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WHAT’S PYTHON?

v

General-purpose programming language

v

Supports most programming paradigms

v

Free and open source

v

One of the most popular programming languages
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INSTALLATION

» To install the "core Python package" you can go to
https://www.python.org/

> As we want to use Python for scientific programming, you only
have to install "Anaconda": https://www.anaconda.com/

— Anaconda is a free distibution for Python which provides the
core Python package and the most popular scientific libraries


https://www.python.org/
https://www.anaconda.com/

SETTING UP YOUR ENVIRONMENT

We will use the Spyder IDE which is already included with
Anaconda

» Spyder is split into different "panes" which are sections
providing us with information or access to certain features

» You can add or remove panes by going to "View" — "Panes'
» The panes can be moved ba dragging, they can be either
docked or used in a different window

» You can change the fonts by going to "Tools" —
"Preferences" — "General" — "Fonts"
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VARIABLES

» Variables store data in our programs

» Using the assignment operator "=", we give them names and
values

— all lower case, elements are seperated by an underscore
» A variable name in Python can only start with a letter

— number_1 = 15 / my_name = "Caner" / num_list = [2,5]
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In Python you can assign multiple values to do different variables

in one line. Instead of

number_1 = 15
my_name = "Caner"
num_list = [2, 5]
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You can write the following code

number_1, my_name, num_list = 15, "Caner", [2,5]

This is called multiple assignment. Now run the code above and
use the function type() with your freshly made variables as
arguments in your console. What happens?
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NUMBERS

» There are two different types of data representing numbers
— integers and floats
> An integer is a whole number (no decimal point)

» A float is a number with decimal point (used for more
precision)
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ARITHMETIC OPERATORS

Operator Example

Addition + 10 + 5 = 15
Subtraction — 30 — 20 = 10
Multiplication 2 %x5=10
Division / 6/2=3.0
Modulus % 10 % 4 =2
Exponent Kk 2 %k 3 =8
Floor Division // 9 // 4 =2

Note: A is the bitwise operator "xor" (exclusive or)!
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STRINGS

> A string is a series of characters

> In Python anything inside single or double quotes are strings
— "My name is..."

— ’Python is fun!’

» We can also use quotes and apostrophes within our strings
— ’He said, "I love my dog."’

— "’Python’ is dynamically typed."

— "This is Caner’s imaginary dog"
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BOOLEANS

» The Boolean is a data type that has two possible values
— or

» Booleans are often used to keep track of conditions
» You can write booleans as follows
— Bool =

» But usually we get them from doing logical comparisons
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COMPARISON OPERATORS

Operator Description Example
== equal 4 ==3—
I= not equal 4 1=3 -
> greater than 6 > 10 —
< less than 2<5—
>= greater than or equal 8 >=3 —
<= less than or equal 5<=5—
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BOOLEAN OPERATIONS

Operation  Result

xXory if x is false, then y, else x
x and y if x is false, then x, else y
not x if x is false, then , else

What do we need boolean operations for? Let's try out on Spyder!
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IF STATEMENTS

By using if statements, we can execute a piece of code only if a
certain condition is

A simple if statement...

if condition
execute this code

» What if you have to test more than two possible situations?
— If-elif-else chain

» The elif test is another if test, which runs if previous test
has failed

» If the if and elif tests fail python runs the else block
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if condition_1:
code_1

elif condition_2:
code_2

elif condition_3:
code_3

else:
code_4

Note: You can use as many elif tests as you like. Also, an else
block is not required.
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LisTs

» A list is a sequence of elements in a particular order
> It is mutable

» The list elements are also called items

# create a list with integers
list_int = [1,4,5,8]
# access the third item in the list an print it

print(list_int[2])

» The code above returns the third item in the list

— The index position in Python starts at 0 not 1
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> You can modify an element of a list by accessing it and using
the assignment operator "="

— list_int[2] = 7 #modified list: [1,4,7,8]

» The following table shows the most important list methods

Method Description

list.append(x) Add an Item to the end of the list
list.insert(i,x) Insert an item at a given position

list.pop(x) Remove item at given position and return it
list.copy(x) Return a copy of the list
list.sort(Q) Sort the items
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Examples Outcome

a = [1,2]; a.append(3) #a = [1,2,3]

a = [1,2]; a.insert(1,3) #a = [1,3,2]

a = [1,2,3]; popped = a.pop(1) #a = [1,3]; popped = 2
a = [1,2]; b = a.copyQ

#a = [1,2]; b = [1,2]

#a = [1,2]; b =[1,2]

[4,1,5,3]; b = a.copyQ);
a.sort(); b.sort(reverse = True)

#a =1[1, 3, 4, 51; b=1[5 4, 3, 1]
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For Looprs

» Often, we want to perform the same task repeatedly or with
each item in a list

» A for loop simplifies this procedure

» The for statement in Python iterates over items in any
sequence in the order that they have in the sequence

> lterating does not make a copy

— If you want to modify the sequence in the loop, you should
first make a copy

numbers = [4,34,2]

for number in numbers:
print (number)

# 4

# 34

# 2




v

The range() function generates arithmetic progressions

> It is commonly used to loop a specific number of time in for
loops

v

The 1en() function gives you the length of a list

v

Combining 1en() and range(), you can over the indices o fa
sequence

Note: The object returned by range() behaves like a list, but it
doesn’t make the list to save space.
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EXAMPLE

floats = [1.2, 2.343, 0.44]

for i in range(3):
print (i)

# 0

# 1

# 2

for i in range(len(floats)): # len(floats) = 3
print(i, floats[il])

# 0 1.2

1 2.343
2 0.44

# H

# you can also loop within a list
list_loop = [2%i for i in range(5)]
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WHILE Looprs

A while loop executes a task repeatedly while an expression is true.

i=1
while i < 3:
print (i)

,_
I
—
+
—_

i += 1 # equivalent to

i=1
while i < 10:
print (i)
if i ==
break # stops the loop
i += 1 # equivalent to i =i + 1
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FuNcTIONS

» A function is a block of code that is named
» It is written to do a specific task

» To perform the task, call the function name
— Python runs the code inside the function

» By using the keyword def we tell python that we are defining
a function

» It is followed by the function name and a list of parameters in
parentheses
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FiBoNACCI EXAMPLES

# Examples are taken from the python docs:
# https ://docs.python.org/3/tutorial/controlflow.html

def fib(n):
"""Print a Fibonacci series up to n"""
a, b =0, 1
while a < n:
print(a, end=’ ’)
a, b=Db, a+b
print Q)
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If we want the function to return a list of the Fibonacci series...

def fib2(n): # return Fibonacci series up to n
Return a list containing

the Fibonacci series up to n.

result = [] # create an empty list

a, b =0, 1

while a < n:
result.append(a) # fill your list
a, b =Db, a+b

return result
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» Functions save time as we don’t have to repeat code for
specific tasks

> They also make our code more readable and organized

» We can save function in modules (modules are python files;
for example: your_module.py) and import those modules in
order to use our functions

— Make sure that the module is in the current working directory

— Then, you can import your module by using an import
statement, usually declared on top of the code and under
general comments

— import your_module



PACKAGES

v

Packages are imported by using an import statement

v

Generally packages are directories that contain...

v

... Python files (modules)

» ... a__init__.py file specifiying what will be executed
when running "import some_package"

v

Subpackages are packages hierarchically below a package and
can be imported as follows

— import package.sub_package

» If the module/package name after the import statement is
followed by as, the name after as is bound to the imported
module/package

» You can access names directly by using the from clause



EXAMPLES

import numpy.random # only import
# the random subpackage

numpy . random.seed(123) # set seed to have same numbers
numpy . random. randn (2)
# array([—-1.0856306 |, 0.99734545])

import numpy as np # name the numpy as np
from numpy import cos, pi

np.sin(np.pi) # 1.2246467991473532e-16
np.round(np.sin(np.pi)) # 0.0
cos(pi) # ~1.0 you can save code

# by using the from clause
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NuUMPY

v

Basic package for scientific computing

v

Provides N-dimensional arrays (ndarrays) and useful
mathematical operations

v

ndarrays are flexible, efficient and also faster than lists

v

Their size can be dynamically modified
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NDARRAYS

v

A ndarray object is a collection of elements that have the
same type.

The data type of the elements are called dtype
The shape is a tuple of the length N

Each element of the tuple defines number of elements in
corresponding dimension

You can create arrays by using numpy.array() with lists,
tuples or arrays as an argument

numpy . zero() returns a zero-array of given shape



EXAMPLES

import numpy as np

N_dim = (2,3) # two dimensions
# first dimension 2 elements

# second dimension 3 elements

# create a 2x3 zero array resp. ’'matrix’
zeros_23 = np.zeros(N_dim); print(zeros_23)
#[[0. 0. 0.]

# [0. 0. 0.]]
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# create an one dimensional array

array_1d = np.array([2,51,6]); print(array_1d)
# [ 2 51 6]

# create a two dimensional array

array_2d = np.array([[2,51,6],[4,3,9]1])
print(array_2d)

#[[ 2 51 6]

# [ 4 3 9]]
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ARRAY INDEXING AND SLICING

» Square brackets [] are used to index array values
— array_1d[0] #first element: 2
— array_2d[1l, 0] #first element of second row: 4

» Array slicing for producing subarrays; Also enables us to get
entire rows or columns

— Basic syntax for slicing: start:stop:step



EXAMPLES

# 1 dimensional slicing example

ald = np.linspace(1,11,10) # create a sequence from
# from 1 to 11 in 11 steps

sliced_ald = ald[2:10:2]

# take every second element starting from the third

# element stop before the eleventh element

sliced_ald # array([3., 5., 7., 9.])
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# create a 2 dimensional 6x3 array
zeros_6x3 = np.zeros((6,3))
# us numpy.copy () if you don’t want to zeros 6x3
array_6x3 = np.copy(zeros_6x3)
# create an array with 18 values
# use random module or linspace
# array vals = np.random.randn(zeros 6x3.size)
array_vals = np.linspace(l,100,zeros_6x3.size)
n = array_6x3.shape[0] # elements first dim
m = array_6x3.shape[l] # elements second dim
for i in range(n): # loop through first dim
for j in range(m): # loop through second dim
vals_index = m*i + j # index array vals
# print(vals index) <— test it!
#fill in array 6x3 with array vals
array_6x3[i,j] = array_vals[vals_index]
print(array_6x3)
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# another way to create a 2 dim 6x3 array:

array_6x3 = np.linspace(1l,100,6%3);

array_6x3.shape

#

array_6x3 = np.linspace(1l,100,6*3).reshape(6,3)

in one line:

#[[

#

# OH OH #

[

[
[
[
[

1
18.47058824
35.94117647
53.41176471
70.88235294
88.35294118

(6,3

6.
24.
41.
59.
76.
94.

82352941
29411765
76470588
23529412
70588235
17647059

12.64705882]
30.11764706]
47.58823529]
65.05882353]
82.52941176]

100.

1]
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ANOTHER SLICING EXAMPLE

# fetch the second row
array_6x3[1,:]
# array([12.64705882, 30.11764706, 47.58823529])

# fetch the first 3 elements of the third column
array_6x3[0:3,2]

# array([12.64705882, 30.11764706, 47.58823529])
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ARRAY MANIPULATION

Funcitons Description

numpy . append () Add an element to the end of the array

numpy . insert () Insert an element(s) at a given position(s)
numpy .delete() Remove elements at given position and return it
numpy .resize() Returns new array with specified shape

numpy . reshape () Gives new shape to an array

numpy . copy () Return a copy of the array

numpy . sort () Sort the array elements

numpy . tranpose()  Permute dimensions of array

numpy .dot () Returns dot product of two arrays
numpy . linspace() Return evenly spaced numbers over an interval
numpy . arange () Similiar to linspace; steps are different
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LET’S TRY OUT SOME!

# create 2 dimensional array

# elements from 0 to 17

array_2d = np.arange(18).reshape(6,3)
# matrix mulitplikation

array_2d_T = np.transpose(array_2d)
np.dot(array_2d_T, array_6x3)

# or

mat_mult = array_2d_T @ array_6x3
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# copy array
mmult_copy = np.copy(mat_mult)
# reverse multidim array elements
# along the second axis
# first make it 1 dimensional
# then reverse it using the slicing syntax
mld = mmult_copy.flatten()[::—1]
mmult_copy_rev = mld.reshape(3,3)
# or
np.rot90 (np.rot90 (mmult_copy))
for i in range(2):
mmult_copy = np.rot90 (mmult_copy)
mmult_copy
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SCIPY

The SciPy library "...provides many user-friendly and
efficient numerical routines such as routines for numerical
integration and optimization." - SciPy Docs

» SciPy has subpackages that are very useful in scientific
computing

» such as scipy.integrate, scipy.optimize, scipy.stats,
scipy.interpolate, scipy.linalg
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EXAMPLE scipy.linalg

import numpy as np

from scipy import linalg

# you can compute the determinant

# or the inverse of a matrix

array_3x3 = np.random.randint(1,100,3*3).reshape(3,3)
linalg.det(array_3x3)

linalg.inv(array_3x3)
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or solve linear equations

200x + 6y = 8

14x + 0.5z = 3

4y + 300z = 190

= np.array([[200.0, 6.0, 0.0],
[14.0, 0.0, 0.5],
[0.0, 4.0, 300.011)

B = np.array([[8],[3]1,[190]11)

X linalg.solve(M,B)

print (200.0xx[0] + 6xx[1])

=R H H




MATPLOTLIB

» Most popular 2D plotting package in Python

> seperated in three layers

— backend (bottom), artist (middle), scripting (top)

» We are going to look at the scripting layer (pyplot) because...

“For simple plotting the pyplot module provides a
MATLAB-like interface, particularly when combined with
IPython. For the power user, you have full control of line
styles, font properties, axes properties, etc, via an object

oriented interface or via a set of functions familiar to
MATLAB users." - matplotlib.org
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USEFUL PYPLOT FUNCTIONS

import matplotlib.pyplot as plt

Functions Description (matplotlib.org)
plt.plot(Q Plot y versus x as lines and/or markers
plt.ylabel() Set the label for the y-axis
plt.xlabel() Set the label for the x-axis

plt.axisQ Method to get or set some axis properties
plt.title() Set a title for the axes

plt.scatter() A scatter plot of y vs x

plt.bar() Make a bar plot

plt.figure() Create a new figure

plt.suptitle() Add a centered title to the figure
plt.subplot()  Add a subplot to the current figure
plt.show() Display a figure
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» The easiest way to plot is by using the plot() function
— x_vals = np.linspace(0,10,10)
y_vals = np.linspace(0,6,10)
— plt.plot(x_vals, y_vals)
plt.ylabel("y—axis"); plt.xlabel("x—axis")
plt.show()
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¥-axis

X-3xis
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LET’S TRY OUT MORE FUNCTIONS AND OPTIONS

# define function
func = lambda x
util = lambda x

# create x values

S
0.3xxx*x2 + 0.1x%xx
1.5%np.log(x)

x_vals = np.arange(0.001, 4, 0.1)

# get function

output

f_vals = np.array([func(x_val) for x_val in x_vals])
u_vals = np.array([util(x_val) for x_val in x_vals])

plt
plt
plt
plt

.clf() # clear
.plot(x_vals,
.ylabel(’'y’);

current figure

f_vals, 'r—’, x_vals, u_vals, ’'b—’")
plt.xlabel(’x’)

.title(’Plot Functions’); plt.show()




Plot Functions

0o

51 /58



MULTIPLE SUBPLOTS

# plot the two functions in multiple subplots
plt.figure(2, figsize=(15, 9))

plt.subplot (121);plt.title("u(c)")
plt.plot(x_vals, f_vals, 'r—’)

plt.subplot (122);plt.title("£(x)")
plt.plot(x_vals, u_vals, 'b—’)
plt.suptitle(’Functions’)

plt.show()




Functions
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# another way is to use "subplots"

fig,

axl
ax2
axl
axl.
ax2.
fig.

(axl, ax2) = plt.subplots(l, 2,
figsize=(15, 6))

.plot(x_vals, f_vals, 'r—’, label="f(x)");
.plot(x_vals, u_vals, ’'b—’, label="f(x)");
.grid( ), ax2.grid( )

legend(loc="upper left’, fontsize=’large’)
legend(loc="upper left’, fontsize=’large’)
suptitle(’Functions’); plt.show()




Functions
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EXERCISE

We have the following (CRRA) utility function

cl=m—1
U(c) = 1o
1. Plot U(c) for 0 < ¢ <10 and n=0.5
2. Now do the same for n =[0.2 0.4 0.8 1]
— What's the problem with ¢ = 0 in the second task?
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RECOMMENDED TUTORIALS AND LINKS

Here are some links to great content for improving your Python

vV V. v v Y

skills! And it's all for free.

https://lectures.quantecon.org/py/
https://www.tutorialspoint.com/python/index.htm
https://docs.python.org/3/tutorial/
https://matplotlib.org/users/pyplot_tutorial.html

https:
//www.kevinsheppard.com/Python_for_Econometrics

https://docs.scipy.org/doc/numpy-1.15.1/user/
quickstart.html

https:
//docs.scipy.org/doc/scipy/reference/tutorial/
http://treyhunner.com/


https://lectures.quantecon.org/py/
https://www.tutorialspoint.com/python/index.htm
https://docs.python.org/3/tutorial/
https://matplotlib.org/users/pyplot_tutorial.html
https://www.kevinsheppard.com/Python_for_Econometrics
https://www.kevinsheppard.com/Python_for_Econometrics
https://docs.scipy.org/doc/numpy-1.15.1/user/quickstart.html
https://docs.scipy.org/doc/numpy-1.15.1/user/quickstart.html
https://docs.scipy.org/doc/scipy/reference/tutorial/
https://docs.scipy.org/doc/scipy/reference/tutorial/
http://treyhunner.com/
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