PYTHON - VORKURS

Caner Ates

University of Basel

1/58

INTRODUCTION TO PYTHON
What's Python?
Installing Python
Setting up your Python Environment

PYTHON ESSENTIALS
Variables, Numbers, Strings
Logic and Conditional Flow
Lists
Loops in Python
Functions in Python

INTRODUCTION TO SCIENTIFIC COMPUTING
Packages
Numpy
Scipy
Matplotlib
An Exercise

3/58

WHAT’S PYTHON?

v

General-purpose programming language

v

Supports most programming paradigms

v

Free and open source

v

One of the most popular programming languages

4/58

INSTALLATION

» To install the "core Python package" you can go to
https://www.python.org/

> As we want to use Python for scientific programming, you only
have to install "Anaconda": https://www.anaconda.com/

— Anaconda is a free distibution for Python which provides the
core Python package and the most popular scientific libraries

https://www.python.org/
https://www.anaconda.com/

SETTING UP YOUR ENVIRONMENT

We will use the Spyder IDE which is already included with
Anaconda

» Spyder is split into different "panes" which are sections
providing us with information or access to certain features

» You can add or remove panes by going to "View" — "Panes'
» The panes can be moved ba dragging, they can be either
docked or used in a different window

» You can change the fonts by going to "Tools" —
"Preferences" — "General" — "Fonts"

6/58

VARIABLES

» Variables store data in our programs

» Using the assignment operator "=", we give them names and
values

— all lower case, elements are seperated by an underscore
» A variable name in Python can only start with a letter

— number_1 = 15 / my_name = "Caner" / num_list = [2,5]

7 /58

In Python you can assign multiple values to do different variables

in one line. Instead of

number_1 = 15
my_name = "Caner"
num_list = [2, 5]

8/58

You can write the following code

number_1, my_name, num_list = 15, "Caner", [2,5]

This is called multiple assignment. Now run the code above and
use the function type() with your freshly made variables as
arguments in your console. What happens?

9/58

NUMBERS

» There are two different types of data representing numbers
— integers and floats
> An integer is a whole number (no decimal point)

» A float is a number with decimal point (used for more
precision)

10/ 58

ARITHMETIC OPERATORS

Operator Example

Addition + 10 + 5 = 15
Subtraction — 30 — 20 = 10
Multiplication 2 %x5=10
Division / 6/2=3.0
Modulus % 10 % 4 =2
Exponent Kk 2 %k 3 =8
Floor Division // 9 // 4 =2

Note: A is the bitwise operator "xor" (exclusive or)!

11 /58

STRINGS

> A string is a series of characters

> In Python anything inside single or double quotes are strings
— "My name is..."

— ’Python is fun!’

» We can also use quotes and apostrophes within our strings
— ’He said, "I love my dog."’

— "’Python’ is dynamically typed."

— "This is Caner’s imaginary dog"

12 /58

BOOLEANS

» The Boolean is a data type that has two possible values
— or

» Booleans are often used to keep track of conditions
» You can write booleans as follows
— Bool =

» But usually we get them from doing logical comparisons

13 /58

COMPARISON OPERATORS

Operator Description Example
== equal 4 ==3—
I= not equal 4 1=3 -
> greater than 6 > 10 —
< less than 2<5—
>= greater than or equal 8 >=3 —
<= less than or equal 5<=5—

14 /58

BOOLEAN OPERATIONS

Operation Result

xXory if x is false, then y, else x
x and y if x is false, then x, else y
not x if x is false, then , else

What do we need boolean operations for? Let's try out on Spyder!

15 /58

IF STATEMENTS

By using if statements, we can execute a piece of code only if a
certain condition is

A simple if statement...

if condition
execute this code

» What if you have to test more than two possible situations?
— If-elif-else chain

» The elif test is another if test, which runs if previous test
has failed

» If the if and elif tests fail python runs the else block

16 /58

if condition_1:
code_1

elif condition_2:
code_2

elif condition_3:
code_3

else:
code_4

Note: You can use as many elif tests as you like. Also, an else
block is not required.

17 /58

LisTs

» A list is a sequence of elements in a particular order
> It is mutable

» The list elements are also called items

create a list with integers
list_int = [1,4,5,8]
access the third item in the list an print it

print(list_int[2])

» The code above returns the third item in the list

— The index position in Python starts at 0 not 1

18 /58

> You can modify an element of a list by accessing it and using
the assignment operator "="

— list_int[2] = 7 #modified list: [1,4,7,8]

» The following table shows the most important list methods

Method Description

list.append(x) Add an Item to the end of the list
list.insert(i,x) Insert an item at a given position

list.pop(x) Remove item at given position and return it
list.copy(x) Return a copy of the list
list.sort(Q) Sort the items

19 /58

Examples Outcome

a = [1,2]; a.append(3) #a = [1,2,3]

a = [1,2]; a.insert(1,3) #a = [1,3,2]

a = [1,2,3]; popped = a.pop(1) #a = [1,3]; popped = 2
a = [1,2]; b = a.copyQ

#a = [1,2]; b = [1,2]

#a = [1,2]; b =[1,2]

[4,1,5,3]; b = a.copyQ);
a.sort(); b.sort(reverse = True)

#a =1[1, 3, 4, 51; b=1[5 4, 3, 1]

20/58

For Looprs

» Often, we want to perform the same task repeatedly or with
each item in a list

» A for loop simplifies this procedure

» The for statement in Python iterates over items in any
sequence in the order that they have in the sequence

> lterating does not make a copy

— If you want to modify the sequence in the loop, you should
first make a copy

numbers = [4,34,2]

for number in numbers:
print (number)

4

34

2

v

The range() function generates arithmetic progressions

> It is commonly used to loop a specific number of time in for
loops

v

The 1en() function gives you the length of a list

v

Combining 1en() and range(), you can over the indices o fa
sequence

Note: The object returned by range() behaves like a list, but it
doesn’t make the list to save space.

N
N

ot

EXAMPLE

floats = [1.2, 2.343, 0.44]

for i in range(3):
print (i)

0

1

2

for i in range(len(floats)): # len(floats) = 3
print(i, floats[il])

0 1.2

1 2.343
2 0.44

H

you can also loop within a list
list_loop = [2%i for i in range(5)]

23 /58

WHILE Looprs

A while loop executes a task repeatedly while an expression is true.

i=1
while i < 3:
print (i)

,_
I
—
+
—_

i += 1 # equivalent to

i=1
while i < 10:
print (i)
if i ==
break # stops the loop
i += 1 # equivalent to i =i + 1

24 /58

FuNcTIONS

» A function is a block of code that is named
» It is written to do a specific task

» To perform the task, call the function name
— Python runs the code inside the function

» By using the keyword def we tell python that we are defining
a function

» It is followed by the function name and a list of parameters in
parentheses

N
o

ot

FiBoNACCI EXAMPLES

Examples are taken from the python docs:
https ://docs.python.org/3/tutorial/controlflow.html

def fib(n):
"""Print a Fibonacci series up to n"""
a, b =0, 1
while a < n:
print(a, end=’ ’)
a, b=Db, a+b
print Q)

26 /58

If we want the function to return a list of the Fibonacci series...

def fib2(n): # return Fibonacci series up to n
Return a list containing

the Fibonacci series up to n.

result = [] # create an empty list

a, b =0, 1

while a < n:
result.append(a) # fill your list
a, b =Db, a+b

return result

27 /58

» Functions save time as we don’t have to repeat code for
specific tasks

> They also make our code more readable and organized

» We can save function in modules (modules are python files;
for example: your_module.py) and import those modules in
order to use our functions

— Make sure that the module is in the current working directory

— Then, you can import your module by using an import
statement, usually declared on top of the code and under
general comments

— import your_module

PACKAGES

v

Packages are imported by using an import statement

v

Generally packages are directories that contain...

v

... Python files (modules)

» ... a__init__.py file specifiying what will be executed
when running "import some_package"

v

Subpackages are packages hierarchically below a package and
can be imported as follows

— import package.sub_package

» If the module/package name after the import statement is
followed by as, the name after as is bound to the imported
module/package

» You can access names directly by using the from clause

EXAMPLES

import numpy.random # only import
the random subpackage

numpy . random.seed(123) # set seed to have same numbers
numpy . random. randn (2)
array([—-1.0856306 |, 0.99734545])

import numpy as np # name the numpy as np
from numpy import cos, pi

np.sin(np.pi) # 1.2246467991473532e-16
np.round(np.sin(np.pi)) # 0.0
cos(pi) # ~1.0 you can save code

by using the from clause

30 /58

NuUMPY

v

Basic package for scientific computing

v

Provides N-dimensional arrays (ndarrays) and useful
mathematical operations

v

ndarrays are flexible, efficient and also faster than lists

v

Their size can be dynamically modified

31/58

NDARRAYS

v

A ndarray object is a collection of elements that have the
same type.

The data type of the elements are called dtype
The shape is a tuple of the length N

Each element of the tuple defines number of elements in
corresponding dimension

You can create arrays by using numpy.array() with lists,
tuples or arrays as an argument

numpy . zero() returns a zero-array of given shape

EXAMPLES

import numpy as np

N_dim = (2,3) # two dimensions
first dimension 2 elements

second dimension 3 elements

create a 2x3 zero array resp. ’'matrix’
zeros_23 = np.zeros(N_dim); print(zeros_23)
#[[0. 0. 0.]

[0. 0. 0.]]

33 /58

create an one dimensional array

array_1d = np.array([2,51,6]); print(array_1d)
[2 51 6]

create a two dimensional array

array_2d = np.array([[2,51,6],[4,3,9]1])
print(array_2d)

#[[2 51 6]

[4 3 9]]

34 /58

ARRAY INDEXING AND SLICING

» Square brackets [] are used to index array values
— array_1d[0] #first element: 2
— array_2d[1l, 0] #first element of second row: 4

» Array slicing for producing subarrays; Also enables us to get
entire rows or columns

— Basic syntax for slicing: start:stop:step

EXAMPLES

1 dimensional slicing example

ald = np.linspace(1,11,10) # create a sequence from
from 1 to 11 in 11 steps

sliced_ald = ald[2:10:2]

take every second element starting from the third

element stop before the eleventh element

sliced_ald # array([3., 5., 7., 9.])

36 /58

create a 2 dimensional 6x3 array
zeros_6x3 = np.zeros((6,3))
us numpy.copy () if you don’t want to zeros 6x3
array_6x3 = np.copy(zeros_6x3)
create an array with 18 values
use random module or linspace
array vals = np.random.randn(zeros 6x3.size)
array_vals = np.linspace(l,100,zeros_6x3.size)
n = array_6x3.shape[0] # elements first dim
m = array_6x3.shape[l] # elements second dim
for i in range(n): # loop through first dim
for j in range(m): # loop through second dim
vals_index = m*i + j # index array vals
print(vals index) <— test it!
#fill in array 6x3 with array vals
array_6x3[i,j] = array_vals[vals_index]
print(array_6x3)

37 /58

another way to create a 2 dim 6x3 array:

array_6x3 = np.linspace(1l,100,6%3);

array_6x3.shape

#

array_6x3 = np.linspace(1l,100,6*3).reshape(6,3)

in one line:

#[[

#

OH OH

[

[
[
[
[

1
18.47058824
35.94117647
53.41176471
70.88235294
88.35294118

(6,3

6.
24.
41.
59.
76.
94.

82352941
29411765
76470588
23529412
70588235
17647059

12.64705882]
30.11764706]
47.58823529]
65.05882353]
82.52941176]

100.

1]

38 /58

ANOTHER SLICING EXAMPLE

fetch the second row
array_6x3[1,:]
array([12.64705882, 30.11764706, 47.58823529])

fetch the first 3 elements of the third column
array_6x3[0:3,2]

array([12.64705882, 30.11764706, 47.58823529])

39 /58

ARRAY MANIPULATION

Funcitons Description

numpy . append () Add an element to the end of the array

numpy . insert () Insert an element(s) at a given position(s)
numpy .delete() Remove elements at given position and return it
numpy .resize() Returns new array with specified shape

numpy . reshape () Gives new shape to an array

numpy . copy () Return a copy of the array

numpy . sort () Sort the array elements

numpy . tranpose() Permute dimensions of array

numpy .dot () Returns dot product of two arrays
numpy . linspace() Return evenly spaced numbers over an interval
numpy . arange () Similiar to linspace; steps are different

40 /58

LET’S TRY OUT SOME!

create 2 dimensional array

elements from 0 to 17

array_2d = np.arange(18).reshape(6,3)
matrix mulitplikation

array_2d_T = np.transpose(array_2d)
np.dot(array_2d_T, array_6x3)

or

mat_mult = array_2d_T @ array_6x3

41 /58

copy array
mmult_copy = np.copy(mat_mult)
reverse multidim array elements
along the second axis
first make it 1 dimensional
then reverse it using the slicing syntax
mld = mmult_copy.flatten()[::—1]
mmult_copy_rev = mld.reshape(3,3)
or
np.rot90 (np.rot90 (mmult_copy))
for i in range(2):
mmult_copy = np.rot90 (mmult_copy)
mmult_copy

42 /58

SCIPY

The SciPy library "...provides many user-friendly and
efficient numerical routines such as routines for numerical
integration and optimization." - SciPy Docs

» SciPy has subpackages that are very useful in scientific
computing

» such as scipy.integrate, scipy.optimize, scipy.stats,
scipy.interpolate, scipy.linalg

43 /58

EXAMPLE scipy.linalg

import numpy as np

from scipy import linalg

you can compute the determinant

or the inverse of a matrix

array_3x3 = np.random.randint(1,100,3*3).reshape(3,3)
linalg.det(array_3x3)

linalg.inv(array_3x3)

44 /58

or solve linear equations

200x + 6y = 8

14x + 0.5z = 3

4y + 300z = 190

= np.array([[200.0, 6.0, 0.0],
[14.0, 0.0, 0.5],
[0.0, 4.0, 300.011)

B = np.array([[8],[3]1,[190]11)

X linalg.solve(M,B)

print (200.0xx[0] + 6xx[1])

=R H H

MATPLOTLIB

» Most popular 2D plotting package in Python

> seperated in three layers

— backend (bottom), artist (middle), scripting (top)

» We are going to look at the scripting layer (pyplot) because...

“For simple plotting the pyplot module provides a
MATLAB-like interface, particularly when combined with
IPython. For the power user, you have full control of line
styles, font properties, axes properties, etc, via an object

oriented interface or via a set of functions familiar to
MATLAB users." - matplotlib.org

46 /58

USEFUL PYPLOT FUNCTIONS

import matplotlib.pyplot as plt

Functions Description (matplotlib.org)
plt.plot(Q Plot y versus x as lines and/or markers
plt.ylabel() Set the label for the y-axis
plt.xlabel() Set the label for the x-axis

plt.axisQ Method to get or set some axis properties
plt.title() Set a title for the axes

plt.scatter() A scatter plot of y vs x

plt.bar() Make a bar plot

plt.figure() Create a new figure

plt.suptitle() Add a centered title to the figure
plt.subplot() Add a subplot to the current figure
plt.show() Display a figure

47 /58

» The easiest way to plot is by using the plot() function
— x_vals = np.linspace(0,10,10)
y_vals = np.linspace(0,6,10)
— plt.plot(x_vals, y_vals)
plt.ylabel("y—axis"); plt.xlabel("x—axis")
plt.show()

48 /58

¥-axis

X-3xis

49 /58

LET’S TRY OUT MORE FUNCTIONS AND OPTIONS

define function
func = lambda x
util = lambda x

create x values

S
0.3xxx*x2 + 0.1x%xx
1.5%np.log(x)

x_vals = np.arange(0.001, 4, 0.1)

get function

output

f_vals = np.array([func(x_val) for x_val in x_vals])
u_vals = np.array([util(x_val) for x_val in x_vals])

plt
plt
plt
plt

.clf() # clear
.plot(x_vals,
.ylabel(’'y’);

current figure

f_vals, 'r—’, x_vals, u_vals, ’'b—’")
plt.xlabel(’x’)

.title(’Plot Functions’); plt.show()

Plot Functions

0o

51 /58

MULTIPLE SUBPLOTS

plot the two functions in multiple subplots
plt.figure(2, figsize=(15, 9))

plt.subplot (121);plt.title("u(c)")
plt.plot(x_vals, f_vals, 'r—’)

plt.subplot (122);plt.title("£(x)")
plt.plot(x_vals, u_vals, 'b—’)
plt.suptitle(’Functions’)

plt.show()

Functions
flx)

ulc)

-6 4

A
4
—B4

-10 4
T
2

0
53 /58

another way is to use "subplots"

fig,

axl
ax2
axl
axl.
ax2.
fig.

(axl, ax2) = plt.subplots(l, 2,
figsize=(15, 6))

.plot(x_vals, f_vals, 'r—’, label="f(x)");
.plot(x_vals, u_vals, ’'b—’, label="f(x)");
.grid(), ax2.grid()

legend(loc="upper left’, fontsize=’large’)
legend(loc="upper left’, fontsize=’large’)
suptitle(’Functions’); plt.show()

Functions

— fix)

= fix)

-6 4

—B 4

-10
T

EXERCISE

We have the following (CRRA) utility function

cl=m—1
U(c) = 1o
1. Plot U(c) for 0 < ¢ <10 and n=0.5
2. Now do the same for n =[0.2 0.4 0.8 1]
— What's the problem with ¢ = 0 in the second task?

56 /58

RECOMMENDED TUTORIALS AND LINKS

Here are some links to great content for improving your Python

vV V. v v Y

skills! And it's all for free.

https://lectures.quantecon.org/py/
https://www.tutorialspoint.com/python/index.htm
https://docs.python.org/3/tutorial/
https://matplotlib.org/users/pyplot_tutorial.html

https:
//www.kevinsheppard.com/Python_for_Econometrics

https://docs.scipy.org/doc/numpy-1.15.1/user/
quickstart.html

https:
//docs.scipy.org/doc/scipy/reference/tutorial/
http://treyhunner.com/

https://lectures.quantecon.org/py/
https://www.tutorialspoint.com/python/index.htm
https://docs.python.org/3/tutorial/
https://matplotlib.org/users/pyplot_tutorial.html
https://www.kevinsheppard.com/Python_for_Econometrics
https://www.kevinsheppard.com/Python_for_Econometrics
https://docs.scipy.org/doc/numpy-1.15.1/user/quickstart.html
https://docs.scipy.org/doc/numpy-1.15.1/user/quickstart.html
https://docs.scipy.org/doc/scipy/reference/tutorial/
https://docs.scipy.org/doc/scipy/reference/tutorial/
http://treyhunner.com/

REFERENCES

Matplotlib documentation. https://matplotlib.org/.

Python documentation. https://docs.python.org/3.6/.
Scipy documentation. https://docs.scipy.org/doc/.

Matthes, E. (2015). Python Crash Course. No Starch Press.

Mehta, H. K. (2015). Mastering Python scientific computing.
Birmingham : Packt Publishing.

Sargent, T. J. and Stachurski, J. (2017). Quantecon lectures.
https://lectures.quantecon.org/.

58 /58

	Introduction to Python
	What's Python?
	Installing Python
	Setting up your Python Environment

	Python Essentials
	Variables, Numbers, Strings
	Logic and Conditional Flow
	Lists
	Loops in Python
	Functions in Python

	Introduction to Scientific Computing
	Packages
	Numpy
	Scipy
	Matplotlib
	An Exercise

