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Introduction to Dynamical Systems

General Introduction to dynamical systems

What is the dynamical system?

I Includes time as an independent variable

I Tracks changes of some function over time

I Includes one or more motion laws

I Can be discrete, continuous, hybrid, delayed...

I Describes numerous natural and social phenomena in time

I Solution of dynamical system is explicit function of time.
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General Introduction to dynamical systems

Discrete-time systems

Discrete-time dynamical system of dimension 1 may be represented
as the iteration of a real-valued function:

xn = f (xn−1);

n ∈ Z.

Then the trajectory may be represented as a sequence:

x1 = f (x0)

x2 = f (x1) = f (f (x0)) = f 2(x0)

x3 = f (x2) = f (f (x1)) = f (f (f (x0))) = f 3(x0)

...

xn = f n(x0)
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General Introduction to dynamical systems

Fixed and periodic points

Definition
A point x̄ is a periodic point of period k provided
f k(x̄) = x̄
and
f k(x̄) 6= x̄ for 0 < j < k .
A periodic point with period k = 1 is a fixed point

I Periodic orbit: A solution which visits x̄ every k periods

I Steady state: An orbit consisting solely of x̄ : constant orbit.

Example of fixed point analysis
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General Introduction to dynamical systems

Continuous-time systems

The continuous-time dynamical system is given by the law of
motion:

d

dt
x(t) = ẋ = f (x , t); x ∈ D ⊂ Rn, t ∈ R

I To find the solution is to find explicit function x(t) = Φ(t, x)
called the evolution function

I The solution does not exist always and can be non-unique



Introduction to Dynamical Systems

General Introduction to dynamical systems

Classification

I Dynamical system is autonomous if f (x , t) = f (x), the
equation does not explicitly depend on time

I Dynamical system is linear, if f (t, x) = A(t)x + B(t), it is
linear in the state variable

I Dynamical system is finite-dimensional, if dim x <∞
I Dynamic system is an ODE system, if its solution is

x(t) = Φ(t) - function of time only

Linear autonomous finite-dimensional ODE always has a unique
solution.
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General Introduction to dynamical systems

Fixed points and limit cycles

I Point x(t) is periodic if exists such t0 that

x(t + t0) = x(t)

I The trajectory is closed or cycle if it returns to the starting
point:

I A fixed point is such periodic point that t0 = 0.

I To find the fixed point is to find a steady state of the
dynamical system



Introduction to Dynamical Systems

General Introduction to dynamical systems

Linear autonomous systems: Stability
Let the dynamical system be given by

ẋ = Ax ;

x ∈ Rn.

Then the only fixed point (and solution) of the system is x̄ = 0.
I If all eigenvalues of A have negative real parts, then every

solution is stable(x̄ is a sink)
I If any eigenvalue of A have positive real part, then every

solution is unstable (x̄ is a source)
I If some of the eigenvalues of A have zero real parts and all

other have negative real parts, then let
λ = iσ1, iσ2, .., iσm
be eigenvalues with zero real parts. If the multiplicity of all
such eigenvalues is one, then every solution is stable.

Example of steady state analysis
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General Introduction to dynamical systems

Classification of stability regimes for 2-dim systems

Type Re(λ) Im(λ)
Source node > 0 = 0

Sink node < 0 = 0
Saddle λ1 > 0, λ2 < 0 = 0
Center = 0 6= 0

Spiral source > 0 6= 0
Spiral sink < 0 6= 0

I Multiplicity of eigenvalues further specifies the dynamics

I For higher-dimensional systems classification is more complex

I For non-linear systems stability is studied by the linearization
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General Introduction to dynamical systems

Stability for non-linear (autonomous) ODE systems
Given an ODE system

ẋ = F(x)

The following algorithm is usually applied:

I Define the Jacobian of a system as:

J
def
=


∂F1(x)
∂x1

∂F1(x)
∂x2

... ∂F1(x)
∂xn

∂F2(x)
∂x1

∂F2(x)
∂x2

... ∂F2(x)
∂xn

... ... ...
∂Fn(x)
∂x1

∂Fn(x)
∂x2

... ∂Fn(x)
∂xn


I Compute eigenvalues of an associated linearized system

u̇
def
= J(x∗)u + R(x)

I Stability for original system around steady states is equivalent
to this one.
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Easter Island civilization&Malthus

Easter Island: Main features

I Small Pacific Island, distant from the mainland (3200 km)

I Current population around 2100 people

I Remains an archeological and anthropological mystery

I Already at the time of discovery (1722) had a decaying
civilization

I Why the civilization virtually disappeared there?
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Easter Island civilization&Malthus

Malthus and overpopulation

I Resources are limited

I Population is growing

I Eventually the overpopulation will lead to stagnation,
starvation and collapse

I Remedy: less population, less consumption: Limits to
Growth.

BUT: We do not want to consume less and want to breed.

I How we can sustainably use resources and still evolve?
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Easter Island civilization&Malthus

Renewable resources and sustainability concept

I Resource grows at some rate

I Population uses the resource for activities at growing rates
also

I Usage is sustainable, if:

1. The resulting dynamical system has a steady state
2. This steady state admits non-zero resource and population
3. This steady state is (at least) saddle-type stable
4. Steady state may be supported infinitely (sufficiently) long

Now think of modern situation with resource usage:
Is it sustainable?
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Richardo-Malthus model

Main ingredients

I Limited resource stock S(t) with regeneration is harvested

I Growing population L(t) is employed for harvesting and other
good M production

I Dynamical 2-d system

I Steady-states analysis and transitional dynamics
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Richardo-Malthus model

Renewable resource dynamics

I Resource grows through time by G (S)

I It is consumed at rate H(t) (harvest)

I Growth law is logistical with K the carrying capacity:

G (S) = rS(t)(1− S(t)/K )

giving the dynamics of the resource stock:

dS

dt
def
= Ṡ = rS(t)(1− S(t)/K )− H(t) (1)
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Richardo-Malthus model

Harvesting function

I Harvest is consumed

I To produce the harvest labour input plus resource input are
required (production function):

Hp = αSLH

I Price of resource good equals its costs of production:

p = waLH =
w

αS
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Richardo-Malthus model

Temporary Ricardian equilibrium

I Individual utility:

u = hβm1−β

I Total demand:

HD = wβL/p; MD = w(1− β)L

I Full employment:

HPaLH(S) + M = L

Lead to Ricardian equilibrium:

H = αβLS
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Richardo-Malthus model

Malthusian population dynamics

I Consumption of resource increases fertility

I Otherwise growth is fixed:

dL

dt
def
= L̇ = L(t)[b − d + F (t)] (2)

with fertility function

F (t) = φH(t)/L(t) (3)
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Richardo-Malthus model

Dynamical system

The intertemporal dynamics consists of:

I Population dynamics, (2)

I Resource stock dynamics,(??)

I Yielding the 2-dim ODE system:

L̇ = L(t)[b − d + φαβS(t)]

Ṡ = rS(t)(1− S(t)/K )− αβL(t)S(t) (4)

which is non-linear.
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Richardo-Malthus model
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Richardo-Malthus model

Steady states
These are given by solutions to{

L̇ = 0

Ṡ = 0

I There are 3 steady states in total:
I One interior:

L̄2 =
r

αβ

(
1− d − b

φαβK

)
;

S̄2 =
d − b

φαβ

I Two corner:

S̄1 = 0, L̄1 = 0

S̄3 = K , L̄3 = 0
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Richardo-Malthus model

Dynamics

I System cannot be explicitly solved;

I Dynamics obtained locally and globally qualitatively;

I Local behavior: stability of steady states;

I Global behavior: which steady state is reached from which
initial states.
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Richardo-Malthus model

Local stability

I The interior steady state exists only if

(d − b)/(φαβ) < K (5)

I S̄1, L̄1 is a saddle with S = 0 stable manifold

I S̄3, L̄3 is a saddle-point with L = 0 stable manifold
I Interior steady state is stable and either:

I Spiral node
I Improper node

Exemplary calculations
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Richardo-Malthus model

Illustration
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Richardo-Malthus model

Global dynamics
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Application to Easter Island’s problem

Parameters choice and interpretation

I Carrying capacity is forest stock;

I Time in 10-years periods;

I b − d = −0.1: Population will die out without the resource;

I Resource-based good is less preferred than manufactured one;

I Calibration defines the dynamics of a system
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Application to Easter Island’s problem

Easter Island case: dying out
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Application to Easter Island’s problem

Sustainable case: aka BGP dynamics
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Application to Easter Island’s problem

Easter Island: Possible Answer

I Easter Island not very different from other Polinesian islands;

I The regeneration rate of the resource is crucial;

I This translates to different palm species (slow growing) at
Easter Island!

I Known as population-resource overshooting
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Concluding remarks

Place of Dynamics in Resource Economics

I Dynamics is essential

I Not the stock, but extraction rates are important (i. e.
dynamic quantities)

I It thus has to be controlled

I Optimal management of resource usage is necessary

I Improper usage may lead to conflicts, population decrease,
etc..

I Time horizon and periods are important

I Calibration from empirical research also very important
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Concluding remarks

Take home message

Resource management is dynamic.

Improper management may have dire

consequences.

Stability of equilibrium is important.
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Concluding remarks

Next week:

I Dynamic optimization concept: Ramsey (1927)

I Microperspective: optimal resource management

I Introduction to optimal control theory

I Time to extraction and overexploitation

I Paper: Hotelling H. (1931) The Economics of Exhaustible
Resources. The Journal of Political Economy, 39(2), pp.
137-175
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Example of a fixed point analysis
Let

f (x) = x3 − x

(6)

Dynamical system is given then by

xn = x3
n−1 − xn

(7)

Fixed points satisfy

x̄ = x̄3 − x̄

(8)

Providing three fixed points:

x̄ = {0,±
√

2}. (9)

Back
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Stability for 2-dim. linear systems

I The 2-dim. systems’ stability is analyzed through the 2-dim.
matrix (easy);

I Given system

ẋ = ax + by + C1 (10)

ẏ = cx + dy + C2. (11)

I System matrix is

A =

(
a b
c d

)
(12)

I Eigenvalues are obtained as roots of the characteristic
polynomial

p(λ) = det(A− λI ) = 0 (13)
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2-dim Stability cont’d

I This system has exactly 2 eigenvalues;

I The real part, Re(λ) defines the stability;

I The imaginary part, Im(λ) defines the type of fluctuations.

I Now recall that

tr(A) = a + d , det(A) = ad − bc, (14)

p(λ) = λ2 − (a + d)λ+ (ad − bc). (15)

I This gives characterization of stability through trace and
determinant only:

λ1,2 =
−tr(A)±

√
tr2(A)− 4 det(A)

2
(16)
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Trace-determinant diagram for stability of 2-dim. systems

Back
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Stability of steady-states in the model

I Derivation of (5):

L̇ = 0, L 6= 0→ b − d + φαβS = 0→ S =
d − b

φαβ
→ (5)

I Stability defined through Jacobian matrix:

J11 = (b − d) + φαβS ; J12 = φαβL;

J21 = −αβS ; J22 = r − 2rS/K − αβL

with J(0, 0) =

(
b − d 0

0 r ,

)
giving

λ1,2(J(0, 0)) = {b − d < 0; r > 0} a saddle-point

Back
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