Directed technical change in endogenous growth theory

Anton Bondarev

Department of Businness and Economics, Basel University

9.05.2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

Introduction

Bias of technical change: the concept

Formal setup

Two models of technology growth

Further extensions and applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Mathematical supplement

Origins

- The idea of direction of technical change has been discussed already in 1960-s
- Technical change may be biased towards one or another factor of production
- These concepts has been formulated in papers on induced innovations
- This framework relies on the concepts of:
 - Innovations possibility frontier (Kennedy (1962))
 - **Bias of technical change** vs rate of technical change.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Empirical foundations

- The technical change in the 19-th century has been capital-biased
- However, in 1970-s this bias has changed
- The new, skill-biased, technical change required another approach
- This skill-biased technical change has delayed structure
- Explanation is needed, why skill-biased technical change leads to higher inequality
- What is the nature of technical change today?

New Growth Theory era

- These ideas of the biased technical change has been long unused
- With NGT the interest to these models re-emerged
- Models of Acemoglu and others tried to include the notion of bias into quality ladders and variety expansion type models
- These models usually distinguish between two possible directions of technical change
- At the same time technical change is modelled along the path of NGT
- Combination of new ideas of endogenous technology and old ideas of the biased technology.

Shortcomings

This most recent framework of technical change has shortcomings:

- The number of sectors is usually limited to 2
- The range of intermediaries is allowed to change in both sectors, but quality of intermediaries is constant
- No new sectors are allowed to appear.

These shortcomings are being dealt with (currently) by so-called **2-nd generation R&D-based models**:

- Allows for variety expansion and quality ladders simultaneously: Peretto, Connolly (2007)
- Allows for dynamic number of sectors: Chu (2011)
- Allows for both dynamic sectors and 2-dim. R&D: Bondarev&Greiner (2017).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Bias of technical change: the concept

Overview

- Is considered to be classical as of today
- Combines ideas of technological bias with Grossman-Helpman economy
- There are two possible directions of the bias:
 - Labour-augmenting
 - Capital-augmenting.
- There exists equilibrium bias of technology
- This bias is subject to 2 effects:
 - Price effect, favouring bias towards scarce factor;
 - Market size effect, favouring abundant factor.
- Relative scarcity of production factors is the main drive of the direction of technical change!

Production technology

Consider the aggregate production function:

Y=F(L,Z,A),

where L is labour, Z is anything except labour (capital, human capital, land, Martians..) and A is technology.

Technical progress A is L-augmenting, if:

$$\frac{\partial F}{\partial A} = \frac{L}{A} \frac{\partial F}{\partial L}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

and Z-augmenting defined similarly through Z.

Technological bias

Details On the other hand, technical change is L-biased, if:

$$\frac{\partial \frac{\partial F/\partial L}{\partial F/\partial Z}}{\partial A} > 0,$$

That is, technology increases productivity of L to a greater extent, than that of Z.

- Whether technical change is L or Z -augmenting, depends on the shape of production function
- The bias of technical change depends, in contrast, on the ratio of marginal products
- This is (partial) intuition, why only 2 factors may be considered.

Representative consumer

Representative consumer has standard life-time utility:

$$\max_{C} \int_{0}^{\infty} e^{-\rho t} \frac{C^{1-\theta} - 1}{1-\theta} dt$$

subject to the budget constraint:

$$C + I + R \leq Y \equiv [\gamma Y_L^{\alpha} + (1 - \gamma) Y_Z^{1 - \alpha}]^{1/\alpha}$$

where I are investments into capital and R are R&D expenditures, and Y_L , Y_Z are two intermediate products.

Intermediate products

These are produced from the range of technologies (machines) being used in both sectors (sector-specific):

$$Y_L = \frac{1}{1-\beta} \Big(\int_0^{N_L} x_L(j)^{1-\beta} dj \Big) L^{\beta},$$
$$Y_Z = \frac{1}{1-\beta} \Big(\int_0^{N_Z} x_Z(j)^{1-\beta} dj \Big) Z^{\beta}.$$

where β is the productivity parameter (identical across sectors) and L, Z are total supplies of both factors in the economy (inelastical).

Equilibrium

In this economy, equilibrium is given by:

- Set of prices of machines for both sectors, maximizing profits of technology monopolists, χ_L(j), χ_Z(j)
- ► Machine demands from two intermediate sectors, maximizing intermediate goods producers profits, x_L(j), x_Z(j)
- Factor prices, that clear factor markets, ω_L, ω_Z
- ▶ **Product prices**, that clear product markets, *p*_{*L*}, *p*_{*Z*}.

This equilibrium is unique given evolution of technologies, N_L and N_Z .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Products markets clearing

Two intermediate products markets are competitive, and thus their prices ratio is proportional to marginal costs of production:

$$p \equiv \frac{p_Z}{p_L} = \frac{1 - \gamma}{\gamma} \left(\frac{Y_Z}{Y_L}\right)^{-1/\epsilon} \tag{1}$$

where $\epsilon = \frac{1}{1-\alpha}$ is the elasticity of factor substitution. Taking price of the final good as a numeraire, we have another relation between prices:

$$\gamma p_L^{1-\epsilon} + (1-\gamma) p_Z^{1-\epsilon} = 1,$$

which together with (1) defines both prices.

Demand: Labour-intensive sector

formulas Demand in labour-intensive is the result of profit maximization of producers:

- Usual first-order conditions yield
 - 1. Demand for labour-augmenting intermediaries, $x_L(j)$ as function of prices $p_L, \chi_L(j)$,
 - 2. Price for labour (as inverse of demand) ω_L as function of $x_L(j), p_L$.

► The major role is played by the intermediate demand

Demand: Capital-intensive sector

formulas Demand in capital-intensive sector is defined in a similar way:

- Profit maximization yields:
 - Demand for Z-augmenting intermediaries, x_k(j) as function of prices p_Z, χ_Z(j),

- Price for Z, ω_Z, as an inverse demand for this factor being function of x_Z(j), p_Z.
- Again **intermediate demand** is of importance.

Prices of machines

formulas

- \blacktriangleright Each monopolist in each sector faces constant marginal costs of producing machines, ψ
- Then the profit of the monopolist may be written in per unit terms
- Since the demand for machines in both sectors is isoelastic, producers are monopolists, the prices χ_{L,Z} are similar and are the constant mark-up over costs ψ
- Normalizing $\psi = 1 \beta$, prices are equal:

$$\chi_L(j) = \chi_Z(j) = 1, \forall j.$$
(2)

Value of technology

▶ Using Eqs. (2), (35), (38) we rewrite profits:

$$\pi_L = \beta p_L^{1/\beta} L, \pi_Z = \beta p_Z^{1/\beta} Z \tag{3}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Technology monopolist is interested in the total discounted stream of profits, rather than in the instantaneous profit
- This value is obtained via the standard HJB dynamic equations:

$$rV_L - \dot{V}_L = \pi_L, \ rV_Z - \dot{V}_Z = \pi_Z$$

► In the steady state $V_{L,Z} = 0$, giving expressions for value functions:

$$V_L = \frac{\beta p_L^{1/\beta} L}{r}, V_Z = \frac{\beta p_Z^{1/\beta} Z}{r}.$$

Price effect and market size effect

Two forces determine the direction of technical change (relative N_L/N_Z change):

$$V_L = \frac{\beta p_L^{1/\beta} L}{r}, V_Z = \frac{\beta p_Z^{1/\beta} Z}{r}.$$
 (4)

- Price effect: targets more expensive goods (influence of *p*_L, *p*_Z)
- Market size effect: targets more abundant factor (influence of L, Z).
- Innovations are directed at the more profitable factors (as of early induced innovations literature);
- The equilibrium bias is defined by relative change in factors supply, Z/L and associated price changes, pZ/pL.

Elasticity of substitution

Define ϵ,σ to be elasticity of substitution in consumption and production

- With symmetric prices (and thus demands) for both types of machines outputs are functions of ranges, N_L, N_Z
- Giving relative output price as a function of the ratio of technical change:

$$\boldsymbol{\rho} = \left(\frac{1-\gamma}{\gamma}\right)^{\beta\epsilon/\sigma} \left(\frac{N_Z Z}{N_L L}\right)^{-\beta/\sigma} \tag{5}$$

Details

Relative profitability of research is function of technical change and scale:

$$\frac{V_Z}{V_L} = \left(\frac{1-\gamma}{\gamma}\right)^{\epsilon/\sigma} \left(\frac{N_Z}{N_L}\right)^{-1/\sigma} \left(\frac{Z}{L}\right)^{\frac{\sigma-1}{\sigma}}$$

Overview of substitution role

- The value of σ defines, whether factors are gross substitutes or complements:
 - ► With σ > 1 factors are gross substitutes and market size effect dominates
 - ► With *σ* < 1 they are gross complements and price effect dominates</p>
- The gross substitutability of factors also plays a role in the way, technical progress bias influences factor prices:
 - With σ > 1 the increase in N_Z/N_L increases ω_Z/ω_L, as is predicted by the old induced innovations literature
 - However, with $\sigma > 1$ the relation is reversed
- This effect appears because factor prices depend on the marginal product increase of factors, not on their physical productivity increase.

Innovations possibility frontier

- The form of innovations possibility frontier defines the form of stead-state dynamics
- Two different forms are considered:
 - Lab equipment model, where technical change depends only on the final good spending:

$$\dot{N}_L = \eta_L R_L, \, \dot{N}_Z = \eta_Z R_Z \tag{6}$$

Productive knowledge model, where previous knowledge has positive spillovers on current technology:

$$\dot{N}_{L} = \eta_{L} N_{L}^{1+\delta} N_{Z}^{1-\delta} S_{L}, \\ \dot{N}_{Z} = \eta_{Z} N_{L}^{1-\delta} N_{Z}^{1+\delta} S_{Z}.$$
(7)

▶ They result in different degrees of *state dependence* of R&D.

Lab equipment model

$$\dot{N}_L = \eta_L R_L, \, \dot{N}_Z = \eta_Z R_Z. \tag{8}$$

There is no state dependence of ratio of technical change in this model:

$$\frac{\partial \dot{N}_Z / \partial R_Z}{\partial \dot{N}_L / \partial R_L} = \frac{\eta_Z}{\eta_L} = const.$$
(9)

- Varieties of both types grow proportionally to the resources (in terms of final output) being used
- Coefficients η_Z, η_L allow the productivity in two kinds of knowledge to be different.

BGP in lab equipment model

- BGP is defined as a path, where:
 - Prices of the output of both sectors are constant,
 - N_Z and N_L grow at the same rate.
- These implies technology market clearing condition:

$$\eta_L \pi_L = \eta_Z \pi_Z; \tag{10}$$

Using expressions for prices and profits, Eqs. (5) and (3) this gives ratio of technical changes as functions of factors:

$$\frac{N_Z}{N_L} = \eta^{\sigma} \left(\frac{1-\gamma}{\gamma}\right)^{\epsilon} \left(\frac{Z}{L}\right)^{\sigma-1},\tag{11}$$

where $\eta = \frac{\eta_Z}{\eta_L}$.

Bias of technical change in lab equipment model

- The case $\sigma > 1$:
 - The higher Z/L ratio increases N_Z/N_L and physical productivity of abundant factor will be higher;
 - Because of gross substitutability the higher N_Z/N_L will correspond to Z-biased technical change overall (marginal productivity ratio).
- The case $\sigma < 1$:
 - ► The higher Z/L ratio decreases N_Z/N_L and physical productivity of abundant factor will be *lower*;
 - However, since factors are gross complements, lower physical productivity translates into *higher* value of marginal product and technical progress is still *Z*-biased
- The case $\sigma = 1$:
 - The production function is a Cobb-Douglas one and technical progress is neither Z- nor L-biased.

Factor rewards and shares

The ratio of factor prices is given by:

$$\frac{\omega_Z}{\omega_L} = \eta^{\sigma-1} \left(\frac{1-\gamma}{\gamma}\right)^{\epsilon} \left(\frac{Z}{L}\right)^{\sigma-2}.$$
 (12)

- ► With enough elastic substitutability (σ > 2) the relationship may be upward-sloping
- With fixed technology ratio the more abundant the factor is, the less is its price
- However, since technology is biased towards more abundant factor, the overall effect is ambiguous
- The relative shares of factors is given by:

$$\frac{s_Z}{s_L} \equiv \frac{\omega_Z Z}{\omega_L L} = \eta^{\sigma-1} \left(\frac{1-\gamma}{\gamma}\right)^{\epsilon} \left(\frac{Z}{L}\right)^{\sigma-1}.$$
 (13)

Growth rates in lab equipment model

The maximization of consumption yields

$$g_c = g = \theta^{-1}(r - \rho) \tag{14}$$

The free-entry condition for both research sectors imply

$$\eta_L \beta p_L^{1/\beta} L/r = 1 = \eta_Z \beta p_Z^{1/\beta} Z/r$$
(15)

With this plus expressions for prices and technology ratios we obtain the growth rate of the economy along BGP:

$$g = \theta^{-1} (\beta [(1 - \gamma)(\eta_Z Z)^{\sigma - 1} + \gamma (\eta_L L)^{\sigma - 1}]^{\frac{1}{\sigma - 1}} - \rho).$$
(16)

Productive knowledge model

The evolution of varieties in both sectors:

$$\frac{N_Z}{N_L} = \eta^{\sigma} \left(\frac{1-\gamma}{\gamma}\right)^{\epsilon} \left(\frac{Z}{L}\right)^{\sigma-1},\tag{17}$$

- It is assumed that there is an exogenous supply of scientists in the economy, S;
- ▶ With only one research sector the growth of knowledge should be proportional to this *S*: $\dot{N}/N \sim S$;
- With two different sectors, however, the *distribution* of scientists is important;
- The parameter δ measures the degree of state-dependence: with δ = 0 one obtains the previous version of the model (more or less)

BGP in productive knowledge model

In the productive knowledge model the technology market clearing depends on the level of varieties being achieved:

$$\eta_L N_L^\delta \pi_L = \eta_Z N_Z^\delta \pi_Z \tag{18}$$

The equilibrium level of relative technology is then:

$$\frac{N_Z}{N_L} = \eta^{\frac{\sigma}{(1-\delta)\sigma}} \left(\frac{1-\gamma}{\gamma}\right)^{\frac{\epsilon}{(1-\delta)\sigma}} \left(\frac{Z}{L}\right)^{\frac{\sigma-1}{(1-\delta)\sigma}}$$
(19)

Now the ratio of technologies depends on the *degree of* state-dependence, δ.

Factor prices and shares

In this version of the model ratio of factor prices is:

$$\frac{\omega_{Z}}{\omega_{L}} = \eta^{\frac{\sigma}{(1-\delta)\sigma}} \left(\frac{1-\gamma}{\gamma}\right)^{\frac{(1-\delta)\epsilon}{(1-\delta)\sigma}} \left(\frac{Z}{L}\right)^{\frac{\sigma-2+\delta}{(1-\delta)\sigma}}.$$
 (20)

And relative factor shares:

$$\frac{s_{Z}}{s_{L}} \equiv \frac{\omega_{Z}Z}{\omega_{L}L} = \eta^{\frac{\sigma}{(1-\delta)\sigma}} \left(\frac{1-\gamma}{\gamma}\right)^{\frac{1-\delta\epsilon}{1-\delta\sigma}} \left(\frac{Z}{L}\right)^{\frac{\sigma-1+\delta-\delta\sigma}{(1-\delta)\sigma}}.$$
 (21)

• Both are reduced to the lab equipment model if $\delta = 0$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Growth rate of the economy

- In productive knowledge model, growth rate is determined by the number of scientists, S
- In BGP both sectors should grow at the same rate:

$$\dot{N}_L/N_L = \dot{N}_Z/N_Z; \tag{22}$$

 Taking into account the technology market clearing condition, Eq. (18), this is equivalent to

$$\eta_L N_L^{\delta-1} S_L = \eta_Z N_Z^{\delta-1} S_Z \tag{23}$$

Which results in equilibrium allocation of scientists and growth rates:

$$S_L = \eta_Z S / (\eta_Z + \eta_L), g = \eta_L \eta_Z S / (\eta_Z + \eta_L).$$
(24)

Stability of BGP

- For the case of productive knowledge, the steady state is not always stable (as in the lab equipment model)
- Unstable here means that in the end only one type of R&D is undertaken
- BGP is the one, where **both** types of R&D have non-zero growth rates
- The condition for existence of such a path is:

$$\sigma < 1/\delta \tag{25}$$

 Additionally, for downward sloping factor demands it is necessary, that

$$\sigma > 2 - \delta \tag{26}$$

► These conditions may be simultaneously satisfied only if $\delta < 1!$

Directed Growth

-Two models of technology growth

Full state-dependence with $\delta = 1$

In this case stability of BGP requires

$$\sigma < 1 \tag{27}$$

so factors are gross complements

To have research in both sectors along BGP factor shares must be constant:

$$\frac{s_Z}{s_L} \equiv \frac{\omega_Z Z}{\omega_L L} = \eta^{-1} \tag{28}$$

This confirms the result of Kennedy (1964) with constant shares along BGP, but only with full state-dependence!

Market size effect and population growth

- So far we abstracted from population growth;
- Positive population growth leads to the so-called "scale effect": growth rate positively depends on population growth
- Modify the knowledge production equations as to:

$$\dot{N}_L = \eta_L N_L^{\lambda} S_L, \, \dot{N}_Z = \eta_Z N_Z^{\lambda} S_Z \tag{29}$$

- In the absence of population growth such a model will not have a stable BGP
- However with population growth BGP is

$$g = \frac{n}{1 - \lambda} \tag{30}$$

The market size effect will still be present in this model:

$$\eta_L N_L^\lambda \pi_L = \eta_Z N_Z^\lambda \pi_Z \tag{31}$$

► Which will give the same market effect as before.

Applications

The model of endogenous skill-biased technical change

- ▶ In the previous model substitute Z for H (human capital)
- In such a model the increase in the supply of human capital (skills) creates a bias of technical progress towards this skilled labour.

Model of international trade

- ► Assume the factors are *H* and *L* skilled and unskilled labour
- Assume all the technologies are developed in the "North" and all other countries are less-developed
- These countries may copy the technologies of the North
- Depending on whether the factors are gross substitutes or complements, the increase in relative technology N_H/N_L increases or decreases the income gap between countries.

Conclusions

- The idea of induced direction of technical change originates back to Fellner (1962)
- Acemoglu (1998) adapted this idea to endogenous growth theory with varieties
- This adaptation amounts to inclusion into the analysis two (instead of one) R&D sectors
- Wide variety of economic applications may be found of this simple idea
- However it is essential that only two sectors exist
- Currently we are trying to extend this to continuum of sectors.

Literature

- Fellner W. (1961) Two Propositions in the Theory of Induced Innovations. *The Economic Journal, Vol. 71, No. 282*, pp. 305-308
- Kennedy C. (1964) Induced Bias in Innovation and the Theory of Distribution. The Economic Journal, Vol. 74, No. 295, pp. 541-547
- Acemoglu D. (1998) Why do new technologies complement skills? Directed Technical Change and Wage Inequality. The Quaterly Journal of Economics, Vol. 113(4), pp. 1055-1089.

Directed Growth

-Further extensions and applications

Next time

- The Green growth concept
- Application of directed technical change to environment: technology lock-in
- Paper: Acemoglu, Aghion, Bursztyn, Hemous (2012) The Environment and Directed Technical Change.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Details

Back Consider production function as of CES type:

$$Y = \left[\gamma(A_L L)^{\frac{\sigma-1}{\sigma}} + (1-\gamma)(A_Z Z)^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}$$
(32)

where A_L is labour-augmenting technical progress and A_Z is capital-augmenting technical progress.

At the same time, *direction* of technical change is governed by:

$$\frac{MP_Z}{MP_L} = \frac{1-\gamma}{\gamma} \left(\frac{A_Z}{A_L}\right)^{\frac{\sigma-1}{\sigma}} \cdot \left(\frac{Z}{L}\right)^{-\frac{1}{\sigma}},\tag{33}$$

Now we incorporate this notion of direction into the standard variety expansion type model.

Demand: Labour-intensive sector

Back Demand in labour-intensive is the result of profit maximization of producers:

$$\max_{L,\{x_{L}(j)\}} p_{L}Y_{L} - \omega_{L}L - \int_{0}^{N_{L}} \chi_{L}(j)x_{L}(j)dj; \qquad (34)$$

taking p_L , N_L , $\chi_L(j)$ as given, this problem yields the demand for machines and labour in labour-intensive sector:

$$x_{L}(j) = \left(\frac{p_{L}}{\chi_{L}(j)}\right)^{1/\beta} L; \qquad (35)$$
$$\omega_{L} = \frac{\beta}{1-\beta} p_{L} \left(\int_{0}^{N_{L}} x_{L}^{1-\beta}(j) dj\right) L^{\beta-1}. \qquad (36)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Demand: Capital-intensive sector

Back Demand in capital-intensive sector is defined in a similar way:

$$\max_{Z,\{x_{Z}(j)\}} p_{Z} Y_{Z} - \omega_{Z} Z - \int_{0}^{N_{Z}} \chi_{Z}(j) x_{Z}(j) dj;$$
(37)

$$x_{Z}(j) = \left(\frac{p_{Z}}{\chi_{Z}(j)}\right)^{1/\beta} Z; \qquad (38)$$

$$\omega_{Z} = \frac{\beta}{1-\beta} p_{Z} \left(\int_{0}^{N_{Z}} x_{Z}^{1-\beta}(j) dj \right) Z^{\beta-1}.$$
(39)

- Since Z and L are used only in respective sectors, all of the supply of factors is used in production;
- It is crucial, that there are only 2 sectors this enables to define relative prices.

Prices of machines

Back

Each monopolist faces constant marginal costs of producing machines:

$$MC_{x_{L,Z}(j)} = \psi; \tag{40}$$

Then the profit of the monopolist may be written in per unit terms:

$$\pi_{L,Z} = (\chi_{L,Z}(j) - \psi) x_{L,Z}(j);$$
(41)

Since the demand for machines in both sectors is isoelastic, Eqs. (35), (38), price is a constant mark-up:

$$\chi_{L,Z} = \frac{\psi}{1-\beta};\tag{42}$$

• Normalizing $\psi = 1 - \beta$, prices are equal:

$$\chi_L(j) = \chi_Z(j) = 1, \forall j. \tag{43}$$

The role of elasticity of substitution I Back Define

$$\epsilon \equiv 1/(1-\alpha), \sigma \equiv \frac{1-\alpha(1-\beta)}{1-\alpha};$$
(44)

elasticity of substitution in consumption and production respectively.

Making use of machine demands, one may rewrite outputs as functions of ranges of machines:

$$Y_{L} = \frac{1}{1-\beta} p_{L}^{(1-\beta)/\beta} N_{L}L, Y_{Z} = \frac{1}{1-\beta} p_{Z}^{(1-\beta)/\beta} N_{Z}Z; \quad (45)$$

► Now the relative price is a function of relative technology, N_Z/N_L:

$$p = \left(\frac{1-\gamma}{\gamma}\right)^{\beta\epsilon/\sigma} \left(\frac{N_Z Z}{N_L L}\right)^{-\beta/\sigma}; \tag{46}$$

The role of elasticity of substitution II

The relative profitability of both kinds of innovations is defined by the ratio of values (from Eqs. (4)):

$$\frac{V_Z}{V_L} = \left(\frac{p_Z}{p_L}\right)^{1/\beta} \frac{Z}{L}; \tag{47}$$

Using the new expression for the relative price, Eq. (5), this turns out to be the function of ratio of technologies and factor supplies:

$$\frac{V_Z}{V_L} = \left(\frac{1-\gamma}{\gamma}\right)^{\epsilon/\sigma} \left(\frac{N_Z}{N_L}\right)^{-1/\sigma} \left(\frac{Z}{L}\right)^{\frac{\sigma-1}{\sigma}}$$
(48)

• The relative factor supply will increase values ratio as long as $\sigma > 1$ and vice versa.