

The Economics of Shallow Lakes: Multiple steady states, strategic interactions and hysteresis.

Anton Bondarev

Department of Business and Economics,
Basel University

October 15, 2018

Plan of the lecture

- ▶ Introduction to shallow lakes
- ▶ Introduction to differential games
- ▶ Static equilibria in Shallow Lakes model
- ▶ Dynamic equilibria in Shallow Lakes model

Description

- ▶ Lake is used as a source of water by **several** communities
- ▶ This results in loading of a lake with phosphorus (**pollution**)
- ▶ It is also used for recreation (fishing..)
- ▶ The cleaner is the lake, the higher utility from it (**preservation**)
- ▶ Optimal choice of loading level by each community independently - **common property equilibrium**
- ▶ Joint optimization of welfare - **command optimum equilibrium**

Features

Shallow lakes model has number of interesting features:

- ▶ Multiplicity of equilibria
- ▶ Optimal management does not help always
- ▶ Irreversibility of pollution
- ▶ History dependence of optimal policy

We concentrate this time on two first **points**

Why we need this stuff?

- ▶ A clear example of non-linear dynamics
- ▶ Non-linearities are everywhere in Economics
- ▶ Very typical for environmental problems
- ▶ Used frequently as a toy model to verify complicated concepts (and we do)
- ▶ Climate change is another type of shallow lakes!

Stylized components

- ▶ **Non-linear dynamics** of the state (pollution concentration)
- ▶ Several (but finitely many) **interacting agents**
- ▶ Finite **absorptive capacity** of a lake
- ▶ Intertemporal consequences are essential: pollution builds up gradually
- ▶ **Irreversibility** thresholds for pollution
- ▶ Separate control for every agent, but single common state (state of the lake).

Game theory recap

- ▶ The **game** consists of:
 1. Set of players, N ;
 2. Set of strategies of players, $\{s_1, \dots, s_n, \dots, s_N\}$
 3. Set of associated payoffs for all players: $V_n(s_1, \dots, s_N)$ depending on strategy choice of all players
 4. Value of the game V : total payoff for all players under chosen strategic profile.
- ▶ Games are in terms of payoff:
 1. Non-cooperative: each player maximizes his/her own payoff;
 2. Cooperative: players maximize joint payoff function
- ▶ In terms of dynamics:
 1. Static: only one action per player, maximization of associated pay-off
 2. Dynamic: game played over multiple periods, maximization of total pay-off in time
- ▶ Full information, asymmetric information, incomplete information games.

Game-theoretical equilibrium concepts

In cooperative and non-cooperative games different concepts are used:

- ▶ Min-Max solution: each player minimizes maximum losses from actions of the other (von Neumann-Morgenstern concept)
- ▶ Nash equilibrium (NE): game is in NE, if no player alters his/her strategy given others will not do so
- ▶ Shapley value (SV): distribution of total payoff among cooperating players

Example: Prisoner's Dilemma

Dynamic games concepts

Dynamic games types:

- ▶ Repetitive games: the same game is played T times,
 $t \in \{1, 2, 3, \dots, T\}$
- ▶ Differential games: the game is played over real time with strategies being functions of time
- ▶ Evolutionary games: Repetitive games with **mutations**

We will work only with differential games.

Dynamic equilibria concepts:

- ▶ Open-loop Nash equilibria
- ▶ Feedback Nash equilibria
- ▶ Repetitive Nash equilibria
- ▶ Evolutionary stable equilibria

Open loop and Feedback NE

We first define those:

- ▶ **Open loop NE** of a differential game is the set of strategies of players, $\{s_1^O(t), \dots, s_N^O(t)\}$ such that they maximize total payoffs of all players given **optimal** strategy profile of all other players-
- ▶ **Feedback NE** of a differential game is the set of strategies of players $\{s_1^F(t), \dots, s_N^F(t)\}$ maximizing their payoffs given **any** strategy profile of all other players
- ▶ Equilibrium is **subgame perfect** if it is an equilibrium of any subgame of the game.

Time consistency

- ▶ Weak time consistency:
 1. Continuation of the optimal trajectory;
 2. Only at the equilibrium;
 3. Along the path optimality (NOT subgame perfect).
- ▶ Strong time consistency
 1. Out-of-equilibrium concept;
 2. Anywhere optimality;
 3. IS subgame perfect;
 4. Markov-type consistency.

Differential game

The differential game (DG) consists of:

- ▶ Objective functional J_i for every player $i \in N$;
- ▶ Dynamic constraints on state variables (common or individual)
- ▶ Set of initial/boundary conditions on states/controls

So the DG is like an optimal control problem with several participants!

- ▶ Cooperative DG: players maximize $J = \sum_i^N J_i$
- ▶ Non-cooperative DG: each player maximize his/her own J_i
- ▶ Cooperative DG = Command optimum + solution concept (SV)
- ▶ Non-cooperative DG \neq Competitive outcome!

Open loop solution of differential game

- ▶ Construct Hamiltonians for all players
- ▶ Derive F.O.C.s and co-states for all players
- ▶ Assume others' strategies are fixed
- ▶ Solve algebraic system on strategies
- ▶ Substitute these back into dynamics and solve resulting DE's.

Algorithm is the same as for optimal control except there are many controls to find.

Setup

- ▶ There are $n \neq \infty$ communities residing on the lake
- ▶ They use lake as a waste sink and for recreation
- ▶ Lake has **multiple equilibria**:
 - ▶ **Eutrophic state**: high pollution, low biodiversity
 - ▶ **Oligotrophic state**: low pollution, high biodiversity
- ▶ Depending on parameters and initial state both might be optimal
- ▶ It is harder to return to clean state from dirty one then vice versa: **irreversibility**

Model

Each community has a payoff function

$$W(t) = \ln(a(t)) - c x^2(t) \quad (1)$$

- ▶ $\ln a$ is a value of a lake as a waste sink;
- ▶ x^2 is a value of ecological services from the lake (water quality);
- ▶ Coefficient c measures relative weight of these.

There are n communities (**players**) and thus

$$\sum_{i=1}^n \ln a_i - nc x^2 \quad (2)$$

is the objective functional for central planner.

Optimal management

The static central management problem:

$$\max_a \sum_{i=1}^n \ln a_i - ncx^2$$

s.t.

$$a - bx + \frac{x^2}{x^2 + 1} = 0, a = \sum_{i=1}^n a_i. \quad (3)$$

yields

$$b - \frac{2x}{(x^2 + 1)^2} - 2cx\left(bx - \frac{x^2}{x^2 + 1}\right) = 0 \quad (4)$$

Properties

- ▶ Optimal management does not necessarily lead to a oligotrophic state
- ▶ With low c it is optimal to go to eutrophic state
- ▶ For $c \leq 0.36$ there is one global maximum for x behind the **flip point**
- ▶ For $c = 1$ the only global maximum gives oligotrophic state with $x^* = 0.33$
- ▶ This is achieved for the loading level $a^* = 0.1$, while the flip occurs for $a = 0.1021$
- ▶ **Edge of hysteresis.**

Common property solution

Non-cooperative communities maximize their payoff which results in the **Nash equilibrium**:

$$\forall i \in [1; n] \subset \mathbb{N} : \max_{a_i} \ln a_i - cx^2$$

s.t.

$$a - bx + \frac{x^2}{x^2 + 1} = 0, \quad a = \sum_{i=1}^n a_i \quad (5)$$

yielding equilibrium characterization

$$b - \frac{2x}{(x^2 + 1)^2} - 2\frac{c}{n}x\left(bx - \frac{x^2}{x^2 + 1}\right) = 0 \quad (6)$$

Properties

- ▶ With $n = 2$ there are three equilibria
- ▶ One yields oligotrophic state with $x^{N_1} = 0.36$ and $a^{N_1} = 0.1012$, comparable to optimal management
- ▶ Another one is in eutrophic state with $x^{N_2} = 1.51$ and $a^{N_2} = 0.2108$
- ▶ The third in between is unstable (flip point)
- ▶ **Hysteresis effect:** it is harder to go from N_2 to N_1 then vice versa

It is *not* enough to reduce loading back to $a = 0.1$ to obtain the oligotrophic state, but loading have to be reduced till $a^F = 0.0898$.

Setup

- ▶ The loading may vary over time, it is the **control**
- ▶ Objectives are infinite time horizon functionals:

$$W_i = \int_0^\infty e^{-\rho t} [\ln a_i(t) - cx^2(t)] dt, i = 1, \dots, n. \quad (7)$$

- ▶ The phosphorus concentration is the **dynamic constraint**:

$$\dot{x}(t) = a(t) - bx(t) + \frac{x^2(t)}{x^2(t) + 1}. \quad (8)$$

Optimal management

Under optimal management the sum of objectives W_i is maximized:

$$\max_{a_i(\bullet)} \sum_{i=1}^n W_i = \max_{a_i(\bullet)} \sum_{i=1}^n \int_0^\infty e^{-\rho t} [\ln a_i(t) - c n x^2(t)] dt \quad (9)$$

resulting in the evolution of total loading:

$$\dot{a}(t) = - \left((b + \rho) - \frac{2x(t)}{(x^2(t) + 1)^2} \right) a(t) + 2cx(t)a^2(t) \quad (10)$$

Dynamics and steady states under optimal management

- ▶ Steady state of a depends on discount rate ρ
- ▶ With ρ low enough (long time horizon and planning) there is only one oligotrophic steady state
- ▶ As discount rate increases 3 SS appear
- ▶ With $\rho = 0.03$ the solution converges to the static model
- ▶ This unique steady state is saddle-type stable.

Common property solution

- ▶ Each community maximizes its own functional

$$\max_{a_i(\bullet)} W_i = \max_{a_i(\bullet)} \int_0^\infty e^{-\rho t} [\ln a_i(t) - cx^2(t)] dt \quad (11)$$

- ▶ subject to the common dynamics of the lake
- ▶ This results in the loading dynamics:

$$\dot{a}(t) = - \left((b + \rho) - \frac{2x(t)}{(x^2(t) + 1)^2} \right) a(t) + 2 \frac{c}{n} x(t) a^2(t) \quad (12)$$

Equilibria properties

- ▶ Under suitable values $n = 2, b = 0.6, c = 1, \rho = 0.03$ three equilibria exist
- ▶ The middle one is unstable and two others are stable
- ▶ They correspond to oligotrophic and eutrophic states respectively
- ▶ The **Skiba point** separating them exists
- ▶ The **hysteresis effect** is also observed.

Conclusions

- ▶ Game theory: Nash equilibrium concept
- ▶ Subgame-perfect NE and time consistency
- ▶ Shallow lakes: a workhorse of many dynamic phenomena
- ▶ We observed multiple equilibria both in planner and common property cases
- ▶ This is necessary for history dependence

Next lecture

- ▶ We concentrate on irreversibility and history dependence
- ▶ Bifurcations are introduced
- ▶ We use the same shallow lakes model to obtain global dynamics
- ▶ Feedback NE in this game and economic policy design
- ▶ (Additional) Paper: Kiseleva T., Wagener F. (2011)
Bifurcations of optimal vector fields in the shallow lake model.
Journal of Economic Dynamics and Control 34(5), pp. 825-843

References

Shallow lakes:

- ▶ Carpenter, S., Ludwig D., Brock W. (1999) Management of Eutrophication for Lakes Subject to Potential Irreversible Change, *Ecological Applications*, 9(3), pp. 751-771;
- ▶ Mäler, K-G., Xepapadeas, A., de Zeeuw A. (2003) The economics of shallow lakes, *Environmental and Resource Economics*, 26, pp. 603-624

Differential Games:

- ▶ E. Dockner, S. Jorgensen, N. Long, G. Sorger (2000) *Differential Games in Economics and Management Sciences*, Cambridge University Press, Cambridge.