University of Basel Faculty of Business and Economics

Topics in advanced mathematics

Fundamentals and differentiable functions

Dr. Thomas Zehrt

Contents

1	\mathbb{R}^n , vectors and matrices				
	1.1	Vectors	2		
	1.2	Matrices	2		
	1.3	Matrix calculus	3		
	1.4	Eigenvalues and eigenvectors	4		
	1.5	Diagonalization	4		
2	\mathbf{Sub}	Subsets of \mathbb{R}^n 5			
	2.1	ϵ -balls and line segments	5		
	2.2	Convex subsets	6		
	2.3	Bounded subsets, boundary and closed subsets	6		
3	Functions				
	3.1	Definition	7		
	3.2	Graph and level sets	7		
	3.3	Continous functions	9		
	3.4	Important functions	9		
4	Differentiable functions 12				
	4.1	Partial derivations	12		
	4.2	Differential and differentiable functions	14		
	4.3	The directional derivation	16		
	4.4	The chain rule	17		
	4.5	Implicite Derivation	18		
	4.6	The Taylor Formula	19		
	4.7	Concave and convex functions	20		

1 \mathbb{R}^n , vectors and matrices

1.1 Vectors

- *n*-dimensional space \mathbb{R}^n
- elements $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are called <u>*n*-vectors</u>

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & \dots & x_n \end{pmatrix}^T \text{ and } \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

• scalar product and <u>norm</u>:

$$\mathbf{x} \bullet \mathbf{y} = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n$$

 $||\mathbf{x}|| = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}$

$$\mathbf{x} \bullet \mathbf{y} = ||\mathbf{x}|| \cdot ||\mathbf{y}|| \cdot \cos \angle (\mathbf{x}, \mathbf{y})$$

- $\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_k} \in \mathbb{R}^n$
 - If $a_1, a_2, \ldots, a_k \in \mathbb{R}$, then $\mathbf{z} = a_1 \mathbf{x_1} + a_2 \mathbf{x_2} + \ldots + a_k \mathbf{x_k}$ is called a <u>linear combination</u> of $\mathbf{x_1}, \mathbf{x_2}, \ldots, \mathbf{x_k}$.
 - $\mathbf{x_1}, \mathbf{x_2}, \ldots, \mathbf{x_k}$ are called linearly dependent, if there exist $b_1, b_2, \ldots, b_k \in \mathbb{R}$ such that $b_1\mathbf{x_1} + b_2\mathbf{x_2} + \ldots + \overline{b_k\mathbf{x_k}} = \mathbf{0}$ and not all $b_j = 0$.
 - $\ x_1, x_2, \ldots, x_k$ are called <u>linearly independent</u>, if a linear combination of the zero vector

$$b_1\mathbf{x_1} + b_2\mathbf{x_2} + \ldots + b_k\mathbf{x_k} = \mathbf{0}$$

is possible only with $b_1 = b_2 = \ldots = b_k = 0$.

1.2 Matrices

 $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m \in \mathbb{R}^n$

$$\mathbf{a}_{1} = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix}, \mathbf{a}_{2} = \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{pmatrix}, \dots, \mathbf{a}_{m} = \begin{pmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{nm} \end{pmatrix} \rightarrow \mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix}$$

is called an $n \times m$ matrix.

• The <u>inverse matrix</u> \mathbf{A}^{-1} of the $n \times n$ matrix $\mathbf{A} = (\mathbf{a}_{ij})$ is defined by

$$\mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{I}_{\mathbf{n}} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}.$$

For the n×n matrix A let A_{ij} denote the submatrix of A generated by cancelling the *i*-th row and the *j*-th column of A. Then the <u>determinant</u> det A is given (recursively) by

$$\det \mathbf{A} = |\mathbf{A}| = \mathbf{a_{11}} \det \mathbf{A_{11}} - \mathbf{a_{12}} \det \mathbf{A_{12}} + \dots + (-1)^{n+1} \mathbf{a_{1n}} \det \mathbf{A_{1n}}$$

Example 1

$$\begin{vmatrix} 1 & 1 & 3 & 3 \\ 1 & 2 & 1 & 2 \\ 1 & -2 & 1 & -2 \\ 0 & 1 & -2 & -1 \end{vmatrix}$$

$$= 1 \cdot \begin{vmatrix} 2 & 1 & 2 \\ -2 & 1 & -2 \\ 1 & -2 & -1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & 1 & 2 \\ 1 & 1 & -2 \\ 0 & -2 & -1 \end{vmatrix} + 3 \cdot \begin{vmatrix} 1 & 2 & 2 \\ 1 & -2 & -2 \\ 0 & 1 & -1 \end{vmatrix} - 3 \cdot \begin{vmatrix} 1 & 2 & 1 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{vmatrix}.$$

1.3 Matrix calculus

1a.
$$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$

2a. $(\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C})$
3a. $\mathbf{A} + \mathbf{0} = \mathbf{A}$
3b. $\mathbf{AI} = \mathbf{IA} = \mathbf{A}, (\mathbf{A} \text{ square})$
4. $\mathbf{AB} = \mathbf{0} \Rightarrow \mathbf{A} = \mathbf{0} \text{ or } \mathbf{B} = \mathbf{0}$
5. $\mathbf{AB} = \mathbf{AC} \Rightarrow \mathbf{B} = \mathbf{C}$
6. $\lambda(\mathbf{A} + \mathbf{B}) = \lambda \mathbf{A} + \lambda \mathbf{B} \quad \lambda \in \mathbb{R}$
7. $\mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{AB} + \mathbf{AC}$
8. $(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{AC} + \mathbf{BC}$
9. $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$
10. $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$
11. $(\mathbf{A}^{T})^{T} = \mathbf{A}$
12. $(\mathbf{A} + \mathbf{B})^{T} = \mathbf{A}^{T} + \mathbf{B}^{T}$
13. $(\mathbf{AB})^{T} = \mathbf{B}^{T}\mathbf{A}^{T}$
14. $(\mathbf{A}^{-1})^{T} = (\mathbf{A}^{T})^{-1}$
For $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $ad - bc \neq 0$ is $\mathbf{A}^{-1} = \frac{1}{\mathbf{ad} - \mathbf{bc}} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

1.4 Eigenvalues and eigenvectors

Definition 1.1 If **A** is an $n \times n$ matrix, then a real number λ is an <u>eigenvalue</u> of **A** if there is a nonzero vector $\mathbf{x} \in \mathbb{R}^n$ such that

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

Then \mathbf{x} is an eigenvector of \mathbf{A} (associated with λ).

Remark: If **x** is an eigenvector associated with the eigenvalue λ , then so is $\alpha \mathbf{x}$ for every real number $\alpha \neq 0$.

$$\mathbf{A} (\alpha \mathbf{x}) = \alpha \mathbf{A} \mathbf{x} = \alpha (\lambda \mathbf{x}) = \lambda (\alpha \mathbf{x})$$

How to find eigenvalues? The equation can be written as

$$\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$$

$$\Leftrightarrow \mathbf{A} \mathbf{x} - \lambda \mathbf{I} \mathbf{x} = \mathbf{0}$$

$$\Leftrightarrow (\mathbf{A} - \lambda \mathbf{I}) \mathbf{x} = \mathbf{0}$$

This is a homogeneous linear system of equations. It has a solution $\mathbf{x} \neq \mathbf{0}$ if and only if the coefficient matrix $(\mathbf{A} - \lambda \mathbf{I})$ is singular which means that it has determinant equal to 0.

$$(\mathbf{A} - \lambda \mathbf{I})$$
 singular $\Leftrightarrow \underbrace{\det(\mathbf{A} - \lambda \mathbf{I})}_{p_A(\lambda)} = 0$

 $p_A(\lambda) = 0$ is called <u>characteristic equation</u> of **A**. The function $p_A(\lambda)$ is a polynomial of degree n in λ , called the characteristic polynomial of **A**.

1.5 Diagonalization

Let **A** and **P** be $n \times n$ matrices with **P** invertible. Then **A** and **P**⁻¹**AP** have the same eigenvalues (because they have the same characteristic polynomial).

Definition 1.2 An $n \times n$ matrix **A** is <u>diagonalizable</u> if there is an invertible matrix **P** and a diagonal matrix **D** such that

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D}.$$

Two natural questions:

- 1. Which square matrices are diagonalizable?
- 2. If \mathbf{A} is diagonalizable, how do we find the matrix \mathbf{P} ?

Theorem 1.1 An $n \times n$ matrix **A** is <u>diagonalizable</u> if and only if it has a set of n linearly independent eigenvectors $\mathbf{x_1}, \ldots, \mathbf{x_n}$. In this case,

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = diag(\lambda_1,\ldots,\lambda_n),$$

where **P** is the matrix with $\mathbf{x_1}, \ldots, \mathbf{x_n}$ as its columns, and $\lambda_1, \ldots, \lambda_n$ are the corresponding eigenvalues.

Many of the matrices encountered in economics are symmetric and for these matrices we have the following important result.

Theorem 1.2 (Spectral Theorem for symmetric matrices) If the $n \times n$ matrix **A** is symmetric ($\mathbf{A} = \mathbf{A}^{\mathbf{T}}$), then:

- 1. All n eigenvalues $\lambda_1, \ldots, \lambda_n$ are real.
- 2. Eigenvectors that correspond to different eigenvalues are orthogonal.
- 3. There exists an orthogonal matrix \mathbf{P} ($\mathbf{P}^{-1} = \mathbf{P}^{\mathbf{T}}$) such that

$$\mathbf{P^{-1}AP} = diag(\lambda_1, \dots, \lambda_n).$$

The columns $\mathbf{x_1}, \ldots, \mathbf{x_n}$ of the matrix \mathbf{P} are eigenvectors of unit length corresponding to the eigenvalues $\lambda_1, \ldots, \lambda_n$.

2 Subsets of \mathbb{R}^n

2.1 ϵ -balls and line segments

Definition 2.1 Let $\mathbf{x} \in \mathbb{R}^n$ and $\epsilon > 0$ a real number. The <u>(open)</u> ϵ -ball with center \mathbf{x} is the set

$$B_{\epsilon}(\mathbf{x}) = \{ \mathbf{y} \in \mathbb{R}^n \mid ||\mathbf{x} - \mathbf{y}|| < \epsilon \}$$

Definition 2.2 Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. The (closed) line segment $\overline{\mathbf{xy}}$ is the set

$$\overline{\mathbf{x}\mathbf{y}} = \{ t \cdot \mathbf{x} + (1-t) \cdot \mathbf{y} \mid t \in [0,1] \}$$

This is a part of a (straight) line:

$$t \cdot \mathbf{x} + (1-t) \cdot \mathbf{y} = \mathbf{y} + t \cdot (\mathbf{x} - \mathbf{y}) = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} + t \cdot \begin{pmatrix} x_1 - y_1 \\ x_2 - y_2 \\ \vdots \\ x_n - y_n \end{pmatrix}$$

Definition 2.3 A subset $M \subset \mathbb{R}^n$ is called <u>convex</u>, if for all $\mathbf{x}, \mathbf{y} \in M$ we have $\overline{\mathbf{xy}} \subset M$

Theorem 2.1 Let A be an $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^m$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \quad und \quad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Then the set

$$M = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} \le \mathbf{b} \text{ and } \mathbf{x} \ge \mathbf{0} \}$$

is convex.

2.3 Bounded subsets, boundary and closed subsets

Let $M \subset \mathbb{R}^n$.

Definition 2.4 *M* is called <u>bounded</u>, if there exists a real positive number ϵ such that $M \subset B_{\epsilon}(0)$.

A point **x** is called <u>boundary point</u> of M, if each ϵ -ball with center **x** contains both points of M and points of the complement $M^c = \mathbb{R}^n - M$.

A point in M which is not a boundary point of M is called an <u>inner point</u> of M. The boundary ∂M of M is

$$\partial M = \{ \mathbf{x} \in \mathbb{R}^n \mid \text{for all } \epsilon > 0 \text{ is } B_{\epsilon}(\mathbf{x}) \cap M \neq \emptyset \text{ and } B_{\epsilon}(\mathbf{x}) \cap M^c \neq \emptyset \}$$

M is called <u>closed</u> if $\partial M \subset M$.

3 Functions

3.1 Definition

Definition 3.1 Let $D \subset \mathbb{R}^n$. A function from D to \mathbb{R} is an assignment of exactly one element of \mathbb{R} to each element of D. We write:

$$f: D \longrightarrow \mathbb{R}$$

$$\mathbf{x} = (x_1, x_2, \dots, x_n)^T \longmapsto f(x_1, x_2, \dots, x_n) = f(\mathbf{x}) = y$$

D is called <u>domain</u> and $W = \{y \in \mathbb{R} \mid f(\mathbf{x}) = y \text{ for an } \mathbf{x} \in D\}$ the range of f.

The assignment of $f(\mathbf{x})$ to $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$ can be given by

- 1. an explicit calculation $f(x_1, x_2) = 3x_1x_2^2 + x_1$ with $D = \mathbb{R}^2$,
- 2. an implicit equation, for example let $f(x_1, x_2)$ be the solution x_3 of the equation $x_3^3 \overline{x_1 x_3} x_2 = 0$ with $x_1 \in \mathbb{R}$ and $x_2 > 0$,
- 3. by a differential equation.

3.2 Graph and level sets

Definition 3.2 Let $D \subset \mathbb{R}^n$ and $f : D \to \mathbb{R}$ be a function. The set

$$G_f = \{ (\mathbf{x}, f(\mathbf{x}))^T \mid \mathbf{x} \in D \} \subset \mathbb{R}^{n+1}$$

is called graph of f.

Example 2 $f : \mathbb{R}^2 \to \mathbb{R}, f(\mathbf{x}) = f(x_1, x_2) = x_1^2 - x_2^2.$ $G_f = \{ (x_1, x_2, x_1^2 - x_2^2)^T \mid (x_1, x_2)^T \in \mathbb{R}^2 \} \subset \mathbb{R}^3$

Definition 3.3 Let $D \subset \mathbb{R}^n$, $f : D \to \mathbb{R}$ a function and $c \in \mathbb{R}$. The set

$$N_c = \{ \mathbf{x} \in D \mid f(\mathbf{x}) = c \} \subset D \subset \mathbb{R}^n$$

is called <u>level set</u>.

Example 3 $f(\mathbf{x}) = f(x_1, x_2) = x_1^2 - x_2^2$

$$N_c = \{ x_1^2 - x_2^2 = c \mid (x_1, x_2)^T \in \mathbb{R}^2 \}$$

are hyperbolas.

3.3 Continous functions

Definition 3.4 A function $f: D \to \mathbb{R}$ is called <u>continuous in $\mathbf{a} \in D$ </u>, if for each sequence (\mathbf{x}_k) in D with $\lim_{k\to\infty} \mathbf{x}_k = \mathbf{a}$ we have $\lim_{k\to\infty} f(\mathbf{x}_k) = f(\mathbf{a})$.

Theorem 3.1 (Theorem of Weierstraß) Let $D \subset \mathbb{R}^n$ be a closed and bounded set and $f: D \to \mathbb{R}$ continuous. Then there exist $\mathbf{x}_{min}, \mathbf{x}_{max} \in D$ such that

$$f(\mathbf{x}_{min}) \leq f(\mathbf{x}) \leq f(\mathbf{x}_{max})$$

for all $\mathbf{x} \in D$.

3.4 Important functions

Definition 3.5 A linear function is given by

$$f : \mathbb{R}^n \longrightarrow \mathbb{R}$$
$$\mathbf{x} = (x_1, x_2, \dots, x_n)^T \longmapsto a_1 x_1 + a_2 x_2 + \dots + a_n x_n = \mathbf{a} \bullet \mathbf{x} = f(\mathbf{x})$$

for real numbers a_1, a_2, \ldots, a_n or $\mathbf{a} = (a_1, a_2, \ldots, a_n)^T$.

Definition 3.6 Let A be a symmetric $n \times n$ matrix. The function

$$Q_A : \mathbb{R}^n \longrightarrow \mathbb{R}$$
$$\mathbf{x} = (x_1, x_2, \dots, x_n)^T \longmapsto \mathbf{x} \bullet A\mathbf{x} = \mathbf{x}^T A\mathbf{x} = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$$

is called quadratic form corresponding to A.

Example 4

$$Q_A(\mathbf{x}) = (x_1, x_2) \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}_{=\mathbf{A}} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1^2 + x_2^2.$$

Example 5

$$Q_B(\mathbf{x}) = (x_1, x_2) \underbrace{\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}}_{=\mathbf{B}} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = -x_1^2 - x_2^2.$$

Example 6

$$Q_C(\mathbf{x}) = (x_1, x_2) \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}_{=\mathbf{C}} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1^2 - x_2^2.$$

Example 7

$$Q_D(\mathbf{x}) = (x_1, x_2) \underbrace{\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}}_{=\mathbf{D}} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1^2 + 4x_1x_2 + x_2^2$$

Definition 3.7 Let A be a symmetric $n \times n$ matrix. Then A is called

- positive definite, if $Q_A(\mathbf{x}) > 0$;
- positive semidefinite, if $Q_A(\mathbf{x}) \ge 0$;
- negative definite, if $Q_A(\mathbf{x}) < 0$;
- <u>negative semidefinite</u>, if $Q_A(\mathbf{x}) \leq 0$;

for <u>all</u> $\mathbf{x} \neq \mathbf{0}$.

A is called <u>indefinite</u>, if there exist vectors \mathbf{x} with $Q_A(\mathbf{x}) > 0$ as well as vectors \mathbf{y} with $Q_A(\mathbf{y}) < 0$.

Definition 3.8 Let $D \subset \mathbb{R}^n$ be a convex set. A function $f: D \to \mathbb{R}$ is called

• (strongly) concave on D, if

$$f((1-t)\mathbf{a}+t\mathbf{b}) (>) \ge (1-t)f(\mathbf{a})+tf(\mathbf{b})$$

for all $\mathbf{a}, \mathbf{b} \in D$ and all $t \in (0, 1)$;

• <u>(strongly) convex on D</u>, if $f((1-t)\mathbf{a} + t\mathbf{b}) \quad (<) \leq (1-t)f(\mathbf{a}) + tf(\mathbf{b})$

for all $\mathbf{a}, \mathbf{b} \in D$ and all $t \in (0, 1)$.

4 Differentiable functions

4.1 Partial derivations

Definition 4.1 Let $y = f(\mathbf{x}) = f(x_1, \ldots, x_i, \ldots, x_n)$ be a function. For $i = 1, 2, \ldots, n$ the *i*-th partial derivation of f is defined by

$$\frac{\partial f}{\partial x_i}(\mathbf{x}) = f_{x_i}(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{e_i}) - f(\mathbf{x})}{t}$$

Example 8

$$\begin{aligned} f(x_1, x_2) &= x_1^2 + x_1 x_2 + 2x_2^2 + 3\\ \frac{\partial f}{\partial x_1} &= \lim_{t \to 0} \frac{(x_1 + t)^2 + (x_1 + t)x_2 + 2x_2^2 + 3 - (x_1^2 + x_1 x_2 + 2x_2^2 + 3)}{t}\\ &= \lim_{t \to 0} \frac{2x_1 t + t^2 + tx_2}{t} = \lim_{t \to 0} (2x_1 + t + x_2) = 2x_1 + x_2 \end{aligned}$$

Definition 4.2 The function f is called <u>2-times (k)-times partially differentiable</u>, if all partial derivations of second order

$$f_{x_i x_j} = (f_{x_i})_{x_j} = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right)$$
 $(1 \le i, j \le n)$

exist.

The following fact is sometimes important:

Theorem 4.1 If all partial derivations of second order exist and are continuous functions, then $f_{x_ix_j} = f_{x_jx_i}$.

Definition 4.3 Let $\mathbf{a} = (a_1, a_2, \dots, a_n) \in D \subset \mathbb{R}^n$ be a point in the domain of f. The vector

$$\mathbf{grad} \ f(\mathbf{a}) \ = \ \left(egin{array}{c} f_{x_1}(\mathbf{a}) \ f_{x_2}(\mathbf{a}) \ dots \ f_{x_n}(\mathbf{a}) \ dots \ f_{x_n}(\mathbf{a}) \end{array}
ight)$$

is called gradient of f in \mathbf{a} . The matrix

$$H_{f}(\mathbf{a}) = \begin{pmatrix} f_{x_{1}x_{1}}(\mathbf{a}) & f_{x_{1}x_{2}}(\mathbf{a}) & \dots & f_{x_{1}x_{n}}(\mathbf{a}) \\ f_{x_{2}x_{1}}(\mathbf{a}) & f_{x_{2}x_{2}}(\mathbf{a}) & \dots & f_{x_{2}x_{n}}(\mathbf{a}) \\ \vdots & \vdots & \vdots & \vdots \\ f_{x_{n}x_{1}}(\mathbf{a}) & f_{x_{n}x_{2}}(\mathbf{a}) & \dots & f_{x_{n}x_{n}}(\mathbf{a}) \end{pmatrix}$$

is called <u>Hesse matrix</u> of f in \mathbf{a} .

Theorem 4.2 (Properties of the gradient)

- The gradient of f in **a** is orthogonal to the level set $f(\mathbf{x}) = f(\mathbf{a})$.
- The gradient of f in **a** points in the direction of the greatest rate of increase of the function f in **a**.

Example 9 For $f(x_1, x_2) = x_1^2 - x_1 x_2 + x_2^2$ we have

grad
$$f(x_1, x_2) = \begin{pmatrix} 2x_1 - x_2 \\ -x_1 + 2x_2 \end{pmatrix}$$
.

4.2 Differential and differentiable functions

Definition 4.4 The (total) differential df of f is defined by

$$df = df(\mathbf{x}, d\mathbf{x}) = f_{x_1}(\mathbf{x}) \cdot dx_1 + \ldots + f_{x_n}(\mathbf{x}) \cdot dx_n$$

Example 10 Let $f(x_1, x_2, x_3) = \sin(x_1x_2) + x_3^2$. Then

$$df(x_1, x_2, x_3, dx_1, dx_2, dx_3) = x_2 \cos(x_1 x_2) dx_1 + x_1 \cos(x_1 x_2) dx_2 + 2x_3 dx_3$$

$$df(x_1, x_2, x_3, dx_1, dx_2, dx_3) = x_2 \cos(x_1 x_2) dx_1 + x_1 \cos(x_1 x_2) dx_2 + 2x_3 dx_3$$

Definition 4.5 Let $D \subset \mathbb{R}^n$ be an open set. A function $f : D \to \mathbb{R}$ is called <u>differentiable</u> in $\mathbf{a} \in D$, if

$$\underbrace{f(\mathbf{x}) = f(\mathbf{a}) + \operatorname{grad} f(\mathbf{a}) \bullet (\mathbf{x} - \mathbf{a}) + R(\mathbf{x}, \mathbf{a})}_{*} \quad and \quad \underbrace{\lim_{\mathbf{x} \to \mathbf{a}} \frac{R(\mathbf{x}, \mathbf{a})}{||\mathbf{x} - \mathbf{a}||}}_{\star} = 0$$

• The function $t(\mathbf{x}) = f(\mathbf{a}) + \mathbf{grad} f(\mathbf{a}) \bullet (\mathbf{x} - \mathbf{a})$ is called <u>tangent hyperplane</u> of f in \mathbf{a} :

$$t(\mathbf{x}) = f(\mathbf{a}) + \mathbf{grad} f(\mathbf{a}) \bullet (\mathbf{x} - \mathbf{a}) = f(\mathbf{a}) + df(\mathbf{a}, d\mathbf{x})$$

- A differentiable function can be approximated (very well) by a linear function and the claim \star is essential.
- If we use the notation $\Delta f(\mathbf{a}, d\mathbf{x}) = f(\mathbf{a} + d\mathbf{x}) f(\mathbf{a})$ for the real change of f and $\mathbf{x} = \mathbf{a} + d\mathbf{x}$ we get

$$\Delta f(x,dx) = f(x+dx)$$

$$f(x+dx) = f(x)$$

$$t(x+dx) = t(x+dx)$$

$$t(x) = f(x)$$

$$f(x) = f(x)$$

$$\Delta f(\mathbf{a}, d\mathbf{x}) = df(\mathbf{a}, d\mathbf{x}) + R(\mathbf{x}, \mathbf{a})$$

 $\begin{array}{ll} \Delta x = dx & \text{change of } x. \\ \Delta f = \Delta f(x, dx) & \text{change of } f, \text{ if we change } x \text{ by } dx. \\ df = df(x, dx) & \text{change of the linear approximation,} \\ & \text{if we change } x \text{ by } dx. \end{array}$

Example 11 $z = f(x_1, x_2) = \frac{x_1}{x_2}$, $\mathbf{a} = (1, 1)$ $f_{x_1} = \frac{1}{x_2}$ $f_{x_1}(1, 1) = 1$ $f_{x_2} = -\frac{x_1}{x_2^2}$ $f_{x_2}(1, 1) = -1$ $f(x_1, x_2) = \frac{x_1}{x_2}$ = $f(1, 1) + \left(\begin{array}{c} f_{x_1}(1, 1) \\ f_{x_2}(1, 1) \end{array} \right) \bullet \left(\begin{array}{c} x_1 - 1 \\ x_2 - 1 \end{array} \right) + R(x_1, x_2, 1, 1)$ $= 1 + (x_1 - 1) - (x_2 - 1) + R(x_1, x_2, 1, 1)$ $= 1 + x_1 - x_2 + R(x_1, x_2, 1, 1)$

Graph of f and of the tangent plane (red)

We should show:

$$\lim_{\mathbf{x}\to\mathbf{a}} \frac{R(\mathbf{x},\mathbf{a})}{||\mathbf{x}-\mathbf{a}||} = \lim_{\mathbf{x}\to\mathbf{a}} \frac{\frac{x_1}{x_2} - 1 - x_1 + x_2}{\sqrt{(x_1-1)^2 + (x_2-1)^2}} = 0$$

The tangent plane is

$$t(x_1, x_2) = f(\mathbf{a}) + f_{x_1}(\mathbf{a}) \cdot (x_1 - a_1) + f_{x_2}(\mathbf{a}) \cdot (x_2 - a_2)$$

= 1 + 1 \cdot (x_1 - 1) + (-1) \cdot (x_2 - 1)
= 1 + x_1 - x_2

4.3 The directional derivation

Definition 4.6 Let $\mathbf{v} \in \mathbb{R}^n$ be a vector of length 1 (unit vector). The limit (if it exists)

$$\partial_{\mathbf{v}} f(\mathbf{a}) = \lim_{t \to 0} \frac{f(\mathbf{a} + t\mathbf{v}) - f(\mathbf{a})}{t}$$

is called the directional derivation of f in \mathbf{a} in direction \mathbf{v} .

Theorem 4.3 Let D be open, f differentiable on D and $\mathbf{v} \in \mathbb{R}^n$ with $||\mathbf{v}|| = 1$. Then

$$\partial_{\mathbf{v}} f(\mathbf{a}) = \mathbf{grad} f(\mathbf{a}) \bullet \mathbf{v} = \sum_{i=1}^{n} f_{x_i}(\mathbf{a}) v_i$$

Proof: Let f be totally differentiable in \mathbf{a} , then

$$f(\mathbf{x}) = f(\mathbf{a}) + \mathbf{grad} \ f(\mathbf{a}) \bullet (\mathbf{x} - \mathbf{a}) + R(\mathbf{x}, \mathbf{a}) \quad \text{und} \quad \lim_{\mathbf{x} \to \mathbf{a}} \ \frac{R(\mathbf{x}, \mathbf{a})}{||\mathbf{x} - \mathbf{a}||} = 0$$

With $\mathbf{x} = \mathbf{a} + t\mathbf{v}$ we get:

$$f(\mathbf{x}) - f(\mathbf{a}) = f(\mathbf{a} + t\mathbf{v}) - f(\mathbf{a}) = \operatorname{grad} f(\mathbf{a}) \bullet t\mathbf{v} + R(\mathbf{x}, \mathbf{a}).$$

Hence:

$$\partial_{\mathbf{v}} f(\mathbf{a}) = \lim_{t \to 0} \frac{f(\mathbf{a} + t\mathbf{v}) - f(\mathbf{a})}{t}$$
$$= \lim_{t \to 0} \frac{\mathbf{grad} \ f(\mathbf{a}) \bullet t\mathbf{v} + R(\mathbf{x}, \mathbf{a})}{t}$$
$$= \mathbf{grad} \ f(\mathbf{a}) \bullet \mathbf{v} + \lim_{t \to 0} \frac{R(\mathbf{x}, \mathbf{a})}{t}$$
$$= \mathbf{grad} \ f(\mathbf{a}) \bullet \mathbf{v}.$$

4.4 The chain rule

Theorem 4.4 Let $D \subset \mathbb{R}^n$ be open and $f : D \to \mathbb{R}$ continuously partially differentiable. $I \subset \mathbb{R}$ and

$$\mathbf{x}: I \to D \subset \mathbb{R}^n \quad with \quad \mathbf{x}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix}$$

with differentiable coordinat functions $x_i(t)$ für $1 \le i \le n$. Then the composition $f \circ \mathbf{x} : I \to \mathbb{R}$ mit $f \circ \mathbf{x}(t) = f(\mathbf{x}(t))$ is differentiable with

$$\frac{d}{dt} f(\mathbf{x}(t)) = \mathbf{grad} f(\mathbf{x}(t)) \bullet \frac{d}{dt} \mathbf{x}(t)$$

Expansion:

$$\frac{d}{dt} f(\mathbf{x}(t))$$
= grad $f(\mathbf{x}(t)) \bullet \frac{d}{dt} \mathbf{x}(t)$

= $\frac{d}{dt} f(x_1(t), x_2(t), \dots, x_n(t))$

= $f_{x_1}(\mathbf{x}(t)) \frac{d}{dt} x_1(t) + f_{x_2}(\mathbf{x}(t)) \frac{d}{dt} x_2(t) + \dots + f_{x_n}(\mathbf{x}(t)) \frac{d}{dt} x_n(t)$

= $f_{x_1}(\mathbf{x}(t)) \dot{x}_1(t) + f_{x_2}(\mathbf{x}(t)) \dot{x}_2(t) + \dots + f_{x_n}(\mathbf{x}(t)) \dot{x}_n(t)$

4.5 Implicite Derivation

Notation: $(\mathbf{x}, y) = (x_1, \dots, x_n, y) \in \mathbb{R}^{n+1}$

Theorem 4.5 Let $M \subset \mathbb{R}^{n+1}$ be open, $\phi : M \to \mathbb{R}$ continuously partially differentiable and $\mathbf{a} = (a_1, \ldots, a_n, a_{n+1}) \in M$ with $\phi(\mathbf{a}) = 0$ and $\phi_y(\mathbf{a}) \neq 0$. Then there is a neighbourhood U of (a_1, \ldots, a_n) and an open interval $I \subset \mathbb{R}$ with $a_{n+1} \in I$ such that:

- 1. $R := \{ (\mathbf{x}, y) \subset \mathbb{R}^{n+1} \mid \mathbf{x} \subset U \text{ and } y \in I \} \subset M \text{ and } \phi_y(\mathbf{x}) \neq 0 \text{ for all } (\mathbf{x}, y) \in R.$
- 2. For each $\mathbf{x} \in U$ there exists exactly one $y \in I$ with $\phi(\mathbf{x}, y) = 0$. The function $y := f(\mathbf{x})$ is partially differentiable ($f : U \to I$) and

Let $y := f(\mathbf{x})$ for all $\mathbf{x} \in U$ the function above. Then

$$\phi(\mathbf{x}, y) = \phi(\mathbf{x}, f(\mathbf{x})) = 0$$

By the chain rule we get:

$$0 = \frac{\partial}{\partial x_i} 0 = \frac{\partial}{\partial x_i} \phi(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{f}(x_1, \dots, \mathbf{x}_n))$$
$$= \sum_{j=1}^n \frac{\partial}{\partial x_j} \phi(\mathbf{x}, y) \cdot \frac{\partial x_j}{\partial x_i} + \frac{\partial}{\partial y} \phi(\mathbf{x}, y) \cdot \frac{\partial y}{\partial x}$$
$$= \frac{\partial}{\partial x_i} \phi(\mathbf{x}, y) \cdot \frac{\partial x_i}{\partial x_i} + \frac{\partial}{\partial y} \phi(\mathbf{x}, y) \cdot \frac{\partial y}{\partial x_i}$$
$$= \frac{\partial}{\partial x_i} \phi(\mathbf{x}, y) + \frac{\partial}{\partial y} \phi(\mathbf{x}, y) \cdot \frac{\partial}{\partial x_i} f(\mathbf{x})$$

Solving this equation for $\frac{\partial}{\partial x_i} f(\mathbf{x})$ proves the Theorem.

4.6 The Taylor Formula

Let $D \subset \mathbb{R}^n$ be convex and open, $\mathbf{a}, \mathbf{x} \in D$ and $f : D \to \mathbb{R}$ a 3-times continuously partially differentiable function.

Definition 4.7 The 2-nd Taylor polynom of f in \mathbf{a} is defined by:

$$t_2(\mathbf{x}) = f(\mathbf{a}) + \mathbf{grad} f(\mathbf{a}) \bullet (\mathbf{x} - \mathbf{a}) + \frac{1}{2} (\mathbf{x} - \mathbf{a})^T H_f(\mathbf{a}) (\mathbf{x} - \mathbf{a})$$

Theorem 4.6

$$\lim_{\mathbf{x}\to\mathbf{a}} \frac{f(\mathbf{x}) - t_2(\mathbf{x})}{||\mathbf{x}-\mathbf{a}||^2} = 0$$

Example 12 $f(x_1, x_2) = e^{x_1 + x_2} + \sin(x_1 x_2), \mathbf{a} = (0, 0)$

$$t_{2}(\mathbf{x}) = 1 + (1,1) \mathbf{x} + \mathbf{x}^{T} \frac{1}{2} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \mathbf{x}$$
$$= 1 + x_{1} + x_{2} + \frac{1}{2}x_{1}^{2} + 2x_{1}x_{2} + \frac{1}{2}x_{2}^{2}$$

Graph of f and t_2 (red)

4.7 Concave and convex functions

Theorem 4.7 Let $D \subset \mathbb{R}^n$ be a convex set and $f : D \to \mathbb{R}$ a 2-times continuously partially differentiable function. Furthermore, let H_f be the Hesse matrix of f. Then we have

 $\begin{array}{lll} H_{f}(\mathbf{x}) \ for \ all \ \mathbf{x} \in D \ negative \ semidefinite & \Longleftrightarrow & f \ concave \\ \\ H_{f}(\mathbf{x}) \ for \ all \ \mathbf{x} \in D \ negative \ definite & \Longrightarrow & f \ is \ striktly \ concave \\ \\ H_{f}(\mathbf{x}) \ for \ all \ \mathbf{x} \in D \ positive \ semidefinite & \Longleftrightarrow & f \ is \ convex \\ \\ H_{f}(\mathbf{x}) \ for \ all \ \mathbf{x} \in D \ positive \ definite & \Longrightarrow & f \ is \ striktly \ convex \end{array}$

Example 13 The function $f(x_1, x_2) = 2x_1 - x_2 - x_1^2 + 2x_1x_2 - x_2^2$ is defined on $D = \mathbb{R}^2$ and

$$H_f(\mathbf{x}) = \begin{pmatrix} -2 & 2\\ 2 & -2 \end{pmatrix}$$

is (always) negative semidefinite. Hence f is concave.