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Plan of the lecture

I Introduction to shallow lakes

I Introduction to differential games

I Static equilibria in Shallow Lakes model

I Dynamic equilibria in Shallow Lakes model
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Shallow lakes: Overview

Description

I Lake is used as a source of water by several communities

I This results in loading of a lake with phosphorus (pollution)

I It is also used for recreation (fishing..)

I The cleaner is the lake, the higher utility from it (preservation)

I Optimal choice of loading level by each community
independently - common property equilibrium

I Joint optimization of welfare - command optimum
equilibrium
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Shallow lakes: Overview

Features

Shallow lakes model has number of interesting features:

I Multiplicity of equilibria

I Optimal management does not help always

I Irreversibility of pollution

I History dependence of optimal policy

We concentrate this time on two first points
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Shallow lakes: Overview

Why we need this stuff?

I A clear example of non-linear dynamics

I Non-linearities are everywhere in Economics

I Very typical for environmental problems

I Used frequently as a toy model to verify complicated concepts
(and we do)

I Climate change is another type of shallow lakes!
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Shallow lakes: Overview

Stylized components

I Non-linear dynamics of the state (pollution concentration)

I Several (but finitely many) interacting agents

I Finite absorptive capacity of a lake

I Intertemporal consequences are essential: pollution builds up
gradually

I Irreversibility thresholds for pollution

I Separate control for every agent, but single common state
(state of the lake).
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Introduction to differential games

Game theory recap
I The game consists of:

1. Set of players, N;
2. Set of strategies of players, {s1, ., sn, .., sN}
3. Set of associated payoffs for all players: Vn(s1, .., sN)

depending on strategy choice of all players
4. Value of the game V : total payoff for all players under chosen

strategic profile.
I Games are in terms of payoff:

1. Non-cooperative: each player maximizes his/her own payoff;
2. Cooperative: players maximize joint payoff function

I In terms of dynamics:
1. Static: only one action per player, maximization of associated

pay-off
2. Dynamic: game played over multiple periods, maximization of

total pay-off in time
I Full information, asymmetric information, incomplete

information games.
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Introduction to differential games

Game-theoretical equilibrium concepts

In cooperative and non-cooperative games different concepts are
used:

I Min-Max solution: each player minimizes maximum losses
form actions of the other (von Neumann-Morgenstern
concept)

I Nash equilibrium (NE): game is in NE, if no player alters
his/her strategy given others will not do so

I Shapley value (SV): distribution of total payoff among
cooperating players

Example: Prisoner’s Dilemma
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Introduction to differential games

Dynamic games concepts

Dynamic games types:

I Repetitive games: the same game is played T times,
t ∈ {1, 2, 3, ..,T}

I Differential games: the game is played over real time with
strategies being functions of time

I Evolutionary games: Repetitive games with mutations

We will work only with differential games.
Dynamic equilibria concepts:

I Open-loop Nash equilibria

I Feedback Nash equilibria

I Repetitive Nash equilibria

I Evolutionary stable equilibria
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Introduction to differential games

Open loop and Feedback NE

We first define those:

I Open loop NE of a differential game is the set of strategies
of players, {sO1 (t), .., sON (t)} such that they maximize total
payoffs of all players given optimal strategy profile of all other
players-

I Feedback NE of a differential game is the set of strategies of
players {sF1 (t), .., sFN(t)} maximizing their payoffs given any
strategy profile of all other players

I Equilibrium is subgame perfect if it is an equilibrium of any
subgame of the game.
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Introduction to differential games

Time consistency

I Weak time consistency:

1. Continuation of the optimal trajectory;
2. Only at the equilibrium;
3. Along the path optimality (NOT subgame perfect).

I Strong time consistency

1. Out-of-equilibrium concept;
2. Anywhere optimality;
3. IS subgame perfect;
4. Markov-type consistency.
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Introduction to differential games

Differential game

The differential game (DG) consists of:

I Objective functional Ji for every player i ∈ N;

I Dynamic constraints on state variables (common or individual)

I Set of initial/boundary conditions on states/controls

So the DG is like an optimal control problem with several
participants!

I Cooperative DG: players maximize J =
∑N

i Ji
I Non-cooperative DG: each player maximize his/her own Ji
I Cooperative DG = Command optimum + solution concept

(SV)

I Non-cooperative DG 6= Competitive outcome!
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Introduction to differential games

Open loop solution of differential game

I Construct Hamiltonians for all players

I Derive F.O.C.s and co-states for all players

I Assume others’ strategies are fixed

I Solve algebraic system on strategies

I Substitute these back into dynamics and solve resulting DE’s.

Algorithm is the same as for optimal control except there are many
controls to find.
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Static model

Setup

I There are n 6=∞ communities residing on the lake

I They use lake as a waste sink and for recreation
I Lake has multiple equilibria:

I Eutrophic state: high pollution, low biodiversity
I Oligotrophic state: low pollution, high biodiversity

I Depending on parameters and initial state both might be
optimal

I It is harder to return to clean state from dirty one then vice
versa: irreversibility
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Static model

Model
Each community has a payoff function

W (t) = ln(a(t))− c x2(t) (1)

I ln a is a value of a lake as a waste sink;

I x2 is a value of ecological services from the lake (water
quality);

I Coefficient c measures relative weight of these.

There are n communities (players) and thus

n∑
i=1

ln ai − ncx2 (2)

is the objective functional for central planner.
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Static model

Optimal management

The static central management problem:

max
a

n∑
i=1

ln ai − ncx2

s.t.

a− bx +
x2

x2 + 1
= 0, a =

n∑
i=1

ai . (3)

yields

b − 2x

(x2 + 1)2
− 2cx(bx − x2

x2 + 1
) = 0 (4)
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Static model

Properties

I Optimal management does not necessarily lead to a
oligotrophic state

I With low c it is optimal to go to eutrophic state

I For c ≤ 0.36 there is one global maximum for x behind the
flip point

I For c = 1 the only global maximum gives oligotrophic state
with x∗ = 0.33

I This is achieved for the loading level a∗ = 0.1, while the flip
occurs for a = 0.1021

I Edge of hysteresis.
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Static model

Common property solution

Non-cooperative communities maximize their payoff which results
in the Nash equilibrium:

∀i ∈ [1; n] ⊂ N : max
ai

ln ai − cx2

s.t.

a− bx +
x2

x2 + 1
= 0, a =

n∑
i=1

ai (5)

yielding equilibrium characterization

b − 2x

(x2 + 1)2
− 2

c

n
x(bx − x2

x2 + 1
) = 0 (6)
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Static model

Properties

I With n = 2 there are three equilibria

I One yields oligotrophic state with xN1 = 0.36 and
aN1 = 0.1012, comparable to optimal management

I Another one is in eutrophic state with xN2 = 1.51 and
aN2 = 0.2108

I The third in between is unstable (flip point)

I Hysteresis effect: it is harder to go from N2 to N1 then vice
versa

It is not enough to reduce loading back to a = 0.1 to obtain the
oligotrophic state, but loading have to be reduced till aF = 0.0898.
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Dynamic model

Setup

I The loading may vary over time, it is the control

I Objectives are infinite time horizon functionals:

Wi =

∫ ∞
0

e−ρt [ln ai (t)− cx2(t)]dt, i = 1, ..., n. (7)

I The phosphorus concentration is the dynamic constraint:

ẋ(t) = a(t)− bx(t) +
x2(t)

x2(t) + 1
. (8)
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Dynamic model

Optimal management

Under optimal management the sum of objectives Wi is maximized:

max
ai (•)

n∑
i=1

Wi = max
ai (•)

n∑
i=1

∫ ∞
0

e−ρt [ln ai (t)− cnx2(t)]dt (9)

resulting in the evolution of total loading:

ȧ(t) = −
(

(b + ρ)− 2x(t)

(x2(t) + 1)2

)
a(t) + 2cx(t)a2(t) (10)
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Dynamic model

Dynamics and steady states under optimal management

I Steady state of a depends on discount rate ρ

I With ρ low enough (long time horizon and planning) there is
only one oligotrophic steady state

I As discount rate increases 3 SS appear

I With ρ = 0.03 the solution converges to the static model

I This unique steady state is saddle-type stable.
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Dynamic model

Common property solution

I Each community maximizes its own functional

max
ai (•)

Wi = max
ai (•)

∫ ∞
0

e−ρt [ln ai (t)− cx2(t)]dt (11)

I subject to the common dynamics of the lake

I This results in the loading dynamics:

ȧ(t) = −
(

(b + ρ)− 2x(t)

(x2(t) + 1)2

)
a(t) + 2

c

n
x(t)a2(t)

(12)
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Dynamic model

Equilibria properties

I Under suitable values n = 2, b = 0.6, c = 1, ρ = 0.03 three
equilibria exist

I The middle one is unstable and two others are stable

I They correspond to oligoptrophic and eutrophic states
respectively

I The Skiba point separating them exists

I The hysteresis effect is also observed.
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Dynamic model

Conclusions

I Game theory: Nash equilibrium concept

I Subgame-perfect NE and time consistency

I Shallow lakes: a workhorse of many dynamic phenomena

I We observed multiple equilibria both in planner and common
property cases

I This is necessary for history dependence
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Dynamic model

Next lecture

I We concentrate on irreversibility and history dependence

I Bifurcations are introduced

I We use the same shallow lakes model to obtain global
dynamics

I Feedback NE in this game and economic policy design

I (Additional) Paper: Kiseleva T., Wagener F. (2011)
Bifurcations of optimal vector fields in the shallow lake model.
Journal of Economic Dynamics and Control 34(5), pp.
825-843
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Dynamic model
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