
(
x1 x2 . . . xn

)T
and y =


y1
y2
...
yn


• scalar product and norm:

x • y = x1y1 + x2y2 + . . .+ xnyn

||x|| =
√
x21 + x22 + . . .+ x2n

x • y = ||x|| · ||y|| · cos∠(x,y)

• x1,x2, . . . ,xk ∈ Rn

– If a1, a2, . . . , ak ∈ R, then z = a1x1+a2x2+. . .+akxk is called a linear combination
of x1,x2, . . . ,xk.

– x1,x2, . . . ,xk are called linearly dependent, if there exist b1, b2, . . . , bk ∈ R such
that b1x1 + b2x2 + . . .+ bkxk = 0 and not all bj = 0.

– x1,x2, . . . ,xk are called linearly independent, if a linear combination of the
zero vector

b1x1 + b2x2 + . . .+ bkxk = 0

is possible only with b1 = b2 = . . . = bk = 0.

1.2 Matrices

a1, a2, . . . , am ∈ Rn

a1 =


a11
a21
...
an1

 , a2 =


a12
a22
...
an2

 , . . . , am =


a1m
a2m

...
anm

 → A =


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
...

...
an1 an2 . . . anm


is called an n×m matrix.
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• The inverse matrix A−1 of the n× n matrix A = (aij) is defined by

A−1 ·A = A ·A−1 = In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

• For the n×n matrix A let Aij denote the submatrix of A generated by cancelling the
i-th row and the j-th column of A. Then the determinant det A is given (recursively)
by

det A = |A| = a11 det A11 − a12 det A12 + · · ·+ (−1)n+1a1n det A1n

Example 1∣∣∣∣∣∣∣∣
1 1 3 3
1 2 1 2
1 −2 1 −2
0 1 −2 −1

∣∣∣∣∣∣∣∣

= 1 ·

∣∣∣∣∣∣
2 1 2
−2 1 −2

1 −2 −1

∣∣∣∣∣∣− 1 ·

∣∣∣∣∣∣
1 1 2
1 1 −2
0 −2 −1

∣∣∣∣∣∣+ 3 ·

∣∣∣∣∣∣
1 2 2
1 −2 −2
0 1 −1

∣∣∣∣∣∣− 3 ·

∣∣∣∣∣∣
1 2 1
1 −2 1
0 1 −2

∣∣∣∣∣∣ .
1.3 Matrix calculus

1a. A + B = B + A 1b. AB 6= BA
2a. (A + B) + C = A + (B + C) 2b. (AB)C = A(BC)
3a. A + 0 = A 3b. AI = IA = A, ( A square )

4. AB = 0 6⇒ A = 0 or B = 0
5. AB = AC 6⇒ B = C

6. λ(A + B) = λA + λB λ ∈ R
7. A(B + C) = AB + AC
8. (A + B)C = AC + BC

9. (A−1)−1 = A
10. (AB)−1 = B−1A−1

11. (AT)T = A
12. (A + B)T = AT + BT

13. (AB)T = BTAT

14. (A−1)T = (AT)−1

For A =

(
a b
c d

)
with ad− bc 6= 0 is A−1 =

1

ad− bc

(
d −b
−c a

)
.
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1.4 Eigenvalues and eigenvectors

Definition 1.1 If A is an n × n matrix, then a real number λ is an eigenvalue of A if
there is a nonzero vector x ∈ Rn such that

Ax = λx

Then x is an eigenvector of A (associated with λ).

Remark: If x is an eigenvector associated with the eigenvalue λ, then so is αx for every
real number α 6= 0.

A (α x) = α A x = α (λ x) = λ (α x)

How to find eigenvalues? The equation can be written as

A x = λ x
⇔ A x− λ I x = 0
⇔ (A− λ I) x = 0

This is a homogeneous linear system of equations. It has a solution x 6= 0 if and only if
the coefficient matrix (A− λ I) is singular which means that it has determinant equal to
0.

(A− λ I) singular ⇔ det(A− λ I)︸ ︷︷ ︸
pA(λ)

= 0

pA(λ) = 0 is called characteristic equation of A. The function pA(λ) is a polynomial of
degree n in λ, called the characteristic polynomial of A.

1.5 Diagonalization

Let A and P be n × n matrices with P invertible. Then A and P−1AP have the same
eigenvalues (because they have the same characteristic polynomial).

Definition 1.2 An n × n matrix A is diagonalizable if there is an invertible matrix P
and a diagonal matrix D such that

P−1AP = D.

Two natural questions:

1. Which square matrices are diagonalizable?

2. If A is diagonalizable, how do we find the matrix P?
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Theorem 1.1 An n×n matrix A is diagonalizable if and only if it has a set of n linearly
independent eigenvectors x1, . . . ,xn. In this case,

P−1AP = diag(λ1, . . . , λn),

where P is the matrix with x1, . . . ,xn as its columns, and λ1, . . . , λn are the corresponding
eigenvalues.

Many of the matrices encountered in economics are symmetric and for these matrices we
have the following important result.

Theorem 1.2 (Spectral Theorem for symmetric matrices) If the n× n matrix A
is symmetric (A = AT), then:

1. All n eigenvalues λ1, . . . , λn are real.

2. Eigenvectors that correspond to different eigenvalues are orthogonal.

3. There exists an orthogonal matrix P ( P−1 = PT ) such that

P−1AP = diag(λ1, . . . , λn).

The columns x1, . . . ,xn of the matrix P are eigenvectors of unit length corresponding
to the eigenvalues λ1, . . . , λn.

2 Subsets of Rn

2.1 ε-balls and line segments

Definition 2.1 Let x ∈ Rn and ε > 0 a real number. The (open) ε-ball with center x is
the set

Bε(x) = { y ∈ Rn | ||x− y|| < ε }

Definition 2.2 Let x,y ∈ Rn. The (closed) line segment xy is the set

xy = { t · x + (1− t) · y | t ∈ [0, 1] }

This is a part of a (straight) line:

t · x + (1− t) · y = y + t · (x− y) =


y1
y2
...
yn

+ t ·


x1 − y1
x2 − y2

...
xn − yn


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2.2 Convex subsets

Definition 2.3 A subset M ⊂ Rn is called convex, if for all x,y ∈ M we have xy ⊂ M
.

Theorem 2.1 Let A be an m× n matrix and b ∈ Rm

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

...
am1 am2 . . . amn

 und b =


b1
b2
...
bm


Then the set

M = { x ∈ Rn | Ax ≤ b and x ≥ 0 }

is convex.

2.3 Bounded subsets, boundary and closed subsets

Let M ⊂ Rn.

Definition 2.4 M is called bounded, if there exists a real positive number ε such that
M ⊂ Bε(0).

A point x is called boundary point of M , if each ε-ball with center x contains both points
of M and points of the complement M c = Rn −M .

A point in M which is not a boundary point of M is called an inner point of M .

The boundary ∂M of M is

∂M = { x ∈ Rn | for all ε > 0 is Bε(x) ∩M 6= ∅ and Bε(x) ∩M c 6= ∅ }

M is called closed if ∂M ⊂M .
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3 Functions

3.1 Definition

Definition 3.1 Let D ⊂ Rn. A function from D to R is an assignment of exatly one
element of R to each element of D. We write:

f : D −→ R
x = (x1, x2, . . . , xn)T 7−→ f(x1, x2, . . . , xn) = f(x) = y

D is called domain and W = {y ∈ R | f(x) = y for an x ∈ D} the range of f .

The assignment of f(x) to x = (x1, x2, . . . , xn)T can be given by

1. an explicit calculation f(x1, x2) = 3x1x
2
2 + x1 with D = R2,

2. an implicit equation, for example let f(x1, x2) be the solution x3 of the equation
x33 − x1x3 − x2 = 0 with x1 ∈ R and x2 > 0,

3. by a differential equation.

3.2 Graph and level sets

Definition 3.2 Let D ⊂ Rn and f : D → R be a function. The set

Gf = { (x, f(x))T | x ∈ D } ⊂ Rn+1

is called graph of f .

Example 2 f : R2 → R, f(x) = f(x1, x2) = x21 − x22.

Gf = { (x1, x2, x
2
1 − x22)T | (x1, x2)T ∈ R2 } ⊂ R3

Definition 3.3 Let D ⊂ Rn, f : D → R a function and c ∈ R. The set

Nc = { x ∈ D | f(x) = c } ⊂ D ⊂ Rn

is called level set.

Example 3 f(x) = f(x1, x2) = x21 − x22

Nc = { x21 − x22 = c | (x1, x2)T ∈ R2 }
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are hyperbolas.
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3.3 Continous functions

Definition 3.4 A function f : D → R is called continuous in a ∈ D, if for each sequence
(xk) in D with lim

k→∞
xk = a we have lim

k→∞
f(xk) = f(a).

Theorem 3.1 (Theorem of Weierstraß) Let D ⊂ Rn be a closed and bounded set and
f : D → R continuous. Then there exist xmin,xmax ∈ D such that

f(xmin) ≤ f(x) ≤ f(xmax)

for all x ∈ D.

3.4 Important functions

Definition 3.5 A linear function is given by

f : Rn −→ R
x = (x1, x2, . . . , xn)T 7−→ a1x1 + a2x2 + . . .+ anxn = a • x = f(x)

for real numbers a1, a2, . . . , an or a = (a1, a2, . . . , an)T .

Definition 3.6 Let A be a symmetric n× n matrix. The function

QA : Rn −→ R

x = (x1, x2, . . . , xn)T 7−→ x • Ax = xTAx =
n∑
i=1

n∑
j=1

aij xi xj

is called quadratic form corresponding to A.

Example 4

QA(x) = (x1, x2)

(
1 0
0 1

)
︸ ︷︷ ︸

=A

(
x1
x2

)
= x21 + x22.
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Example 5

QB(x) = (x1, x2)

(
−1 0
0 −1

)
︸ ︷︷ ︸

=B

(
x1
x2

)
= −x21 − x22.

Example 6

QC(x) = (x1, x2)

(
1 0
0 −1

)
︸ ︷︷ ︸

=C

(
x1
x2

)
= x21 − x22.
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Example 7

QD(x) = (x1, x2)

(
1 2
2 1

)
︸ ︷︷ ︸

=D

(
x1
x2

)
= x21 + 4x1x2 + x22.

Definition 3.7 Let A be a symmetric n× n matrix. Then A is called

• positive definite, if QA(x) > 0;

• positive semidefinite, if QA(x) ≥ 0;

• negative definite, if QA(x) < 0;

• negative semidefinite, if QA(x) ≤ 0;

for all x 6= 0.

A is called indefinite, if there exist vectors x with QA(x) > 0 as well as vectors y with
QA(y) < 0.

Definition 3.8 Let D ⊂ Rn be a convex set. A function f : D → R is called

• (strongly) concave on D, if

f((1− t)a + tb) (>) ≥ (1− t)f(a) + tf(b)

for all a,b ∈ D and all t ∈ (0, 1);

• (strongly) convex on D, if

f((1− t)a + tb) (<) ≤ (1− t)f(a) + tf(b)

for all a,b ∈ D and all t ∈ (0, 1).
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4 Differentiable functions

4.1 Partial derivations

Definition 4.1 Let y = f(x) = f(x1, . . . , xi, . . . , xn) be a function. For i = 1, 2, . . . , n
the i-th partial derivation of f is defined by

∂f

∂xi
(x) = fxi(x) = lim

t→0

f(x + tei)− f(x)

t

Example 8

f(x1, x2) = x21 + x1x2 + 2x22 + 3

∂f

∂x1
= lim

t→0

(x1 + t)2 + (x1 + t)x2 + 2x22 + 3− (x21 + x1x2 + 2x22 + 3)

t

= lim
t→0

2x1t+ t2 + tx2
t

= lim
t→0

(2x1 + t+ x2) = 2x1 + x2

Definition 4.2 The function f is called 2-times (k)-times partially differentiable, if all
partial derivations of second order

fxixj = (fxi)xj =
∂

∂xj

(
∂f

∂xi

)
(1 ≤ i, j ≤ n)

exist.

The following fact is sometimes important:

Theorem 4.1 If all partial derivations of second order exist and are continuous functions,
then fxixj = fxjxi.

Definition 4.3 Let a = (a1, a2, . . . , an) ∈ D ⊂ Rn be a point in the domain of f . The
vector

grad f(a) =


fx1(a)
fx2(a)

...
fxn(a)


is called gradient of f in a. The matrix

Hf (a) =


fx1x1(a) fx1x2(a) . . . fx1xn(a)
fx2x1(a) fx2x2(a) . . . fx2xn(a)

...
...

...
...

fxnx1(a) fxnx2(a) . . . fxnxn(a)


is called Hesse matrix of f in a.
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Theorem 4.2 (Properties of the gradient)

• The gradient of f in a is orthogonal to the level set f(x) = f(a).

• The gradient of f in a points in the direction of the greatest rate of increase of the
function f in a.

Example 9 For f(x1, x2) = x21 − x1x2 + x22 we have

grad f(x1, x2) =

(
2x1 − x2
−x1 + 2x2

)
.
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4.2 Differential and differentiable functions

Definition 4.4 The (total) differential df of f is defined by

df = df(x, dx) = fx1(x) · dx1 + . . .+ fxn(x) · dxn

Example 10 Let f(x1, x2, x3) = sin(x1x2) + x23. Then

df(x1, x2, x3, dx1, dx2, dx3) = x2 cos(x1x2) dx1 + x1 cos(x1x2) dx2 + 2x3 dx3

df(x1, x2, x3, dx1, dx2, dx3) = x2 cos(x1x2) dx1 + x1 cos(x1x2) dx2 + 2x3 dx3

Definition 4.5 Let D ⊂ Rn be an open set. A function f : D → R is called differentiable
in a ∈ D, if

f(x) = f(a) + grad f(a) • (x− a) +R(x, a)︸ ︷︷ ︸
∗

and lim
x→a

R(x, a)

||x− a||
= 0︸ ︷︷ ︸

?

• The function t(x) = f(a)+grad f(a)•(x−a) is called tangent hyperplane of f in a:

t(x) = f(a) + grad f(a) • (x− a) = f(a) + df(a, dx)

• A differentiable function can be approximated (very well) by a linear function and
the claim ? is essential.

• If we use the notation ∆f(a, dx) = f(a + dx) − f(a) for the real change of f and
x = a + dx we get

∆f(a, dx) = df(a, dx) +R(x, a)

f(x,dx)∆
= f(x+dx)−f(x)

f

f(x+dx)

x+dxx

t(x+dx)

t

     f(x)t(x)   =

R(x,dx) 

= t(x+dx)−t(x)
df(x,dx)

= f’(x)dx

∆x = dx change of x.
∆f = ∆f(x, dx) change of f , if we change x by dx.
df = df(x, dx) change of the linear approximation,

if we change x by dx.
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Example 11 z = f(x1, x2) =
x1
x2

, a = (1, 1)

fx1 =
1

x2
fx1(1, 1) = 1 fx2 = −x1

x22
fx2(1, 1) = −1

f(x1, x2) =
x1
x2

= f(1, 1) +

(
fx1(1, 1)
fx2(1, 1)

)
•
(
x1 − 1
x2 − 1

)
+R(x1, x2, 1, 1)

= 1 + (x1 − 1)− (x2 − 1) +R(x1, x2, 1, 1)

= 1 + x1 − x2 +R(x1, x2, 1, 1)

Graph of f and of the tangent plane (red)

We should show:

lim
x→a

R(x, a)

||x− a||
= lim

x→a

x1
x2
− 1− x1 + x2√

(x1 − 1)2 + (x2 − 1)2
= 0

The tangent plane is

t(x1, x2) = f(a) + fx1(a) · (x1 − a1) + fx2(a) · (x2 − a2)
= 1 + 1 · (x1 − 1) + (−1) · (x2 − 1)

= 1 + x1 − x2
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4.3 The directional derivation

Definition 4.6 Let v ∈ Rn be a vector of length 1 (unit vector). The limit (if it exists)

∂v f(a) = lim
t→0

f(a + tv)− f(a)

t

is called the directional derivation of f in a in direction v.

Theorem 4.3 Let D be open, f differentiable on D and v ∈ Rn with ||v|| = 1. Then

∂v f(a) = grad f(a) • v =
n∑
i=1

fxi(a) vi

Proof: Let f be totally differentiable in a, then

f(x) = f(a) + grad f(a) • (x− a) +R(x, a) und lim
x→a

R(x, a)

||x− a||
= 0

With x = a + tv we get:

f(x)− f(a) = f(a + tv)− f(a) = grad f(a) • tv +R(x, a).

Hence:

∂vf(a) = lim
t→0

f(a + tv)− f(a)

t

= lim
t→0

grad f(a) • tv +R(x, a)

t

= grad f(a) • v + lim
t→0

R(x, a)

t

= grad f(a) • v.

2
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4.4 The chain rule

Theorem 4.4 Let D ⊂ Rn be open and f : D → R continously partially differentiable.
I ⊂ R and

x : I → D ⊂ Rn with x(t) =


x1(t)
x2(t)

...
xn(t)


with differentiable coordinat functions xi(t) für 1 ≤ i ≤ n. Then the composition f ◦ x :
I → R mit f ◦ x(t) = f(x(t)) is differentiable with

d

dt
f(x(t)) = grad f(x(t)) • d

dt
x(t)

Expansion:

d

dt
f(x(t))

= grad f(x(t)) • d
dt

x(t)

=
d

dt
f(x1(t), x2(t), . . . , xn(t))

= fx1(x(t))
d

dt
x1(t) + fx2(x(t))

d

dt
x2(t) + . . .+ fxn(x(t))

d

dt
xn(t)

= fx1(x(t)) ẋ1(t) + fx2(x(t)) ẋ2(t) + . . .+ fxn(x(t)) ẋn(t)
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4.5 Implicite Derivation

Notation: (x, y) = (x1, . . . , xn, y) ∈ Rn+1

Theorem 4.5 Let M ⊂ Rn+1 be open, φ : M → R continuously partially differentiable
and a = (a1, . . . , an, an+1) ∈ M with φ(a) = 0 and φy(a) 6= 0. Then there is a neighbour-
hood U of (a1, . . . , an) and an open interval I ⊂ R with an+1 ∈ I such that:

1. R := { (x, y) ⊂ Rn+1 | x ⊂ U and y ∈ I } ⊂ M and φy(x) 6= 0 for all (x, y) ∈ R.

2. For each x ∈ U there exists exactly one y ∈ I with φ(x, y) = 0. The function
y := f(x) is partially differentiable ( f : U → I ) and

φ(x, y) = φ(x, f(x)) = 0 −→ ∂

∂xi
f(x) = −

∂

∂xi
φ(x, y)

∂

∂y
φ(x, y)

a2

x2

a1 x1

1x x2φ( , ) = 0

α

x2

a1 x1

1x x2φ( , ) = 0

a1= f(   )a2

U

Let y := f(x) for all x ∈ U the function above. Then

φ(x, y) = φ(x, f(x)) = 0

By the chain rule we get:

0 =
∂

∂xi
0 =

∂

∂xi
φ(

x︷ ︸︸ ︷
x1, . . . , xn,

y︷ ︸︸ ︷
f(x1, . . . , xn))

=
n∑
j=1

∂

∂xj
φ (x, y) · ∂xj

∂xi
+

∂

∂y
φ(x, y) · ∂y

∂xi

=
∂

∂xi
φ(x, y) · ∂xi

∂xi
+

∂

∂y
φ(x, y) · ∂y

∂xi

=
∂

∂xi
φ(x, y) +

∂

∂y
φ(x, y) · ∂

∂xi
f(x)

Solving this equation for ∂
∂xi

f(x) proves the Theorem.
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4.6 The Taylor Formula

Let D ⊂ Rn be convex and open, a,x ∈ D and f : D → R a 3-times continuously partially
differentiable function.

Definition 4.7 The 2-nd Taylor polynom of f in a is defined by:

t2(x) = f(a) + grad f(a) • (x− a) +
1

2
(x− a)T Hf (a) (x− a)

Theorem 4.6

lim
x→a

f(x)− t2(x)

||x− a||2
= 0

Example 12 f(x1, x2) = ex1+x2 + sin(x1x2), a = (0, 0)

t2(x) = 1 + (1, 1) x + xT
1

2

(
1 2
2 1

)
x

= 1 + x1 + x2 +
1

2
x21 + 2x1x2 +

1

2
x22

Graph of f and t2 (red)
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4.7 Concave and convex functions

Theorem 4.7 Let D ⊂ Rn be a convex set and f : D → R a 2-times continuously
partially differentiable function. Furthermore, let Hf be the Hesse matrix of f . Then we
have

Hf (x) for all x ∈ D negative semidefinite ⇐⇒ f concave

Hf (x) for all x ∈ D negative definite =⇒ f is striktly concave

Hf (x) for all x ∈ D positive semidefinite ⇐⇒ f is convex

Hf (x) for all x ∈ D positive definite =⇒ f is striktly convex

Example 13 The function f(x1, x2) = 2x1 − x2 − x21 + 2x1x2 − x22 is defined on D = R2

and

Hf (x) =

(
−2 2
2 −2

)
is (always) negative semidefinite. Hence f is concave.


