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Optimal management of resources

Plan of the lecture

I Idea of intergenerational optimization: Ramsey leads to
Hotelling

I Introduction to optimal control theory

I Optimal extraction without regeneration: Hotelling-type
problems
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Introductory remarks

Ramsey

I Idea of optimization of consumption over infinite time

I Introduction of discount rates

I Dynamic choice between consumption c and accumulation k

I Goal of maximizing utility over time:

max
c

∞∑
t=0

e−ρtU(c)

I While consumption is taken from output:

ct = Yt − kt

I Output grows through investments which are necessary for
growth:

kt+1 = Yt(1− ct)− δkt
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Modern formulation: Ramsey-type problems

J :=

∞∫
0

e−rtU(c)dt → max
c

s.t.

k̇ = f (k)− c − (n + δ)k

k(0) = k0

0 ≤ c ≤ f (k)

This is an optimal control problem with one state variable and
one control variable.
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From Ramsey to Hotelling: why we need optimal control

I We need to optimize investments and consumption over
many time periods

I Exhaustible resources enter production function, and not
only capital

I Dynamic problem of optimal rate of resource exploitation

I Sustainability concept has been born

I Hotelling (1931) was the first to apply Ramsey-type analysis
to exhaustible resources management.
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Introduction to optimal control

Main features

I Multi-stage decision-making

I Optimization of a dynamic process in time

I Optimization is carried over functions, not variables

I The planning horizon of an optimizing agent is taken into
account (finite or infinite)

I The problem includes objective and the dynamical system

I Some initial and/or terminal conditions are given.
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Continuous-time problems

I Assume there is continuous number of stages (real time)

I State is described by continuous time function, x(t)

I Initial and terminal states are fixed, x(0) = x0, x(T ) = xT
I Find a function x(t), minimizing the cost of going from x0 to

xT
I What gives the costs: Concept of objective functional:

min
u

∫ T

0

{
x(t) + u2(t)

}
dt

I Control is chosen to change the state trajectory optimally.
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Ingredients of dynamic optimization problem

Every dynamic optimization problem should include:

1. Boundary conditions: fixed starting and/or terminal points

2. Description of admissible paths from initial point to the
terminal one: which trajectories are allowed

3. Costs, associated with different paths

4. An objective: what to maximize or minimize

5. Dynamic constraints: the motion law for state of the system
(controlled or uncontrolled)
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Functionals

Definition
A functional J is a mapping from the set of paths x(t)
into real numbers (value of a functional).
J := J(x(t)).

I Functional is NOT a function of t;

I x(t) is the unknown function, which have to be found;

I This is defined in some functional space H;

I Hence formally J : H → R.
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Types of boundary conditions

1. Fixed-time problem: x(0) = x0, time length is fixed to
t ∈ [0,T ], terminal state x(T ) is not fixed

I Optimal price setting over fixed planning horizon

2. Fixed endpoint problem: x(0) = x0, x(T ) = xT and T is
free

I Cost minimization given required output xT

3. Time-optimal problem: x(0) = x0, x(T ) = xT , T → min
I Producing a product as soon as possible regardless of the costs;

4. Terminal surface problem: x(0) = x0, and at terminal time
f (T ) = x(T ).
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Transversality

I In variable endpoint problems as above given boundary
conditions are not sufficient to find the optimal path

I Additional condition on trajectories is called transversality
condition:

I It defines, how the trajectory crosses the boundary line

I The vast majority of economic problems use this type of
conditions

I Example: (discounted) shadow costs of investments ψ(t) at
the terminal time should be zero

λ(T ) = 0, e−rTλ(T ) = 0, lim
t→∞

λ(t) = 0, lim
t→∞

e−rtλ(t) = 0
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Problem

Maximize (minimize) some objective functional

J = max
u(•)

T∫
0

F (x(t), u, t)dt

with conditions on:

I Initial, terminal states and time;
x(0) = x0; x(T ) = xT , t ∈ [0,T ]

I Dynamic constraints (define the dynamics of states);
ẋ(t) = f (x , u, t)

I Static constraints on states (nonnegativity, etc.)
x(t) ≥ 0, u(t) ≥ 0.
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Hamiltonian

I To solve an optimal control problem we need Hamiltonian
function

I This is an analog of Lagrangian for static problems
I Composition of Hamiltonian:

1. Objective
2. Each dynamic constraint times co-state
3. Each static constraint times dual

I IMPORTANT: Duals differ from co-states, they do not have
dynamics!

I First order conditions on Hamiltonian provide optimality
criteria
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Construction

Let the optimal control problem be:

J :=

T∫
0

F (x , u, t)dt → max
u

;

s. t.

ẋ = f (x , u, t) (1)

Then the associated Hamiltonian is given by:

H(λ, x , u, t) = F (x , u, t) + λ(t) · f (x , u, t). (2)
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Comments

I In the Hamiltonian λ(t) is called costate variable

I It usually represents shadow costs of investments

I Investments are the control u(t)

I It does not have to be continuous: investment may jump

I Hamiltonian includes that many costate variables as many
dynamic constraints the system has

I Costate variable changes in time via the co-state equation
given by derivative w. r. t. the state

I The optimal dynamics is defined by ODE system: for state,
x(t) and costate, λ(t).
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Example

Consider the problem:

max
u(•)

T∫
0

e−rt [x(t)− α

2
u(t)2]dt

s.t.

ẋ(t) = β(t)− u(t)
√

x(t),

u(t) ≥ 0, x(0) = x0. (3)

where β(t) is arbitrary positive-valued function and α, r ,T are
constants.
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The Hamiltonian of the problem (3) should be:

H(λ, x , u, t) = e−rt [x − α

2
u2] + λ[β(t)− u

√
x ] (4)

I The admissible set of controls include all nonnegative values
(u(t) ≥ 0)

I Transformation
e−rtλ(t) = λCV (t) yields
current value Hamiltonian:

HCV (λ, x , u, t) = [x − α

2
u2] + λCV [β(t)− u

√
x ]

It is used throughout all the economic problems.
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Optimality
To obtain first-order conditions of optimality the
Pontryagin’s Maximum Principle is used.
Let

J :=

T∫
0

F (x , u, t)dt → max
u

;

s.t.

ẋ = f (x , u, t);

u(t) ≥ 0, x(0) = x0. (5)

be the optimal control problem and

H(λ, x , u, t) = F (x , u, t) + λ(t) · f (x , u, t). (6)

the associated Hamiltonian.
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Optimality conditions
The optimal control u(t) is such that it maximizes the
Hamiltonian, (6) in such a way that

u∗ :
∂H(λ, x , u, t)

∂u
= 0;

H(λ, x , u∗, t) = H∗(λ, x , t) (7)

must hold for almost all t.
This is maximum condition.
Along optimal trajectory

λ̇(t) = −∂H
∗(λ, x , t)

∂x
. (8)

which is the co-state equation.

λ(T ) = 0 (9)

is transversality condition.
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Theorem (Pontryagin’s Maximum Principle)

Consider the optimal control problem (5) with Hamiltonian (6)
and maximized Hamiltonian as above.
Assume the state space X is a convex set and there are no scrap
value.
Let u(•) be a feasible control path with associated state trajectory
x(t).
If there exists and absolutely continuous function λ : [0,T ]→ Rn

such that
the maximum condition (7), the adjoint equation (8) and
transversality condition (9) are satisfied,
and such that the function x → H∗(λ, x , t) is concave and
continuously differentiable,
then u(•) is an optimal control.
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Sufficiency

I The theorem provides only necessary, but not sufficient
criteria of optimality;

I The sufficient condition is given by the concavity(convexity)
of a maximized (minimized) Hamiltonian H∗ w. r. t. x(t);

I In our example the Hamiltonian is linear in state and
quadratic in control, and hence concave in state;

I Sufficient condition is satisfied;

I This is always true for linear-quadratic problems.
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Main points on optimal control

Solution of optimal control problem:

1. Write down the Hamiltonian of the problem

2. Derive first-order condition on the control

3. Derive co-state equation

4. Substitute optimal control candidate into state and co-state
equations

5. Solve the canonical system of equations (state and co-state)

6. Define optimal control candidate as a function of time

7. Determine the concavity of a maximized Hamiltonian
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Social optimum

I Assume the utility depends on resource only

I Social planner maximizes utility subject to finiteness of the
resource:

max
R(•)

∫ T

0
e−rt

{
U(R(t))− b̄R(t)

}
dt

s. t.∫ T

0
R(t)dt = S0. (10)

I After some manipulation this constitutes the standard optimal
control problem.
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Canonical form

I We set S(t) the new artificial state variable:

Ṡ = −R(t)

I Adjoin this new dynamic constraint to the optimization
problem (10)

I Transformation from extraction rates R to stocks S yields
canonical form of the problem
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Hotelling in optimal control form
I Transformation above yields:

max
R(•)

∫ T

0
e−rt

{
U(R(t))− b̄R(t)

}
dt

s. t.

Ṡ = −R(t). (11)

with S being the state and R the control
I Giving the Hotelling’s rule:

U ′(R(t))− b̄ = λ(t)ert (12)

OR

ṗ(t)

p(t)
=
λ̇(t)

λ(t)
= r (13)
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Competitive problem

I There exist n identical resource-extracting firms;

I The optimization problem is then:

max
R(•)

∫ T

0
e−rt

{∫ nR(t)

0
p(x)dx − nb(R(t), S(t))

}
dt

s.t.

nṠ = −nR(t), S(0) = S̄ , S(T ) = ST (= 0). (14)
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Monopolistic problem

I There exists a monopoly on the resource;

I Objective is profit maximization:

max
R(•)

∫ T

0
e−rt

{
p(R)R(t)− bMONO(R(t),S(t))

}
dt

s.t.

Ṡ = −R(t). (15)
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Time to resource depletion

I Parameter T above is free;

I It is defined as an additional choice variable in optimal control
problem;

I The condition for that is zero optimized Hamiltonian value:

H(R∗(T ∗),S∗(T ∗), λ∗(T ∗),T ∗) = 0. (16)
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Conclusion

I Resource optimization is essentially intertemporal, i. e.
dynamic;

I Finite resource requires social planning in most cases;

I With some parameters market can follow optimal path (less
frequent than not);

I Intertemporal discount rate influences heavily the outcome;

I Optimal control is a versatile tool for solving intertemporal
resource extraction problems.
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Next time

I Extension of optimal resource management to renewable
resources

I Water management framework

I Sustainable usage of renewable resources

I Paper: Gisser M. and Sanchez D. (1980) Competition versus
optimal control in groundwater pumping.Water resources
research, Vol. 16, No. 4, pp. 638-642
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