
University of Basel
Faculty of Business and Economics

Master’s Thesis:

Building a Private Ethereum
Blockchain in a Box

Submission Date: January 6th, 2020

Supervisor: Prof. Dr. Fabian Schär

Florian Bitterli
2015-057-037
florian.bitterli@unibas.ch
Major: Monetary Economics and Financial Markets

Abstract
In this paper, we describe the process of building a private Ethereum blockchain
including applications such as a faucet smart contract, a token factory, a blockexplorer
and a decentralized exchange, including a web interface to interact with them. It
furthermore provides theoretical background regarding the implemented proof of
authority consensus protocol, ERC20 tokens and the decentralized exchange Uniswap.
An actual prototype was created and it includes three Raspberry Pi computers that are
connected by a local network and run a private Ethereum blockchain with the Clique
proof of authority consensus protocol.

mailto:florian.bitterli@unibas.ch

Contents

1 Introduction 2

2 Ethereum 3

2.1 Private Blockchain . 4

2.2 Consensus Protocol . 5

2.3 ERC20 Tokens . 7

2.4 Uniswap . 8

3 Components of the Briefcase 11

3.1 Hardware . 11

3.2 Software . 13

4 Installation Guide 14

4.1 Set Up Raspberry Pi . 15

4.2 RTC Module . 16

4.3 Initialize Geth . 18

4.4 Network . 20

4.5 Startup Scripts . 21

4.6 Uniswap . 25

4.7 Website . 27

5 Conclusion 35

References i

Appendix A User Manual v

Appendix B Faucet Webpage vii

I

Basel, January 6, 2020

Ich bezeuge hiermit, dass meine Angaben über die bei der Abfassung meiner Arbeit

benutzten Hilfsmittel sowie über die mir zuteil gewordene Hilfe in jeder Hinsicht

der Wahrheit entsprechen und vollständig sind. Ich habe das Merkblatt zu Plagiat

und Betrug vom 22. Februar 2011 gelesen und bin mir der Konsequenzen eines

solchen Handelns bewusst.

Florian Bitterli

For any questions or comments on this paper, please contact:

florian.bitterli@unibas.ch

I would like to thank the following people for their valuable inputs and feedback:

Fabian Schär, Tobias Bitterli, Jan Dietrich, Patrice Bitterli and Célia Racine.

1

1 Introduction

Since the proposition of Bitcoin (Nakamoto, 2008), blockchain has been an increas-
ingly present topic and a vast amount of different cryptocurrencies emerged. The
Ethereum platform is of significant importance, because of its Turing complete pro-
gramming language that led to its widely adopted smart contract possibilities. In
addition to the main Ethereum network, there exist various testing networks which
are used to develop and test new smart contracts and decentralized applications.
For some use cases, there may be reasons not to use a public testing network and
instead creating an own private network. For example, this may be because of
privacy concerns. While there exists software to quickly create a local develop-
ment blockchain, these solutions usually run locally on a single computer and the
idea of a decentralized network, working together to find consensus, may not be
directly apparent. However, such a tangible private blockchain can be very useful
for some applications, especially if it involves educational purposes. For example,
it provides a great foundation for showcasing the technology to someone, who not
yet acquainted with blockchain technology or its smart contract possibilities. This
is what we address with this paper, by providing comprehensive instructions on
how to set up a private Ethereum blockchain using Linux based minicomputers.
Additionally, as a part of the project, such a private Ethereum blockchain was
actually set up and embedded into a briefcase. It consists of three Raspberry Pi 4
computers and offers an automatically starting, plug and play blockchain including
a web user interface to facilitate usage.

The rest of the paper is structured as follows: Section 2 offers a short motivation,
why Ethereum was chosen and dives into different Ethereum related aspects that
are relevant for creating a private Ethereum blockchain. Section 3 concerns the
private Ethereum blockchain in a briefcase project that was built during the pro-
cess of writing this paper. It gives an overview of all the hardware and software
components that were required for the building process. Finally, Section 4 provides
a comprehensive installation guide, including all the steps required for setting up
such a private Ethereum network on Linux based minicomputers. The individual
subsections cover all the necessary parts, from setting up the computers to ini-
tializing the Ethereum software and finally making everything accessible for user
interaction.

2

2 Ethereum

In this section, we provide a brief overview of Ethereum. We will especially cover
areas, which are relevant for the creation of a private Ethereum network, for in-
stance what a private Ethereum blockchain is and possible alternative consensus
mechanisms to use in such a setting.

Ethereum was first described in 2013 in a whitepaper by Buterin (2013). Today,
measured by market capitalization, it is the second most important cryptocur-
rency, trailing only Bitcoin (Coinmarketcap, 2019). Ethereum is especially impor-
tant because of its Turing complete programming language and the smart contract
possibilities (Buterin, 2013). This makes Ethereum a very popular platform for
building decentralized applications and tokens using smart contracts. The impor-
tance of Ethereum is shown by the fact, that about 90% of tokens that are listed
on exchanges are using this platform (Roth et al., 2019).

A smart contract is a self-executing contract consisting of lines of code. It is
saved on the blockchain and is secured by it. This allows trusted transactions and
agreements to be made between anonymous parties without the need for an external
enforcement mechanism (Frankenfield, 2019). Smart contracts for the Ethereum
platform are usually written in a high level programming language like solidity or
vyper. The contract is then compiled into bytecode and an ABI (Application Binary
Interface) and the bytecode gets deployed to the blockchain (Cassidy, 2019). This
is the code that actually gets executed by the Ethereum Virtual Machine (EVM),
whenever a function from the smart contract is called. The EVM is the bytecode
execution environment of Ethereum and can be interpreted as a distributed global
computer. Every node runs it as a part of the block verification protocol. Therefore,
these computing tasks are not split up between nodes rather than being executed
simultaneously by every node in the network (Araoz, 2016; Ethereum-Homestead,
2019). To prevent excessive usage of these computational resources, every operation
has a price denoted as gas and paid in Ether. The total cost of the execution of a
transaction or smart contract is the product of two parts: gasUsed and gasPrice.
Simply put, the amount of gas used per computational step is fixed within the
protocol and depends on the actual operation. The gasPrice is variable and can
be set by the user for every transaction. It specifies the amount someone is willing
to pay per unit of gas. Usually, the higher the gasPrice, the higher the probability
to be included in a block by a miner (Ethereum-Homestead, 2019).

3

2.1 Private Blockchain

When thinking about Ethereum, naturally the Ethereum mainnet comes to mind –
a public, permissionless blockchain. However, this is only one Ethereum network of
many, although obviously the most important one. That said, there exist various
different testnets and additionally, everyone is free to create their own (private)
network. In fact, every Ethereum network with its nodes not connected to the main
network is considered private, although private does not imply any protection or
security but merely that it is reserved or isolated (Ethereum-Foundation, 2019c).

When creating an own network based on the Ethereum protocol, one is free to
adjust the code and parameters. While it is theoretically possible to change about
everything, a very simple and usually desirable thing to do, is creating a unique
genesis block. The genesis block is the first block of the blockchain and has to
be identical on all nodes. This is why the genesis block of the mainnet is usually
embedded into the client (Ethereum-Foundation, 2019c). The genesis block is
created based on a JSON file that contains initial values for the network, such
as chainId,1 gaslimit, the applied consensus protocol, pre-funded accounts and
more. Codeblock 1 shows an excerpt of the genesis block used for this project.
The first part (config) specifies the chainId, which is used for protection against
replay attacks.2 Further, it defines the releases to Ethereum which apply (e.g. if the
chain starts before or after the homestead block), as well as the consensus protocol
used (Kakarla, 2018). Here, this is Clique (see Section 2.2). Notable other entries
are the extraData field, which is used in the Clique protocol to include allowed
sealer’s addresses, and the alloc field that allows pre-funding of accounts.

{
"config": {

"chainId": 4596,
"homesteadBlock": 0,

[...]
"petersburgBlock": 0,
"clique": {
"period": 15,
"epoch": 30000

1The chainId of the Ethereum mainnet is 1.
2An example of a replay attack would be, if someone receives a signed transaction message

on a testnet or forked network and broadcasts it on the mainnet. To prevent this, the chainID is
part of the transaction signature since EIP155 (Buterin, 2016).

4

}
},
"nonce": "0x0",
"timestamp": "0x5dae52aa",
"extraData": "0x000[...]2064ae077aed399cec90225e1af48f6e915fab75

87c20716f4378bbc6bda182a208da6ed27dcf9d3bc1ce2fc7949a12e0
aaaadbfa47b6d2338c8578e3E3E1BF9833058f71413A0Fb8cA6141854C488
6b000[...]",

"gasLimit": "0x47b760",
"difficulty": "0x1",
"mixHash": "0x00

00000000000000",
"coinbase": "0x00",
"alloc": {

"2064ae077aed399cec90225e1af48f6e915fab75": {
"balance": "0x2000

000000000000000"},
[...]

},
"number": "0x0",
"gasUsed": "0x0",
"parentHash": "0x000

00000000000000000"
}

Codeblock 1: Excerpt: Genesis block implementing the Clique proof of authority
consensus protocol.

2.2 Consensus Protocol

Ethereum, in its current state, uses a proof of work (PoW) consensus mechanism
referred to as Ethash (Ethereum-Foundation, 2019a). However, there are plans to
eventually transition to a proof of stake (PoS) based mechanism called Casper. The
Ethereum Foundation expects advantages such as a reduced risk of centralization
and energy efficiency from the switch to PoS (Ethereum-Foundation, 2019b).

Ethereum has various public testnets that already use other consensus algorithms
than proof of work. These networks are not always compatible with the same
clients. Some popular ones are (EthHub, 2019):

5

• Ropsten is a testnet using the same Ethash PoW protocol like the Ethereum
mainnet.

• Kovan uses the Aura proof of authority (PoA) protocol and was implemented
by the team of the Parity client.

• Rinkeby was implemented by the Geth client team and uses the Clique PoA
protocol.

• Görli is a fairly new community-based project that uses the Clique PoA
protocol as well. It focuses on compatibility with various clients.

As described in Section 2.1, it is also possible to create new private networks. In
many cases, a proof of authority consensus protocol might be a good solution in
this case, as it conserves computing power compared to PoW and the participants
of a small, private test network probably don’t have a trust issue. For this project,
we decided to use the Geth Clique PoA protocol to conserve computing power of
the Raspberry Pi computers.

The Clique PoA protocol was introduced in Ethereum improvement proposal EIP2253

(Szilágyi, 2017). As with any PoA consensus protocol, the distinctive mining mech-
anism is, that only approved signers can create (seal) new blocks. Although the
list of approved signers is initiated in the genesis block, it is dynamic. More pre-
cisely, existing signers can vote on adding new signers or removing existing ones
(Badretdinov, 2018).

The creation of new blocks is computationally light, because there is no threshold
for the block’s hash value. Besides, the overall creation of a block is similar to the
Ethash PoW mechanism. To prevent excessively mined blocks, Clique allows only
one block per period of time. The length of a period can be set in the genesis block
and is set to 15 seconds in the example in Figure 1 (Badretdinov, 2018).

In order to minimize chain reorganizations and to ensure that the blocks are cre-
ated by different sealers, two main rules are implemented. First, blocks have a
different difficulty, depending on whether they have been sealed in order or not.
The definition, who’s turn it is, is given by the following formula:

blocknumber mod signercount
3https://eips.ethereum.org/EIPS/eip-225

6

Let’s assume there are three signers. In this case, block 1 should be signed by the
signer with index 1, block 2 by the signer with index 2 and block 3 by the signer
with index 0. If a block is signed by the “in turn” signer, it has a difficulty of 2,
while an “out of turn” block has a difficulty of 1. Hence, if there is a small fork, the
chain with more “in turn” blocks prevails. The second rule ensures that at least 51%
of sealers need to participate in the sealing process. It states that every signer can

only sign once in every floor
(
signercount

2

)
+ 1 consecutive blocks. (Badretdinov,

2018)

It is worth noting, how the consensus protocol is implemented with very little
changes to the block structure. Basically, it just re-uses existing, not substantial
fields – no additional fields are needed. The main changes concern the extraData,
beneficiary and nonce fields of the block header. The extraData field is used for
the signers signature. For that, it is extended from 32 bytes to 65 bytes to fit the
signature hash value. Since there is no mining reward and the sealer’s information
is already included in the extraData field, the beneficiary field becomes unused.
This is why it gets a new purpose: it is used to propose modifications to the list of
signers. To implement a proposal, the corresponding address is added to the field,
otherwise it should be filled with zeros. If there is a voting process regarding a
sealer (e.g. there is an address in the beneficiary field), the nonce field serves to
indicate whether to authenticate (nonce value 0xffffffffffffffff) or drop (nonce value
0x0000000000000000) the suggested address. Such voting processes work “epoch”-
wise, whereas the epoch length is specified in the genesis block (Sheffield, 2018;
Szilágyi, 2017).

2.3 ERC20 Tokens

A widely used field of application for smart contracts are so-called tokens. These
are digital units of value, that can represent assets, utilities or promises for the
delivery of goods (Roth et al., 2019). Such tokens can represent almost anything,
with a few examples being currencies, stocks and property (Buterin, 2013). While
there is no specific requirement how such a token has to be implemented, there
was demand for some sort of token standard to improve the compatibility and re-
usability of tokens. This was first accomplished with EIP204 that proposed the
ERC20 token. Although, there has been further development in the area and in

4https://eips.ethereum.org/EIPS/eip-20

7

the meantime, there exist other standards, the ERC20 token is still by far the most
used token standard with more than 200’000 ERC20 compatible token contracts
on the Ethereum blockchain (Etherscan, 2019).

The ERC20 token standard defines six functions a compliant token has to imple-
ment: balanceOf, totalSupply, transfer, transferFrom, approve and allowance.
Additionally, there are optional fields for the parameters name, symbol and decimals.
(McKie, 2017).

Main advantages of the ERC20 token standard are it’s broad user and developer
base, the support of all major wallet applications and the already existing open-
source implementations. These are the reasons, why this token standard is used in
this project for the token factory application described in Section 4.7. It has to be
noted that the ERC20 token standard has some drawbacks as well. One of them
being that it is possible for tokens to get stuck, if the wrong transfer function is
used in a transfer to another smart contract. This already led to many lost ERC20
tokens (Roth et al., 2019).

2.4 Uniswap

Uniswap is a decentralized exchange. Unlike many other exchanges, Uniswap does
not use an order book. Instead, it holds separate reserves for each trading pair,
which is always given by some ERC20 compliant token and Ether. Trades are
always directly executed against these reserves with an exchange rate set in a way
to keep them in relative equilibrium. To incentivize a sufficient supply of liquidity,
providers receive a fee for each trade (Uniswap, 2019).

The Uniswap protocol consists of two types of smart contracts: One factory and
multiple exchange contracts, as every trade pair (every listed token) has its own
exchange contract with its own reserves consisting of Ether and the respective
ERC20 token. The factory contract serves on one hand as a registry for all exchange
contracts and can be used on the other hand by anyone to deploy new exchange
contracts for ERC20 tokens that are not listed yet (Uniswap, 2019).

Each exchange requires its own pool of liquidity. Let’s assume someone deployed
a new exchange for a token that wasn’t listed before. This exchange needs re-
serves before it is able to process any trades. The first liquidity provider provides
any amount of Ether and tokens in a ratio she thinks corresponds to the correct

8

exchange rate. This sets the initial exchange rate for this token. If the initial ex-
change rate is inaccurate, arbitrage will correct it at the cost of the initial provider.5

Every subsequent liquidity provider has to deposit Ether and tokens according to
the current exchange rate of the pool. To keep track of the composition of the liq-
uidity pool, liquidity ERC20 tokens are minted for every deposit and automatically
credited to the liquidity provider. The amount of created tokens reflects the rela-
tive size of the deposit in respect to the pool size. If, for example, a new liquidity
provider wishes to deposit ∆x Ether and there are already x Ether in the liquidity

pool, the amount of Ether in the pool increases by the factor α =
∆x

x
. She has to

ensure, that the amount of tokens in the pool (y) increases by the same factor such
that the exchange rate is maintained. Hence, she has to deposit ∆y = α∗y tokens.
This increases the total pool by the factor α and makes her eligible for minting α∗ l
liquidity tokens, where l represents the initial amount of liquidity tokens. This is
summarized in set of equations 1 (Uniswap, 2019; Zhang et al., 2018).

x′ = (1 + α)x

y′ = (1 + α)y

l′ = (1 + α)l

(1)

where α =
∆x

x

These liquidity tokens can be burned at any time in order to withdraw the cor-
responding part of the pool. In this case, she burns ∆l liquidity tokens and thus

decreases the supply of tokens by the factor α =
∆l

l
. Therefore, she has the claim

on α ∗ (x+ y) of the reserves (Zhang et al., 2018).

x′′ = (1 − α)x′

y′′ = (1 − α)y′

l′′ = (1 − α)l′

(2)

where α =
∆l

l

5As we will show later, the exchange rate is determined by the x∗y = k model. If the exchange
rate is not the real exchange rate, it will be possible for anyone to buy either Ether or the token
via the exchange below its true value.

9

As every token pair has its own liquidity pool, liquidity tokens are unique for each
exchange. However, because they are represented by standard ERC20 tokens, they
are transferable, which makes it possible for anyone to transfer ownership of their
share of the pool without having to withdraw it (Uniswap, 2019).

For every exchange, the exchange rate is given by the so-called x ∗ y = k model,
which was proposed for usage in decentralized exchanges by Buterin (2018). In
the model, x and y represent the amounts of Ether and token in the pool and k

is a constant. Thus, if someone trades Ether to get some token, x increases and y
decreases in a way that leaves its product, k, constant. This is represented in set
of equations (3) (Uniswap, 2019; Zhang et al., 2018).

k = x ∗ y

= (x+ ∆x) ∗ (y − ∆y)

= (1 + α)x ∗ 1

(1 + α)
y (3)

where α =
∆x

x

Therefore, after each trade, the composition of the liquidity pool will be different
and thus, the subsequent trade will have a different exchange rate. If two subse-
quent trades are in the same direction, the second one will have a “worse” exchange
rate than the first one. If they are in opposite directions, the second one will have
a “better” exchange rate than it would have had with the exchange rate from the
beginning (Uniswap, 2019; Zhang et al., 2018).

before
trade

after
trade

k

Ether
spent

token
gained

Quantity of Ether in the pool (x)

Q
ua

nt
it
y

of
to

ke
n

in
th

e
po

ol
(y

)

Figure 1: The Uniswap pricing mechanism. Own illustration based on Buterin
(2018).

10

This relation is also shown in Figure 1, where the slope of the curve represents the
marginal exchange rate. The more Ether are in the pool relatively to the token,
the more expensive the token gets and vice versa.

Because the liquidity providers actually receive a fee for each trade, the above equa-
tions (3) have to be slightly adjusted. The fee is represented by a fixed percentage
(σ) of the initial amount sent to the smart contract and is deducted before the trade
takes place. If for example someone sends Ether (∆x) to receive tokens (∆y), the
fee is deducted from the amount of Ether, hence only (1−σ)∆x will be exchanged.
Based on this, the exchange rate is determined using the x ∗ y = k model specified
in equation 3. After the trade, the fee (σ ∗ ∆x) is added to the liquidity pool.
Thus, k will in fact increase slightly after each trade. This represents the profit a
liquidity provider is able to earn once she burns her liquidity tokens to withdraw
her share of the pool (Uniswap, 2019).

3 Components of the Briefcase

In this section, we will briefly describe the private Ethereum blockchain in a brief-
case and its components, while Section 4 will then provide an extensive overview
of all steps required to reproduce the project. Figure 2 shows schematically the
briefcase’s contents. The main elements are three Raspberry Pi 4 computers which
are connected by a network switch. Each computer runs an instance of the Geth
(Go Ethereum) software client (see Section 3.2), hence each computer runs a full
node. The last hardware component is a wifi router which is connected to the
network switch as well. It creates a wifi network for users to conveniently access
the private blockchain.

In what follows, we will provide an in depth overview of all individual hardware
and software components that are used in the project.

3.1 Hardware

The heart of the system are the Raspberry Pi 4 minicomputers. These are ARM
based computers that are hardly larger than the area of a credit card.6 They
were set up with a variant of the Arch Linux operating system called Manjaro

6More information about Raspberry Pi can be found on raspberrypi.org

11

raspberrypi.org

R
as
p
b
er
ry

P
i

R
as
p
b
er
ry

P
i

R
as
p
b
er
ry

P
i

Network switch

Wifi router

Figure 2: Hardware components of the briefcase.

(see Section 3.2). Each computer runs a full signing node and they are the only
devices in the private network that can create blocks. More precisely, they have
the private keys for the only authorized accounts for signing blocks in the used
Clique PoA consensus protocol (see Section 2.2). One of the computers has two
additional tasks. First, it runs a second node that can’t seal blocks, but acts as
a HTTP JSON-RPC (remote procedure call) server to facilitate the connection of
users via their client or browser. Additionally, it also hosts the internal website
with its functions like the blockexplorer, token factory and Uniswap.

Each Raspberry Pi computer has two additional components connected to its GPIO
(general-purpose input/output) Pins. First, two pins are used to power a heat sink
with a fan which should keep the processor cool and protect it from overheating
when being used for a long period of time. Second, a RTC (real time clock) module
is connected. In contrast to standard desktop computers, Raspberry Pi computers
do not include an internal RTC module, which is required to keep the time while not
being connected to a power source. Instead, they usually rely on the NTP (network
time protocol) to request the current time from a server during the boot process.
However, this method is not feasible in our set up, because the computers form a
local network which is not connected to the Internet. Thus, they cannot connect
to any NTP server. The RTC module offers a solution, because it is powered by an
own battery which allows it to keep the correct time, even if the Raspberry is shut
down. Instead of consulting a NTP server during the boot process, the Raspberry is

12

programmed to request the current time directly from the RTC module and set the
software clock accordingly. Keeping the time synchronized across the computers is
especially important, because it is a prerequisite for Ethereum nodes to connect to
other nodes and for their acceptance of blocks.

The three Raspberry Pi nodes form a private network by being connected via a
network switch. Additionally, a wifi-router is part of the network that allows users
to connect to the network and hence, the blockchain.

3.2 Software

There is a variety of software involved in creating and running such a private
Ethereum blockchain. The following table lists and describes all the software in-
volved in the set up process described in Section 4.

Manjaro is an open-source Linux distribution based on Arch
Linux. It is one of the first 64 bit operating systems available
for the Raspberry Pi, which is why it was selected instead
of Raspbian (the default operating system provided by the
Raspberry Foundation). The 64 bit capability is required for
executing the mining function in Geth. More information and
download: https://manjaro.org.
Go (also known as Golang) is an open-source programming
language created at and supported by Google. It is a pre-
requisite for the Geth Ethereum client. More information on:
https://golang.org.

Geth is short for Go Ethereum and is the Go client of the
Ethereum protocol. There are other Ethereum implementa-
tions such as Parity, Aleth and more. More information on:
https://geth.ethereum.org.

Atom is a text editor that can be configured with various
packages for syntax highlighting in different programming lan-
guages. We will mainly use it for the coding of the website
and for the faucet and token smart contracts. More informa-
tion and download: https://atom.io.

13

https://manjaro.org
https://golang.org
https://geth.ethereum.org
https://atom.io

Remix is a browser based IDE for Solidity code. It is a sim-
ple solution to write, compile and deploy smart contracts and
was used for the deployment of the faucet and Uniswap smart
contracts. It is accessible on: https://remix.ethereum.org.
Node.js is a JavaScript runtime to build network applications.
We will use it to built our webserver for the internal website.
More information and download: https://nodejs.org.
npm is the default package manager for Node.js. It is included
in the Node.js installation.
Express is a Node.js web application framework. We will use
it to create the Node.js webserver. It can be installed using
the npm package manager and the following command: $ npm

install express --save. More information on: https://

expressjs.com.
Balena Etcher is a tool for “flashing” operating system images
to an SD card. It will be used to write the Manjaro OS onto
a micro-SD card to insert it in the Raspberry Pi. More infor-
mation and download: https://www.balena.io/etcher.
MetaMask is a browser extension that provides a bridge be-
tween the browser and Ethereum. It stores a user’s private
keys and offers the possibility to interact with decentralized
applications via the browser. We will use it for the interaction
between a user and the private blockchain. More information
and download: https://metamask.io.

4 Installation Guide

In this section, we will provide a comprehensive overview of all steps involved in
creating a private Ethereum blockchain in a briefcase. It covers all the steps from
installing the operating system for the Raspberry Pi computer and the initialization
of Geth to the hosting of the internal website.

14

https://remix.ethereum.org
https://nodejs.org
https://expressjs.com
https://expressjs.com
https://www.balena.io/etcher
https://metamask.io

4.1 Set Up Raspberry Pi

The Raspberry Pi is distributed without a pre-installed operating system. It is
therefore necessary to download your own copy and install it on a micro-SD card.
Manjaro for Raspberry Pi 4, which is used in this project, can be downloaded
from https://manjaro.org/download. Using Balena Etcher, the image can be
transferred to a (micro-)SD card.

With the micro-SD card inserted, the Raspberry Pi can be connected to a power
source, a monitor and peripherals. It will start the boot process, prompt a few
questions, such as username, password, timezone etc. and finally set up the sys-
tem. Once the boot process is finished, it is possible to log in with the specified
username. If it is desired to do the subsequent steps from another computer with
ssh, connect the Raspberry Pi to the Internet and find out its IP address using
the ip a command. After, it is possible to log in from any other computer in the
local network through ssh. It is furthermore advisable, to already create static IP
addresses, as described in Section 4.4, because otherwise it would be necessary to
look up the Raspberry’s IP address every time.

$ ip a # In the Raspberry Pi terminal
$ ssh username@ip_address # In the terminal of a remote computer
e.g. $ ssh pi@192.168.0.100

Because Manjaro is based on Arch Linux, it is equipped with the pacman package
manager. It is advisable to update all packages to get started. To do this, use the
following command:

$ sudo pacman -Syu

To run an Ethereum node, we will then install the Geth client, which is built on
Go. Hence, we will install Go and Geth next. Once the installation is completed,
it can be verified with the version command.

$ sudo pacman -S go go-ethereum

$ go version

$ geth version

15

https://manjaro.org/download

4.2 RTC Module

As mentioned in Section 3.1, the Raspberry Pi does not feature a hardware clock.
In order to keep time up to date and synced across the nodes, a real time clock
module is added to the GPIO board of the computer. We used a module of the
DS3231 type that can be put directly on the first five pins on the inside of the
GPIO board (i.e. pins 1,3,5,7 and 9).

Before we initialize the RTC module, we will disable the automatic time setting
via NTP. This command might needs to be run as sudo.

$ timedatectl set-ntp false

$ timedatectl # Check that NTP service is inactive

Once the RTC module is in place, we first follow the steps of Brittain (2019) to
enable the pins. To do that, we first install the necessary software and the Raspi-
Config tool which we will then use to activate the pins.

$ sudo pacman -S git python2 i2c-tools base-devel python2-pip

python2-distribute

$ sudo pip2 install RPi.GPIO

$ sudo pacman -S xorg-xrandr libnewt

$ git clone https://aur.archlinux.org/raspi-config.git

$ cd raspi-config

$ makepkg -i

$ sudo raspi-config

The last command should start the Raspi-Config tool. Here, we select interfacing
options and then enable I2C.

For the changes to take effect, a reboot is required. If everything worked as in-
tended, the Raspberry Pi should now be able to detect the module. The following
command should show an overview and in one of the spots a numerical value should
be displayed – that’s the RTC module.

$ sudo i2cdetect -y 1

16

Now that our hardware clock gets detected, we have to enable it. For that, the
following commands are required for Arch Linux (Levavasseur, 2019). They need
to be run as root to work.

$ sudo bash

$ echo "dtoverlay=i2c-rtc,ds3231" » /boot/config.txt

$ cat <<EOF > /etc/udev/rules.d/55-rtc-i2c.rules

#/lib/udev/rules.d/50-udev-default.rules:SUBSYSTEM=="rtc",

ATTR{hctosys}=="1", SYMLINK+="rtc"

#/lib/udev/rules.d/50-udev-default.rules:SUBSYSTEM=="rtc",

KERNEL=="rtc0", SYMLINK+="rtc", OPTIONS+="link_priority=-100"

#I2C RTC, when added and not the source of the sys clock (kernel),

is used

ACTION=="add", SUBSYSTEMS=="i2c", SUBSYSTEM=="rtc",

KERNEL=="rtc0", ATTR{hctosys}=="0", \\

RUN+="/sbin/hwclock ’--rtc=\$root/\$name’ --hctosys", \\

RUN+="/sbin/logger --tag systemd-udevd ’System clock set from i2c

hardware clock \$name (\$attr{name})’"

EOF

A reboot is now required. After the reboot, we can get information about our
newly configured hardware clock. However, the time will not yet be correct. The
hwclock command should give us the current time of the RTC if everything is set
up correctly. With the timedatectl command, we can set the correct time and
check it again using hwclock.

$ sudo hwclock --verbose

$ timedatectl set-time "YYYY-MM-DD HH:MM:SS"

$ sudo hwclock

Right now, after a reboot, the Raspberry will again display the wrong time. How-
ever, with the hwclock command, the correct time should be displayed. This is
because we have only set up the hardware clock so far and did not yet specify a
command to set the software clock accordingly during the boot process. This isn’t
an issue for now, because we will add such a command to the startup script in
Section 4.5.

17

4.3 Initialize Geth

To initialize Geth, we need to specify a data directory and a genesis file. Using the
mkdir command, we can create a folder which we will use to store the blockchain
data. To navigate inside the file structure, the cd command can be used. Addition-
ally, the ls command might be useful, as it lists all files in the current directory.

$ mkdir datadir

$ cd datadir # Move to specified directory
$ cd ../ # Go back to previous directory
$ ls # List files in current directory

To get started and to be able to create a genesis file in case of the PoA consensus
protocol, we need to create at least one account first, because we have to specify at
least one authorized sealer address. This can be done with the following command
and may be repeated as often as desired.

$ geth --datadir ./datadir account new

Next up is the genesis file. This can effortlessly be configured using the puppeth-
tool, which is included in the Geth installation.7 Once open, simply type in any
network name. Then, follow the prompts and provide the required information to
automatically generate your genesis file. After successful creation, it is possible to
export the genesis block as a JSON file.

$ /usr/bin/puppeth

"network_name"

2.Configure new genesis

. . . provide the required information . . .

2.Manage existing genesis

2.Export genesis configurations

Once the JSON file is created, the same file must be used to initialize all nodes. It is
also possible (but not necessary) to load the previously created accounts on every

7Puppeth can not only be used for creating a genesis block. In fact, it is a very handy tool
to set up a complete private Ethereum blockchain, including applications like a faucet, ethstats
and more. It works by using ssh to deploy docker containers to remote servers. Unfortunately, it
was not possible to use puppeth for this project, because its docker containers are not compatible
with the Raspberry’s ARM processors.

18

computer by transferring the files inside the keystore directory. In this project,
initially 10 accounts were created and loaded onto every computer, so that they
can be accessed on every node. The file transfer can be done either with a USB
stick or with the scp command over ssh. In order to transfer a folder, the recursive
-r option can be used.

$ scp path/to/file username@ipaddress:path/to/destination

e.g. $ scp genesis.json pi@192.168.0.100:datadir

e.g. $ scp -r datadir/keystore pi@192.168.0.100:datadir

With the genesis file and the data directory specified, Geth can now initialize the
node.

$ geth --datadir ./datadir init path/to/genesis.json

e.g. $ geth --datadir ./datadir init datadir/genesis.json

The node is now ready to be started. To start a local session with an interactive
JavaScript console interface, use:

$ geth --datadir ./datadir console

A few examples of useful commands can be found on page 25. Note, that the start
process of the console shows the enode value, which will be required later in order
to manually connect new nodes. For that, we create a file inside the datadir/geth
data directory called static-nodes.json, which contains the enode values of all nodes.
Once Geth is running, it will always automatically try to connect to the nodes
provided in this file (Go-Ethereum, 2019b). Note, that this already requires static
IP addresses, as these are part of the enode value. If no static IP addresses have
been set yet, it is best to create the static-nodes.json file later.

[
"enode:// pubkey@ip:port",
"enode://f4642fa65af50cfdea8fa7414a5def7bb7991478b768e296f5e4a54

e8b995de102e0ceae2e826f293c481b5325f89be6d207b003382e18a8ecba
66fbaf6416c0@192.168.0.100:30303"

]

Codeblock 2: Example static-nodes.json file.

19

4.4 Network

To connect everything and form a private network, the computers and the wifi
router are connected to the network switch. Usually, the router requires some sort
of set up procedure to specify its mode of operation as well as the network SSID
(the network name) and potentially a password. The router used in this project
offered a web-interface to guide through the required steps.

For the discovery and manual connection to the other nodes, static IP addresses
are required. They also facilitate the usage of ssh. There are various options to
assign a static IP address. Usually the user-interface of the router can be used to
assign a permanent IP address to any device on the network. This is how we will
proceed. If it is preferred to set the IP address directly on the Raspberry Pi, Haley
(2016) offers a comprehensive step by step guide on how to accomplish that with
Arch Linux.

Usually, when accessing the router’s settings (most likely through the same web
interface used to set it up), there is a section titled DHCP (Dynamic Host Configu-
ration Protocol). This section should provide a list of connected devices, including
their MAC and IP addresses. Additionally, it should provide an option to enter a
MAC address and assign a static IP address to it. This should be done with all three
Raspberry Pi computers. To find out the MAC address of a specific Raspberry Pi,
the ip a command can be used.

Another network-related thing to be done is to set a hostname for the Raspberry
computer that will later host the internal website. As everything will only be ac-
cessible in a local network, the most simple way is using mDNS (multicast Domain
Name System). This will make the computer accessible through a hostname.local
address. After installing the necessary packages, we can activate the service and
set a hostname according to the following steps (Frields, 2018).

$ sudo pacman -S nss-mdns avahi

$ sudo systemctl enable --now avahi-daemon.service

$ hostnamectl set-hostname briefcase # Set the desired hostname
$ sudo systemctl restart avahi-daemon.service # Restart the service
$ ping briefcase.local # Use on a remote computer to test the set up

20

4.5 Startup Scripts

This section provides an overview of the startup script that automatically starts
Geth and the one that starts the web server. Basically, there are two things in-
volved. First, a bash script and second, a service that starts the former every time
the Raspberry boots. We will first take a look at the bash script to start Geth.
It is located in the /usr/bin/ directory. This script is present in this form on all
computers, although it needs to be slightly adjusted to reflect the different signing
accounts and static IP addresses of each computer.

#!/ bin/bash
Ether startup

sleep 3
sudo hwclock -s
geth --datadir /home/pi/datadir --miner.gasprice 0 --txpool.

pricelimit 0 --networkid 4596 --nodiscover --nat extip:192.168.
0.100 --port 30303 --syncmode "full" --miner.etherbase 0x123...
--unlock 0x123... --password /home/pi/datadir/pw.txt --mine --

miner.threads 1

Codeblock 3: Geth startup script "scriptEther" on one Raspberry Pi.

The script contains only three commands. To start with, there’s a sleep command
to ensure, that the process to communicate with the hardware clock is already
running. Next, using the hwclock -s command, the system time is set to the time
of the hardware clock (which was set to the actual time in Section 4.2). The last and
most important command starts Geth and hence, the node. There are various flags
involved which will now be described briefly according to Go-Ethereum (2019a).

• --datadir: Specifies the data directory where the blockchain data is stored
in.

• --miner.gasprice: Sets the minimal gas price for a transaction to be mined
by this node. Here, it is set to 0. This facilitates the faucet function, because
it ensures that a new user can send a withdraw request to the smart contract
without any initial funds.

21

• --txpool.pricelimit: Similar to the previous flag, this sets the gas price for
the acceptance of a transaction in the transaction pool. This is required to
accept the incoming transactions with a gas price of 0, which are relayed by
the RPC-node.

• --networkid: Allows to specify a unique network identification number. This
is set to a non-default value, because nodes are required to have the same
protocol version and network ID to connect to each other. It is therefore used
to generate an isolated network (Ethereum-Foundation, 2019c).

• --nodiscover: This is used to disable the peer discovery mechanism. With
this setting, manual peer addition is required.

• --nat extip: Adds the value of the static IP defined in Section 4.4, so that
it can be included in the node’s enode address (Lange, 2016).

• --port: Specifies the network listening port.

• --syncmode: Accepts the values “full”, “fast” and “light”. “Full” means, that
all blocks are downloaded and all transactions validated from the beginning.
“Fast” still stores all blocks, but does only validate more recent transactions.
“Light” only stores the current state and requests blocks on an as needed
basis (Balla, 2018).

• --miner.etherbase: Sets the public address for mining rewards. This is
especially relevant in the Clique PoA protocol, because it has to reflect the
public address of an approved sealer.

• --unlock: Specifies an account to be unlocked with the following password.
This is needed, because with Clique, miners have to seal blocks using their
private key (Badretdinov, 2018).

• --password: The password (or path to the file containing the password) to
unlock the previously defined account.

• --mine: Used to enable mining.

• --miner.threads: Sets the amount of CPU threads used for the mining (or
sealing) process.

As already mentioned, one Raspberry Pi runs two nodes simultaneously. The
second node facilitates the RPC server, which is needed for the users to connect to

22

the network (e.g. via MetaMask). This process requires a separate node, because
for security reasons, this function is not compatible with the block sealing process
which requires an unlocked account. The overall startup script for the RPC server
looks similar, however, Geth is initialized using different flags. Additionally, the
sleep command is set to a few seconds more and the hwclock command is missing.
This is because the time is already set on this computer by the first script.

#!/ bin/bash
Ether startup

sleep 5
geth --datadir /home/pi/datadirRPC --networkid 4596 --nodiscover

--syncmode "full" --nat extip:192.168.0.101 --rpc --rpcport "85
45" --rpcaddr "[192.168.0.101]" --rpccorsdomain =* --rpcapi ="
admin,db,eth,debug,miner,net,shh,txpool,personal,web3"

Codeblock 4: Geth startup script "scriptEtherRPC".

Different flags used for this process are (Go-Ethereum, 2019a):

• --rpc: Enables the HTTP JSON-RPC server.

• --rpcport: Specifies the server’s listening port.

• --rpcaddr: Specifies the listening interface of the server.

• --rpccorsdomain: List of domains from which the server accepts cross-origin
requests.8 The provided value (∗) allows requests from any domain.

• --rpcapi: List of the APIs offered via the RPC-interface.

The last startup script is not related toGeth. Instead, it is required to automatically
start the web server that serves the internal website which will be described in
Section 4.7. The included commands navigate to the directory containing the
website data and start the Node.js process with the npm run start command.
The command is run with sudo, because we will specify the web server to listen on
standard port 80 in Section 4.7.

8Cross Origin Resource Sharing (CORS) is used to allow applications running on one origin
to access resources from a different origin (Mozilla, 2019).

23

#!/ bin/bash
Ether startup

sleep 5
cd home/pi/websiteBriefcase
sudo npm run start

Codeblock 5: Startup script for Node.js.

All scripts described so far in this section should start automatically during the
boot process. This requires, that they are executable. Once they are executable,
we can create a service which starts them. Setting the permission to execute a
script is accomplished with the chmod command.

$ sudo chmod 755 /usr/bin/scriptEther

The last thing to do is to create and enable a service that executes these scripts
automatically during the boot process. The files for these services should be lo-
cated in the /etc/systemd/system directory. We will call them ether.service,
etherPRC.service and website.service, respectively. All of them are built in a
similar way and Codeblock 6 depicts the service to start scriptEther.

[Unit]
Description=Script

[Service]
ExecStart =/usr/bin/scriptEther

[Install]
WantedBy=multi -user.target

Codeblock 6: ether.service file used to start scriptEther during the boot process.

Now, we simply have to enable the service to execute it during the boot process.

$ sudo systemctl enable ether.service

Alternatively, to manually start the service, the command can be used with start

instead. Additionally, using status, it is possible to check, whether the task runs
as expected.

24

$ sudo systemctl start ether.service # Start service manually
$ sudo systemctl status ether.service # Check the status of the service

Once everything is set up and running, it is possible to attach to the node, to issue
commands and check that everything works as intended. The attach command
can be used to launch a JavaScript console that exposes the full web3 API. A few
commands that might be useful for usage in the console are shown below.

$ sudo geth --datadir ./datadir attach

$ admin.peers # Lists the node’s connected peers
$ eth.blockNumber # Returns the number of the latest block
$ miner.etherbase # Returns the coinbase account
$ miner.start # Starts the mining process
$ miner.stop # Stops the mining process
$ trxpool # Shows the transaction pool
$ eth.getBalance("publicAddress") # Shows the balance of an account

4.6 Uniswap

As already mentioned earlier, the decentralized exchange Uniswap will be accessible
on the private network. For that, three components are necessary. These are:

• The initial exchange contract which will be deployed for each tradeable token
pair.

• A factory contract that can be used to deploy new exchanges and which keeps
track of all deployed exchanges.

• A user interface to facilitate usage of the application.

The components will be deployed in this order. For that, we will use steps similar
to Bakaoh (2019). First and foremost, the relevant contracts can be downloaded
from the Uniswap git repository.9 For the deployment of the contracts, we will use
Remix and MetaMask. On MetaMask, we can connect to the relevant network,
which should be the private network we set up earlier in this section. Then, the

9github.com/Uniswap/contracts-vyper

25

github.com/Uniswap/contracts-vyper

Uniswap exchange contract can be compiled using the Remix vyper compiler. Af-
terwards, the compiled contract needs to be deployed to the injected environment
from MetaMask. After successful deployment of the initial exchange contract, the
same procedure can be applied to the Uniswap factory contract. The lone difference
is, that the address of the already deployed exchange contract needs to be added
before being able to deploy the factory contract. Now, Uniswap is already de-
ployed, the only missing piece is a user interface to simplify usage of the contracts.
The official frontend can be cloned from the git repository as well. It can then be
modified to work with the newly deployed contracts on our private network.

$ git clone https://github.com/Uniswap/uniswap-frontend

$ cd uniswap-frontend

$ yarn

A few values have to be specified. First, the .env.local.example file should be
renamed to .env.local. In this file, our networkID and the URL of our RPC
server need to be specified.

REACT_APP_NETWORK_ID ="4596"
REACT_APP_NETWORK_URL ="http://192.168.0.101:8545"

Codeblock 7: Specified values in the env.local file.

Additionally, the address of the factory contract on our network has to be specified
within the src/constants/index.js file.

export const FACTORY_ADDRESSES = {
1: ’0xc0a47dFe034B400B47bDaD5FecDa2621de6c4d95’,
3: ’0x9c83dCE8CA20E9aAF9D3efc003b2ea62aBC08351’,
4: ’0xf5D915570BC477f9B8D6C0E980aA81757A3AaC36’,
42: ’0xD3E51Ef092B2845f10401a0159B2B96e8B6c3D30’,
4596: ’0x082c43c8C47b7B3763deB221D25737A3C9e6288A’

}

Codeblock 8: First part of the src/constants/index.js file.

26

Now, the frontend should be ready to be started. To do this, the yarn start

command can be used.

$ yarn start # Run the frontend at local.
$ yarn build # Create a build version to add to the website in Section 4.7.

4.7 Website

After all the steps described so far in this section, everything should be set up
now. That is, there are the Raspberry Pis equipped with a RTC module each,
running an automatically starting signing node, as well as one of them running an
additional HTTP JSON-RPC server and a script that starts the web server. The
missing part is the website which will provide the user access to the information
about the network, as well as functions such as a faucet, a blockexplorer and a
token factory. Additionally, the Uniswap frontend from the previous section can
be linked to it as well.

For hosting the website, a light web server is built using Node.js and express. The
center piece is the Server.js file depicted in Codeblock 9. It handles all browser
requests and responds by sending the appropriate files.

var express = require(’express ’);
var web3 = require(’web3’)
var bodyParser = require(’body -parser ’)
var app = express ();
var router = express.Router ();
var path = __dirname + ’/views/’;

router.get(’/’,function(req ,res){
res.sendFile(path + ’index.html’);

});

router.get(’/contract ’, function(req ,res) {
console.log(req.body);
res.json(require(’./ build/contracts/CreateToken.json’));

});

[...]

27

router.get(’/uniswap ’,function(req ,res){
res.sendFile(__dirname + ’/uniswap/index.html’);

});

app.use(bodyParser.urlencoded ({ extended: false}));
app.use(’/’,router);

app.use(express.static(__dirname + ’/public ’));
app.use(express.static(__dirname + ’/uniswap ’));

app.use(’*’,function(req ,res){
res.sendFile(path + ’404. html’);

});

app.listen (80, function (){
console.log(’Live at Port 80’);

});

Codeblock 9: Excerpt: Server.js file.

At the beginning of the file, the relevant modules are loaded using the require com-
mand. They are saved as variables. Below, the main part consists of router.get
commands, which are used for the routing. Whenever the server gets a specific
URL, it responds with the defined action, i.e. by sending the appropriate file. The
last part of the file defines middleware to be used by the application. Finally, the
app.listen command defines the port, Node.js is listening. Here, this is set to port
80, which is the default port for a web server. The advantage of using this port is,
that it does not have to be specified by the user in the URL. This means, it is suffi-
cient to type the URL briefcase.local instead of something like briefcase.local:3000
to access the website.

The individual webpages are html files located in the views directory. The main
structure of each page is based on a template by Quackit (2019). The individual
pages won’t be explained in detail, because they consist of a bunch of similar
code and would be beyond the scope of this paper. However, to get an idea, the
Codeblock in Appendix B shows the html code for the faucet webpage.

A number of libraries are used for the webpages. The main functionality and design
relies on the bootstrap and jQuery libraries. Additionally, the usage of the web3
libraries is notable, as these facilitate the interaction with the blockchain through
JavaScript. The basic structure of each individual webpage consists of a naviga-

28

tion bar on top, which provides links to all other webpages. Then, each page has
a similar looking header with its respective title and a large cover picture. Below,
the specific application is accessible. There are separate pages for the faucet func-
tion, the token factory, a blockexplorer which was forked from the Etherparty git
repository,10 and a page with technical details concerning the blockchain specifi-
cation. Additionally, the main page (index.html) offers descriptions and links to
all applications, including the Uniswap exchange frontend which was described in
Section 4.6.

All webpages that need a connection to MetaMask and the blockchain include a
custom JavaScript file which enables the connection to MetaMask and also contains
the functions for the faucet and token factory. Codeblock 10 shows the code.

// Offset for Site Navigation
$(’#siteNav ’).affix ({

offset: {
top: 100

}
})

// Connect to MetaMask
window.addEventListener(’load’, async () => {

if (window.ethereum) {
window.web3 = new Web3(ethereum);
try {

await ethereum.enable ();
} catch (error) {
}

}
else if (window.web3) {

window.web3 = new Web3(web3.currentProvider);
}
else {

console.log(’Non -Ethereum browser detected. You should
consider trying MetaMask!’);

}
});
ethereum.autoRefreshOnNetworkChange = false;

10https://github.com/etherparty/explorer

29

https://github.com/etherparty/explorer

// Faucet Function
function withdrawfromFaucet () {

const faucetCaller = window.ethereum.selectedAddress;
var faucetContract = new web3.eth.Contract ([{ contractABI }],

’contractAddress ’);
faucetContract.methods.withdraw ().send({from: faucetCaller ,

gasPrice: ’0’, gas: ’300000 ’}, function(error , result){
});

}

function faucetFunction(e) {
e.preventDefault ();
withdrawfromFaucet ();

}

// Tokenfactory Function
function deployContract(compiledContract) {

var name = document.getElementById(’Tokenname ’).value;
var symbol = document.getElementById(’Tokensymbol ’).value;
var supplyWithoutDecimals = document.getElementById(’Tokensupply

’).value;
var decimals = document.getElementById(’Tokendecimal ’).value;
var supply = supplyWithoutDecimals * 10 ** decimals;
const deployAccount = window.ethereum.selectedAddress;
localStorage[’name’] = document.getElementById(’Tokenname ’).

value;

var createContract = new web3.eth.Contract(compiledContract.abi)
;

createContract.deploy ({
data: compiledContract.bytecode ,
arguments: [name , symbol , decimals , supply]

})
.send({

from: deployAccount ,
gas: ’1500000 ’,
gasPrice: ’5000000000 ’

}, function(error , transactionHash){ })
.on(’error’, function(error){

console.log(error)})
.on(’transactionHash ’, function(transactionHash){

console.log(transactionHash);
localStorage[’trxhash ’] = transactionHash })

.on(’receipt ’, function(receipt){

30

localStorage[’tokenAddress ’] = receipt.contractAddress })
.on(’confirmation ’, function(confirmationNumber , receipt){ })
.then(function(newContractInstance){
console.log(newContractInstance.options.address)
});

}

function getContractAndDeploy(e) {
e.preventDefault ();
var xmlHttp = new XMLHttpRequest ();
xmlHttp.onload = function () {

var compiledContract = JSON.parse(this.responseText);
deployContract(compiledContract);

}
xmlHttp.overrideMimeType(’application/json’);
xmlHttp.open(’GET’, ’/contract ’);
xmlHttp.send();

}

Codeblock 10: The custom.js file with the functions for the faucet and the token
factory.

The first part is used to connect to MetaMask. It is specified to distinguish between
modern and legacy dapp browsers as well as non-Ethereum browsers.

The faucet and token factory functionality consist of two functions each. The main
function of the faucet is withdrawfromFaucet, which saves the user’s current Meta-
Mask address and issues a contract call on her behalf of the specified faucet smart
contract shown in Codeblock 11. It is notable, that the transaction has a specified
gasPrice of 0, because the user does not have funds yet. As seen in Section 4.5,
the nodes are set up in a way, that they accept such transactions and include them
in the blockchain. The second function (faucetFunction) is the one that gets
executed, as soon as the user requests funds. It has a e.preventDefault() com-
mand and then calls the already described withdrawfromFaucet function. This
nestled set up is used, because the transaction transmission has to wait for the
user’s approval in MetaMask.

31

pragma solidity ^0.5.0;

contract faucet {
mapping (address => bool) public alreadyRequested;

function () external payable {
}

function balanceOfFaucet () public view returns(uint256){
return address(this).balance;
}

function withdraw () public {
if (alreadyRequested[msg.sender] == false){
msg.sender.transfer (10000000000000000000);
alreadyRequested[msg.sender] = true;
}

}
}

Codeblock 11: The faucet smart contract.

The smart contract for the faucet shown in Codeblock 11 consists of four elements:

• The alreadyRequested mapping which saves addresses that have already
requested Ether. This is used to limit the requests one individual can make.

• A fallback function to ensure, the contract accepts funds.

• The balanceOfFaucet function with the purpose to return the remaining
funds of the faucet.

• A withdraw function, which enables the main functionality of the contract:
requesting funds. When called, the function checks whether the message
sender has already made a request before. If not, it will transfer 10 Ether to
her address and set her status to alreadyRequested = true. Otherwise, it
won’t do anything.

The last part of the custom.js file in Codeblock 10 contains the functionality for
the token factory. The deployContract function first creates variables with the
data provided by the user on the website (name, symbol, supply and decimal places

32

of the token). It also saves the user’s address as a constant. It then creates a new
web3 contract instance with the ABI of the token smart contract which is provided
by the getContractAndDeploy function. The contract instance gets extended by
including the provided bytecode and the arguments of the user. This makes the
contract ready for deployment. This transaction is prepared on behalf of the user
and she simply has to confirm it on MetaMask. The function listens for the receipt
and finally saves the transaction hash and the token address into local storage
to make it accessible for the follow up “deploymentinfo” page. This function is
specified similarly to the withdrawfromFaucet function of the faucet, hence, it
does not get called directly, but by the getContractAndDeploy function. This
is the function the user activates when she submits her arguments on the token
factory webpage. The idea is similar to the faucetFunction from before. However,
it additionally creates a xmlHTTP request to load the smart contract’s information
from the web server. The uncompiled code of the token that gets deployed is shown
in Codeblock 12.

pragma solidity ^0.5.0;

import "@openzeppelin/contracts/token/ERC20/ERC20Detailed.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";

contract CreateToken is ERC20 , ERC20Detailed {
constructor(string memory _name , string memory _symbol , uint8

_decimals , uint256 _supply)
ERC20Detailed(_name , _symbol , _decimals)
public {

_mint(msg.sender , _supply);
}

}

Codeblock 12: The token smart contract.

The token used for the token factory is based on the OpenZeppelin secure smart
contracts.11 These are available as npm module and can then simply be imported
as shown in the code. The ERC20Detailed smart contract accepts a constructor
for the name, symbol and decimal units of the token. Additionally, the _mint

command creates the specified amount of tokens and transfers them to the creator
of the token.

11https://openzeppelin.com/contracts

33

https://openzeppelin.com/contracts

At any time during the development of the website, the web server can be run to
test the individual webpages and functions. This can be done with the following
command. As long as some other port than port 80 is used, the commands can
be run normally. For the final web server, when we specify port 80, running these
commands as sudo is required.

$ npm run start or node Server.js

Once everything is set up, the directory containing the website can be moved to
the correct Raspberry Pi. Here, we already created a startup script to start the
web server in Section 4.5. Because we use the standard port 80 in the final version
of the Server.js file, we have specified in the startup script to run the command
with sudo.

34

5 Conclusion

This paper covered and explained all steps necessary to build a private Ethereum
blockchain. The Ethereum platform was chosen because it is the most important
platform for smart contracts and decentralized applications. When creating an
own, private blockchain, it is possible to change various specifications. Usually,
this is accomplished by creating a unique genesis file which is the basis to generate
the genesis block. Within this file, it is possible to specify the consensus protocol
applied, pre-fund accounts and more. A requirement for the connection of multiple
nodes is, that they have to be initialized with the same genesis block. An additional
factor to note is the need of a synchronized system time across the individual
computers, because blocks whose timestamp is not conform with the node’s own
time are not going to be accepted. This is especially relevant when using Raspberry
Pi computers, because they do not include a module to keep time while they are
not connected to a power source.

In connection with this paper, an actual prototype of such a private Ethereum
blockchain was created. Within its genesis file, the usage of the Clique proof of
authority consensus protocol was specified. The resulting product is given by three
Raspberry Pi computers that are embedded into a briefcase and hence offer a
portable solution. Each computer runs a signing node, while one computer runs an
additional node that handles and transmits the requests from users. Additionally, a
web user interface with different applications was developed. It offers functionality
to request Ether from a faucet smart contract and allows the tracking of blocks and
transactions via a blockexplorer. Furthermore, it offers a token factory function
that takes a user’s arguments and deploys an ERC20 token smart contract on
her behalf. These tokens can be added to the included decentralized exchange
Uniswap. This exchange has the defining characteristic, that trades are facilitated
by a liquidity pool instead of relying on order books.
The overall product offers a wide range of applications with possible use cases in
the development of smart contracts but also especially its usefulness for educational
purposes should be noted. Its design with three distinct nodes and its intuitive user
interface make it a viable tool to show the mode of operation of a blockchain.

Despite the various applications, there is still area for improvement and extension.
This especially concerns the number of available applications. There is a lot of
additional functionality that could be implemented. For example, a way to invest

35

Ether and tokens could be implemented using the compound protocol. Also, the
included blockexplorer is very basic and thus limited. While it reliably lists all
blocks and the included Ether transactions, it is not capable of properly displaying
transactions to and between smart contracts and token transactions are not trace-
able as well. This however would be very useful, especially when developing and
testing smart contracts. Another useful functionality to implement, especially for
usage of the briefcase for educational purposes in groups, would be a database for
token addresses. This would allow users to access and add addresses of existing and
newly created tokens, which would greatly improve their discoverability, because
the address of a token is required to display them in MetaMask and also to find
their exchange on Uniswap.

36

References

Araoz, M. (2016), ‘The Hitchhiker’s Guide to Smart Contracts in Ethereum’.
URL: ht tp s: // me di um .c om /z ep pe li n-b lo g/ th e-h it ch hi ke rs -g

ui de -t o-s ma rt -c on tr ac ts -i n-e th er eu m-848f 08001f 05 , Accessed:
December 31, 2019

Badretdinov, T. (2018), ‘Clique: cross-client Proof-of-authority algorithm for
Ethereum’.
URL: ht tp s: // me di um .c om /@ De st in er /c li qu e-c ro ss -c li en

t-p ro of -o f-a ut ho ri ty -a lg or it hm -f or -e th er eu m-8b 2a 135201d ,
Accessed: December 18, 2019

Bakaoh (2019), ‘Deploying Uniswap on the Matic testnet’.
URL: ht tp s: // ba ka oh .c om /h un te r/ 3398-m at ic ne tw or k-m at ic -b

ou nt ie s/ , Accessed: December 17, 2019

Balla, J. (2018), ‘Optimal sync mode for running an ethereum node that can
process transactions’.
URL: ht tp s: // et he re um .s ta ck ex ch an ge .c om /q ue st io ns /38907/

op ti ma l-s yn c-m od e-f or -r un ni ng -a n-e th er eu m-n od e-t ha t-c an -p

ro ce ss -t ra ns ac ti on s , Accessed: December 23, 2019

Brittain, T. (2019), ‘Setup i2c on Raspberry Pi Zero W using Arch Linux’.
URL: ht tp s: // la dv ie n. co m/ ar ch -l in ux -i 2c -s et up / , Accessed:
December 20, 2019

Buterin, V. (2013), ‘A next-generation smart contract and decentralized applica-
tion platform’.
URL: ht tp s: // gi th ub .c om /e th er eu m/ wi ki /w ik i/ Wh it e-Pa pe r ,
Accessed: December 27, 2019

Buterin, V. (2016), ‘EIP 155: Simple replay attack protection’.
URL: ht tp s: // ei ps .e th er eu m. or g/ EIPS/ ei p-155 , Accessed: Decem-
ber 29, 2019

Buterin, V. (2018), ‘Improving front running resistance of x*y=k market makers’.
URL: ht tp s: // et hr es ea r. ch /t /i mp ro vi ng -f ro nt -r un ni ng -r es

is ta nc e-o f-x -y -k -m ar ke t-m ak er s/ 1281 , Accessed: December 28, 2019

i

https://medium.com/zeppelin-blog/the-hitchhikers-guide-to-smart-contracts-in-ethereum-848f08001f05
https://medium.com/zeppelin-blog/the-hitchhikers-guide-to-smart-contracts-in-ethereum-848f08001f05
https://medium.com/@Destiner/clique-cross-client-proof-of-authority-algorithm-for-ethereum-8b2a135201d
https://medium.com/@Destiner/clique-cross-client-proof-of-authority-algorithm-for-ethereum-8b2a135201d
https://bakaoh.com/hunter/3398-maticnetwork-matic-bounties/
https://bakaoh.com/hunter/3398-maticnetwork-matic-bounties/
https://ethereum.stackexchange.com/questions/38907/optimal-sync-mode-for-running-an-ethereum-node-that-can-process-transactions
https://ethereum.stackexchange.com/questions/38907/optimal-sync-mode-for-running-an-ethereum-node-that-can-process-transactions
https://ethereum.stackexchange.com/questions/38907/optimal-sync-mode-for-running-an-ethereum-node-that-can-process-transactions
https://ladvien.com/arch-linux-i2c-setup/
https://github.com/ethereum/wiki/wiki/White-Paper
https://eips.ethereum.org/EIPS/eip-155
https://ethresear.ch/t/improving-front-running-resistance-of-x-y-k-market-makers/1281
https://ethresear.ch/t/improving-front-running-resistance-of-x-y-k-market-makers/1281

Cassidy, J. (2019), ‘Understanding smart contract compilation and deployment’.
URL: ht tp s: // ka ur i. io /u nd er st an di ng -s ma rt -c on tr ac t-c om pi

la ti on -a nd -d ep lo ym en t/ 973c 5f 54c 4434b b1b 0160c ff 8c 695369/ a ,
Accessed: December 31, 2019

Coinmarketcap (2019), ‘Top 100 Cryptocurrencies by Market Capitalization’.
URL: ht tp s: // co in ma rk et ca p. co m , Accessed: December 27, 2019

Ethereum-Foundation (2019a), ‘Ethereum Wiki - Ethash’.
URL: ht tp s: // gi th ub .c om /e th er eu m/ wi ki /w ik i/ Et ha sh , Accessed:
December 18, 2019

Ethereum-Foundation (2019b), ‘Ethereum Wiki - Proof of Stake FAQ’.
URL: ht tp s: // gi th ub .c om /e th er eu m/ wi ki /w ik i/ Pr oo f-o f-St ak

e-FAQ , Accessed: December 18, 2019

Ethereum-Foundation (2019c), ‘Go Ethereum’.
URL: ht tp s: // ge th .e th er eu m. or g/ do cs /i nt er fa ce /p ri va te -n

et wo rk , Accessed: December 15, 2019

Ethereum-Homestead (2019), ‘Account Types, Gas, and Transactions’.
URL: ht tp s: // et he re um -h om es te ad .r ea dt he do cs .i o/ en /l at es

t/ co nt ra ct s-a nd -t ra ns ac ti on s/ ac co un t-t yp es -g as -a nd -t ra ns

ac ti on s. ht ml , Accessed: December 31, 2019

Etherscan (2019), ‘Token Tracker’.
URL: ht tp s: // et he rs ca n. io /t ok en s , Accessed: December 30, 2019

EthHub (2019), ‘Test Networks’.
URL: ht tp s: // do cs .e th hu b. io /u si ng -e th er eu m/ te st -n et wo rk

s/ , Accessed: December 18, 2019

Frankenfield, J. (2019), ‘Smart Contracts’.
URL: ht tp s: // ww w. in ve st op ed ia .c om /t er ms /s /s ma rt -c on tr ac

ts .a sp , Accessed: December 31, 2019

Frields, P. W. (2018), ‘Find your systems easily on a LAN with mDNS’.
URL: ht tp s: // fe do ra ma ga zi ne .o rg /f in d-s ys te ms -e as il y-l an

-m dn s/ , Accessed: December 22, 2019

ii

https://kauri.io/understanding-smart-contract-compilation-and-deployment/973c5f54c4434bb1b0160cff8c695369/a
https://kauri.io/understanding-smart-contract-compilation-and-deployment/973c5f54c4434bb1b0160cff8c695369/a
https://coinmarketcap.com
https://github.com/ethereum/wiki/wiki/Ethash
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://geth.ethereum.org/docs/interface/private-network
https://geth.ethereum.org/docs/interface/private-network
https://ethereum-homestead.readthedocs.io/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html
https://ethereum-homestead.readthedocs.io/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html
https://ethereum-homestead.readthedocs.io/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html
https://etherscan.io/tokens
https://docs.ethhub.io/using-ethereum/test-networks/
https://docs.ethhub.io/using-ethereum/test-networks/
https://www.investopedia.com/terms/s/smart-contracts.asp
https://www.investopedia.com/terms/s/smart-contracts.asp
https://fedoramagazine.org/find-systems-easily-lan-mdns/
https://fedoramagazine.org/find-systems-easily-lan-mdns/

Go-Ethereum (2019a), ‘Command-line Options’.
URL: ht tp s: // ge th .e th er eu m. or g/ do cs /i nt er fa ce /c om ma nd -l

in e-o pt io ns , Accessed: December 31, 2019

Go-Ethereum (2019b), ‘Connecting To The Network’.
URL: ht tp s: // ge th .e th er eu m. or g/ do cs /i nt er fa ce /p ee r-t o-p ee
r , Accessed: December 20, 2019

Haley, W. (2016), ‘Use a Static IP in Arch Linux with dhcpcd’.
URL: ht tp s: // wi ll ha le y. co m/ bl og /s ta ti c-i p-i n-a rc h-l in ux / ,
Accessed: December 22, 2019

Kakarla, S. (2018), ‘An Introduction to the Genesis Block in Ethereum’.
URL: ht tp s: // ww w. sk cr ip t. co m/ sv r/ ge ne si s-b lo ck -e th er eu m/ ,
Accessed: December 15, 2019

Lange, F. (2016), ‘No IP address in enode addresses’.
URL: ht tp s: // gi th ub .c om /e th er eu m/ go -e th er eu m/ is su es /2765 ,
Accessed: December 22, 2019

Levavasseur, A. (2019), ‘Properly set-up i2c RTC ds1307 on ArchLinux’.
URL: ht tp s: // gi st .g it hu b. co m/ Al ex 131089/ de 45d 552372a 9296a

bb bb e407a e52180 , Accessed: December 20, 2019

McKie, S. (2017), ‘The Anatomy of ERC20’.
URL: ht tp s: // me di um .c om /b lo ck ch an ne l/ th e-a na to my -o f-e rc

20-c 9e 5c 5f f1d 02 , Accessed: December 30, 2019

Mozilla (2019), ‘Cross-Origin Resource Sharing (CORS)’.
URL: ht tp s: // de ve lo pe r. mo zi ll a. or g/ en -US/ do cs /We b/ HTTP/

CORS , Accessed: December 31, 2019

Nakamoto, S. (2008), ‘Bitcoin: A Peer-to-Peer Electronic Cash System’.
URL: ht tp s: // bi tc oi n. or g/ bi tc oi n. pd f , Accessed: November 25,
2019

Quackit (2019), ‘Business Website Templates’.
URL: ht tp s: // ww w. qu ac ki t. co m/ ht ml /t em pl at es /b us in es s_ we

bs it e_ te mp la te s. cf m , Accessed: November 28, 2019

iii

https://geth.ethereum.org/docs/interface/command-line-options
https://geth.ethereum.org/docs/interface/command-line-options
https://geth.ethereum.org/docs/interface/peer-to-peer
https://geth.ethereum.org/docs/interface/peer-to-peer
https://willhaley.com/blog/static-ip-in-arch-linux/
https://www.skcript.com/svr/genesis-block-ethereum/
https://github.com/ethereum/go-ethereum/issues/2765
https://gist.github.com/Alex131089/de45d552372a9296abbbbe407ae52180
https://gist.github.com/Alex131089/de45d552372a9296abbbbe407ae52180
https://medium.com/blockchannel/the-anatomy-of-erc20-c9e5c5ff1d02
https://medium.com/blockchannel/the-anatomy-of-erc20-c9e5c5ff1d02
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://bitcoin.org/bitcoin.pdf
https://www.quackit.com/html/templates/business_website_templates.cfm
https://www.quackit.com/html/templates/business_website_templates.cfm

Roth, J., Schär, F. and Schöpfer, A. (2019), ‘The Tokenization of Assets: Using
Blockchains for Equity Crowdfunding’.
URL: ht tp s: // dx .d oi .o rg /10. 2139/ ss rn .3443382 , Accessed: Decem-
ber 27, 2019

Sheffield, N. (2018), ‘Ethereum Clique PoA vs PoW’.
URL: ht tp s: // me di um .c om /c oi nm on ks /e th er eu m-c li qu e-p oa -v

s-p ow -11b e52c dd de 1 , Accessed: December 18, 2019

Szilágyi, P. (2017), ‘EIP225: Clique proof-of-authority consensus protocol’.
URL: ht tp s: // gi th ub .c om /e th er eu m/ EIPs /b lo b/ ma st er /EIPS/ ei

p-225. md , Accessed: December 18, 2019

Uniswap (2019), ‘Uniswap Whitepaper’.
URL: ht tp s: // ha ck md .i o/ C-Dv wDSf Sx uh -Gd 4WKE_ ig , Accessed: De-
cember 28, 2019

Zhang, Y., Chen, X. and Park, D. (2018), ‘Formal Specification of Constant Prod-
uct (x ∗ y = k) Market Maker Model and Implementation’.
URL: ht tp s: // gi th ub .c om /r un ti me ve ri fi ca ti on /v er if ie d-s ma

rt -c on tr ac ts /b lo b/ un is wa p/ un is wa p/ x-y -k .p df , Accessed: Decem-
ber 30, 2019

iv

https://dx.doi.org/10.2139/ssrn.3443382
https://medium.com/coinmonks/ethereum-clique-poa-vs-pow-11be52cddde1
https://medium.com/coinmonks/ethereum-clique-poa-vs-pow-11be52cddde1
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-225.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-225.md
https://hackmd.io/C-DvwDSfSxuh-Gd4WKE_ig
https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf
https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf

A User Manual

C
O

N
T

A
C

T:

Fl
or

ia
n

Bi
tt

er
li 

flo
ria

n.
bi

tt
er

li@
ic

lo
ud

.c
om

T
he

 p
os

sib
ili

tie
s o

f t
hi

s b
rie

fc
as

e
ar

e
no

t l
im

ite
d

to
 th

e
in

te
rn

al

ap
pl

ic
at

io
ns

. Y
ou

 c
an

 u
se

 th
is

ne
tw

or
k

lik
e

an
y

ot
he

r E
th

er
eu

m

te
st

 n
et

w
or

k.
 A

 fe
w

 p
os

sib
ili

tie
s a

re
:

•
U

se
 re
m
ix

 to
 c

re
at

e
an

d
de

pl
oy

yo

ur
 o

w
n

sm
ar

t c
on

tr
ac

t.
•

U
se

 th
e

br
ow

se
r c

on
so

le
 to

in

te
ra

ct
 v

ia
 w
eb
3-

co
m

m
an

ds
.

•
Bu

ild
 y

ou
r o

w
n

we
bs

ite
 to
 

in
te

ra
ct

 w
ith

 th
is

bl
oc

kc
ha

in
.

G
E

T
 C

R
E

A
T

IV
E

 B
Y

Y

O
U

R
 O

W
N

!

T
hi

s b
oo

kl
et

 o
ffe

rs
 a

 g
ui

de
 o

n
ho

w

to
 c

on
ne

ct
, r

eq
ue

st
 in

iti
al

 fu
nd

s
an

d
us

e
th

is
Et

he
re

um
 b

lo
ck

ch
ai

n
an

d
its

 p
re
-in

st
al

le
d

ap
pl

ic
at

io
ns

.

U
S

E
R

 M
A

N
U

A
L

Pr

iv
at

e
Et

he
re

um
 B

lo
ck

ch
ai

n
in

 a
 B

ox

C
O

N
N

E
C

T
 T

O
 T

H
E

N

E
T

W
O

R
K

1

L
oo

k
fo

r
th

e
P
ri
va
te
E
th
er
eu

m
 N

et
w

or
k

Pa
ss

w
or

d:
 W

W
Z
un

ib
as

2

3

O
pe

n
th

e
N

et
w

or
ks

Ta
b

&
 S

el
ec

t

„C
us

to
m

 R
P

C
“

E
nt

er
 th

e
D

et
ai

ls

as
 S

ho
w

n
in

 th
e

P
ic

tu
re

v

A
V

A
IL

A
B

L
E

 A
P

P
L

IC
A

T
IO

N
S

Yo
u

ca
n

fin
d

va
rio

us
 a

pp
lic

at
io

ns
 o

n
th

e
in

te
rn

al
 w

eb
sit

e.

O
nc

e
yo

u
re

qu
es

te
d

fu
nd

s f
ro

m
 th

e
fa

uc
et

, y
ou

 c
an

 se
nd

 tr
an

sa
ct

io
ns

 a
nd

 u
se

 th
e

pr
e-

in
st

al
le

d
ap

pl
ic

at
io

ns
 li

ke
 y

ou
 w

ou
ld

 o
n

an
ot

he
r p

ub
lic

 te
st

ne
t.

TO
K
EN

FA
C
TO

RY

U
se

 th
e

Bl
oc

ke
xp

lo
re

r t
o

br
ow

se
 th

ro
ug

h
th

e
m

os
t

re
ce

nt
 b

lo
ck

s.
To

 lo
ok

 fo
r

ol
de

r b
lo

ck
s,

tr
an

sa
ct

io
ns

or

 a
dd

re
ss

es
, s

im
pl

y
us

e
th

e
se

ar
ch

 fi
el

d
in

 th
e

na
vi

ga
tio

n
ba

r o
n

to
p.

H
T
T
P
:/
/B

R
IE

F
C
A
S
E
.L

O
C
A
L

G
E

T
 S

T
A

R
T

E
D

64

B
LO

C
K
EX

PL
O
R
ER

V
is

it
 t

h
e

 W
e

b
si

te

R
e

q
u

e
st

 E
th

e
r

5

U
N
IS

W
A
P

C
re

at
e

yo
ur

 o
w

n
ER

C
20

 to
ke

n
w

ith
 th

e
to

ke
n

fa
ct

or
y!

•
Sp

ec
ify

 th
e

re
qu

ire
d

va
ria

bl
es

 a
nd

su

bm
it.

 (1
)

•
A

pp
ro

ve
 th

e
tr

an
sa

ct
io

n
in

 M
et

aM
as

k.
•

W
ai

t f
or

 th
e

co
nfi

rm
at

io
n.

 (2
)

•
Ac

ce
ss

 y
ou

r t
ok

en
 d

et
ai

ls
(3
,4
) a

nd
 a

dd

th
em

 to
 M

et
aM

as
k.

 (5
)

1

C
re

at
e

a
ne

w
 e

xc
ha

ng
e

co
nt

ra
ct

.
Se

t t
he

 in
iti

al
 e

xc
ha

ng
e

ra
te

by

 p
ro

vi
di

ng
 li

qu
id

ity
.

&

1
2

3

4

2

3

C
on

gr
at

ul
at

io
ns

!
Yo

ur
 to

ke
n

is
no

w

re
ad

y
to

 b
e

tr
ad

ed
!

Si
m

pl
y

se
le

ct
 th

e
Sw
ap

 in
te

rf
ac

e,

se
le

ct
 th

e
to

ke
n

by

en
te

rin
g

its
 a

dd
re

ss

an
d

en
te

r a
n

am
ou

nt

to
 e

xc
ha

ng
e.

O
nc

e
yo

u
cr

ea
te

d
yo

ur
 o

w
n

to
ke

n,

yo
u

ca
n

lis
t i

t o
n

th
e

de
ce

nt
ra

liz
ed

ex

ch
an

ge
 U

ni
sw

ap
.

S
e

n
d

 Y
o

u
r

F
ir

st

T
ra

n
sa

c
ti

o
n

5

vi

B Faucet Webpage

<!DOCTYPE html >
<html lang="en">

<head >
<meta charset ="utf -8">
<meta http -equiv="X-UA-Compatible" content ="IE=edge">
<meta name=" viewport" content =" width=device -width, initial -scale

=1">
<title >Faucet </title >

<!-- CSS -->
<link href=" stylesheets/bootstrap.min.css" rel=" stylesheet">
<link href=" stylesheets/custom.css" rel=" stylesheet">
<link href=’stylesheets/customfonts ’ rel=’stylesheet ’ type=’text

/css ’>

<!-- Favicon -->
<link rel=" shortcut icon" href=" favicon.png" type=" image/x-icon

">
</head >

<body >
<!-- Navigation -->
<nav id=" siteNav" class =" navbar navbar -default navbar -fixed -top"

role=" navigation">
<div class=" container">
<!-- Logo and responsive toggle -->

<div class="navbar -header">
<button type=" button" class ="navbar -toggle" data -toggle ="

collapse" data -target ="# navbar">
Toggle navigation

</button >

<img style="max -height: 28px;" alt=" Brand" src=" images

/ethergreen.png">

Briefcase

vii

</div >
<!-- Navbar links -->
<div class=" collapse navbar -collapse" id=" navbar">

<ul class="nav navbar -nav navbar -right">

Home

Chain Specifications

<li class=" dropdown active">

<a href ="#" class="dropdown -toggle" data -toggle ="
dropdown" role=" button" aria -haspopup ="true" aria -
expanded =" false">Applications <span class ="caret
">

<ul class="dropdown -menu" aria -labelledby ="about -us">

Faucet
Blockexplorer
Tokenfactory
Uniswap

Contact

</div ><!-- /.navbar -collapse -->

</div ><!-- /. container -->
</nav >

<!-- Header -->
<header >

<div class="header -content">
<div class="header -content -inner">

<h1>Faucet </h1>
<p>Press the Request Button below, sign the transaction

and receive your test -Ether within a couple of seconds.

To avoid excessive usage, requests are limited to one per
address. If you need more funds, request again from a
different address.</p>

Go to

viii

Faucet
</div >

</div >
</header >

<!-- Content 1 -->
<section id=" faucetform" class=" content">

<div class=" container">
<div class="row">

<div class="col -sm -6">
<img class="img -responsive img -rounded center -block"

src=" images/faucet.png" alt=" faucet">
</div >
<div class="col -sm -6">

<h2 class="section -header">Faucet </h2>
<p class ="lead text -muted">Press the button and receive

10 test -Ether.

Make sure to connect your MetaMask to the correct

network (Custom RPC: <i>http://192.168.0.101:8545)</
i>.

Requests are limited to one per address. If you need
more funds, use different addresses for multiple
requests.</p>

<form onsubmit= "return faucetFunction(event)">
<center >

<button id=" faucetRequest" type=" submit" class ="btn
btn -primary btn -lg">Request 10 Ether </button >

</center >
</form >

</div >
</div >

</div >
</section >

<!-- Footer -->
<footer class="page -footer">

<!-- Copyright -->
<div class="small -print">

<div class=" container">
<p>Copyright © Florian Bitterli 2019 </p>

</div >
</div >

</footer >

ix

<!-- jQuery -->
<script src=" javascripts/jquery -1.11.3.min.js"></script >
<!-- Bootstrap Core JavaScript -->
<script src=" javascripts/bootstrap.min.js"></script >
<!-- Plugin JavaScript -->
<script src=" javascripts/jquery.easing.min.js"></script >
<!-- web3 -->
<script src=" javascripts/web3-trufflesuite.min.js"></script >
<!-- Custom Javascript -->
<script src=" javascripts/custom.js"></script >

</body >
</html >

Codeblock 13: HTML code for the faucet webpage.

x

	Introduction
	Ethereum
	Private Blockchain
	Consensus Protocol
	ERC20 Tokens
	Uniswap

	Components of the Briefcase
	Hardware
	Software

	Installation Guide
	Set Up Raspberry Pi
	RTC Module
	Initialize Geth
	Network
	Startup Scripts
	Uniswap
	Website

	Conclusion
	References
	Appendix User Manual
	Appendix Faucet Webpage

