Environment and technical change in endogenous growth theory.

Anton Bondarev

Department of Businness and Economics, Basel University

28.02.2018

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Preamble

What is this all about? (Goal of the course)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Position of the discipline
- Intentional structure
- Prerequisites
- Formalities

Main points

- Basic concepts of growth theory
- Technical change as the source of growth.
- Endogenous growth: sources of growth
- Environment in growth theory: sustainability, climate change, green growth

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Environment and technical change: their interaction
- Environment and technical change in endogenous growth models

Investments, savings and consumption

- Basic macroeconomic identity
- Representative household and its budget

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Savings and investments
- Productive capital and labour
- Ramsey problem

Ramsey growth model

- The first dynamic model of consumption (1928)
- ► Foundation of both Resource Economics and Growth Theory
- Maximization of lifetime utility
- No explicit production function
- Optimal choice of current consumption rate
- Capital accumulation provides higher consumption possibilities in the future

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Main Idea: Choice between consuming now or saving for tomorrow (growth)

Typical growth framework

- Economic growth is the growth of output
- It leads to the increase in consumption possibilities
- Balanced growth path notion
- The source of growth are investments
- Savings rate defines the growth rate of the economy

Main Idea: Capital accumulation is used for improving consumption possibilities

Role of technical change

- ► Technology defines the productivity of production factors *L*, *K*
- Given constant technology per capita growth is limited
- The only source of ongoing growth is productivity increase
- The technical change itself is not sufficient to support growth

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Technical change has to be managed and stimulated

Ergo: To explain growth we need to explain technical change!

Evolution of technology in stylized facts

- Technical progress had increasing speed till recently
- Today R&D exhibits declining productivity leading to slowdown in growth
- Still, larger fraction of the world's population is participating in scientific research and development than ever;
- Technical change may be non-monotonic
- Knowledge spillovers may lead to increasing returns to scale

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 Major part of R&D today is performed by large multinational enterprises

Some numbers from cliometric surveys: Industrial Era

		Labour productivity growth	Capital deepening	TFP
	Austria			
	1870-1890	0.9	0.64	0.26
	1890-1910	1.69	0.66	1.03
	Germany			
	1871-1891	1.10	0.39	0.71
	1891-1911	1.76	0.58	1.18
	Great Britain			
	1700-1760	0.40	0.14	0.26
	1760-1801	0.20	0.07	0.13
	1801-1831	0.50	0.10	0.40
	1831-1871	1.25	0.35	0.90
	1873-1913	0.90	0.38	0.52
			ノロマ ノ同マ ノモマ ノモマ	=

Numbers from cliometric surveys:: XX century

	Labour productivity	Capital deepening	TFP
Italy, 1951-1973	4.51	1.61	2.90
Portugal, 1947-1973	4.47	2.46	2.01
Spain, 1951-1974	5.5	1.8	3.7
Sweden, 1950-1973	3.68	1.82	1.86
Korea,1960-1990	5.06	2.84	2.22
Singapore,1960-1990	4.97	3.34	1.63
Taiwan,1960-1990	6.07	3.17	2.90

Sources of technical change

Factor-enhancing technical change:

- 1. Capital deepening
- 2. Human capital accumulation
- 3. Embodied technical change (innovations)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

New products creation:

- 1. General purpose technologies (GPT)
- 2. Creative destruction
- 3. Variety expansion
- Knowledge spillovers

Impact on the economy

- Factor-enhancing technical change increases productivity
- Products creation changes the structure of the economy:
 - 1. GPT creates new sectors and destroys some older ones, changing interrelationships (advance of IT)
 - 2. Creative destruction upgrades existing product, making obsolete the older version (new iPhone)
 - 3. Variety expansion creates new product but in line of existing structure (advance of smartphones)

 Change in knowledge spillovers affects growth rates non-monotonically

Stylized facts

Resources:

- Humanity uses more and more resources and wider diversity of them
- Efficiency of usage and extraction is growing due to technical change

Environment:

- Environment is threatened as a by product of output (pollution)
- Climate is changing as a result of economic activity (IPCC 2014)
- Deteriorating environment negatively affects production /welfare
- Transition to a greener economy requires much effort and time

Resources and environment: Similarities and differences

• **Resources** may be:

- 1. Limited (exhaustible) and unlimited (renewable)
- 2. Essential and non-essential
- Environment may be treated as a renewable resource or as a public good

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Resource economics: optimal extraction rates and time to depletion
- Environmental economics: sustainable management and preservation of environment

Social welfare: efficiency vs optimality

- Leon Walras: every market distribution is efficient;
- Alfred Marshall: demand system and prices are keys to efficient distribution;

- Pareto: optimality and efficiency;
- Social welfare function concept;
- Ethical issues.

Special role of public goods

- "Standard" public good is available for all;
- Markets do not work in its efficient provision;
- Necessity of central government;
- Types of public goods;
- Are natural resources public goods?
- Common goods, open access goods and public goods: differences;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Special role of environmental goods.

Environment as a public good

- There are resources, which are:
 - 1. Indivisible,
 - 2. Non-excludable,
 - 3. Are not human-made.
- These properties distinguish environmental goods from resources and public goods:

- 1. Environmental goods cannot be produced;
- 2. They cannot be "extracted" either;
- 3. Can deteriorate, harming utility (social welfare).
- Examples:
 - 1. Air,
 - 2. Ocean,
 - 3. Wilderness areas,
 - 4. Biological diversity.

Birth of environmental economics

- Environmental goods increase social welfare and utility;
- Environment is deteriorated through economic activities;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Intergenerational sustainability;
- Climate change as general environmental good;
- Discussion of optimal environmental policies:
 - 1. Double dividend hypothesis
 - 2. Environmental Kuznets curve
 - 3. Green growth hypothesis

Impact of technical change on resources

- Technology improves efficiency
- It opens up more extraction possibilities
- Some resources are substituted by others (coal by oil)

- Increasing output increases resource's demand
- Increasing efficiency saves the resource

Impact of technical change on environment

May be ambiguous:

- Negative:
 - 1. Technology improves output
 - 2. Increasing output damages the environment

► Positive:

- 1. Newer technologies may be cleaner
- 2. More resources available for abatement
- The type and direction of technical change are important

Competitive usage of savings

Savings may be used for investments into

- 1. Capital, directly increasing future output
- 2. R&D, increasing factors' efficiency
- 3. Abatement, minimizing environmental impact
- These usages are competitive
- Social planner is needed to manage this
- Optimal control approach vs. Market equilibrium

Main ideas and concepts

- Green growth concept
- Structural change concept
- Sustainable development
- Double dividend
- Environmental Kuznets curve

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Technology lock-in

Components

Each techno-environmental growth model consists of:

- 1. Growth model of the economy
- 2. Model of R&D in it
- 3. Place of environment and type of market failure studied (resource, climate, etc.)
- 4. Interaction between technology, growth and environment

Methods

- Dynamic systems analysis: steady states, stability
- General equilibrium tools: markets clearing, budget constraints, production
- Optimal control methods: social policy, optimal management

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Control for the course

- Written exam 30.05.2018
- Several open questions
- No math. problems, no calculations required
- Each question addresses one model from the lectures
- You have to demonstrate the overall understanding of the structure and differences from other approaches.

Intentional timeplan

_ecture Date	Торіс
7.03	Introduction to growth theory
14.03	Resources and growth
21.03	Pollution and growth
28.03	No lecture
4.04	Endogenous growth and environment
11.04	Endogenous growth theory: Variety expansion
18.04	Variety expansion and environment
25.04	Endogenous growth theory: Quality ladders
2.05	Quality ladders and environment
9.05	Directed technical change
16.05	Directed technical change and environment
23.05	Doubly-differentiated R&D growth and environment
30.05	Exam