
Resources in neoclassics

Optimal resources usage: Neoclassical growth
theory and resources

Anton Bondarev

Department of Businness and Economics,
Basel University

November 5, 2018



Resources in neoclassics

Plan of the lecture

Motivation: cake-eating problem

Model with production

CES technology and isoelastic utility

Technological breakthrough

Concluding remarks



Resources in neoclassics

Motivation: cake-eating problem

Hotelling’s generalization

I We start with the simplest setup

I No production, just consumption of the resource stock, S

I Generalization: there is a substitute for the resource, M

I We then define the sustainable extraction path
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Motivation: cake-eating problem

Formal setup

I Social planner maximizes utility:

max
C

∫ T

0
e−δtU(C (t))dt (1)

I Given the source of consumption is the resource stock S :

Ṡ = M − C (t) (2)

I Important: M is constant
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Motivation: cake-eating problem

Augmented Hamiltonian

I The problem resembles Hotelling’s, but with multiple phases

I Phases follow from augmented Hamiltonian:

L = H+ q(t)S(t) =

U(C (t)) + p(t)(M − C (t)) + q(t)S(t) (3)

with q(t) ≥ 0, q(t)S(t) = 0 - complementary slackness
condition
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Motivation: cake-eating problem

Modified Hotelling

I F.O.C. implies Hotelling’s rule:

p(t) = U ′(C (t)) (4)

I Co-state equation is

ṗ = −q(t) + δp(t) (5)

I Defining elasticity of marginal utility

η(C ) = −CU ′′(C )/U ′(C ) (6)

I We arrive to modified Hotelling’s rule:

Ċ

C
= − δ

η(C )
+

q(t)

η(C )U ′(C )
: (7)
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Motivation: cake-eating problem

Multiple phases of extraction

I Multiple extraction phases as for renewable resource:
I As long as S(t) > 0 we have q(t) = 0 and hence

CA :
Ċ

C
= − δ

η(C )
< 0 (8)

I As soon as S(t) = 0 we have q(t) > 0 and extraction is given
by (7):

CB : − δ

η(C )
+

q(t)

η(C )U ′(C )
= 0 (9)

I It follows that

q(t > T ) = δU ′(M); C (t > T ) = M (10)
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Motivation: cake-eating problem

Determination of T

I Time-to-extraction T is characterized by:∫ T

0
C (t)dt = S(0) + MT (11)

I To obtain T one needs:
1. Solve for dynamics of C (t < T ) via (8):

C (t < T )
U(C)=Cα

=
√
−2α δ t + C02 + 2 δ t (12)

2. Insert this into the integral:

1/3
C0 3

δ (α− 1)
− 1/3

(
−2Tα δ + C02 + 2T δ

)3/2
δ (α− 1)

= MT + S0

(13)

3. Solve resulting equation on T
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Motivation: cake-eating problem

Illustration: influence of parameters on T



Resources in neoclassics

Model with production

Setup
I We add (neoclassical) production into the model:

F (K ,R) : F (0,R) ≥ 0, lim
K→∞

∂F

∂K
< δ, lim

K→0

∂F

∂K
> δ (14)

I Capital accumulates through savings:

K̇ = F (K ,R)− C (15)

I Resource R is extracted for production purposes with no
regeneration:

Ṡ = −R, (16)

I Planner is maximizing utility from consumption:

max
C ,R

∫ ∞
0

e−δtU(C (t))dt (17)
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Model with production

Optimal policy

I The augmented Hamiltonian is:

L =

e−δtU(C ) + e−δtp(t)(F (K ,R)− C )− λ(t)R + e−δtµ(t)R
(18)

I There are two F.O.C.s:

p(t) = U ′(C )

λ(t) = e−δt
(
µ(t) + p(t)

∂F

∂R

)
(19)

I This is another form of the Hotelling’s rule
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Model with production

Comment on Hotelling’s rule

I Hotelling’s rule says how the price of the resource should be
optimally set

I As long as R(t) > 0 (there is resource left), we have µ(t) = 0
and

λ = e−δtp(t)
∂F

∂R
(20)

I Relative (shadow) price of the resource, λ/p(t) equals its
(discounted) marginal product

I This holds as long as extraction costs are neglected

I NB: Resource price never equals its marginal extraction costs!
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Model with production

Time to depletion

I Whether or not the resource will be depleted in finite time,
depends on its productivity:

I If marginal product of the resource is unbounded, its
exploitation is infinite:

lim
R→0

∂F

∂R
=∞→ R > 0∀t ≥ 0. (21)

I Time of exploitation is finite, if resource is inessential and its
average product is bounded (x = K/R):

lim
x→∞

(f (x)− xf ′(x)) = γ <∞,F (K , 0) > 0 (22)

then

R(t) ≥ 0 : T ≥ t > 0 ;R(t) = 0 : t ≥ T 6=∞. (23)
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Model with production

Consequences

I In this general setting there is resource trap

I If resource is essential, it cannot be fully depleted

I Thus consumption decreases over time to zero

I Capital cannot substitute for resource (Cobb-Douglas)

I Absence of technology prevents further growth

I If resource is inessential, it is fully exploited at t = 0.
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CES technology and isoelastic utility

Specification

To obtain steady states and growth paths we specify the economy
as:

I CES production technology:

F (K ,R) =
[
βK (σ−1)/σ + (1− β)R(σ−1)/σ

]σ/(σ−1)
(24)

I With σ ≤ 1 resource is essential (Cobb-Douglas with σ = 1)

I With σ > 1 it is inessential

I Isoelastic utility function: η(C ) = η > 0
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CES technology and isoelastic utility

Steady state of the CES economy
With ρ = lim

K/R→∞
f (K/R)/(K/R):

I Economy growth rate is

Ċ

C
=

K̇

K
=
ρ− δ
η

(25)

I Resource exploitation growth rate:

Ṙ

R
=
ρ− δ
η
− σρ < 0 (26)

I Consumption-capital ratio:

C̄

K̄
= ρ+

δ − ρ
η

(27)

For σ ≤ 1 we have ρ = 0 thus growth is negative
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CES technology and isoelastic utility

Case 1 > σ > 0

I Total output is bounded by resource if σ < 1

I The relative resource price λ/p(t) is monotonically increasing

I The shadow price tends to

(1− ρ)σ/(σ−1) (28)

I The consumption profile tends to zero:

lim
t→∞

C (t)→ 0 (29)

since more resource has to be substituted by capital stock



Resources in neoclassics

CES technology and isoelastic utility

Cobb-Douglas case
We now assume x = K/R, f (x) = xα, and σ = 1.

I The steady state capital to resource ratio is:

x̄ =
(
(1− α)t + x1−α0

)1/(1−α)
(30)

I The relative price of the resource is then

λ/p(t) = (1− α)1/(1−α)tα/(1−α) (31)

I The optimal consumption profile is

C̄ (t) = C̄ (0)x̄(0)α/η
[
(1− α)t + x1−α0

]α/η(1−α)
e−(δ/η)t (32)

I Resource extraction is

Ṙ = C̄ (0)x̄(0)α/η
[
(1− α)t + x1−α0

]α/η
e−(δ/η)t (33)



Resources in neoclassics

CES technology and isoelastic utility

Illustration: Consumption profile
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CES technology and isoelastic utility

Illustration: Resource profile
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CES technology and isoelastic utility

Single-peaked consumption profile

I Once technology is Cobb-Douglas, there is a single max of
consumption

I This had consequences to the theory:

1. Environmental Kuznets curve (EKC)(fails empirically)
2. Endogenous growth theory
3. Renewable energy studies

I Overall, Environmental Economics studies have originated
from this fact

I Discount rate is of vital importance - intergenerational equity
question
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Technological breakthrough

Technology

I Technology may turn the essential resource into inessential

I Suppose at time T some (renewable) ultimate energy source
appears

I Then we have piecewise-defined problem:

1. Optimize resource use up to T
2. Switch to optimal usage of renewable resource after T
3. determine T (unknown)
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Technological breakthrough

Breakthrough

I Discovery of a perfectly durable commodity

I It yields a constant flow of ’service’ M

I Production function changes: F (K (t),R(t)→ G (K (t),Z (t))

I G is new technology, Z is utilization of a service

I It is perfect substitute for the resource
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Technological breakthrough

After breakthrough
After the breakthrough occurs, the problem is to maximize utility
subject to:

∀t ∈ [T ,∞) :

K̇ = G (K (t),Z (t))− C (t),

V̇ = M − Z (t),

V (T ) := S0 −
∫ T

0
R(t)dt (34)

With G (K ,Z ) being the new production technology, Z being
renewable resource

I KT is given by before breakthrough problem;

I T is either random, or endogenously defined

I V (T ) is initial condition on remaining resource
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Technological breakthrough

Before the breakthrough

Before the breakthrough we utilize the exhaustible resource:

K̇ = F (K ,R)− C

Ṡ = −R (35)

which is pursued until the substitute is discovered

I At any point in time there is a probability of breakthrough

I It is certain that at some point it will happen:

ω(t) > 0,

∫ ∞
0

ω(t)dt = 1 (36)
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Technological breakthrough

Uncertainty structure

I At each t < T there is a non-zero probability of a
breakthrough

I The ω(t) is probability density

I The actual probability that breakthrough happens after any t
is

Ω(t) =

∫ ∞
t

ω(τ)dτ (37)

I At any time we weight probability that breakthrough have not
happened yet (Ω(t)) and that it will happen exactly at t, ω(t)

I Yields a certainty equivalence problem
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Technological breakthrough

Certainty equivalent problem

I Denote W (K (t),V (t)) maximized value of the
after-breakthrough problem for T = t

I Then before breakthrough planner is maximizing

E
∫ ∞
0

e−δtU(C )dt =

∫ ∞
0

e−δtU(C )Ω(t) + ω(t)W (K (t),V (t))dt

(38)

I Subject to constraints

K̇ = F (K ,R)− C ,

Ṡ = −R,
S(t) = V (t) (39)

I The last implies the same resource stock is used by
breakthrough technology
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Technological breakthrough

Conditional evolution of the economy

Denote Ψ(t) = ω(t)/Ω(t): likelihood of breakthrough at t;

I Then consumption path depends on this likelihood:

Ċ

C
=

FK − δ + Ψ(t)(WK − U ′(C ))/U ′(C )

η(C )
(40)

I After the breakthrough we get standard optimal problem with
renewable resource

I Outcome depends on probability density, ω(t)!



Resources in neoclassics

Technological breakthrough

Assumptions

I Once breakthrough occurs, old capital has no value:

WK = WV = 0 (41)

I Redefining x = K/R as before we get

Ċ

C
=

f ′(x)− (δ + Ψ)

η(C )
,

ẋ = σf (x) (42)

I So consumption profile before breakthrough is the same as
without it (corrected for Ψ)
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Technological breakthrough

Consumption profile
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Technological breakthrough

Comments

I With (many) simplifying assumptions it turns out that:

1. Potential breakthrough increases discount rate by Ψ(t)
2. Thus it is optimal to consume more (extract resource faster)
3. At the breakthrough there is a jump: economic shock

I This solution is non-realistic:

1. No costs of research
2. Breakthrough comes with certainty and for free
3. Old exhaustible resource transforms into renewable, but with

different technology.
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Technological breakthrough

Other ways out

I Endogenous growth: replace resource with R&D (controlled
one)

I Rate of resource discovery: S may grow with time as a
consequence of technology

I Human capital not depending on resource
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Concluding remarks

Take home message

I Essential vs inessential resources

I In the economy with essential exhaustible resource only
technology may grant ongoing growth

I In renewable world: cake-eating with switching at T

I In non-renewable world: intergenerational equity and
investments rule
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Concluding remarks

Conclusion

I Neoclassical thought generates pessimistic predictions over
resources

I Thus, non-formal arguments have been used

I The problem impacted trade theory and intergenerational
justice theory

I Today reconsidered in endogenous growth

I Conclusion still pretty much holds

I Crucial role of empirical validation: substitution elasticity
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Concluding remarks

Next lecture (tentative)

I Intergenerational equity

I Could we grant non-decreasing consumption to future
generations

I Given exhaustible resource is present?

I Counterargument by Solow: better invest it all now

I Paper: Solow (1974) Intergenerational equity and exhaustible
resources. The Review of Economic Studies, 41, pp. 29-45
(the same issue on Symposium as today’s paper)
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