University of Basel Faculty of Business and Economics

Topics in advanced mathematics
Fundamentals and differentiable functions
Dr. Thomas Zehrt

Contents

$1 \mathbb{R}^{n}$, vectors and matrices $\quad 2$
1.1 Vectors . 2
1.2 Matrices . 2
1.3 Matrix calculus . 3
1.4 Eigenvalues and eigenvectors . 4
1.5 Diagonalization . 4

2 Subsets of $\mathbb{R}^{n} \quad 5$
$2.1 \quad \epsilon$-balls and line segments . 5
2.2 Convex subsets . 6
2.3 Bounded subsets, boundary and closed subsets 6

3 Functions 7
3.1 Definition . 7
3.2 Graph and level sets . 7
3.3 Continous functions . 9
3.4 Important functions . 9

4 Differentiable functions 12
4.1 Partial derivations . 12
4.2 Differential and differentiable functions . 14
4.3 The directional derivation . 16
4.4 The chain rule . 17
4.5 Implicite Derivation . 18
4.6 The Taylor Formula . 19
4.7 Concave and convex functions . 20

$1 \mathbb{R}^{n}$, vectors and matrices

1.1 Vectors

- n-dimensional space \mathbb{R}^{n}
- elements $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ are called n-vectors

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right)^{T} \quad \text { and } \mathbf{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)
$$

- scalar product and norm:

$$
\begin{aligned}
\mathbf{x} \bullet \mathbf{y} & =x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n} \\
\|\mathbf{x}\| & =\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}} \\
\mathbf{x} \bullet \mathbf{y} & =\|\mathbf{x}\| \cdot\|\mathbf{y}\| \cdot \cos \angle(\mathbf{x}, \mathbf{y})
\end{aligned}
$$

- $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}} \in \mathbb{R}^{n}$
- If $a_{1}, a_{2}, \ldots, a_{k} \in \mathbb{R}$, then $\mathbf{z}=a_{1} \mathbf{x}_{\mathbf{1}}+a_{2} \mathbf{x}_{\mathbf{2}}+\ldots+a_{k} \mathbf{x}_{\mathbf{k}}$ is called a linear combination of $\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathrm{k}}$.
$-\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{k}}$ are called linearly dependent, if there exist $b_{1}, b_{2}, \ldots, b_{k} \in \mathbb{R}$ such that $b_{1} \mathbf{x}_{\mathbf{1}}+b_{2} \mathbf{x}_{\mathbf{2}}+\ldots+\overline{b_{k} \mathbf{x}_{\mathbf{k}}}=\mathbf{0}$ and not all $b_{j}=0$.
$-\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}$ are called linearly independent, if a linear combination of the zero vector

$$
b_{1} \mathbf{x}_{1}+b_{2} \mathbf{x}_{\mathbf{2}}+\ldots+b_{k} \mathbf{x}_{\mathbf{k}}=\mathbf{0}
$$

is possible only with $b_{1}=b_{2}=\ldots=b_{k}=0$.

1.2 Matrices

$\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$
$\mathbf{a}_{1}=\left(\begin{array}{c}a_{11} \\ a_{21} \\ \vdots \\ a_{n 1}\end{array}\right), \mathbf{a}_{2}=\left(\begin{array}{c}a_{12} \\ a_{22} \\ \vdots \\ a_{n 2}\end{array}\right), \ldots, \mathbf{a}_{m}=\left(\begin{array}{c}a_{1 m} \\ a_{2 m} \\ \vdots \\ a_{n m}\end{array}\right) \quad \rightarrow \mathbf{A}=\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 m} \\ a_{21} & a_{22} & \ldots & a_{2 m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n 1} & a_{n 2} & \ldots & a_{n m}\end{array}\right)$
is called an $n \times m$ matrix.

- The inverse matrix $\mathbf{A}^{\mathbf{1}}$ of the $n \times n$ matrix $\mathbf{A}=\left(\mathbf{a}_{\mathbf{i j}}\right)$ is defined by

$$
\mathbf{A}^{-\mathbf{1}} \cdot \mathbf{A}=\mathbf{A} \cdot \mathbf{A}^{-\mathbf{1}}=\mathbf{I}_{\mathbf{n}}=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

- For the $n \times n$ matrix \mathbf{A} let $\mathbf{A}_{\mathbf{i j}}$ denote the submatrix of \mathbf{A} generated by cancelling the i-th row and the j-th column of \mathbf{A}. Then the determinant $\operatorname{det} \mathbf{A}$ is given (recursively) by

$$
\operatorname{det} \mathbf{A}=|\mathbf{A}|=\mathbf{a}_{\mathbf{1 1}} \operatorname{det} \mathbf{A}_{\mathbf{1 1}}-\mathbf{a}_{\mathbf{1 2}} \operatorname{det} \mathbf{A}_{\mathbf{1 2}}+\cdots+(-\mathbf{1})^{\mathbf{n}+\mathbf{1}} \mathbf{a}_{\mathbf{1 \mathbf { n }}} \operatorname{det} \mathbf{A}_{\mathbf{1 n}}
$$

Example 1

$$
\begin{aligned}
& \left|\begin{array}{rrrr}
1 & 1 & 3 & 3 \\
1 & 2 & 1 & 2 \\
1 & -2 & 1 & -2 \\
0 & 1 & -2 & -1
\end{array}\right| \\
& =1 \cdot\left|\begin{array}{rrr}
2 & 1 & 2 \\
-2 & 1 & -2 \\
1 & -2 & -1
\end{array}\right|-1 \cdot\left|\begin{array}{rrr}
1 & 1 & 2 \\
1 & 1 & -2 \\
0 & -2 & -1
\end{array}\right|+3 \cdot\left|\begin{array}{rrr}
1 & 2 & 2 \\
1 & -2 & -2 \\
0 & 1 & -1
\end{array}\right|-3 \cdot\left|\begin{array}{rrr}
1 & 2 & 1 \\
1 & -2 & 1 \\
0 & 1 & -2
\end{array}\right| .
\end{aligned}
$$

1.3 Matrix calculus

1a. $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$
2a. $(\mathbf{A}+\mathbf{B})+\mathbf{C}=\mathbf{A}+(\mathbf{B}+\mathbf{C})$
3a. $\quad \mathbf{A}+\mathbf{0}=\mathbf{A}$

1b. $\quad \mathrm{AB} \neq \mathrm{BA}$
2b. $\quad(\mathbf{A B}) \mathbf{C}=\mathbf{A}(\mathbf{B C})$
3b. $\mathbf{A I}=\mathbf{I A}=\mathbf{A},(\mathbf{A}$ square $)$
4. $\mathbf{A B}=\mathbf{0} \nRightarrow \quad \mathbf{A}=\mathbf{0}$ or $\mathbf{B}=\mathbf{0}$
5. $\mathbf{A B}=\mathbf{A C} \nRightarrow \quad \mathbf{B}=\mathbf{C}$
6. $\lambda(\mathbf{A}+\mathbf{B})=\lambda \mathbf{A}+\lambda \mathbf{B} \quad \lambda \in \mathbb{R}$
7. $\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}$
8. $(\mathbf{A}+\mathbf{B}) \mathbf{C}=\mathbf{A C}+\mathbf{B C}$
9. $\left(\mathrm{A}^{-1}\right)^{-\mathbf{1}}=\mathrm{A}$
10. $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$
11. $\left(\mathbf{A}^{\mathbf{T}}\right)^{\mathbf{T}}=\mathbf{A}$
12. $(\mathbf{A}+\mathbf{B})^{\mathbf{T}}=\mathbf{A}^{\mathbf{T}}+\mathbf{B}^{\mathbf{T}}$
13. $(\mathbf{A B})^{\mathbf{T}}=\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathbf{T}}$
14. $\left(\mathbf{A}^{-1}\right)^{\mathbf{T}}=\left(\mathbf{A}^{\mathbf{T}}\right)^{-1}$

For $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a d-b c \neq 0$ is $\mathbf{A}^{-\mathbf{1}}=\frac{\mathbf{1}}{\mathbf{a d}-\mathbf{b c}}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$.

1.4 Eigenvalues and eigenvectors

Definition 1.1 If \mathbf{A} is an $n \times n$ matrix, then a real number λ is an eigenvalue of \mathbf{A} if there is a nonzero vector $\mathbf{x} \in \mathbb{R}^{\mathbf{n}}$ such that

$$
\mathbf{A x}=\lambda \mathbf{x}
$$

Then \mathbf{x} is an eigenvector of \mathbf{A} (associated with λ).
Remark: If \mathbf{x} is an eigenvector associated with the eigenvalue λ, then so is $\alpha \mathbf{x}$ for every real number $\alpha \neq 0$.

$$
\mathbf{A}(\alpha \mathbf{x})=\alpha \mathbf{A} \mathbf{x}=\alpha(\lambda \mathbf{x})=\lambda(\alpha \mathbf{x})
$$

How to find eigenvalues? The equation can be written as

$$
\begin{aligned}
\mathbf{A} \mathbf{x} & =\lambda \mathbf{x} \\
\Leftrightarrow \quad \mathbf{A} \mathbf{x}-\lambda \mathbf{I} \mathbf{x} & =\mathbf{0} \\
\Leftrightarrow \quad(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x} & =\mathbf{0}
\end{aligned}
$$

This is a homogeneous linear system of equations. It has a solution $\mathbf{x} \neq \mathbf{0}$ if and only if the coefficient matrix $(\mathbf{A}-\lambda \mathbf{I})$ is singular which means that it has determinant equal to 0 .

$$
(\mathbf{A}-\lambda \mathbf{I}) \text { singular } \Leftrightarrow \underbrace{\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})}_{p_{A}(\lambda)}=0
$$

$p_{A}(\lambda)=0$ is called characteristic equation of \mathbf{A}. The function $p_{A}(\lambda)$ is a polynomial of degree n in λ, called the characteristic polynomial of \mathbf{A}.

1.5 Diagonalization

Let \mathbf{A} and \mathbf{P} be $n \times n$ matrices with \mathbf{P} invertible. Then \mathbf{A} and $\mathbf{P}^{\mathbf{- 1}} \mathbf{A P}$ have the same eigenvalues (because they have the same characteristic polynomial).

Definition 1.2 An $n \times n$ matrix \mathbf{A} is diagonalizable if there is an invertible matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that

$$
\mathbf{P}^{-1} \mathbf{A P}=\mathbf{D}
$$

Two natural questions:

1. Which square matrices are diagonalizable?
2. If \mathbf{A} is diagonalizable, how do we find the matrix \mathbf{P} ?

Theorem 1.1 An $n \times n$ matrix \mathbf{A} is diagonalizable if and only if it has a set of n linearly independent eigenvectors $\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{n}}$. In this case,

$$
\mathbf{P}^{-1} \mathbf{A P}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

where \mathbf{P} is the matrix with $\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{n}}$ as its columns, and $\lambda_{1}, \ldots, \lambda_{n}$ are the corresponding eigenvalues.

Many of the matrices encountered in economics are symmetric and for these matrices we have the following important result.

Theorem 1.2 (Spectral Theorem for symmetric matrices) If the $n \times n$ matrix \mathbf{A} is symmetric $\left(\mathbf{A}=\mathbf{A}^{\mathbf{T}}\right)$, then:

1. All n eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are real.
2. Eigenvectors that correspond to different eigenvalues are orthogonal.
3. There exists an orthogonal matrix $\mathbf{P}\left(\mathbf{P}^{-\mathbf{1}}=\mathbf{P}^{\mathbf{T}}\right)$ such that

$$
\mathbf{P}^{-\mathbf{1}} \mathbf{A P}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

The columns $\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{n}}$ of the matrix \mathbf{P} are eigenvectors of unit length corresponding to the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.

2 Subsets of \mathbb{R}^{n}

$2.1 \quad \epsilon$-balls and line segments

Definition 2.1 Let $\mathbf{x} \in \mathbb{R}^{n}$ and $\epsilon>0$ a real number. The (open) ϵ-ball with center \mathbf{x} is the set

$$
B_{\epsilon}(\mathbf{x})=\left\{\mathbf{y} \in \mathbb{R}^{n} \mid\|\mathbf{x}-\mathbf{y}\|<\epsilon\right\}
$$

Definition 2.2 Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. The (closed) line segment $\overline{\mathbf{x y}}$ is the set

$$
\overline{\mathbf{x y}}=\{t \cdot \mathbf{x}+(1-t) \cdot \mathbf{y} \mid t \in[0,1]\}
$$

This is a part of a (straight) line:

$$
t \cdot \mathbf{x}+(1-t) \cdot \mathbf{y}=\mathbf{y}+t \cdot(\mathbf{x}-\mathbf{y})=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)+t \cdot\left(\begin{array}{c}
x_{1}-y_{1} \\
x_{2}-y_{2} \\
\vdots \\
x_{n}-y_{n}
\end{array}\right)
$$

2.2 Convex subsets

Definition 2.3 A subset $M \subset \mathbb{R}^{n}$ is called convex, if for all $\mathbf{x}, \mathbf{y} \in M$ we have $\overline{\mathbf{x y}} \subset M$

Theorem 2.1 Let A be an $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^{m}$

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right) \quad \text { und } \quad \mathbf{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)
$$

Then the set

$$
M=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x} \leq \mathbf{b} \text { and } \mathbf{x} \geq \mathbf{0}\right\}
$$

is convex.

2.3 Bounded subsets, boundary and closed subsets

Let $M \subset \mathbb{R}^{n}$.

Definition 2.4 M is called bounded, if there exists a real positive number ϵ such that $M \subset B_{\epsilon}(0)$.
A point \mathbf{x} is called boundary point of M, if each ϵ-ball with center \mathbf{x} contains both points of M and points of the complement $M^{c}=\mathbb{R}^{n}-M$.
A point in M which is not a boundary point of M is called an inner point of M.
The boundary ∂M of M is

$$
\partial M=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \text { for all } \epsilon>0 \text { is } B_{\epsilon}(\mathbf{x}) \cap M \neq \emptyset \text { and } B_{\epsilon}(\mathbf{x}) \cap M^{c} \neq \emptyset\right\}
$$

M is called closed if $\partial M \subset M$.

3 Functions

3.1 Definition

Definition 3.1 Let $D \subset \mathbb{R}^{n}$. A function from D to \mathbb{R} is an assignment of exatly one element of \mathbb{R} to each element of D. We write:

$$
\begin{aligned}
f: D & \longrightarrow \mathbb{R} \\
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} & \longmapsto f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f(\mathbf{x})=y
\end{aligned}
$$

D is called domain and $W=\{y \in \mathbb{R} \mid f(\mathbf{x})=y$ for an $\mathbf{x} \in D\}$ the range of f.
The assignment of $f(\mathbf{x})$ to $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ can be given by

1. an explicit calculation $f\left(x_{1}, x_{2}\right)=3 x_{1} x_{2}^{2}+x_{1}$ with $D=\mathbb{R}^{2}$,
2. an implicit equation, for example let $f\left(x_{1}, x_{2}\right)$ be the solution x_{3} of the equation $x_{3}^{3}-x_{1} x_{3}-x_{2}=0$ with $x_{1} \in \mathbb{R}$ and $x_{2}>0$,
3. by a differential equation.

3.2 Graph and level sets

Definition 3.2 Let $D \subset \mathbb{R}^{n}$ and $f: D \rightarrow \mathbb{R}$ be a function. The set

$$
G_{f}=\left\{(\mathbf{x}, f(\mathbf{x}))^{T} \mid \mathbf{x} \in D\right\} \subset \mathbb{R}^{n+1}
$$

is called graph of f.
Example $2 f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(\mathbf{x})=f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}$.

$$
G_{f}=\left\{\left(x_{1}, x_{2}, x_{1}^{2}-x_{2}^{2}\right)^{T} \mid\left(x_{1}, x_{2}\right)^{T} \in \mathbb{R}^{2}\right\} \subset \mathbb{R}^{3}
$$

Definition 3.3 Let $D \subset \mathbb{R}^{n}, f: D \rightarrow \mathbb{R}$ a function and $c \in \mathbb{R}$. The set

$$
N_{c}=\{\mathbf{x} \in D \mid f(\mathbf{x})=c\} \subset D \subset \mathbb{R}^{n}
$$

is called level set.
Example $3 f(\mathbf{x})=f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}$

$$
N_{c}=\left\{x_{1}^{2}-x_{2}^{2}=c \mid\left(x_{1}, x_{2}\right)^{T} \in \mathbb{R}^{2}\right\}
$$

are hyperbolas.

3.3 Continous functions

Definition 3.4 A function $f: D \rightarrow \mathbb{R}$ is called continuous in $\mathbf{a} \in D$, if for each sequence $\left(\mathbf{x}_{k}\right)$ in D with $\lim _{k \rightarrow \infty} \mathbf{x}_{k}=\mathbf{a}$ we have $\lim _{k \rightarrow \infty} f\left(\mathbf{x}_{k}\right)=f(\mathbf{a})$.

Theorem 3.1 (Theorem of Weierstraß) Let $D \subset \mathbb{R}^{n}$ be a closed and bounded set and $f: D \rightarrow \mathbb{R}$ continuous. Then there exist $\mathbf{x}_{\min }, \mathbf{x}_{\max } \in D$ such that

$$
f\left(\mathbf{x}_{\min }\right) \leq f(\mathbf{x}) \leq f\left(\mathbf{x}_{\max }\right)
$$

for all $\mathbf{x} \in D$.

3.4 Important functions

Definition 3.5 A linear function is given by

$$
f: \mathbb{R}^{n} \longrightarrow \mathbb{R}
$$

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} \longmapsto a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=\mathbf{a} \bullet \mathbf{x}=f(\mathbf{x})
$$

for real numbers $a_{1}, a_{2}, \ldots, a_{n}$ or $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{T}$.
Definition 3.6 Let A be a symmetric $n \times n$ matrix. The function

$$
\begin{aligned}
Q_{A}: \mathbb{R}^{n} & \longrightarrow \mathbb{R} \\
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} & \longmapsto \mathbf{x} \bullet A \mathbf{x}=\mathbf{x}^{T} A \mathbf{x}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}
\end{aligned}
$$

is called quadratic form corresponding to \mathbf{A}.

Example 4

$$
Q_{A}(\mathbf{x})=\left(x_{1}, x_{2}\right) \underbrace{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)}_{=\mathbf{A}}\binom{x_{1}}{x_{2}}=x_{1}^{2}+x_{2}^{2} .
$$

Example 5

$$
Q_{B}(\mathbf{x})=\left(x_{1}, x_{2}\right) \underbrace{\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)}_{=\mathbf{B}}\binom{x_{1}}{x_{2}}=-x_{1}^{2}-x_{2}^{2} .
$$

Example 6

$$
Q_{C}(\mathbf{x})=\left(x_{1}, x_{2}\right) \underbrace{\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)}_{=\mathbf{C}}\binom{x_{1}}{x_{2}}=x_{1}^{2}-x_{2}^{2} .
$$

Example 7

$$
Q_{D}(\mathbf{x})=\left(x_{1}, x_{2}\right) \underbrace{\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)}_{=\mathbf{D}}\binom{x_{1}}{x_{2}}=x_{1}^{2}+4 x_{1} x_{2}+x_{2}^{2} .
$$

Definition 3.7 Let \mathbf{A} be a symmetric $n \times n$ matrix. Then \mathbf{A} is called

- positive definite, if $Q_{A}(\mathbf{x})>0$;
- positive semidefinite, if $Q_{A}(\mathbf{x}) \geq 0$;
- negative definite, if $Q_{A}(\mathbf{x})<0$;
- negative semidefinite, if $Q_{A}(\mathbf{x}) \leq 0$;
for all $\mathbf{x} \neq \mathbf{0}$.
A is called indefinite, if there exist vectors \mathbf{x} with $Q_{A}(\mathbf{x})>0$ as well as vectors \mathbf{y} with $Q_{A}(\mathbf{y})<0$.

Definition 3.8 Let $D \subset \mathbb{R}^{n}$ be a convex set. A function $f: D \rightarrow \mathbb{R}$ is called

- (strongly) concave on D, if

$$
f((1-t) \mathbf{a}+t \mathbf{b}) \quad(>) \geq(1-t) f(\mathbf{a})+t f(\mathbf{b})
$$

for all $\mathbf{a}, \mathbf{b} \in D$ and all $t \in(0,1)$;

- (strongly) convex on D, if

$$
f((1-t) \mathbf{a}+t \mathbf{b}) \quad(<) \leq(1-t) f(\mathbf{a})+t f(\mathbf{b})
$$

for all $\mathbf{a}, \mathbf{b} \in D$ and all $t \in(0,1)$.

4 Differentiable functions

4.1 Partial derivations

Definition 4.1 Let $y=f(\mathbf{x})=f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)$ be a function. For $i=1,2, \ldots, n$ the i-th partial derivation of f is defined by

$$
\frac{\partial f}{\partial x_{i}}(\mathbf{x})=f_{x_{i}}(\mathbf{x})=\lim _{t \rightarrow 0} \frac{f\left(\mathbf{x}+t \mathbf{e}_{\mathbf{i}}\right)-f(\mathbf{x})}{t}
$$

Example 8

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =x_{1}^{2}+x_{1} x_{2}+2 x_{2}^{2}+3 \\
\frac{\partial f}{\partial x_{1}} & =\lim _{t \rightarrow 0} \frac{\left(x_{1}+t\right)^{2}+\left(x_{1}+t\right) x_{2}+2 x_{2}^{2}+3-\left(x_{1}^{2}+x_{1} x_{2}+2 x_{2}^{2}+3\right)}{t} \\
& =\lim _{t \rightarrow 0} \frac{2 x_{1} t+t^{2}+t x_{2}}{t}=\lim _{t \rightarrow 0}\left(2 x_{1}+t+x_{2}\right)=2 x_{1}+x_{2}
\end{aligned}
$$

Definition 4.2 The function f is called 2-times (k)-times partially differentiable, if all partial derivations of second order

$$
f_{x_{i} x_{j}}=\left(f_{x_{i}}\right)_{x_{j}}=\frac{\partial}{\partial x_{j}}\left(\frac{\partial f}{\partial x_{i}}\right) \quad(1 \leq i, j \leq n)
$$

exist.
The following fact is sometimes important:
Theorem 4.1 If all partial derivations of second order exist and are continuous functions, then $f_{x_{i} x_{j}}=f_{x_{j} x_{i}}$.

Definition 4.3 Let $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in D \subset \mathbb{R}^{n}$ be a point in the domain of f. The vector

$$
\operatorname{grad} f(\mathbf{a})=\left(\begin{array}{c}
f_{x_{1}}(\mathbf{a}) \\
f_{x_{2}}(\mathbf{a}) \\
\vdots \\
f_{x_{n}}(\mathbf{a})
\end{array}\right)
$$

is called gradient of f in \mathbf{a}. The matrix

$$
H_{f}(\mathbf{a})=\left(\begin{array}{cccc}
f_{x_{1} x_{1}}(\mathbf{a}) & f_{x_{1} x_{2}}(\mathbf{a}) & \ldots & f_{x_{1} x_{n}}(\mathbf{a}) \\
f_{x_{2} x_{1}}(\mathbf{a}) & f_{x_{2} x_{2}}(\mathbf{a}) & \ldots & f_{x_{2} x_{n}}(\mathbf{a}) \\
\vdots & \vdots & \vdots & \vdots \\
f_{x_{n} x_{1}}(\mathbf{a}) & f_{x_{n} x_{2}}(\mathbf{a}) & \ldots & f_{x_{n} x_{n}}(\mathbf{a})
\end{array}\right)
$$

is called Hesse matrix of f in \mathbf{a}.

Theorem 4.2 (Properties of the gradient)

- The gradient of f in \mathbf{a} is orthogonal to the level set $f(\mathbf{x})=f(\mathbf{a})$.
- The gradient of f in a points in the direction of the greatest rate of increase of the function f in \mathbf{a}.

Example 9 For $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{1} x_{2}+x_{2}^{2}$ we have

$$
\operatorname{grad} f\left(x_{1}, x_{2}\right)=\binom{2 x_{1}-x_{2}}{-x_{1}+2 x_{2}} .
$$

4.2 Differential and differentiable functions

Definition 4.4 The (total) differential df of f is defined by

$$
d f=d f(\mathbf{x}, d \mathbf{x})=f_{x_{1}}(\mathbf{x}) \cdot d x_{1}+\ldots+f_{x_{n}}(\mathbf{x}) \cdot d x_{n}
$$

Example 10 Let $f\left(x_{1}, x_{2}, x_{3}\right)=\sin \left(x_{1} x_{2}\right)+x_{3}^{2}$. Then

$$
\begin{aligned}
d f\left(x_{1}, x_{2}, x_{3}, d x_{1}, d x_{2}, d x_{3}\right) & =x_{2} \cos \left(x_{1} x_{2}\right) d x_{1}+x_{1} \cos \left(x_{1} x_{2}\right) d x_{2}+2 x_{3} d x_{3} \\
d f\left(x_{1}, x_{2}, x_{3}, d x_{1}, d x_{2}, d x_{3}\right) & =x_{2} \cos \left(x_{1} x_{2}\right) d x_{1}+x_{1} \cos \left(x_{1} x_{2}\right) d x_{2}+2 x_{3} d x_{3}
\end{aligned}
$$

Definition 4.5 Let $D \subset \mathbb{R}^{n}$ be an open set. A function $f: D \rightarrow \mathbb{R}$ is called differentiable in $\mathbf{a} \in D$, if

$$
\underbrace{f(\mathbf{x})=f(\mathbf{a})+\operatorname{grad} f(\mathbf{a}) \bullet(\mathbf{x}-\mathbf{a})+R(\mathbf{x}, \mathbf{a})}_{*} \quad \text { and } \underbrace{\lim _{\mathrm{x} \rightarrow \mathbf{a}} \frac{R(\mathbf{x}, \mathbf{a})}{\|\mathbf{x}-\mathbf{a}\|}=0}_{\star}
$$

- The function $t(\mathbf{x})=f(\mathbf{a})+\operatorname{grad} f(\mathbf{a}) \bullet(\mathbf{x}-\mathbf{a})$ is called tangent hyperplane of f in \mathbf{a} :

$$
t(\mathbf{x})=f(\mathbf{a})+\operatorname{grad} f(\mathbf{a}) \bullet(\mathbf{x}-\mathbf{a})=f(\mathbf{a})+d f(\mathbf{a}, d \mathbf{x})
$$

- A differentiable function can be approximated (very well) by a linear function and the claim \star is essential.
- If we use the notation $\Delta f(\mathbf{a}, d \mathbf{x})=f(\mathbf{a}+d \mathbf{x})-f(\mathbf{a})$ for the real change of f and $\mathbf{x}=\mathbf{a}+d \mathbf{x}$ we get

$$
\Delta f(\mathbf{a}, d \mathbf{x})=d f(\mathbf{a}, d \mathbf{x})+R(\mathbf{x}, \mathbf{a})
$$

$$
\begin{array}{ll}
\Delta x=d x & \text { change of } x . \\
\Delta f=\Delta f(x, d x) & \text { change of } f, \text { if we change } x \text { by } d x \\
d f=d f(x, d x) & \text { change of the linear approximation, } \\
& \text { if we change } x \text { by } d x
\end{array}
$$

Example $11 z=f\left(x_{1}, x_{2}\right)=\frac{x_{1}}{x_{2}}, \mathbf{a}=(1,1)$

$$
\begin{gathered}
f_{x_{1}}=\frac{1}{x_{2}} \quad f_{x_{1}}(1,1)=1 \quad f_{x_{2}}=-\frac{x_{1}}{x_{2}^{2}} \quad f_{x_{2}}(1,1)=-1 \\
\begin{aligned}
f\left(x_{1}, x_{2}\right)=\frac{x_{1}}{x_{2}} & =f(1,1)+\binom{f_{x_{1}}(1,1)}{f_{x_{2}}(1,1)} \bullet\binom{x_{1}-1}{x_{2}-1}+R\left(x_{1}, x_{2}, 1,1\right) \\
& =1+\left(x_{1}-1\right)-\left(x_{2}-1\right)+R\left(x_{1}, x_{2}, 1,1\right) \\
& =1+x_{1}-x_{2}+R\left(x_{1}, x_{2}, 1,1\right)
\end{aligned}
\end{gathered}
$$

Graph of f and of the tangent plane (red)

We should show:

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{R(\mathbf{x}, \mathbf{a})}{\|\mathbf{x}-\mathbf{a}\|}=\lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{\frac{x_{1}}{x_{2}}-1-x_{1}+x_{2}}{\sqrt{\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}}}=0
$$

The tangent plane is

$$
\begin{aligned}
t\left(x_{1}, x_{2}\right) & =f(\mathbf{a})+f_{x_{1}}(\mathbf{a}) \cdot\left(x_{1}-a_{1}\right)+f_{x_{2}}(\mathbf{a}) \cdot\left(x_{2}-a_{2}\right) \\
& =1+1 \cdot\left(x_{1}-1\right)+(-1) \cdot\left(x_{2}-1\right) \\
& =1+x_{1}-x_{2}
\end{aligned}
$$

4.3 The directional derivation

Definition 4.6 Let $\mathbf{v} \in \mathbb{R}^{n}$ be a vector of length 1 (unit vector). The limit (if it exists)

$$
\partial_{\mathbf{v}} f(\mathbf{a})=\lim _{t \rightarrow 0} \frac{f(\mathbf{a}+t \mathbf{v})-f(\mathbf{a})}{t}
$$

is called the directional derivation of f in \mathbf{a} in direction \mathbf{v}.

Theorem 4.3 Let D be open, f differentiable on D and $\mathbf{v} \in \mathbb{R}^{n}$ with $\|\mathbf{v}\|=1$. Then

$$
\partial_{\mathbf{v}} f(\mathbf{a})=\operatorname{grad} f(\mathbf{a}) \bullet \mathbf{v}=\sum_{i=1}^{n} f_{x_{i}}(\mathbf{a}) v_{i}
$$

Proof: Let f be totally differentiable in a, then

$$
f(\mathbf{x})=f(\mathbf{a})+\operatorname{grad} f(\mathbf{a}) \bullet(\mathbf{x}-\mathbf{a})+R(\mathbf{x}, \mathbf{a}) \quad \text { und } \quad \lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{R(\mathbf{x}, \mathbf{a})}{\|\mathbf{x}-\mathbf{a}\|}=0
$$

With $\mathbf{x}=\mathbf{a}+t \mathbf{v}$ we get:

$$
f(\mathbf{x})-f(\mathbf{a})=f(\mathbf{a}+t \mathbf{v})-f(\mathbf{a})=\operatorname{grad} f(\mathbf{a}) \bullet t \mathbf{v}+R(\mathbf{x}, \mathbf{a}) .
$$

Hence:

$$
\begin{aligned}
\partial_{\mathbf{v}} f(\mathbf{a}) & =\lim _{t \rightarrow 0} \frac{f(\mathbf{a}+t \mathbf{v})-f(\mathbf{a})}{t} \\
& =\lim _{t \rightarrow 0} \frac{\operatorname{grad} f(\mathbf{a}) \bullet t \mathbf{v}+R(\mathbf{x}, \mathbf{a})}{t} \\
& =\operatorname{grad} f(\mathbf{a}) \bullet \mathbf{v}+\lim _{t \rightarrow 0} \frac{R(\mathbf{x}, \mathbf{a})}{t} \\
& =\operatorname{grad} f(\mathbf{a}) \bullet \mathbf{v} .
\end{aligned}
$$

4.4 The chain rule

Theorem 4.4 Let $D \subset \mathbb{R}^{n}$ be open and $f: D \rightarrow \mathbb{R}$ continously partially differentiable. $I \subset \mathbb{R}$ and

$$
\mathbf{x}: I \rightarrow D \subset \mathbb{R}^{n} \quad \text { with } \quad \mathbf{x}(t)=\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right)
$$

with differentiable coordinat functions $x_{i}(t)$ für $1 \leq i \leq n$. Then the composition $f \circ \mathbf{x}$: $I \rightarrow \mathbb{R}$ mit $f \circ \mathbf{x}(t)=f(\mathbf{x}(t))$ is differentiable with

$$
\frac{d}{d t} f(\mathbf{x}(t)) \quad=\operatorname{grad} f(\mathbf{x}(t)) \bullet \frac{d}{d t} \mathbf{x}(t)
$$

Expansion:

$$
\begin{aligned}
& \frac{d}{d t} f(\mathbf{x}(t)) \\
= & \operatorname{grad} f(\mathbf{x}(t)) \bullet \frac{d}{d t} \mathbf{x}(t) \\
= & \frac{d}{d t} f\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right) \\
= & f_{x_{1}}(\mathbf{x}(t)) \frac{d}{d t} x_{1}(t)+f_{x_{2}}(\mathbf{x}(t)) \frac{d}{d t} x_{2}(t)+\ldots+f_{x_{n}}(\mathbf{x}(t)) \frac{d}{d t} x_{n}(t) \\
= & f_{x_{1}}(\mathbf{x}(t)) \dot{x}_{1}(t)+f_{x_{2}}(\mathbf{x}(t)) \dot{x}_{2}(t)+\ldots+f_{x_{n}}(\mathbf{x}(t)) \dot{x}_{n}(t)
\end{aligned}
$$

4.5 Implicite Derivation

Notation: $(\mathbf{x}, y)=\left(x_{1}, \ldots, x_{n}, y\right) \in \mathbb{R}^{n+1}$
Theorem 4.5 Let $M \subset \mathbb{R}^{n+1}$ be open, $\phi: M \rightarrow \mathbb{R}$ continuously partially differentiable and $\mathbf{a}=\left(a_{1}, \ldots, a_{n}, a_{n+1}\right) \in M$ with $\phi(\mathbf{a})=0$ and $\phi_{y}(\mathbf{a}) \neq 0$. Then there is a neighbourhood U of $\left(a_{1}, \ldots, a_{n}\right)$ and an open interval $I \subset \mathbb{R}$ with $a_{n+1} \in I$ such that:

1. $R:=\left\{(\mathbf{x}, y) \subset \mathbb{R}^{n+1} \mid \mathbf{x} \subset U\right.$ and $\left.y \in I\right\} \subset M$ and $\phi_{y}(\mathbf{x}) \neq 0$ for all $(\mathbf{x}, y) \in R$.
2. For each $\mathbf{x} \in U$ there exists exactly one $y \in I$ with $\phi(\mathbf{x}, y)=0$. The function $y:=f(\mathbf{x})$ is partially differentiable $(f: U \rightarrow I)$ and

$$
\phi(\mathbf{x}, y)=\phi(\mathbf{x}, f(\mathbf{x}))=0 \quad \longrightarrow \quad \frac{\partial}{\partial x_{i}} f(\mathbf{x})=-\frac{\frac{\partial}{\partial x_{i}} \phi(\mathbf{x}, y)}{\frac{\partial}{\partial y} \phi(\mathbf{x}, y)}
$$

Let $y:=f(\mathbf{x})$ for all $\mathbf{x} \in U$ the function above. Then

$$
\phi(\mathbf{x}, y)=\phi(\mathbf{x}, f(\mathbf{x}))=0
$$

By the chain rule we get:

$$
\begin{aligned}
0=\frac{\partial}{\partial x_{i}} 0 & =\frac{\partial}{\partial x_{i}} \phi(\overbrace{x_{1}, \ldots, x_{n}}^{\mathbf{x}}, \overbrace{f\left(x_{1}, \ldots, x_{n}\right)}^{y}) \\
& =\sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} \phi(\mathbf{x}, y) \cdot \frac{\partial x_{j}}{\partial x_{i}}+\frac{\partial}{\partial y} \phi(\mathbf{x}, y) \cdot \frac{\partial y}{\partial x_{i}} \\
& =\frac{\partial}{\partial x_{i}} \phi(\mathbf{x}, y) \cdot \frac{\partial x_{i}}{\partial x_{i}}+\frac{\partial}{\partial y} \phi(\mathbf{x}, y) \cdot \frac{\partial y}{\partial x_{i}} \\
& =\frac{\partial}{\partial x_{i}} \phi(\mathbf{x}, y)+\frac{\partial}{\partial y} \phi(\mathbf{x}, y) \cdot \frac{\partial}{\partial x_{i}} f(\mathbf{x})
\end{aligned}
$$

Solving this equation for $\frac{\partial}{\partial x_{i}} f(\mathbf{x})$ proves the Theorem.

4.6 The Taylor Formula

Let $D \subset \mathbb{R}^{n}$ be convex and open, $\mathbf{a}, \mathbf{x} \in D$ and $f: D \rightarrow \mathbb{R}$ a 3 -times continuously partially differentiable function.

Definition 4.7 The 2-nd Taylor polynom of f in \mathbf{a} is defined by:

$$
t_{2}(\mathbf{x})=f(\mathbf{a})+\operatorname{grad} f(\mathbf{a}) \bullet(\mathbf{x}-\mathbf{a})+\frac{1}{2}(\mathbf{x}-\mathbf{a})^{T} H_{f}(\mathbf{a})(\mathbf{x}-\mathbf{a})
$$

Theorem 4.6

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{f(\mathbf{x})-t_{2}(\mathbf{x})}{\|\mathbf{x}-\mathbf{a}\|^{2}}=0
$$

Example $12 f\left(x_{1}, x_{2}\right)=e^{x_{1}+x_{2}}+\sin \left(x_{1} x_{2}\right)$, $\mathbf{a}=(0,0)$

$$
\begin{aligned}
t_{2}(\mathbf{x}) & =1+(1,1) \mathbf{x}+\mathbf{x}^{T} \frac{1}{2}\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) \mathbf{x} \\
& =1+x_{1}+x_{2}+\frac{1}{2} x_{1}^{2}+2 x_{1} x_{2}+\frac{1}{2} x_{2}^{2}
\end{aligned}
$$

Graph of f and t_{2} (red)

4.7 Concave and convex functions

Theorem 4.7 Let $D \subset \mathbb{R}^{n}$ be a convex set and $f: D \rightarrow \mathbb{R}$ a 2-times continuously partially differentiable function. Furthermore, let H_{f} be the Hesse matrix of f. Then we have

$$
\begin{array}{ll}
H_{f}(\mathbf{x}) \text { for all } \mathbf{x} \in D \text { negative semidefinite } & \Longleftrightarrow f \text { concave } \\
H_{f}(\mathbf{x}) \text { for all } \mathbf{x} \in D \text { negative definite } & \Longrightarrow f \text { is striktly concave } \\
H_{f}(\mathbf{x}) \text { for all } \mathbf{x} \in D \text { positive semidefinite } & \Longleftrightarrow f \text { is convex } \\
H_{f}(\mathbf{x}) \text { for all } \mathbf{x} \in D \text { positive definite } & \Longrightarrow f \text { is striktly convex }
\end{array}
$$

Example 13 The function $f\left(x_{1}, x_{2}\right)=2 x_{1}-x_{2}-x_{1}^{2}+2 x_{1} x_{2}-x_{2}^{2}$ is defined on $D=\mathbb{R}^{2}$ and

$$
H_{f}(\mathbf{x})=\left(\begin{array}{cc}
-2 & 2 \\
2 & -2
\end{array}\right)
$$

is (always) negative semidefinite. Hence f is concave.

