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Main features

I Multi-stage decision-making;

I Optimization of a dynamic process in time;

I Optimization is carried over functions, not variables;

I The planning horizon of an optimizing agent is taken into
account (finite or infinite);

I The problem includes objective and the dynamical system;

I Some initial and/or terminal conditions are given.
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Continuous-time problems

I Assume there is continuous number of stages (real time);

I State is described by continuous time function, x(t);

I Initial and terminal states are fixed, x(0) = x0, x(T ) = xT ;

I Find a function x(t), minimizing the cost of going from x0 to
xT ;

I What gives the costs?

I Concept of objective functional:

min
u

∫ T

0

{
x(t) + u2(t)

}
dt
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Ingredients of dynamic optimization problem

Every dynamic optimization problem should include:

I Some set of boundary conditions: fixed starting and/or
terminal points;

I A set of admissible paths from initial point to the terminal
one;

I A set of costs, associated with different paths;

I An objective: what to maximize or minimize.
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Functionals

Definition
A functional J is a mapping from the set of paths x(t)
into real numbers (value of a functional).
J := J(x(t)).

I Functional is NOT a function of t;

I x(t) is the unknown function, which have to be found;

I This is defined in some functional space H;

I Hence formally J : H → R.
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Types of boundary conditions

1. Fixed-time problem: x(0) = x0, time length is fixed to
t ∈ [0, ..,T ], terminal state is not fixed

I Optimal price setting over fixed planning horizon

2. Fixed endpoint problem: x(0) = x0, x(T ) = xT , but terminal
time is not fixed

I Production cost minimization without time constraints

3. Time-optimal problem: x(0) = x0, x(T ) = xT , T → min
I Producing a product as soon as possible regardless of the costs

4. Terminal surface problem: x(0) = x0, and at terminal time
f (T ) = x(T )

In this course we mainly employ only type 1 with T →∞.
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Transversality

I In variable endpoint problems as above given boundary
conditions are not sufficient to find the optimal path

I Additional condition on trajectories is called transversality
condition

I It defines, how the trajectory crosses the boundary line

I The vast majority of economic problems use this type of
conditions

I Example: shadow costs of investments at the terminal time
should be zero.
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Problem

The subject of optimal control is:
Maximize (minimize) some objective functional

J =
T∫
0

F (x(t), u, t)dt

with conditions on:

I Initial, terminal states and time;
x(0) = x0; x(T ) = xT , t ∈ [0..T ]

I Dynamic constraints (define the dynamics of states);
ẋ(t) = f (x , u, t)

I Static constraints on states (nonnegativity, etc.)
x(t) ≥ 0, u(t) ≥ 0.
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Hamiltonian

I To solve an optimal control problem the Hamiltonian function
is needed

I This is an equivalent of Lagrangian for static problems

I It includes the objective and dynamic constraints

I If static constraints are present, the augmented Hamiltonian is
used

I First order conditions on Hamiltonian provide optimality
criteria.
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Construction

Let the optimal control problem be:

J :=

T∫
0

F (x , u, t)dt → max
u

;

s.t.

ẋ = f (x , u, t). (1)

Then the associated Hamiltonian is given by:

H(λ, x , u, t) = F (x , u, t) + λ(t) · f (x , u, t). (2)
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Comments

I In the Hamiltonian λ(t) is called costate variable;

I It usually represents shadow costs of investments;

I Investments are controlled, u(t);

I This has to be only piecewise-continuous and not continuous;

I Number of costate variables = Number of dynamic
constraints the system has;

I Unlike lagrange multipliers, costate variable changes in time;

I The optimal dynamics is defined by the pair of ODEs then:
for state, x(t) and costate, λ(t).
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Example

Consider the problem:

max
u(•)

T∫
0

e−rt [−x(t)− α

2
u(t)2]dt

s.t.

˙x(t) = β(t)− u(t)
√

x(t),

u(t) ≥ 0, x(0) = x0. (3)

where β(t) is arbitrary positive-valued function and α, r ,T are
constants.
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The Hamiltonian of the problem (3) should be:

HCV (λ, x , u, t) = −x − α

2
u2 + λCV [β(t)− u

√
x ]. (4)

Where the admissible set of controls include all nonnegative
values (u(t) ≥ 0) .
QUESTION: where is the discount term e−rt?
Transformation
e−rtλ(t) = λCV (t) yields
current value Hamiltonian.
It is used throughout all the economic problems.
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Optimality conditions
The optimal control u(t) is such that it maximizes the
Hamiltonian, (2), and

u∗ :
∂H(λ, x , u, t)

∂u
= 0;

H(λ, x , u, t) = H∗(λ, x , t) (5)

must hold for almost all t.
This is maximum condition.
Along optimal trajectory

λ̇(t) = rλ(t)−H∗x(λ, x , t). (6)

which is the adjoint or costate equation, and

λ(T ) = 0 (7)

which is transversality condition.
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Sufficiency

I The conditions above provide only necessary, but not
sufficient criteria of optimality

I The sufficient condition is given by the concavity of a
maximized Hamiltonian H∗ w. r. t. x(t)

I Once the Hamiltonian is linear in state and quadratic in
control, it is always concave

I Sufficient condition is thud satisfied

I This is always true for linear-quadratic problems.
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Main points on optimal control

To solve an optimal control problem is:

I Right down the Hamiltonian of the problem;

I Derive first-order condition on the control;

I Derive costate equation;

I Substitute optimal control candidate into state and costate
equations;

I Solve the canonical system of equations;

I Define optimal control candidate as a function of time;

I Determine the concavity of a maximized Hamiltonian (usually
neglected).
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Roots

I The initial Ramsey model (1928) was the first
optimization-type macroeconomic model

I He asks the question ”How much of its income should the
nation save?”

I The dynamic choice between consumption and savings in
order to maximize utility

I Only one good, and only one representative agent

I Infinite time-horizon and no discount rate at all

I There is a static choice between consumption and labour, but
no explicit production function

I Utility is separable in consumption and labour

I This was adapted by Cass and Koopmans for neoclassical
growth theory in 1965.
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Assumptions

I Large number of identical firms

I Two production factors: L,K

I Constant returns to scale production technology

I Firms maximize profits and are owned by households

I Identical households

I They supply labour (one unit per household) and rent capital
to firms

I Household divides its income between consumption and
capital investments

I Objective is to maximize life-time utility of the
(representative) household choosing dynamic consumption
profile.
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Formulating the Dynamic Problem

Production function:
Y = F (K , L)

It is then rewritten in intensive form with usual properties:

f ′(k) > 0, f ′′(k) < 0, lim
k→0

f ′(k) =∞, lim
k→∞

f ′(k) = 0.

Net investments can be expressed as:

I = K̇ (t) = Y (t)− C (t)− δK (t).

In per capita terms this yields dynamic constraint

k̇ = f (k)− c − (n + δ)k.

similar to Solow model
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Problem

The model is formulated as optimal control problem of the social
planner:

J :=

∞∫
0

e−rtU(c)dt → max
c

s.t.

k̇ = f (k)− c − (n + δ)k ;

k(0) = k0;

0 ≤ c ≤ f (k). (8)

This is an optimal control problem with one state variable and one
control variable.
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Hamiltonian construction

Hamiltonian for the Problem (8) is straightforward:

H = U(c)e−rt + λ[f (k)− c − (n + δ)k]

or, alternatively, current-value Hamiltonian:

HCV = U(c) + λCV [f (k)− c − (n + δ)k] (9)

this do not include the control constraint. With its inclusion one
has augmented Hamiltonian:

HCV
A = U(c) + λCV [f (k)− c − (n + δ)k] + µ[f (k)− c]. (10)
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Obtaining dynamics

Using Pontryagin’s Maximum Principle, we have:
Maximum condition as in (5):

∂HCV

∂c
= U ′(c)− λ(t)CV = 0; (11)

Costate equation as in (6):

λ̇(t)CV = rλCV (t)−∂H
CV

∂k
= −λCV (t)[f ′(k(t))−(n+δ+r)]; (12)

And state equation

k̇(t) = f (k(t))− c − (n + δ)k(t). (13)
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Canonical system

I Since U(c) is general form, optimal control cannot be defined;

I Rather we eliminate costate from the system;

I One obtains the dynamics as a pair of equations in c and k :

k̇ = f (k)− c − (n + δ)k ;

ċ = − U ′(c)

U ′′(c)
· [f ′(k)− (n + δ + r)];

− U ′(c)

U ′′(c)
> 0. (14)
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Qualitative analysis
Steady states are defined by zero growth of both variables:

c = f (k)− (n + δ)k ⇔ g(k) = 0;

f ′(k) = n + δ + r ⇔ g(c) = 0. (15)

Figure: Phase diagram in c-k space
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Steady states comparison

I Quadrants are defined by steady state conditions on c and k ;

I Their intersection provides the unique fixed point of the
system;

I The capital level associated with this fixed point is known as
the modified golden rule level.

k̄ : f ′(k̄) = n + δ + r < k̂ : f ′(k̂) = n + δ. (16)

I Consumption level is thus also lower than for the basic Solow
model
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Phase space analysis

To define the dynamics of the system c − k in different regions of
the phase space, evaluate the derivatives:

∂k̇

∂c
= −1 < 0;

∂ċ

∂k
= − U ′(c)

U ′′(c)
f ′′(k) < 0. (17)

The more formal way (and valid for any dimension!) of analysing
stability and dynamics is through the Jacobian matrix of the
system.
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Additional notation
Now we include technical progress into the basic
Ramsey-Cass-Koopmans model.
This is done in the same way as for the Solow model:

η = AL;

Y = Y (K , η).

We define the efficient labour as an input rather than “true”
labour. Then proceed in the same way as before:

yη = f (kη),

yη =
Y

η
, kη =

K

η
, cη =

C

η
, a =

Ȧ

A
.

We have the same capital-intensive variables just as in Solow
model with technical change.
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Modified Problem

Modifying the equation of motion we have almost the same
problem, as Problem (8), but with modified capital per effective
labour unit variable:

Jη :=

∞∫
0

e−rtU(cη)dt → max
cη

s.t.

k̇η = f (kη)− cη − (a + n + δ)kη;

kη(0) = kη,0;

0 ≤ cη ≤ f (kη). (18)
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Hamiltonian

The (current-value) Hamiltonian of the Problem (18) is also
almost the same:

HCV
η = U(cη) + λCVη [f (kη)− cη − (a + n + δ)kη] (19)

With maximum condition:

U ′(cη) = λCVη . (20)
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Dynamical System

With the same procedure of replacing costate with consumption
share, we have the 2-dimensional system for modified capital and
consumption shares:

k̇η = f (kη)− cη − (a + n + δ)kη;

ċη = − U ′(cη)

U ′′(cη)
[f ′(kη)− (a + n + δ + r)]. (21)

which differs in the additional technology term a.
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Differences in dynamics

I One has the same phase diagram as for the basic model;

I Steady state levels of k , c are also defined similarly;

I However, the steady-state values are different because of
technical change:

c̄η = const =
C

AL
(22)

and hence the consumption share per real physical worker is
NOT constant:

c̄ =
C

L
= c̄η × A 6= const. (23)

I we have now ongoing growth with rising consumption per
worker.
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Discussion

I Neoclassical models of growth do not allow per se for ongoing
growth in intensive terms;

I Such a rise in per capita consumption has been introduced
through technical change;

I Since then terms of growth and technical change are
interrelated;

I Technical change is exogenous, unexplained;

I It affects only labour productivity;

I Consumption grows at exactly the same rate as the technical
change (labour productivity);

I Only one control parameter: per capita consumption.



Optimal control

Inclusion of Technical Change

Reading

I Ramsey F. (1928) A Mathematical Theory of Saving. The
Economic Journal, 38 (152): 543-559;

I Cass, David (1965). Optimum Growth in an Aggregative
Model of Capital Accumulation. Review of Economic Studies
32 (3): 233240;

I Koopmans, T. C. (1965). On the Concept of Optimal
Economic Growth. The Economic Approach to Development
Planning. Chicago: Rand McNally : 225287;
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Next lecture

I Competing views: Market is sufficient (Coase) vs. Market is
insufficient

I Paper: Keeler, Spence, Zeckhauser (1972)

I How we can include pollution in the neoclassical framework?

I What is the optimal management of pollution?

I Is it different from resource management?

I The role of social planner
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