

Basic models: Intertemporal optimization and resource extraction

Anton Bondarev

Department of Business and Economics,
Basel University

4.10.2018

Plan of the lecture

- ▶ Idea of intergenerational optimization: Ramsey leads to Hotelling
- ▶ Introduction to optimal control theory
- ▶ Optimal extraction without regeneration: Hotelling-type problems

Ramsey

- ▶ Idea of optimization of consumption over infinite time
- ▶ Introduction of discount rates
- ▶ Dynamic choice between consumption c and accumulation k
- ▶ Goal of maximizing utility over time:

$$\max_c \sum_{t=0}^{\infty} e^{-\rho t} U(c)$$

- ▶ While consumption is taken from output:

$$c_t = Y_t - k_t$$

- ▶ Output grows through investments which are necessary for growth:

$$k_{t+1} = Y_t(1 - c_t) - \delta k_t$$

Modern formulation: Ramsey-type problems

$$J := \int_0^{\infty} e^{-rt} U(c) dt \rightarrow \max_c$$

s.t.

$$\dot{k} = f(k) - c - (n + \delta)k$$

$$k(0) = k_0$$

$$0 \leq c \leq f(k)$$

This is an **optimal control problem** with one **state** variable and one **control** variable.

From Ramsey to Hotelling: why we need optimal control

- ▶ We need to optimize investments and consumption over **many time periods**
- ▶ **Exhaustible resources** enter production function, and not only capital
- ▶ Dynamic problem of optimal rate of resource exploitation
- ▶ **Sustainability** concept has been born
- ▶ Hotelling (1931) was the first to apply Ramsey-type analysis to exhaustible resources management.

Main features

- ▶ Multi-stage decision-making
- ▶ Optimization of a dynamic process in time
- ▶ Optimization is carried over **functions**, not **variables**
- ▶ The planning horizon of an optimizing agent is taken into account (finite or infinite)
- ▶ The problem includes **objective** and the **dynamical system**
- ▶ Some initial and/or terminal conditions are given.

Continuous-time problems

- ▶ Assume there is **continuous** number of stages (real time)
- ▶ **State** is described by continuous time function, $x(t)$
- ▶ Initial and terminal states are fixed, $x(0) = x_0, x(T) = x_T$
- ▶ Find a function $x(t)$, minimizing the cost of going from x_0 to x_T
- ▶ What gives the costs: Concept of **objective functional**:

$$\min_u \int_0^T \{ \dot{x}(t) + u^2(t) \} dt$$

- ▶ **Control** is chosen to change the state **trajectory** optimally.

Ingredients of dynamic optimization problem

Every dynamic optimization problem should include:

1. **Boundary conditions**: fixed starting and/or terminal points
2. Description of **admissible paths** from initial point to the terminal one: which trajectories are allowed
3. **Costs**, associated with different paths
4. An **objective**: what to maximize or minimize
5. **Dynamic constraints**: the motion law for state of the system (controlled or uncontrolled)

Functionals

Definition

A **functional** J is a mapping from the set of paths $x(t)$ into real numbers (value of a functional).

$$J := J(x(t)).$$

- ▶ Functional is NOT a function of t ;
- ▶ $x(t)$ is the *unknown* function, which have to be found;
- ▶ This is defined in some *functional space* \mathcal{H} ;
- ▶ Hence formally $J : \mathcal{H} \rightarrow \mathbb{R}$.

Types of boundary conditions

1. **Fixed-time problem:** $x(0) = x_0$, time length is fixed to $t \in [0, T]$, terminal state $x(T)$ is not fixed
 - ▶ Optimal price setting over fixed planning horizon
2. **Fixed endpoint problem:** $x(0) = x_0, x(T) = x_T$ and T is free
 - ▶ Cost minimization given required output x_T
3. **Time-optimal problem:** $x(0) = x_0, x(T) = x_T, T \rightarrow \min$
 - ▶ Producing a product as soon as possible regardless of the costs;
4. **Terminal surface problem:** $x(0) = x_0$, and at terminal time $f(T) = x(T)$.

Transversality

- ▶ In variable endpoint problems as above given boundary conditions are not sufficient to find the optimal path
- ▶ Additional condition on trajectories is called **transversality** condition:
- ▶ It defines, how the trajectory crosses the boundary line
- ▶ The vast majority of economic problems use this type of conditions
- ▶ Example: (discounted) shadow costs of investments $\psi(t)$ at the terminal time should be zero

$$\lambda(T) = 0, e^{-rT} \lambda(T) = 0, \lim_{t \rightarrow \infty} \lambda(t) = 0, \lim_{t \rightarrow \infty} e^{-rt} \lambda(t) = 0$$

Problem

Maximize (minimize) some objective functional

$$J = \max_{u(\bullet)} \int_0^T F(x(t), u, t) dt$$

with conditions on:

- ▶ Initial, terminal states and time;
 $x(0) = x_0; x(T) = x_T, t \in [0, T]$
- ▶ Dynamic constraints (define the dynamics of states);
 $\dot{x}(t) = f(x, u, t)$
- ▶ Static constraints on states (nonnegativity, etc.)
 $x(t) \geq 0, u(t) \geq 0.$

Hamiltonian

- ▶ To solve an optimal control problem we need **Hamiltonian function**
- ▶ This is an analog of Lagrangian for static problems
- ▶ Composition of Hamiltonian:
 1. Objective
 2. Each dynamic constraint times **co-state**
 3. Each static constraint times **dual**
- ▶ **IMPORTANT:** Duals differ from co-states, they do not have dynamics!
- ▶ First order conditions on Hamiltonian provide optimality criteria

Construction

Let the optimal control problem be:

$$\begin{aligned} J := \int_0^T F(x, u, t) dt \rightarrow \max_u; \\ s. t. \\ \dot{x} = f(x, u, t) \end{aligned} \tag{1}$$

Then the associated Hamiltonian is given by:

$$\mathcal{H}(\lambda, x, u, t) = F(x, u, t) + \lambda(t) \cdot f(x, u, t). \tag{2}$$

Comments

- ▶ In the Hamiltonian $\lambda(t)$ is called **costate** variable
- ▶ It usually represents shadow costs of investments
- ▶ Investments are the **control** $u(t)$
- ▶ It does not have to be continuous: investment may jump
- ▶ Hamiltonian includes that many costate variables as many dynamic constraints the system has
- ▶ Costate variable changes in time via the **co-state equation** given by derivative w. r. t. the **state**
- ▶ The optimal dynamics is defined by ODE system: for **state**, $x(t)$ and **costate**, $\lambda(t)$.

Example

Consider the problem:

$$\max_{u(\bullet)} \int_0^T e^{-rt} [x(t) - \frac{\alpha}{2} u(t)^2] dt$$

s.t.

$$\begin{aligned} \dot{x}(t) &= \beta(t) - u(t) \sqrt{x(t)}, \\ u(t) &\geq 0, x(0) = x_0. \end{aligned} \tag{3}$$

where $\beta(t)$ is arbitrary positive-valued function and α, r, T are constants.

The Hamiltonian of the problem (3) should be:

$$\mathcal{H}(\lambda, x, u, t) = e^{-rt} \left[x - \frac{\alpha}{2} u^2 \right] + \lambda [\beta(t) - u\sqrt{x}] \quad (4)$$

- ▶ The **admissible set** of controls include all nonnegative values ($u(t) \geq 0$)

- ▶ Transformation

$$e^{-rt} \lambda(t) = \lambda^{CV}(t)$$

yields *current value Hamiltonian*:

$$\mathcal{H}^{CV}(\lambda, x, u, t) = \left[x - \frac{\alpha}{2} u^2 \right] + \lambda^{CV} [\beta(t) - u\sqrt{x}]$$

It is used throughout all the economic problems.

Optimality

To obtain first-order conditions of optimality the *Pontryagin's Maximum Principle* is used.

Let

$$J := \int_0^T F(x, u, t) dt \rightarrow \max_u;$$

s.t.

$$\begin{aligned}\dot{x} &= f(x, u, t); \\ u(t) &\geq 0, x(0) = x_0.\end{aligned}\tag{5}$$

be the optimal control problem and

$$\mathcal{H}(\lambda, x, u, t) = F(x, u, t) + \lambda(t) \cdot f(x, u, t).\tag{6}$$

the associated Hamiltonian.

Optimality conditions

The **optimal** control $u(t)$ is such that it maximizes the Hamiltonian, (6) in such a way that

$$u^* : \frac{\partial \mathcal{H}(\lambda, x, u, t)}{\partial u} = 0; \\ \mathcal{H}(\lambda, x, u^*, t) = \mathcal{H}^*(\lambda, x, t) \quad (7)$$

must hold for *almost all* t .

This is **maximum condition**.

Along optimal trajectory

$$\dot{\lambda}(t) = -\frac{\partial \mathcal{H}^*(\lambda, x, t)}{\partial x}. \quad (8)$$

which is the **co-state equation**.

$$\lambda(T) = 0 \quad (9)$$

is transversality condition.

Theorem (Pontryagin's Maximum Principle)

Consider the optimal control problem (5) with Hamiltonian (6) and maximized Hamiltonian as above.

Assume the state space X is a convex set and there are no scrap value.

Let $u(\bullet)$ be a feasible control path with associated state trajectory $x(t)$.

If there exists an absolutely continuous function $\lambda : [0, T] \rightarrow \mathbb{R}^n$ such that

the maximum condition (7), the adjoint equation (8) and transversality condition (9) are satisfied,

and such that the function $x \rightarrow \mathcal{H}^*(\lambda, x, t)$ is concave and continuously differentiable,

then $u(\bullet)$ is an optimal control.

Sufficiency

- ▶ The theorem provides only necessary, but not sufficient criteria of optimality;
- ▶ The sufficient condition is given by the **concavity**(convexity) of a maximized (minimized) Hamiltonian \mathcal{H}^* w. r. t. $x(t)$;
- ▶ In our example the Hamiltonian is linear in state and quadratic in control, and hence concave in state;
- ▶ Sufficient condition is satisfied;
- ▶ This is always true for **linear-quadratic** problems.

Main points on optimal control

Solution of optimal control problem:

1. Write down the Hamiltonian of the problem
2. Derive first-order condition on the control
3. Derive co-state equation
4. Substitute optimal control candidate into state and co-state equations
5. Solve the canonical system of equations (state and co-state)
6. Define optimal control candidate as a function of time
7. Determine the concavity of a maximized Hamiltonian

Social optimum

- ▶ Assume the utility depends on resource only
- ▶ Social planner maximizes utility subject to finiteness of the resource:

$$\max_{R(\bullet)} \int_0^T e^{-rt} \{ U(R(t)) - \bar{b}R(t) \} dt$$

s. t.

$$\int_0^T R(t) dt = S_0. \quad (10)$$

- ▶ After some manipulation this constitutes the standard optimal control problem.

Canonical form

- ▶ We set $S(t)$ the new artificial **state** variable:

$$\dot{S} = -R(t)$$

- ▶ Adjoin this new dynamic constraint to the optimization problem (10)
- ▶ Transformation from extraction rates R to stocks S yields canonical form of the problem

Hotelling in optimal control form

- ▶ Transformation above yields:

$$\max_{R(\bullet)} \int_0^T e^{-rt} \{ U(R(t)) - \bar{b}R(t) \} dt$$

s. t.

$$\dot{S} = -R(t). \tag{11}$$

with S being the **state** and R the **control**

- ▶ Giving the **Hotelling's rule**:

$$U'(R(t)) - \bar{b} = \lambda(t)e^{rt} \tag{12}$$

OR

$$\frac{\dot{p}(t)}{p(t)} = \frac{\dot{\lambda}(t)}{\lambda(t)} = r \tag{13}$$

Competitive problem

- ▶ There exist n identical resource-extracting firms;
- ▶ The optimization problem is then:

$$\max_{R(\bullet)} \int_0^T e^{-rt} \left\{ \int_0^{nR(t)} p(x) dx - nb(R(t), S(t)) \right\} dt$$

s.t.

$$n\dot{S} = -nR(t), \quad S(0) = \bar{S}, \quad S(T) = S_T (= 0). \quad (14)$$

Monopolistic problem

- ▶ There exists a monopoly on the resource;
- ▶ Objective is profit maximization:

$$\max_{R(\bullet)} \int_0^T e^{-rt} \left\{ p(R)R(t) - b^{MONO}(R(t), S(t)) \right\} dt$$

s.t.

$$\dot{S} = -R(t). \quad (15)$$

Time to resource depletion

- ▶ Parameter T above is free;
- ▶ It is defined as an additional choice variable in optimal control problem;
- ▶ The condition for that is zero optimized Hamiltonian value:

$$\mathcal{H}(R^*(T^*), S^*(T^*), \lambda^*(T^*), T^*) = 0. \quad (16)$$

Conclusion

- ▶ Resource optimization is essentially intertemporal, i. e. dynamic;
- ▶ Finite resource requires social planning in most cases;
- ▶ With some parameters market can follow optimal path (less frequent than not);
- ▶ Intertemporal discount rate influences heavily the outcome;
- ▶ Optimal control is a versatile tool for solving intertemporal resource extraction problems.

References

- ▶ Ramsey F. (1928) A Mathematical Theory of Saving. *The Economic Journal*, Vol. 38 No. 152 pp. 543-559;
- ▶ Hotelling H. (1931) The Economics of Exhaustible Resources. *Journal of Political Economy*, Vol. 39, No. 2 pp. 137-175;
- ▶ Seierstad A., Sydsæter K. *Optimal Control Theory with Economic Applications*. Elsevier, 1999.

Next time

- ▶ Extension of optimal resource management to renewable resources
- ▶ Water management framework
- ▶ Sustainable usage of renewable resources
- ▶ Paper: Gisser M. and Sanchez D. (1980) Competition versus optimal control in groundwater pumping. *Water resources research, Vol. 16, No. 4, pp. 638-642*