Master Thesis
Blockchain and Trade Finance:
A Smart Contract-Based Solution

Alexander Blum

Submission Date: November 18, 2019

Supervised by:

Prof. Dr. Fabian Schér

Credit Suisse Asset Management (Schweiz) Professor for
Distributed Ledger Technologies and Fintech

Center for Innovative Finance, University of Basel

Abstract

In this paper, we present a solution how solve the unbalanced risk distri-
bution between two unknown trading parties with the help of blockchain
technology, in particular the public Ethereum blockchain. In a first step, we
analysed the traditional financial instruments such as letter of credit and
documentary collection as well as the popular method of open account pay-
ment from a game-theoretical perspective. We found that these payment
methods are only incentive compatible in the presence of banks. In a second
step, we developed a smart contract which makes intermediaries obsolete,
has significantly lower transaction costs and accelerates the overall trade fi-

nance process. A legal classification of smart contracts completes our work.

Keywords: Trade Finance, Blockchain, Smart Contracts, Ethereum.
JEL: G23, 031, 033

Contents

1 Introduction 1
2 Topic Enquiry 2
2.1 Ethereum Blockchain 2
2.2 Smart Contracts 3

3 Trade Finance 4
3.1 Roles and Responsibilities 6
3.2 Payment Methods, 7
3.2.1 Cashin Advance 7

3.22 Open Account L 8

3.2.3 Letterof Credit 8

3.2.4 Documentary Collection 12

3.2.5 Bank Payment Obligation 14

3.2.6 Standby Credit or Demand Guarantee 15

327 BankAvalo oo 15

3.2.8 Factoring and Forfaiting 16

3.3 Documents 17
3.3.1 Commercial Invoice 17

332 BillofLading 17

3.3.3 Bill of Exchange 18

3.3.4 Certificate of Origin 18

3.3.5 Insurance Certificate 19

3.3.6 Inspection Certificate 19

3.4 Risk Evaluation

3.5 Game Theoretical Analysis

4 Smart Contracts for Trade Finance

4.1 Contract Design L.

4.1.1 Whitelist

4.1.2 Trade Finance
4.2 Smart Contract Development
43 Oracles.
4.4 Integrity of Goods
4.5 Legal Classification
4.6 Cost Comparison
4.7 Existing Blockchain Trade Finance Projects

4.8 Limitations

5 Discussion

References

Appendix

II

25

26

27

27

29

34

35

36

37

42

42

43

List of Tables

1 Payoff matrix for a CIA one-shot game 22
2 Payoff matrix for an OA one-shot game 23
3 Payoff matrix for an LC one-shot game 24
4 Fees overview for export LCs (in CHF) 38
5 Fees overview for DCs (in CHF) 39
6 Transaction costs for our smart contracts 41

List of Figures

1 Mechanism of an LC transaction based on Giovannucci (2007) 9
2 DC mechanism including D/A and D/P based on Jones (2018) 13

3 Risk distribution for different payment methods in trade fi-

nance based on Jones (2018) 20
4 Process flow of a smart contract-based transaction 28
5 Gas price development for 2019 (in Wei) 40

III

X
2P University
/<IN of Basel

Center for
Innovative Finance

Plagiatserklarung

Ich bezeuge mit meiner Unterschrift, dass meine Angaben iiber die bei der
Abfassung meiner Arbeit benutzten Hilfsmittel sowie iiber die mir zuteil
gewordene Hilfe in jeder Hinsicht der Wahrheit entsprechen und vollstandig
sind. Ich habe das Merkblatt zu Plagiat und Betrug vom 22. Februar 2011
gelesen und bin mir der Konsequenzen eines solchen Handelns bewusst.

A S

Alexander Blum

Basel, November 18, 2019

Acknowledgements
I would like to thank Prof. Dr. Fabian Schér for his valuable input and
feedback during the Master Blockchain Research Seminar. Further, I would

also like to thank Sebastian Blum for proofreading this thesis by great care.

1Y

1 Introduction

The greater attraction of open account (OA) financing based on a higher
level of security, better communication and more available information has
reduced the share of traditional trade finance instruments such as the letter
of credit (LC) and documentary collection (DC) from 50 % to 15 % over
the last decades (Dab et. al. (2016); Ganesh and Olson (2018)). Further,
greater competition between banks puts pressure on the prices, and new
regulations make the overall process more cost intensive (Dab et. al., 2016).
Defined by the International Chamber of Commerce, trade finance allows
firms to access new markets and mitigate risks which occur by importing or
exporting products (International Chamber of Commerce, 2019a).
According to Dab et. al. (2016), trade finance customers search for secure,
fast, transparent and favourable methods for their trading. Also, today in
a highly digitalised world, trade finance processes are mostly paper based,
not automatized, and include numerous parties who do not trust each other
by nature (Dietrich, 2018). Two-thirds of all submitted documents have an
offset at first, which requires corrections and makes the process inefficient
(Ganesh and Olson, 2018). Many different documents are needed to trans-
fer goods in an international environment; for example, an LC transaction
requires more than 30 documents from more than 20 parties (Dietrich, 2018).
Based on the estimation of Dietrich (2018), blockchain technology can shorten
the process’s duration by 90 %. While the use of public blockchains is cru-
cial for applications which require many transactions per second and need
to be fast (a few seconds or less), in the case of trade finance, it is not
elementary to reach this level of performance (Dietrich, 2018).

Since we use the Ethereum blockchain, the main programming language to
develop smart contracts is Solidity; it has various elements from well-known

languages like Python, C++ and Javascript (Sharma, 2019).

In this paper, we want to answer the following questions: How can we de-
sign a trading process, in which no trust between two unknown parties is
needed? What will the source code in Solidity look like? How much cheaper
is a trade agreement that uses smart contracts? What are the legal impli-

cations of a contract based only on source code?

To answer these questions, we structure this work as follows: in section 2
we give a short overview of the principle of blockchain and take a special
look at Ethereum. In section 3 we describe the different payment methods
traditionally used in today’s trading environment and analyse them from
a game theoretical perspective. Finally, in section 4 we develop a smart
contract and analyse the main functions in that smart contract based on
the Solidity code.

2 Topic Enquiry

This section provides a brief overview of blockchain basics, focussing on
the relevant topics of the Ethereum blockchain and the use of smart con-
tracts. Blockchain, based on the distributed ledger technology (DLT), is
a decentralized network. This technology relies on a consensus protocol
which makes intermediaries redundant and hence creates trust among the
network participants (Atzei et al., 2017, p. 164). Miners that serve as nodes
are spread all over the world and confirm transactions in blocks and get a
transaction fee in case of success; higher transaction fees lead to faster trans-
action processing. The successful miner who adds a block to the blockchain
network obtains a reward, usually cryptocurrency or a transaction fees, de-

pending on the blockchain protocol.

2.1 Ethereum Blockchain

In general, the Ethereum blockchain is a progression of the Bitcoin block-
chain which is used to transfer financial values such as Bitcoin in a peer
to peer network. The key differences are the Turing-completeness and the
inclusion of the state in each block (Vujici¢ et al., 2018). The Ethereum
blockchain is based on an account-based model in which every account has
a 20-byte address and a state (Vujici¢ et al., 2018). Each Ethereum account
consists of a nonce, ether balance, contract code hash, and storage root (Bu-
terin et al., 2014). The nonce symbolizes a security mechanism against the
double-spending problem so that each transaction can be used just once.

The Ether balance shows the amount of the account of Ether (Vujici¢ et al.,

2018).

We have to differentiate between two different account types - namely, ex-
ternally owned accounts (EOAs) and contract accounts (CAs) (Ethereum
Community, 2019a). As we can derive the characteristics from the term
EOA, this account type is owned by a person, has an account balance and
can send messages. In contrast, CAs are controlled by the written code and
the execution is triggered by a transaction or message call (Kenneth, 2018).
A transaction via a message call between EOAs can be the transfer of Ether,
whereas a call to a CA can be the interaction with or creation of a smart
contract (Schiitz and Fertig, 2019, pp. 120ff.). All transactions are stored
on the blockchain and can be identified by the transaction hash. Further,
CAs can communicate with each other by the help of messages; every first
message must be lead by a transaction from an EOA (Schiitz and Fertig,
2019, pp. 120ft.).

The execution of decentralized applications (DApps) on the Ethereum block-
chain takes place under the Ethereum virtual machine (EVM), run by the
network’s nodes (Ethereum Community, 2019a). To protect the EVM from
attacks and poorly programmed code that could trigger an infinite loop,
Ethereum uses a gas system (Miller, 2019). Every operation consumes a
predefined amount of gas - for example, five Wei for an add operation -
which is equivalent to a fee structure. The gas limit value determines the
maximum amount someone is willing to pay for the execution of the trans-
action. Any unused gas will not be charged against the initiators’ account.
In addition, the user sets a price per unit of gas, called gas price. As miners
can choose from a transaction pool, it makes sense to set a higher gas price
if our transaction should be validated in a block and quickly added to the
blockchain. The total transaction costs are calculated by multiplying the
gas price by the gas used (Wood et al., 2014).

2.2 Smart Contracts

Smart contracts are one application of DApps on the Ethereum blockchain.
In spite of their name, these contracts are not as smart as supposed and
are not equivalent to process automation. Processes can be mapped when-

ever they contain a rule following the logic of an if-then condition (Szabo,

1997). An example is a vending machine for drinks; after paying the dis-
played amount, we get the product (Szabo, 1997). Smart contracts follow
the same principle: the execution will proceed only if conditions are sat-
isfied and secured by the consensus protocol of the blockchain (Berentsen
and Schér, 2017, p. 289).

The code of a smart contract is written in the Solidity programming lan-
guage and consists of two parts: the application binary interface (ABI),
which contains the functions of the contract, and the byte code that, after

compilation, will be executed on the blockchain (Lee, 2019, p. 136).

3 Trade Finance

In general, for a trading deal, we need a seller and a buyer who contract
with each other. To finance and secure national and especially interna-
tional trade, third parties such as banks and insurance companies are in-
volved in a transaction. They finance the gap between the trade agreement
and the settlement of payment, and they also manage risks (Fingerand and
Schuknecht, 1999, pp. 4f.). Generally, we distinguish between pre-shipment
and post-shipment trade financing. In the first case, the financing must
cover production costs such as materials or wages, whereas in the second
case, a funding is needed to bridge the gap between the shipment of goods
and the receipt of money (International Trade Center, 2009, pp. 37ff.). For
example, pre-shipment financing can be done by pre-payment. Pre-payment
means that the buyer lends money from the bank in order to make it avail-
able to the seller, which she or he normally would not get from a bank.
The option of post-shipment financing can be factoring or reverse factoring,
which we explain more detailed in section 3.2.8.

Because international trade means acting across multiple legal systems and
multiple understandings of contractual enforcement, generally speaking, this
kind of trade is riskier (Schmidt-Eisenlohr, 2013, p. 7). It is essential to
know that banks deal with the documents, not with the goods themselves
(International Chamber of Commerce, 2007, Art. 5). This fact causes
another problem: as the parties rely on these documents, it opens the op-
portunity for criminals to obtain money from banks with the help of fake

documents (ICC Commercial Crime Services, 2019).

To make trade happen between two unknown parties, trust regarding pay-
ment and shipping of goods is essential. To mitigate risks, in traditional
trade finance, banks offer various financial products such as LCs and guar-
antees to cover the payment and documentation stream (UBS, 2015, pp.
3f.). The risks can either be commercial, which means that the party re-
ceiving the products is not able to fulfil her or his obligation, or political,
which are risks due to regulatory changes for import or export goods or a
government’s policy (Grath, 2011, pp. 18ff.). In addition, financial or cur-
rency risks have to be considered for an international trade deal. Short-term
fluctuations of the agreed currency may make a deal more expensive to the
buyer. Buyers also have to manage their liquidity through all trade phases;
the risks here is that, because different payment stages, the financing may
not continue with the chosen bank (Grath, 2011, pp. 18ff.). Another aspect
is the enforcement of legal contracts, as it is much easier to take legal ac-
tions against the other party within the same country than across borders
(Schmidt-Eisenlohr, 2013, pp. 7ff.). Furthermore, the standing and size of
a company must be considered as factors of risk, since dealing with small
firms is riskier than with large one’s.

To ensure that standards are aligned, the Society for Worldwide Interbank
Financial Telecommunication (SWIFT') sets up various standards for trans-
mitting messages between banks and for the relationship between customers
and banks. In the first case, a message type (MT) 700 streamlines the in-
terbank communication and defines the required information to run a trade
deal successfully (Dab et. al., 2016). For the second case, an MT 798
governs the interaction between customers and banks - for example, when
someone applies for an LC (Fenyk, 2015). Thus, transaction costs are re-
duced. Integration of these steps into an organization’s existing enterprise
resource planning (ERP) system is advantageous from the perspective of
efficiency but poses an expensive solution.

Nevertheless, today’s process is susceptible to errors, since many different
parties interact in a highly manual process, and it requires human actions
such as verifying documents (Dab et. al., 2016). For that reason, the Inter-
national Chamber of Commerce (ICC) adds a supplement, namely eUCP,
for electronic presentation, to the known rules of Uniform Customs and
Practice for Documentary Credits (UCP) 600 (Croner-i, 2019). They allow

pure electronic presentation and are independent of any system require-

ments (International Chamber of Commerce, 20196). Other than that, a
mixed use with partial electronic and paper-based usage is also possible.

If a payment is delayed, it is difficult to manage the working capital in a
firm (Cong and He, 2019, pp. 1769f.). Moreover, the payment section is
isolated from the flow of goods, which we will later combine in our smart

contract.

3.1 Roles and Responsibilities

In this section, we introduce the responsibilities of the various parties which
participate in a typical trade finance transaction (Grath, 2011, pp. 47ff.).
We begin with the most obvious parties: a buyer wants to buy an item
and should make a payment to the offering party, who offers a good and
should produce it (Brenton and Imagawa, 2005, p. 204). Additionally, the
freight company’s business model commits it to deliver the products from
the seller’s location to the buyer’s, and the customs broker is responsible
for checking whether a trade fulfils import rules and requires fees based on
trade policy.

In discussing banks, we must to distinguish between various functions in
the context of trade finance. We take these from the guideline UCP 600,
the newest version from 2010, published by the ICC. A bank that offers a
financial product such as a trade credit, it is called the issuing bank (In-
ternational Chamber of Commerce, 2007, Art. 2). Moreover, this bank
must take risks and must pay if the buyer defaults. The institution that
functions as an advising bank checks the authenticity and conformity of
the forwarded financial product from the issuing bank and enters into a
relationship with the seller (Jones, 2018, pp. 197f.). The labels nominated
or confirming bank are common, but their obligations differ from those of
an advising bank. A nominated bank can be any bank that makes credit
available but that does not have the obligation to pay in case of problems
with the buyer’s payment as shown in UCP 600 (International Chamber of
Commerce, 2007, Art. 2). A confirming bank acts at the request of the
issuing bank and verifies whether the details as stated in a trade credit are
correct (International Chamber of Commerce, 2007, Art. 2).

Export credit agencies (ECAs) are public organisations which provide cred-

its to firms, who may not have a high credit line in order to participate
in international trade (Asmundson et al., 2011, p. 5). Additionally, ECAs
and insurance companies offer credit insurance to either the banks or the

exporter to facilitate trade.

3.2 Payment Methods

This section deals with the different payment methods that can be used in
the trade between the participating parties. For example, an issued credit
cannot be cancelled without the agreement of the involved banks and the
exporter (International Chamber of Commerce, 2007, Art. 18a). We further
assess the benefits and drawbacks of each method and evaluate potential
risks for both buyers and sellers in section 3.4. We focus our analysis on the
four traditional, most commonly used payment methods as illustrated in the
relevant literature (Giovannucci, 2007, pp. 3ff.) and take into consideration
a quite new payment method, called bank payment obligations (BPOs),
introduced by SWIFT (SWIFT, 2016).

3.2.1 Cash in Advance

This procedure involves a payment by the buyer that is made before the
delivery of goods takes place (Grath, 2011, pp. 346f.). The method elimi-
nates liquidity and commercial risk, which is particularly advantageous for
the selling party (Grath, 2011, p. 35). As long as guarantees are absent, the
buyer bears the risk that the seller will not meet her or his contractual obli-
gations (Grath, 2011, p. 35). Cash in advance (CIA) is especially suitable
if the seller has a high initial outlay to produce a tailor-made good (Grath,
2011, p. 35). In such a situation, the seller would suffer from an adverse
strategic position: if the buyer cannot credibly commit to paying the stip-
ulated payment, the seller will not enter the contractual relationship. This
situation occurs because the buyer can renegotiate the price as soon as the
seller has made a specific investment to produce a good (hold-up problem).

The CIA principle poses one solution to this strategic problem.

3.2.2 Open Account

When the payment is conducted via OA, the seller ships the goods and
forwards the documents to the buyer after signing a sales contract (Nordea,
2018). The buyer can pick up the goods by presenting shipping documents
such as the bill of lading (B/L) to the port (Grath, 2011, pp. 5f.). The
settlement of payment takes place on a due date in the future. To transfer
the default risk of the buyer, the seller can use a trade credit insurance
company (Grath, 2011, pp. 5f.). The method of OA is widely used when
both parties have a common history in trading goods, since after shipment,

the seller loses control over the products (Jones, 2018, p. 37ff.).

3.2.3 Letter of Credit

This irrevocable instrument lowers the risk of non-fulfilment of contractual
obligations on the sides of both sellers and buyers because a bank acts as
an intermediary (UBS, 2015, pp. 13ff.). If one party does not fulfil her or
his obligations, the counterparty’s bank pays the outstanding amount if the
required documents have been presented and takes legal action against the
respective party (Trade Finance Global, 201956). In this connection, it is
essential that the documents are in line with the agreed conditions (UBS,
2015). During the LC process, many contractual relationships between the
participating parties arise (Niepmann and Schmidt-Eisenlohr, 2016). The
graph in figure 1 illustrates the process and the parties involved when an

LC is issued.t

Lother LC variations are possible, depending on the agreed terms and conditions

A A \
N

Freight
Company

/ N

8 13

/ vy

11 >
Buyer’s Bank
(Issuing Bank)
3

Customs
Broker

7—>

©

Seller’s Bank
(Advising Bank)

Figure 1: Mechanism of an LC transaction based on Giovannucci (2007)

AA

As shown in figure 1, many different contracts, documents and payment
flows are in place. Here, the numbers in the arrows indicate the chronol-
ogy of events. Referring to the literature (Bergami, 2009, pp. 193ff.), the
starting point is the sales contract between the seller and the buyer, which
defines a business relationship to trade goods. As an LC stipulates the
payment, the buyer will apply for it at her or his bank, and if she or he suc-
cessfully passes the bank’s risk assessment, the next contract between the
buyer and her bank accrues (Giovannucci, 2007). The issuing bank gives
security to the seller through a conditional, guaranteed payment, which
also is a contract between these parties (Niepmann and Schmidt-Eisenlohr,
2016). After the issuing bank informs the advising bank about the LC’s
issuance, it informs the seller as well (Giovannucci, 2007). That is a signal
for the seller to deliver the goods to the freight company and send copies of
the documents to the buyer. Straightaway, the freight company sends the
products to the customs broker at the buyer’s destination and consigns the
original documents to the advising bank. The advising bank then informs
the issuing bank, which makes a payment to hands of the advising bank,
which credits this amount to the seller’s bank account. The next step is the
transmission of the original documents to the issuing bank, which it sends

to the customs broker after the buyer pays the outstanding amount (Gio-

vannucci, 2007). Finally, the buyer can pick up the goods at the customs
broker. If the defined conditions from the LC are met in a specific time
frame, the issuing bank pays and enforces the local law if the buyer does
not pay (International Chamber of Commerce, 2007, Art. 7).

Moreover, if the seller requires additional security because of doubts about
the credibility of the issuing bank, the seller can apply for second security at
the advising bank (Grath, 2011, p. 53). This bank irrevocably ensures the
payment from the issuing bank by its guarantee in the event of adverse cir-
cumstances such as political risks or insolvency, as long as, the determined
documents are presented, as regulated in the agreement (Bergami, 2009, p.
194).

According to article 6b (International Chamber of Commerce, 2007), we

define the different payment modes of LCs:

e By acceptance: The seller does not get the payment directly after

submitting the documents to the bank but is paid at a later time.

e By payment at sight: After banks receive the required documents from

the seller as stated in the LC, they complete the payment immediately.

e By deferred payment: When shipment is done, the seller is paid on a
defined due date as stated in the LC.

e By negotiation: The buyer negotiates with the bank to get a discount
on the fixed amount in the LC if the buyer presents the required

documents.

Below is the required information which must be presented in an LC under
the international guideline UCP 600 (International Chamber of Commerce,
2007, Art. 14) and the relevant literature (Grath, 2011, pp. 47ff.):

e Period of validity: Following this standard, all LCs are irrevocable and
on behalf of the issuing bank. Within an agreed period of time, the
documents must be presented to the issuing bank or to a nominated
bank in the LC. In the case of a counterparty’s default, the issuing or

nominated bank have to fulfil the obligation.

10

Time of payment: Every LC includes an expiry date by which a pay-
ment must be settled. Two options can be selected: at sight, which
means that the seller receives the payment by presenting the required
documents, or at a specified time. Furthermore, the parties must
agree on one of these payment options: by acceptance (when handing

over the documents) or by deferred payment (on a set due date).

Place of document presentation: Documents must be presented at the

issuing or advising bank.

Security level: If the seller has doubts about the issuing bank’s sol-
vency, the advising bank can guarantee a payment in the event that
the issuing bank is not able to fulfil its obligations. This information

is not shared with other parties.

Documents to be presented: The bank can reject the payment if not

all required documents are presented within the given time period.

There also exist various versions of LCs, which are preferable under certain

circumstances:

Transferable credit: This kind of LC can be transferred by the seller
to a third party, usually a supplier or any other cooperating company.
Afterwards, the LC cannot be transferred again to others (Eker, 2019).

Revolving credit: If two trading parties have repeating transactions
about the same goods during a given time period - for example, for
necessary goods for production such as screws - an LC may feature
revolving credit, which can be renewed after the defined amount is
used or the expiry date is reached (Eker, 2019).

Back-to-back credit: For a supply chain with three parties, the pay-
ment is guaranteed by a first LC between the seller and the buyer. In
addition, a second LC is opened by the seller in trust to the supplier
with the first LC as a guarantor (Eker, 2019).

Red clause: For this type of LC, a partial payout or the whole sum can

be paid to the seller before the goods are shipped or any documents

11

are presented. The seller has to state that the credit will be paid, and
the documents must be presented before the expiry date is reached
(Credit Suisse, 2016).

e (Green clause: To get a payment in advance for a green clause LC, the
party must present evidence that the goods are stored in a warehouse,
in addition to the documents from the red clause LC (Credit Suisse,
2016).

To sum up, an LC is a trade finance instrument with which banks act as
intermediaries to mitigate the risks of default or of not receiving goods as
defined in the contract for both the buyer and seller. The large amount of

contracts between the parties increases the complexity of the process.

3.2.4 Documentary Collection

In this form of payment, a bank acts as a collector of documents, although
unlike with LCs, the bank does not bear any risks such as political, transfer
or commercial risks (UBS, 2015, p. 77). After the seller gives instructions for
a trade transaction to the bank and all documents are collected successfully,
the bank delivers these documents to the buyer (Kenton and Murphy, 2019).
A DC includes the following documents: commercial invoice, bill of lading,
certificate of origin and inspection certificate.?

We differentiate two versions of DCs: namely, documents against payment
(D/P) and documents against acceptance (D/A) (International Chamber of
Commerce, 1996, Art. 6). Figure 2 illustrates the process.

2further explanations in section 3.3

12

v vV
Seller’s < 7 Buyer’s
»
Bank 4 > Bank

Figure 2: DC mechanism including D/A and D/P based on Jones (2018)

As in figure 2, the numbers in the arrows represent the chronology of the
overall process, which starts with the negotiation of the trading terms be-
tween a seller and a buyer. After closing a deal, the seller sends the products
to the buyer’s destination, typically a port or an airport, and additionally
sends the documents to the seller’s bank, named as the remitting bank
(Jones, 2018, pp. 159). The seller’s bank sets the conditions of the DC and
submits the documents to the buyer’s bank, which is called the collecting
bank, after which that bank notifies the buyer of the arrival (Credit Suisse,
2016, p. 85).

If the chosen mode is D/P, the buyer then has to pay before receiving the
documents from the bank (Credit Suisse, 2016, p. 85). In other words, the
buyer cannot get goods without paying beforehand. In the case of a buyer’s
default or unwillingness to pay, the potential risk for the selling party can
be additional costs for storing the items in a warehouse or sending them
back to their origin.

The second type, the D/A, allows the buyer to make a payment at a future
date (Credit Suisse, 2016, p. 85). Here the buyer signs a bill of exchange
(B/E), which is an instrument for short-term financing and normally due

within 30 to 180 days. During this period, the seller bears the risk not

13

getting paid. To mitigate risks, the seller can demand for a bank guarantee
or sell the B/E to forfaiter at a lower price (Credit Suisse, 2016, p. 85). Af-
ter receiving the buyer’s payment, the buyer’s bank pays the transactional
amount to the seller’s bank and thus to the seller. The process of a DC is
finalized after this step.

Now, we want to show the key differences between a DC and an LC. First,
with DCs, banks are not liable for the content, whereas they are with LCs
(Credit Suisse, 2016, p. 85). Second, with LCs, payment is guaranteed
by a bank. Third, the LC costs more than the DC. According to Trade
Finance Global (20194), an LC costs on average between 1 and 2% of the
total transaction amount, whereas a DC has lower costs (Goswami, 2012).

More detailed information is provided in section 4.6.

3.2.5 Bank Payment Obligation

This new payment variant, developed by SWIFT, should reduce costs and
risks compared to LCs and OA payments by transmitting and matching the
contractual data electronically via a digital platform, namely the SWIFT
Trade Services Utility (TSU) (SWIFT, 2016). As the ICC supports BPOs,
the Unified Rules for Bank Payment Obligations (URBPO) No. 750 rules
govern the procedure between banks, although not in their relationship to
their customer (International Chamber of Commerce, 2013, p. 7). In this
set-up, banks again act as intermediaries, but the two parties, the seller and
buyer, directly exchange the shipping documents for releasing the goods at
the port or airport (SWIFT, 2016). The core element of this process is the
transaction matching application (TMA) unit, which checks the contractual
input data such as orders, shipping documents or invoices of both parties
automatically and, if they match, confirms the data for a trading deal. After
this event, the buyer’s bank has an obligation to pay the agreed amount at
maturity (Biiter, 2007, pp. 322f.).

The key difference between LCs and BPOs is the promise to pay: in the
first case, it is a relationship between a bank and the buyer, whereas in
the second case it is an interbank relationship (Biiter, 2007). Moreover,
according to Biiter (2007), input data for the two instruments is handled

differently, since for LCs banks check the documents for compelling content,

14

but for BPOs a match is enough, regardless of the content. Comparing the
level of safety of the two instruments, LCs are safer due to the exchange of

documents via banks and the handover against payment (Biiter, 2007).

3.2.6 Standby Credit or Demand Guarantee

In general, standby credits and demand guarantees remain in the back-
ground and compensate the parties financially in the case of a buyer’s de-
fault or a non-performing seller (Jones, 2018, p. 3). A standby LC works
like a commercial LC with added guarantees (Jones, 2018, pp. 271ff.). The
bank pays out a maximum amount, as defined beforehand, to the benefi-
ciary when the beneficiary presents the relevant documents - for example,
a B/L to the issuing bank. However, this circumstance can lead to unjusti-
fied payments, as a bank pays if the document meets the conditions of the
standby LC. In another case, a double payment can happen due to a late
payment by the buyer (Jones, 2018, pp. 271ff.). For continuing transactions
over long periods, standby LCs usually have an automatic extension mech-
anism for an additional year, called an evergreen clause. With notification
from the seller, or if no deviations from the trading contract occur and a
transaction is completed, the standby LC expires.

Demand guarantees can be classified into two groups: unconditional and
conditional (Jones, 2018, pp. 295ff.). For the first group, it is sufficient
to claim a demand in the cases described in the previous paragraph. With
conditional guarantees, the claimant must give evidence that the goods have
not arrived or that the buyer is not able to pay (Jones, 2018, pp. 295ff.).
The issuer of a demand guarantee is independent of the contractual agree-
ments between the parties and is involved only if one party breaches the

contract.

3.2.7 Bank Aval

A bank aval is a warranty that banks give related to their customers - for
example, to guarantee the payment of a B/E in DCs to the seller (Credit
Suisse, 2016, p. 85). If a trading counterparty demands higher security

against financial risks, a bank can guarantee the payable amount with their

15

creditworthiness (Jones, 2018, pp. 177ff.). If a client defaults, the bank
pays money to the seller, and the relationship between the buyer and the
buyer’s bank is as follows: the buyer’s assets serve as collateral or a credit
line to the bank. Also, the risk that the buyer does not want to or cannot
pay is transferred to the buyer’s bank. It gives the seller higher security
after losing control over the goods, since the documents are handed over to
the buyer’s bank (Jones, 2018, pp. 177ff.).

3.2.8 Factoring and Forfaiting

Factoring and forfaiting secure immediate liquidity to either the seller or
buyer, depending on the method, when the maturity date of the payments
is in the future. In the case of factoring, the seller sells her or his outstand-
ing money to a factor, who pays less than the original amount stated in the
invoice - for instance, 80 % (Klapper, 2005, pp. 6f.). The outstanding 20
% will be paid to the seller after the factor receives cash directly from the
buyer reduced by interest rates and fees. With this instrument, the seller
shifts many hazards to the factor (Klapper, 2005, pp. 6f.). Furthermore, we
have to differentiate between recourse and non-recourse. The first means
that in the case of a buyer’s default, the factor has a claim against the buyer
and can force it to court (Klapper, 2005, pp. 6f.). The second situation does
not have this functionality, which makes it overall riskier.

One particular case of factoring is reverse factoring, which focuses on the
obligations rather than the claims (Swissbilling, 2019). For instance, com-
pany A buys goods from another firm B, then the factor pays the invoice,
which A receives immediately, and issues a new invoice to A with a future
date of payment (Swissbilling, 2019).

Forfaiting is often used for medium and long-term financing (Silitschanu,
2019). The key differences compared to factoring is that the seller gets
up to the full amount of the transaction volume immediately and forfaiting
deals with financial instruments instead of accounts receivables (Silitschanu,
2019).

16

3.3 Documents

The documents, as stated in sections 3.2.3 and 3.2.4, are essential to con-
cluding a trade transaction successfully. The necessary information in each
document should match the documents from the trade goods according to
the guidelines - UCP 600 for LCs and URC 522 for DCs. Otherwise, a trans-
action will be delayed or cannot be completed (Ellinger and Neo, 2010, p.
246). The match is of great importance in the case of one party’s default
or unwillingness to make a payment, leaving banks with the obligation to

pay. The following documents are significant for international trade.

3.3.1 Commercial Invoice

The legal requirements for a commercial invoice are outlined in article 18,
UCP 600. The seller who issues an invoice must provide information about
herself or himself and the buyer on this document (International Chamber
of Commerce, 2007, Art. 18). When the payment happens with regard to an
LC, the descriptions in the LC and the commercial invoice must match, and
the indicated currency must match (International Chamber of Commerce,
2007, Art. 18). Other information about the buyer can be neglected.

3.3.2 Bill of Lading

The rules for one of the most important trading documents, the B/L, are
defined in article 20, UCP 600. According to this article, a B/L shows de-
tails about a good, such as type, quantity and destination, and must be
signed by a representative of the shipping company, such as the carrier,
agent or master (International Chamber of Commerce, 2007, Art. 20). We
have to differentiate between non-negotiable and negotiable B/Ls (Raunek,
2019). Non-negotiable means that the goods can be delivered only to the
party named in the bill, whereas with negotiable bills it is possible to deliver
goods to a third party as written in the document. A negotiable B/L serves
as an additional to a proof of the contractual relationship between the seller
and the freight company and as a goods receipt as a title of ownership of

the goods. On the contrary, non-negotiable B/Ls fulfil only the first first

17

mentioned function (Wax, 2018). For example, non-negotiable B/Ls are
straight or seaway B/Ls; seaway B/Ls are used for goods transported by
ships. This type of B/L is a contract between the freight company and the
customer rather than a document to clarify ownership (Ellinger and Neo,
2010, pp. 255ft.).

With the help of digital platforms such as Bolero,® the issuance and ex-
change of electronic B/Ls (eB/Ls) should expedite proceedings (Dab et.
al., 2016). Moreover, eB/Ls can accelerate the payment cycle and improve
the working capital situation for the seller, since the payment occurs more
quickly. As the B/L serves as a title of ownership, it must be unique and
secure (Tricks and Parson, 2018). Additionally, it should guarantee that
there exists exactly one owner at a time. The legal status of an eB/L is,

however, not clear, since rules about the use of eB/Ls do not exist.

3.3.3 Bill of Exchange

When the trading parties agree to pay by DC and further determine on
D/A, then the use a B/E is essential. It allows the buyer to pay at a
later stage, typically between 30 and 180 days, after presenting the required
documents for an after-sight bill and at any specific date for a time bill
(Credit Suisse, 2016). After releasing a B/E, the seller carries the risk of
a buyer’s non-payment, since no bank guarantees the B/E (Credit Suisse,
2016). With the help of bank guarantees, this risk can be eliminated.

3.3.4 Certificate of Origin

This document, as the name suggests, verifies the origin of products for
international trade (Credit Suisse, 2016). The basic information includes
country of manufacturing, country of destination, details about the ex-
porter, and a detailed description of the product (Federal Customs Ad-
ministration FCA, 2019).

We have to distinguish two types of certificates of origin: non-preferential
and preferential (Schweizerischer Bundesrat, 2018). Exporters use the non-

preferential type if there is no free trade agreement between two countries,

3detailed information, see section 4.7

18

while the preferential type is used when countries have negotiated a free
trade agreement, as it allows importers to take advantage of reduced or free

import tariffs.

3.3.5 Insurance Certificate

The insurance certificate directly shows to all involved parties that the
freight is insured against damages or losses (Hinkelman, 2008, p. 293).
Requirement for buying an insurance policy is a party who has an inter-
est to insure goods, e.g. through a cargo insurance (Hinkelman, 2008, p.
293). Depending on the shipping mode, either the seller or the buyer has
an obligation to insure the shipment (International Chamber of Commerce,
2011). Generally, the seller has an interest in having an insurance until the

payment is received, especially if the parties agreed to an OA payment.

3.3.6 Inspection Certificate

Before goods are shipped, an independent inspection authority checks if
the products are in line with the information given in the LC documents
(Jones, 2018, p. 443). The inspection certificate is essential for a bank
when it comes to a default by the buyer, because it verifies the condition
of the goods, so that the bank can track the real value (Jones, 2018, pp.
442fF.). As banks only deal with documents, it is important to define the
correct parameters in the credit. Moreover, this document is important
for securing the quality, quantity and characteristics of trading goods and
hence reduces the risk that the buyer will receive low-quality goods different
from what have been specified in the contractual agreements (Jones, 2018,
pp. 220ff.). Some countries also require additional documents, such as a

packing or weight list, which are not covered by the UCP 600 rules.

3.4 Risk Evaluation

In this section, we analyse the risk for the trading parties with regard to the
agreed payment methods. We also have to consider that different shipment

methods, which are defined in the Incoterms 2010, carry various risks for

19

either the seller or the buyer, which can be covered by insurance companies
(International Chamber of Commerce, 2011). Obviously, both parties are
interested in dealing successfully with each other. Figure 3 shows the risk

allocation for the different payment methods.

HIGH [Ke)')

Cash in Advance (CIA)

Letter of Credit (LC)

Buyer’s risk Seller’s risk
profile profile

Documentary Collection (DC)

Open Account (OA)

Low HIGH

Figure 3: Risk distribution for different payment methods in trade finance
based on Jones (2018)

In the case of CIA, the buyer carries all risks because the payment is finalised
before the buyer receives the goods (Jones, 2018, p. 4). The opposite issue
happens when the parties agree to an OA: the seller then bears high risks
due to potential non-payment by the buyer. In other words, CIA can also be
called buyer or importer finance, since the buyer pays in advance (Schmidt-
Eisenlohr, 2013, p. 2). OA is then called seller or exporter finance, since
the seller delivers the goods before receiving a payment from the buyer.
In addition, OA is advantageous for the buyer, as faulty products can be
returned more easily and cheaply than with a CIA payment, which would
require the buyer to claim reimbursement (Lee and Stowe, 1993, p. 286).

The other solutions in form of LCs or DCs balance the risks between buyer

20

and seller equally, due to the participation of banks as intermediaries which
are better able to manage risks. LCs are safer for the seller than DCs, which
do not cover the risk of a rejected payment or buyer liquidity problems
(Credit Suisse, 2016, pp. 6ff.). DCs, in turn, are more favourable for the
buyer because they are cheaper and do not require a credit line; payment
follows as soon as the goods arrive, including all documents that verify
ownership (Jaffeux and Wieser, 2012, p. 266).

3.5 Game Theoretical Analysis

The choice of payment methods for a trading contract depends on the point
in time at which one party carries higher risks and the other party has
greater bargaining power. In this section, we analyse whether one party has
an incentive to deviate from an agreed contract in order to reach a higher
expected payoff. We assume all players to be rational and risk neutral.

First, if the buyer has the choice whether to pay or not, the seller chooses to
deliver or not. Based on the equations from Onderstal et al. (2014), we start
with the model set-up for a CIA one-shot game; thus, after one transaction

is completed, no further trades occur:

Up =v —p, with v = ae (1)
Us = p — C(e), with C(e) = be? (2)
For the efficient outcome, both players maximize their utility functions, and

hence we get the value-maximizing effort levels (Onderstal et al., 2014, p.
233):

max Up + Ug = ae — p + p — be? (3)
a
x 7 4
¢ =5 (4)
a2

UB—l—Us:ae—b62=£

21

As stated in equation 5, the maximal total gains from trade are Z—Z. Fol-
lowing the argumentation of Onderstal et al. (2014), we suppose that both
parties agree to an equal share of the gains before trading. This leads to an

efficient price p:

2

a a
ST)
3a?
= — 7
P=3 (7)
In the case of equation 7, trade happens and the buyer pays p = %2. In

the situation of CIA, the seller has the full bargaining power and hence can
renegotiate after receiving payment (Onderstal et al., 2014, p. 232). There-
fore, the seller sets the utility of the buyer Ug to zero. It can be shown that
in the first option, the seller keeps the optimal price constant, which leads
to less effort for the production of the good, thus the quality decreases. The
second option is to keep the effort level constant and increase the price for
1 a2

the buyer. Following equation 1, the new price is p = 5 * %-.

The game table for a one-shot game using CIA is as follows:

Seller
deliver not deliver
Buger PY (v—p,p—C(e)) | (=p.p)
not pay (U7 —C(B)) (07 O)

Table 1: Payoff matrix for a CIA one-shot game

The Nash Equilibrium (NE) is (not pay, not deliver). Because the buyer
can anticipate the seller’s behaviour after paying in advance without getting
the products immediately, no trade occurs. Thus, the seller is also worse
off in the absence of trade and is better off if she or he can reliably commit

not to renegotiate after the buyer pays.

Now we consider the same set-up as before, however, we introduce repeated

interaction, in which both players desire a future business relationship as

22

well. Referring to table 1, we can prove by the net present values (NPV) for-
mula whether deviating yields a higher discounting factor or not (Onderstal
et al., 2014, p. 142). We consider a grim trigger strategy of the counter-
party: as long as both participants cooperate, they receive the respective
payoff 7¢. As soon as one player deviates from this strategy, that player
once obtains the payoff 77, which is usually higher than the cooperative
payoff. In the subsequent periods, both parties receive the NE payoff, since
cooperation is no longer feasible. The player’s discount factor for future
payoffs determines whether it is sensible to deviate from the cooperative

strategy.

¢ =p—Cle)
™ =p (8)
N =0

NPVY > NPVP (9)

1)
p—0 P

From equation 10, we see that if the ¢ from the seller is higher than ¢, the
fear of being punished by the buyer is high enough to make the seller not
deviate (Onderstal et al., 2014, pp. 142f.).

Second, we examine the case in which OA payment is agreed to. The seller

acts first, followed by the buyer:

Buyer
pay not pay
Seller deliw(.ar (p—Cl(e),v—p) | (=C(e),v)
not deliver (p, —p) (0,0)

Table 2: Payoff matrix for an OA one-shot game

23

As in the case of CIA, the NE again is (not deliver, not pay). For this
reason, trade does not occur if both parties agree to OA in a one-shot game

setting.

Third, we suppose the case in which an LC serves as a hedge against financial
loss, so that banks also participate in this game. The parameter A (with
A > 1, because of higher enforcement and legal costs) indicates that the
bank pays in the case of a buyer’s default. Illustrated in a payoff matrix,

the game is as follows:

Buyer
pay not pay
Seller delver | (p=C(e),v—p) | (p—Cle),v = Ap)
not deliver (0,0) (0,0)

Table 3: Payoff matrix for an LC one-shot game

The unique NE from the payoff matrix in table 3 is (deliver, pay). Now we
compare the cooperative payoff with the case of a deviating.
7¢ oV

>l -
5= " 15

§<1 (11)

Equation 11 shows that for values § < 1, cooperation is always feasible.
This also holds true in a one-shot game, since it poses a cooperative NE.
We conclude that a financial instrument such as LC is incentive compatible.
Schmidt-Eisenlohr (2013) includes in his model the enforcement probability
of contracts A and the interest rates in the seller’s country r and the buyer’s
country r*. His analysis for an one-shot game reveals that both CIA and OA
depend on the probability of enforcement (Schmidt-Eisenlohr, 2013, p. 8).
Furthermore, in an LC transaction, these parameters do not influence the
optimal result, as banks are involved and bear the risk. To make deviation
from the equilibrium path less attractive, repeated interaction with the
ability for punishment is needed. In the case of CIA when the buyer pays

the agreed amount but the seller does not deliver the goods once, both

24

will start into a business relationship proportional to A (Schmidt-Eisenlohr,
2013, p. 8). This is also valid for OA, where the buyer can deviate by
receiving the goods but does not making a payment (Schmidt-Eisenlohr,
2013, p. 9). Nevertheless, the situation remains unchanged for LCs, since

they were already incentive compatible.

4 Smart Contracts for Trade Finance

This chapter deals with the analysis of how blockchain technology in the
form of smart contracts can improve the overall trade finance process.
Instead of sharing the aforementioned documents (section 3.3) in a non-
transparent way, with the help of blockchain, the trade inputs can be saved
in decentralised fashion and shared in real time; each party has the same
information at the same time. The increased transparency makes the pro-
cess faster, and if designed correctly, blockchain technology can reduce the
motivation for misconduct (Cong and He, 2019, p. 1756).

Using a public blockchain such as Ethereum for trade finance transactions
is problematic in terms of privacy issues, since everyone can participate
without proof of identity and everyone is able to track a wallet’s transac-
tion history, including the correspondent input data (Cong and He, 2019,
p. 1762). Given this, we encrypted some of our inputs using the one-way
hash function (Cong and He, 2019, p. 1762).

For our smart contracts in section 4.1, we suppose that the owner knows
the roles and the corresponding public addresses of each participant. In ad-
dition, we assume the financing party to have information about the buyer
such as creditworthiness. With these assumptions, we comply with the
anti-money laundering (AML) guidance for blockchain, issued by the Eid-
genossische Finanzmarktaufsicht (FINMA), which requires entities to know
their opposite parties when trading with each other. Any transactions with
an anonymous party are forbidden (Mathys, 2019).

In comparison, many companies prefer to utilize permission blockchains such
as Hyperledger Fabric, because their scalability and performance is much
higher than that of public blockchains (Blockgeeks, 2019). One difference
in permission blockchains is that not all nodes have to confirm the valid-

ity of a transaction (Cocco and Singh, 2018). In the case of trade finance,

25

transactions per second are not as critical as in other use cases.

Here we compare blockchains to databases, which are managed and con-
trolled by administrators, often a small group of people (Tabora, 2018).
The fact of centralisation makes databases vulnerable to attacks; for exam-
ple, BPOs rely on databases only for the matching of data (International
Chamber of Commerce, 2013). Moreover, when using eB/Ls in the future,
it is crucial to replicate the three functions of a paper-based B/Ls for legal
reasons and save them centrally, since replication is possible (Tricks and
Parson, 2018). With the help of DLT, the problem of replication could be
solved, because with DLT, once a transaction is valid, it is immutable.

As mentioned in chapter 3, the supplement to the UCP 600 guidelines,
eUCP, manages the handling of electronic documents. Under article €5
(International Chamber of Commerce, 2019b), if not specifically mentioned
different, no requirements concerning the format are needed (free choice).
If a bank would accept a submission via a blockchain transaction, it would

be suitable.

4.1 Contract Design

We discuss one possibility for how to use a smart contract for a trade finance
transaction.* In our solution, we assume no other contract® than the smart
contract exists. We also note that the absence of a physical contract can
lead to legal complications, as we show later in section 4.5. Moreover, we
suppose the payment to take place in Ether and that every party is respon-
sible for managing its own local currency conversions to Ether.

Our main smart contract replaces the banks’ function as risk manager in tra-
ditional LC deals because it takes over an escrow role. To make a payment
or to receive money for a fulfilled service, parties interact only through the
smart contract. The ex-ante mistrust of transacting parties is solved by the
defined code, since misbehaviour, except from bugs or hacks, is impossible.
This situation creates trust between totally unknown parties, independent
of their locations.

The auxiliary Whitelist smart contract serves as a gatekeeper, because if

4Extensions with multiple parties and parameters are possible
Shere in the sense of a physical contract

26

financiers who want to participate must meet certain conditions; in our par-
ticular case, the wallets’ balance has to exceed a required minimum amount
and score.

Given the results of the section 3.2, we use a hybrid of CIA and OA as the

payment method; further explanations follow in section 4.1.2.

4.1.1 Whitelist

The whitelist contract admits wallet addresses that want to finance a deal
in our second smart contract. We assume a know your customer (KYC)
check has been completed beforehand and the identities behind the wallet
addresses are known by the buyer. All other involved parties do not need
to know the identities, since the rules implemented in the smart contract
manage the payment stream. As the buyer needs funding for her deal, we
assume that she can whitelist addresses. By setting the minimum require-
ments — that is, a balance that is clearly higher than the required funding
amount for the trading deal — she or he is able to control who can join the
whitelist. In addition, the applicants must exceed a specific score, which is
similar to an investment grade. Only financiers who fulfil the conditions of

a sufficient wallet balance and score will be approved.

4.1.2 Trade Finance
The function of this smart contract is, as outlined previously, to manage the

funds and make payments after certain events occur. Figure 4 illustrates

the scheme of our main TradeFinance smart contract.

27

Buyer
m \6 10/

N 7

Freight — 75 Customs
Company Broker
9
8

4
v
Figure 4: Process flow of a smart contract-based transaction

Before the smart contracts gets deployed, both parties the seller and the
buyer negotiate the terms and conditions for their trading agreement in
t = 0. After finalizing this step, the seller deploys the Smart Contract and
adds an order in ¢ = 1, including the agreed parameters. If the buyer agrees
to the conditions, she or he confirms the order. As she or he knows the value
of the trade, she or he sets this amount equal to the minimum amount in
the whitelist to search for an appropriate candidate. The fastest financier
adds a payment by sending the funds to the smart contract’s address. All
participating parties can observe that the payment is guaranteed by the
financier and will be paid out following the rules of the contract. The seller
prepares the goods to be ready for shipment and hands them over to the
freight company. When the goods arrive at the freight company, it con-
firms the receipt of the goods. To prevent this company from keeping the
products and not sending them to the next station, the customs broker, the
payment takes place after a successful transfer. The same logic applies for
the customs broker and the seller is paid by the smart contract after the
goods arrived there. Afterwards, the buyer receives the goods and confirms

this event. We assume that at ¢ = 2, after the transaction through the

28

smart contract has taken place, the seller can deposit her or his money in
the bank or invest it alternatively. Furthermore, the buyer can negotiate
individual conditions concerning her or his payback of the financier.

We show that the involved parties have no incentives to deviate from the
envisaged rules. Starting with the seller, she or he does not have an in-
centive not to hand over the goods, since she or he wants to earn money.
For the buyer, not paying is impossible, since the financier’s payment is a
necessary action before the seller sends goods to the buyer. Not confirming
receipt of the order is also not an option, since the customs broker does not
get the fees. If the buyer decides not to pay the financier, the financier can
enforce their rights in court. Both the freight company and the customs
broker do not have any incentive to not deliver their service as expected,
given the reputational risks, and they do not gain any advantage from a
deviation. The same holds true for the financier, who sees no advantage to

not paying on behalf of the buyer except the loss of interest payments.

4.2 Smart Contract Development

Proceeding with the technical details, in this section we explain the main
functions based on Solidity code extractions,® which are essential to run
our smart contracts.” We use Solidity version ~0.5.11 as the development
environment. To avoid an overflow in arithmetic operations, we make use
of the SafeMath library from OpenZeppelin (2019).

As in section 4.1, we begin with the Whitelist smart contract. We decided
to separate this contract from the TradeFinance contract to ensure that
the whitelist can be updated without generating conflicts and we can re-
utilise our main smart contract. Since we suppose that the buyer needs
funding, all functions in the Whitelist contract are restricted to the buyer.
We expect that if the addWhitelist function is open to everyone, the given
requirements deny inadequate wallets, but the applicant has an incentive to

enter an artificially high score to get access to the whitelist.

Sfor full code, see Appendix
"developed with Solidity documentation of Ethereum Community (20195)

29

The following main functions are important to run the smart contract. We

analyse each of them in more detail.

function setMinimumRequirement(uint256 _minimumAmount, uint256

< _minimumScore) public onlyBuyer

This above function allows the buyer to set a minimum wallet amount and
score that an applicant — who can be anyone — must fulfil to be accepted to
the whitelist.

Further, the functions addWhitelist and removeWhitelist allow the buyer
to manage the whitelist by setting whitelisted addresses to true and others
to false. In this context, remove means changing the status of an address

rather than deleting it.

Moving to the essential functions of the TradeFinance contract, we first
explain more about its structure. We use the import keyword to make
use of the functions from Whitelist smart contract. As the constructor
is called exactly one time when the contract is deployed, in our case the
msg.sender is the seller, who is equivalent to the owner. We use structs
to define our unique data types such as Order and Guarantee. Moreover,
by implementing modifiers and assigning different roles to a wallet address,
we can restrict functions to those who are eligible. The following enum is

important for tracking an order’s state.

enum Orderstate { Negotiation, Created, Locked, Customs,

— Received, Cancelled }

Based on the order’s state, functions in our smart contract are executable
or not. This is a security element to guarantee that fallbacks cannot occur
— that is, if the buyer accepts the proposal from the seller, the smart con-
tract changes its state from Negotiation to Created to ensure that the seller

cannot make changes afterwards.

With the next function, the seller manages access for participation and sets

a number as salt,® to make the smart contract more secure. Moreover, she

8A salt is a random number, further explanation follows later in this section

30

or he enters the orderAdress of type bytes32 to have an unique identifier for

each order, which she or he declares in the function addOrder.

function access(address payable _buyer, address payable
— _freight, address payable _customs, bytes32 _orderAddress,
<~ uint256 _salt) public onlySeller

The seller inserts the public wallet addresses of the buyer, freight company
and customs broker so that the matching of addresses and functions is clear.
We assume that all parties know about their own roles due to the bargaining
before the set-up of this contract. As type we use address payable, because
this allows the addresses to receive Ether. This function is also essential
because the smart contract contains restricted functions which can be ex-
ecuted only by the defined party. Moreover, we require an order state of
Negotiation; otherwise, the seller would be able to change the roles during

the process.

function addOrder(bytes32 _orderAddress, address payable

— _seller, address payable _buyer, bytes32 _priceSeller,
— bytes32 _quantitySeller, uint256 _weight, string memory
— _productname, uint256 _freightrate, uint256

- _orderAmountSeller, uint256 _customsDuty) public

— onlySeller

The function addOrder allows the seller to propose an order, including de-
tails such as order address, price’ and quantity. Further, we note that the
freight rate? is a fixed amount, whereas the customs duty uses a percentage
notation. We implement this function so that the seller can make use of this
smart contract more than once for different orders. If we assigned specific
values to the parameters before deployment, the contract could not be used
multiple times. To allow searching on order details with the unique order’s
address, we mapped the struct Order.

Since all data the seller enters into the function above are publicly observ-

able, rather than using plain-text numbers we use the corresponding hash

Ycurrency is ETH

31

values. Potentially all inputs can be hashed, but since we need some in-
puts to calculate with, we demonstrate the principle by hashing the price
and quantity parameters. For this, the seller hashes the price and quantity
off-chain with the help of the one-way hash function and feeds these values
to the order. In addition, he must add Oz as a prefix, because the hashed
value is of the type bytes32, but the transaction requires a hexadecimal for-
mat. However, this solution leaves room for brute force attacks; malicious
persons could try guessing the hashes of numbers for both the price and
quantity until they succeed (Hornby, 2016). A more secure pattern is the
use of a salt; however, the addition of this random value, as a pre-fix or
postfix, cannot guarantee the highest security. Nevertheless, the exponen-
tial increase in computing time resulting from the salt makes a brute force

attack less feasible than using hash values only.

In case of a false input, the seller can revise the order if the order state
is still Negotiation. If the data are correct, the buyer confirms the inputs
by using the function confirmOrder. To do so, she or he enters the hash
values of the agreed parameters — here the price and quantity — along with
the total order amount and the order address to be aligned with the seller’s
order. If the inputs match, the event OrderConfirmed is invoked and leaves
a comment for informational purposes. If the buyer’s data differ from the
seller’s, however, the event OrderCancelled is initiated, and the seller can

reset the contract’s parameters to use it for a new order.

The next function addGuarantee is essential, since at this point the financier
transfers Ether to the smart contract TradeFinance. We do not set any
restrictions to execute this function; if a financier has been whitelisted, we

leave it open on a first-come, first-served basis.

function addGuarantee(bytes32 _guaranteeAddress, bytes32
< _orderAddress, address _to) public payable

If we import functions from another smart contract, we have to trust the
opposite contract entirely, which is riskier when we have not written it our-

selves. Now the smart contract escrows the funds and a payout to the

32

various parties following the defined rules. As mentioned earlier, we let the
financier enter the order number again to have a match between the order
and guarantee. If all requirements are fulfilled — for example, the financier
amount is at least equal to the agreed transaction value — the two events
GuaranteeActive and OrderLocked change the smart contract’s state. The
following functions can then be executed and the participating parties in-

formed.

The auxiliary functions isOrder and isGuarantee offer the opportunity to
check whether an order or guarantee is valid. The contract’s balance can

also be queried using the eponymous function.

The next function, receiveOrderFreight, is used by the freight company to
signal that the seller has delivered the goods and to inform the other parties

about the shipping details.

With the following function, the customs broker confirms receipt of the

order from the freight company.

function receiveOrderCustoms(bytes32 _orderAddress) public

— inOrderState(OrderState.Locked) onlyCustoms returns(bool)

As mentioned previously, entering the order address it ensures the right
match for each order. We invoke the event OrderReceived Customs to change
the smart contract’s state to Customs, which is a precondition for the next
step, the transfer of the fees to the freight company and the order amount to
the seller. We then check whether the contract’s balance equals the agreed
amount as protection against function recalls from both. If the balance
is accurate, we use transfer instead of send or call.value because transfer
throws an exception in the event of a failure while send and call.value return
false (Ethereum Community, 20196). Moreover, transfer and send are safe
against reentrancy attacks, since they limit the gas to 2,300, while call.value
does not (Schiitz and Fertig, 2019, pp. 396ff.). With reentrancy attacks, an
attacker tries to gain more funds than appropriate by taking advantage of

calls to other contracts and execute functions which were not intended by

33

the smart contract owner (Schiitz and Fertig, 2019, p. 396). A well-known
example is the DAO, where attacker have stolen a third of the funds (Smith,
2018).

The function receiveOrder works in a manner similar to the previously de-
scribed function receiveOrderCustoms. The customs broker get its payment.
To calculate the customs payout, we use the SafeMath functions from the
identically named library. In our case, since we restrict the function to be
executable only by the buyer, it is safe against reentrancy attacks because
the buyer receives no funds and thus has no motivation for such an attack.

Moreover, the contract’s balance after this function is called equals zero.

With the last function of the smart contract, TradeFinance, we can reset

the addresses of the participating parties for this particular order.

function reset(bytes32 _orderAddress, bytes32

< _guaranteeAddress) public onlySeller

Only the seller can use this function, as she or he is the smart contract
owner. It requires that the buyer has confirmed receipt of the order and

that the contract’s balance is zero.

4.3 Oracles

If data that are not available on the blockchain — for instance, the actual
tracking position of a parcel — are necessary to run a smart contract prop-
erly, the situation creates a dependency between the provider of the data,
the Oracle, and the smart contract (Berentsen and Schér, 2017, pp. 294ff.).
First, the use of one Oracle contradicts the blockchain principle of inde-
pendence from third parties because it acts as a central party. Such usage
would also require full trust in the data inputs, since anyone with malicious
intent could attack the Oracle to redirect the smart contract’s execution
(Schiitz and Fertig, 2019, p. 357). Second, the Oracle could manipulate the
data in such a way that the execution returns a wrong result or becomes

stuck such that the funds stored in the contract’s address could never be

34

paid out because a transfer depends on these data (Berentsen and Schir,
2017, pp. 294f.).

Furthermore, it would be problematic if an Oracle shut down during a con-
tract’s execution. Overall, Oracles lead to risks of manipulation, which
stands in contrast to blockchain principles. The use of multiple Oracles, in
which the majority have to confirm the same input, can avoid the risk of

data manipulation and a lock of funds (Berentsen and Schér, 2017, p. 295).

4.4 Integrity of Goods

One crucial point in our smart contract process flow is the inspection of the
integrity of the goods, which are shipped off-chain in the real world. The
inspection’s difficulty heavily depends on which class of goods a seller sends
to the buyer; for example, it is easier to check the condition of products
which have integrated sensors than it is to check commodities. Several
inspection parties are needed to check the status of goods; this violates
one of the core principles of blockchain: namely, the independence from
third parties (Ganne, 2019, p. 111). Use of third parties could allow some
parties to have an advantage, depending on the contract conditions. Also,
the execution with involved third parties is highly inefficient; it can cause
delays in the supply chain of firms and is expensive (Wang, 2019). With the
help of clear attributes such as product serial numbers or radio-frequency
identification (RFID) chips, it is possible to identify goods and transfer a
digital copy to the blockchain (Tian, 2016, pp. 65ff.). Nevertheless, if the
state of a product changes, it is impossible to depict this without external
help.

Internet-of-things sensors can help solve this problem. For instance, the
company Smart Containers has developed shipping containers with various
sensors to transport pharmaceutical products safely around the world (Lee,
2018). Small changes in temperature or humidity are very critical to these
products. Another solution could be the use of digital twins; these are
digital copies of a physical good, where the implemented sensors gather
data on any changes and report the status of the product in the digital
version (Sallaba, 2017).

35

4.5 Legal Classification

Here we discuss whether a smart contract has a legally binding character
as, for example, a sales contract. First, the primary function of a smart
contract is to ensure the performance once it is started without being de-
pendent on enforcing a contract, and it is verified by the network (Raskin,
2016, pp. 309ff.). Moreover, no trust is needed between two transacting
parties, because the written code executes independently when certain con-
ditions are fulfilled. Additionally, DLT guarantees independence, since all
transactions are transparently saved on the blockchain.

With a classical contract, in the case of problems such as lack of fulfilment
or the occurrence of mistakes, the parties can go to court or renegotiate to
find a solution (Raskin, 2016, pp. 319ff.). This is impossible in an environ-
ment of smart contracts, as they cannot be changed once started. Both the
obligations and duties are defined clearly in a smart contract without any
chance for deviations, as "code is law" (Savelyev, 2017, p. 130).
Furthermore, the language in computer science is precise and thus does not
allow room for interpretation in comparison to natural languages (Raskin,
2016, pp. 323ff.). Also, if the code may not behave as expected by the
programmer, it is easier to predict a possible outcome than with a human’s
understanding of a dispute. The agreement phase on the contractual details
and conditions in smart contracts are very similar to those in traditional
contracts, but instead of signing a contract, a smart contract is accepted by
a party through effective action — for example, sending Ether to the contract
or entering some mandatory input - as in our TradeFinance smart contract.
The execution of a smart contract reaches its end when the performance
by a party is fulfilled (Lipton and Levi, 2018). What happens, however, if
the outcome does not satisfy the opposite party? Smart contracts do not
allow renegotiation afterwards (Raskin, 2016, p. 311). This point is critical,
especially for individually made goods — for instance, suits or sculptures —
since the expectations of buyers can differ significantly.

Following the argumentation of Gyr (2019), whether smart contracts in the
form of a programming language can be seen as enforceable contracts in
court under Swiss laws mainly depends on both parties’ willingness to fulfil
their obligations, since the Obligationenrecht (Swiss Code of Obligations) is
based on the principle of contractual freedom (Gyr, 2019, pp. 108f.).

36

Generally, it is impossible to identify the parties participating in the pub-
lic blockchain Ethereum, and thus their legal capacity is not ensured (Gyr,
2019, pp. 110ff.). Since we neglect the point of anonymity in our smart con-
tracts, at least a business’s legal capacity is given. If it is possible to verify
a person’s legal capacity, then smart contracts are in conformity with Swiss
laws. In our case, we indeed have assumed all parties know each other’s
public wallet address, but their real identities and who conducts the trans-
action cannot be seen from that point. According to Gyr (2019), we have
to differentiate between persons who are familiar and able to read a smart
contract and those who are unable to do so. For the first group, by using
a smart contract, their will is expressed directly in this contract, whereas
for the second group, the use of a smart contract lacks the intention to cre-
ate legal relations. Also important is the fact to consider an option in the
smart contract’s design to allow the opposite party whether to accept the
proposed conditions or not. A party who agrees to a contract expresses her
or his legal will. Compared to classical contracts, smart contracts cannot
be declared invalid, since they are stored in a blockchain and thus cannot
be revoked once execution is started (Gyr, 2019, pp. 140ff.).

As we have the financier issue a guarantee by paying Ether to the smart
contract, it is not a legally binding contract, since the smart contract itself
is not a legal entity and fails to produce the required written form for a
valid deposit contract (Gyr, 2019, p. 206).

Finally, we examine the question of what happens if a smart contract con-
tains a bug or leads to a malfunction due to the wrong input. Gyr (2019)
concludes that someone is only responsible only when she or he acts with

wanton negligence.

4.6 Cost Comparison

To have an overview of the costs from different payment methods in a trade
finance transaction, we suppose a deal volume of 100,000 CHF. We neglect
CIA and OA, since both these methods do not have service fees except the

market interest rates to finance the deal for either the seller or buyer.

37

However, we analyse the cost structure!® for LCs and DCs based on in-
formation from various banks (BNP Paribas, 2019; Credit Suisse, 2013;
Deutsche Bank, 2013). For a better comparison, we choose data from dif-
ferent regional areas'! and check whether there are differences in the main

services.'? Starting with an LC deal,'® we obtain the data in table 4.

Service Credit Suisse Deutsche Bank ~ BNP Paribas
. 10 bp, min. 200, 100 bp, min. 166,
Advising 81
max. 1,500 mazx. 441

Amendment 200 110 54
Acceptance doc. - 150 bp, min. 166 25 bp, min. 108
Pre-advice 100 83 -
Processing doc. — 150 bp, min. 166 25 bp, min. 108
Confirmation com. man. 300 - —
Deferred payment 200 — 40
Acceptance com. - - 40
Discrepant doc. 100 110 101

Table 4: Fees overview for export LCs (in CHF)

As we can see in table 4, the total transaction fees for our deal in case of
Credit Suisse are 800 CHF. Generally, any change or mistake in the docu-
ments causes service fees.

This equals 0.8 % of the total trade amount for Credit Suisse, but we should

not forget this covers only the handling of documents.

We apply the same procedure for DC transactions; it results in table 5.

10all amounts in CHF, exchange rates based on query from 2019.10.30 (finanzen.ch,
2019b,¢)

1 Switzerland, Germany and United Arab Emirates

2more fees can be applied for additional services

13different perspective (importer or exporter) leads to different costs

38

Service Credit Suisse Deutsche Bank BNP Paribas

o 20 bp, 150 bp, 12.5 bp per month,
DC commission)] ,
man. 200 man. 138 min. 108
— 110 12.5 bp per month,
Amendment _
man. 54
200 150 bp, —
Release of doc.)
man. 138
without payment
Release of goods 100 166 —
Deferred payment / 200 110 20 bp, min. 81
acceptance
Cancellation 400 — 135

Table 5: Fees overview for DCs (in CHF)

We can see that the overall fee structure is lower for DCs than for LCs, but
banks still require service fees for collecting documents on a party’s behalf.
The total fees in this case are 500 CHF for Credit Suisse.

As briefly described in section 2.1, in Ethereum the only transaction costs
are for the execution of different operations, such as transferring Ether to a
wallet address or making state changes, which nodes validate within the net-
work. Further, the deployment of a smart contract also has costs, whereas
calling a function does not, as long as an EOA calls a specific function.
Generally, we can calculate the costs by multiplying the gas used by the
actual gas price (Wood et al., 2014). Figure 5 below shows the development
of Ethereum’s gas price!* from January to end of October 2019 (Etherscan,
2019):

Mas of 10.30.2019

39

400 B

3508

300 B

250 B

200 B

Gas Price in Wei

150 B
100 B

50B

Jan'19 Mar '19 May '19 Jul'19 Sep '19

Figure 5: Gas price development for 2019 (in Wei)

We conclude that hype leads to an abnormally high gas price, which can
slow down the validation of a transaction, which in the worst case fails, or
it makes it more expensive to get into a block (BlockChannel, 2019).

Based on the Ether price'® and our execution with Ganache, we estimate
the following costs for our smart contracts,'® if we proceed with an average

transaction speed, which costs 1.1 Gwei.

5 Exchange rate at 11.10.2019: 189.35 CHF (CoinGecko, 2019)
6exchange rate at 11.10.2019, based on the queries from finanzen.ch (2019a)

40

Process steps Gas used Value in ETH Value in CHF

Deployment SafeMath 76,654 0.0000843 0.0157
Deployment Whitelist 350, 033 0.000385 0.0717
Deployment TradeFinance 1,937,526 0.0021313 0.3970
setMinimumRequirement 62, 530 0.0000688 0.0128
addWhitelist 44,533 0.000049 0.0091
removeWhitelist 14,236 0.0000157 0.0030
access 109, 545 0.0001205 0.0224
addOrder 433,251 0.0004766 0.0888
confirmOrder 52,640 0.0000579 0.0108
cancelOrder 47,028 0.0000517 0.0098
addGuarantee 183, 440 0.0002018 0.0376
receiveOrderFreight 75,038 0.0000825 0.0154
receiveOrderCustoms 87,495 0.0000962 0.0182
receiveOrder 60,053 0.0000661 0.0125
reset 33,985 0.0000374 0.0071
Sum 3,472,771 0.0039248 0.7319

Table 6: Transaction costs for our smart contracts

From this table 6, we conclude, that the transaction fees — here for all
parties combined — to execute our smart contracts total 0.73 CHF, which
corresponds to 0.001 % of the transaction volume.!” Compared to an LC
or DC transaction, the fees reduced by 99 %. We must also consider that
the fees to deploy the smart contracts are one-time costs, since we can
use contracts multiple times. Excluding these costs would reduce the fees
dramatically.

Dietrich (2018) estimates the costs from using the blockchain technology
are equal to 10 % of today’s costs for an LC, which are 80 CHF, a much
higher cost than our estimation. Considering the development costs for the

smart contracts as well, our estimation would lead to higher costs.

17if rounded to 1 CHF

41

4.7 Existing Blockchain Trade Finance Projects

This section reviews already existing projects in the area of trade finance
that use blockchain technology.

The first example is we.trade, launched by a consortium of various banks.
Built on Hyperledger Fabric, this platform should enhance efficiency and
lower the process costs of international trade through the use of smart con-
tracts triggered by specific events (we.trade, 2019). All parties who want to
participate need to pass a KYC check successfully and must be customers
of one bank working with we.trade (we.trade, 2019).

The second example is Marco Polo, developed together by TradelX and R3,
which uses the Corda Blockchain technology (MarcoPolo, 2019). Similarly
to we.trade, they also use a central platform to provide their service to the
businesses, with an additional ERP integration (Ledger Insights, 2019). The
first transaction through this platform has been taken place at the begin-
ning of 2019 and the participating banks aim to offer faster, more efficient
and transparent trade finance solutions (Schiller, 2019).

Compared to our solution, customers do not have to be members in order to
use these platforms, whereas the TradeFinance smart contract can be used
and modified before deployment by everyone, thus allowing the addition of

specific conditions.

4.8 Limitations

In this section we explore the limitations. We begin with the limited stor-
age for variables, which makes complex processes with numerous variables
impossible to run in a single smart contract. If we had added more variables
in structs to the TradeFinance contract, we would have faced this problem.
One possible solution is to make use of external calls or inheritance and out-
source functions, whereas for inheritance one smart contract gets deployed
(Schiitz and Fertig, 2019, pp. 314f.).

Second, as everyone can participate in the Ethereum blockchain and develop
their own smart contracts, auditing them for security issues is important,
especially in a business-related environment. Bugs and insecure coding pat-

terns make these contracts vulnerable, as was seen, for example, in the

42

DAO case, and today’s techniques for finding security issues are limited
or are at a very high price (Liu et al., 2018, pp. 814f.). To find already
known issues, tests are done before deployment, but to detect functional
errors, high manual effort is required which makes it expensive and time-
consuming (Permenev et al., 2019).

Third, as smart contracts are irreversible and immutable (which is, from
one perspective, favourable since it creates trust among unknown parties),
if a smart contract executes as predicted it leaves no option to fix a deployed
contract in the case of an erroneous execution (Luu et al., 2016).

Fourth, since Ethereum is a public blockchain, it has limited scalability to
do business with huge data streams (Blockgeeks, 2019).

Finally, Ether has high volatility, so the price during a transaction can vary
significantly (Martinez, 2019). This fact makes it difficult for firms to man-
age their working capital; hedging against the currency risk would be a
solution, but this implies extra costs. In our TradeFinance smart contract,
the seller’s cash management planning is straightforward, as the time gap
between setting up an order and the financier’s payment to the smart con-
tract is brief, but the buyer’s repayment takes place in the future so that she
or he carries a currency risk. In the favourable case, the exchange rate for
her or his currency decreases and she or he has to pay less to the financier;

in the worst case, she or he must pay more.

5 Discussion

To conclude, we have shown the various payment methods which are rele-
vant for trading between two parties. Particularly if the parties are not in
a business relationship, it is difficult for them to trust each other and to
agree to an OA payment, since both have an incentive to either not pay or
not deliver the goods. Banks as intermediaries solve this problem in form
of LCs, as they carry risks on behalf of their customers. Likewise for DCs,
banks are involved in the trade, but they do not bear the same risks as with
LCs.

Based on a game theoretical analysis, we can confirm these findings, since
we have seen that CIA and OA are not incentive compatible in a one-shot

setting. One player has the opportunity to deviate to a better option; as

43

the opposite party can anticipate this behaviour, she or he does not play
the optimal choice and trade does not occur. However, in a repeated game
set-up, punishment is possible in future periods so that the aforementioned

problem is resolved.

Based on these findings, we have further developed a process scheme which
can be executed on the Ethereum blockchain and prevents the issues men-
tioned above, even in a one-shot setting. Generally, public blockchains are
anonymous, so that we suppose the smart contract owner — that is, the
seller — to know all involved parties’ roles in a specific transaction. This is
a result of bilateral bargaining beforechand. Moreover, the financing can be
taken over by anyone who has fulfilled the minimum requirements and has
been whitelisted. For this, we assume that a KYC check will be done.

As information about the products is not available on the blockchain, it is
difficult to measure their condition. Additionally, the use of Oracles leads to
dependencies, because the rules of a smart contract rely on the inputs. This
would open an opportunity to manipulate the data in one’s self interest.
With our solution, we showed how to diminish concerns about privacy in
connection to the Ethereum blockchain. Compared to other blockchains,
however, Ethereum’s drawbacks of scalability, Ether and gas system volatil-
ity still remain.

From a legal perspective under Swiss laws, the formal use of smart contracts
is allowed, but it is crucial to define a person’s legal capacity. Additionally,
we must differentiate between persons who are familiar with programming

smart contracts and those who are not able to read source code.

Finally, we have demonstrated what the source code written in Solidity can
look like for a trade transaction deployed on the Ethereum blockchain. Be-
cause our smart contract will be used in a business context, we have used
the implementation of hash values instead of plain-text values to protect
privacy. Further, to avoid brute force attacks effectively, we have intro-
duced the method of salting, which makes these attacks less feasible.

Furthermore, the TradeFinance and Whitelist smart contracts reduce trans-
action costs enormously; assuming an LC transaction, costs with our smart

contracts are reduced from approximately 0.8 % to 0.001 %, which corre-

44

sponds to a reduction by 99 %.

Overall, our TradeFinance smart contract together with the second Whitelist
contract reduces the complexity of a typical trade finance transaction via
instruments such as an LC or DC. Additional advantages are a high level
of security for data integrity and a significant cost reduction. We have also
demonstrated that for this particular trading use case, the Ethereum block-

chain is utilisable.

Further research must be done on how to reverse a transaction through a
smart contract for cases in which products arrive at a buyer’s destination
damaged. The question of how to reach a decentralised consensus — for
example, that goods have arrived at the customs broker or freight company
— also needs further analysis. On a final note, the development in terms of

legal implications in different countries will be interesting.

45

References

Asmundson, I., Dorsey, T. W., Khachatryan, A., Niculcea, I. and Saito,
M. (2011), ‘Trade and trade finance in the 2008-09 financial crisis’, IMF
Working Papers pp. 1-65.

Atzei, N., Bartoletti, M. and Cimoli, T. (2017), A survey of attacks on
ethereum smart contracts (sok), in ‘International Conference on Princi-

ples of Security and Trust’, Springer, pp. 164-186.

Berentsen, A. and Schir, F. (2017), ‘Bitcoin, blockchain und kryptoassets:
Eine umfassende einfithrung’, Aufl. Norderstedt: BoD—Books on Demand

Bergami, R. (2009), ‘Ucp 600 rules—changing letter of credit business for
international traders?’, International Journal of Economics and Business
Research 1(2), 191-203.

BlockChannel (2019), ‘The Case for Ethereum Scalability’, https:
//medium.com/blockchannel/the-case-for-ethereum-scalability-
a66ed08d0bed. Accessed: 10.31.2019.

Blockgeeks (2019), ‘Hyperledger vs Ethereum Training: Which one is bet-
ter?’, https://blockgeeks.com/guides/hyperledger-vs-ethereum/.
Accessed: 10.03.2019.

BNP Paribas (2019), ‘Fees and Charges 2019, https://cdn-
pays.bnpparibas.com/wp-content/blogs.dir/171/files/2019/01/
A5-UAE-Tariff-2019-Low.pdf. Accessed: 10.30.2019.

Brenton, P. and Imagawa, H. (2005), ‘Rules of origin, trade, and customs’,
CUSTOMS p. 183.

Biiter, C. (2007), ‘Aukenhandel’, Grundlagen globaler und innergemein-
schaftlicher Handelsbeziehungen. Heidelberg .

Buterin, V. et al. (2014), ‘A next-generation smart contract and decentral-

ized application platform’, white paper 3, 37.

Cocco and Singh (2018), ‘Top 6 technical advantages of Hyperledger Fabric

for blockchain networks’, https://developer.ibm.com/tutorials/

cl-top-technical-advantages-of-hyperledger-fabric-for-
blockchain-networks/. Accessed: 10.01.2019.

CoinGecko (2019), ‘Ethereum (ETH)’, https://www.coingecko.com/de/
munze/ethereum. Accessed: 11.10.2019.

Cong, L. W. and He, Z. (2019), ‘Blockchain disruption and smart contracts’,
The Review of Financial Studies 32(5), 1754-1797.

Credit Suisse (2013), ‘Standard conditions for letter of credits’,
https://www.credit-suisse.com/media/assets/private-banking/
docs/ch/unternehmen/unternehmen-unternehmer/publikationen/
akkreditiv-konditionen-en.pdf. Accessed: 10.30.2019.

Credit Suisse (2016), ‘Documentary Credits — Documentary Collections’,
https://www.credit-suisse.com/media/assets/private-banking/
docs/ch/unternehmen/unternehmen-unternehmer/publikationen/
akkreditivbroschre-en.pdf. Accessed: 10.19.2019.

Croner-i (2019), ‘Letters of Credit: In-depth’, https://app.croneri.co.uk/
topics/letters-credit/indepth. Accessed: 10.20.2019.

Dab et. al. (2016), ‘Digital Revolution in Trade Finance’, https:
//www.bcg.com/publications/2016/digital-revolution-trade-
finance.aspx. Accessed: 10.19.2019.

Deutsche Bank (2013), ‘Trade Finance List of Prices and Services for Corpo-
rate Clients in Germany’, https://wuw.deutsche-bank.de/fk/de/docs/
Preis-Leistungsverzeichnis_A4_E_121220_SCREEN.pdf. Accessed:
10.30.2019.

Dietrich (2018), ‘Die UBS und die Blockchain: Warum we.trade funktion-
ieren kann’, https://blog.hslu.ch/retailbanking/2018/10/02/die-
ubs-und-die-blockchain-warum-we-trade-funktionieren-kann/.
Accessed: 10.03.2019.

Eker (2019), ‘Presentation — Types of Letters of Credit’, https:
//wwu.letterofcredit.biz/index.php/2019/01/28/presentation-
types-of-letters-of-credit/5/. Accessed: 09.01.2019.

ii

Ellinger, E. P. and Neo, D. S. S. (2010), The law and practice of documentary
letters of credit, Hart.

Ethereum Community (2019a), ‘Ethereum Development Tutorial’,
https://github.com/ethereum/wiki/wiki/Ethereum-Development-
Tutorial. Accessed: 09.25.2019.

Ethereum Community (2019b), ‘Solidity Documentation’, https://
solidity.readthedocs.io/en/v0.5.11/. Accessed: 09.15.2019.

Etherscan (2019), ‘Ethereum Gas Price History’, https://etherscan.io/
chart/gasprice. Accessed: 10.30.2019.

Federal Customs Administration FCA (2019), ‘Fact sheet For determining
the formal validity of proofs of origin’, http://tiny.cc/ezv_admin_ch.
Accessed: 10.05.2019.

Fenyk (2015), ‘SWIFT MT798: Global integrated solution for Trade
Finance’, https://cib.db.com/insights-and-initiatives/flow/
33381.htm. Accessed: 10.02.2019.

finanzen.ch (2019a), ‘Wéhrungsrechner: Ether - Schweizer Franken’,
https://www.finanzen.ch/waehrungsrechner/ethereum-schweizer-
franken. Accessed: 11.10.2019.

finanzen.ch (2019b), ‘Wahrungsrechner: Euro - Schweizer Franken’, https:
//wwu.finanzen.ch/waehrungsrechner/euro-schweizer-franken. Ac-
cessed: 10.30.2019.

finanzen.ch (2019¢), “‘Wahrungsrechner: VAE Dirham - Schweizer Franken’,
https://www.finanzen.ch/waehrungsrechner/dirham-schweizer-
franken. Accessed: 10.30.2019.

Fingerand, K. M. and Schuknecht, L. (1999), Trade, finance and financial
crises, number 3, WTO Special Studies.

Ganesh and Olson (2018), ‘Rebooting a Digital Solution to Trade Finance’,
https://www.bain.com/insights/rebooting-a-digital-solution-
to-trade-finance/. Accessed: 10.02.2019.

iii

Ganne (2019), ‘Can Blockchain revolutionize international trade?’, https:
//www.ibm.com/downloads/cas/KJDPQKBE. Accessed: 10.31.2019.

Giovannucci, D. (2007), ‘Basic trade finance tools: Payment methods in
international trade’, Available at SSRN 996765 .

Goswami, R. (2012), ‘Collection arrangement: An analysis’, Available at

SSRN 2132284 .

Grath, A. (2011), The handbook of international trade and finance: the
complete guide to risk management, international payments and currency
management, bonds and guarantees, credit insurance and trade finance,

Kogan Page Publishers.

Gyr, E. (2019), Blockchain und Smart Contracts: die vertragsrechtlichen
Implikationen einer neuen Technologie, PhD thesis, Rechtswis-

senschaftliche Fakultat der Universitat Bern.

Hinkelman, E. G. (2008), DICTIONARY OF INTERNATIONAL TRADE
S8th Edition, Librix. eu.

Hornby (2016), ‘Salted Password Hashing - Doing it Right’,
https://www.codeproject.com/Articles/704865/Salted-Password-
Hashing-Doing-it-Right. Accessed: 11.04.2019.

ICC Commercial Crime Services (2019), ‘Irade Finance Documents Au-
thentication’, https://icc-ccs.org/icc_2527//icc_2527/index.php/
site_content/56-services/289-trade-finance-documents-
authentication. Accessed: 10.03.2019.

International Chamber of Commerce (1996), ‘URC 522, https:
//www.law.kuleuven.be/personal/mstorme/URC522.pdf. Accessed:
10.17.2019.

International Chamber of Commerce (2007), ‘UCP 600°, http:
//static.elmercurio.cl/Documentos/Campo/2011/09/06/
2011090611422.pdf. Accessed: 08.25.2019.

International Chamber of Commerce (2011), ‘Incoterms rules 20107,
https://iccwbo.org/resources-for-business/incoterms-rules/
incoterms-rules-2010/. Accessed: 08.25.2019.

iv

International Chamber of Commerce (2013), ‘Uniform Rules for Bank
Payment Obligations’, https://icckauppa.fi/wp-content/uploads/
sites/26/2016/06/750-icc-uniform-rules-for-bank-payment-
obligations.pdf. Accessed: 10.20.2019.

International Chamber of Commerce (2019a), ‘Access to trade finance’,
https://iccwbo.org/global-issues-trends/banking-finance/
access-trade-finance/. Accessed: 09.29.2019.

International Chamber of Commerce (20195), ‘€UCP Version 2.07,
https://cdn.iccwbo.org/content/uploads/sites/3/2019/06/icc-
uniform-customs-practice-credits-v2-0.pdf. Accessed: 10.17.2019.

International Trade Center (2009), ‘How to Access Trade Finance’, http:

//www.intracen.org/WorkArea/DownloadAsset.aspx?7id=28163. Ac-
cessed: 09.22.2019.

Jaffeux, C. and Wieser, P. (2012), Essentials of Logistics and Management,
CRC Press.

Jones,; S. A. (2018), Trade and Receivables Finance, Springer.

Kenneth (2018), ‘Ethereum account’, https://medium.com/coinmonks/
ethereum-account-212feb9c4154. Accessed: (09.25.2019.

Kenton and Murphy (2019), ‘Documentary Collection’, https://
www.investopedia.com/terms/d/documentary-collection.asp. Ac-
cessed: 10.17.2019.

Klapper, L. (2005), The role of factoring for financing small and medium
enterprises, The World Bank.

Ledger Insights (2019), ‘Bank of America joins Marco Polo blockchain
trade finance network’, https://www.ledgerinsights.com/bank-of-
america-joins-marco-polo-blockchain-trade-finance-network/.
Accessed: 10.28.2019.

Lee (2018), ‘Smart Containers — A New Container Technology Set To
Disrupt The Logistics Marketplace’, https://medium.com/@cryptolee/

smart-containers-a-new-container-technology-set-to-disrupt-

the-logistics-marketplace-part-1-c2e286£0820a. Accessed:
10.02.2019.

Lee, W.-M. (2019), ‘Beginning ethereum smart contracts programming’.

Lee, Y. W. and Stowe, J. D. (1993), ‘Product risk, asymmetric informa-
tion, and trade credit’, Journal of Financial and Quantitative analysis
28(2), 285-300.

Lipton and Levi (2018), ‘An Introduction to Smart Contracts and Their Po-
tential and Inherent Limitations’, https://corpgov.law.harvard.edu/
2018/05/26/an-introduction-to-smart-contracts-and-their-
potential-and-inherent-limitations/. Accessed: 10.10.2019.

Liu, H., Liu, C., Zhao, W., Jiang, Y. and Sun, J. (2018), S-gram: towards
semantic-aware security auditing for ethereum smart contracts, in ‘Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering’, ACM, pp. 814-819.

Luu, L., Chu, D.-H., Olickel, H., Saxena, P. and Hobor, A. (2016), Making
smart contracts smarter, in ‘Proceedings of the 2016 ACM SIGSAC con-

ference on computer and communications security’, ACM, pp. 254—269.

MarcoPolo (2019), ‘Platform’, https://www.marcopolo.finance/
platform/. Accessed: 10.30.2019.

Martinez (2019), ‘Bitcoin, Ethereum and XRP Prepare for Volatility;
Bullish or Bearish?’, https://www.ccn.com/bitcoin-ethereum-xrp-
volatility-bullish-or-bearish/. Accessed: 11.06.2019.

Mathys (2019), ‘FINMA guidance: stringent approach to combating money
laundering on the blockchain’, https://www.finma.ch/en/news/2019/
08/20190826-mm-kryptogwg/. Accessed: 10.03.2019.

Miller (2019), ‘Gas Economics’, https://github.com/LeastAuthority/
ethereum-analyses/blob/master/GasEcon.md. Accessed: 09.25.2019.

Niepmann and Schmidt-Eisenlohr (2016), ‘Trade Finance around the
world’, https://voxeu.org/article/trade-finance-around-world.
Accessed: 08.27.2019.

vi

Nordea (2018), ‘Trade finance is going open account’, https:
//insights.nordea.com/en/ideas/trade-finance-is-going-open-
account/. Accessed: 09.28.2019.

Onderstal, S. et al. (2014), Economics of organizations and markets, Ams-
terdamPearson9789043030410.

OpenZeppelin (2019), ‘SafeMath’, https://github.com/OpenZeppelin/
openzeppelin-contracts/blob/master/contracts/math/
SafeMath.sol. Accessed: 10.31.2019.

Permenev, A., Dimitrov, D., Tsankov, P., Drachsler-Cohen, D. and Vechev,
M. (2019), ‘Verx: Safety verification of smart contracts’, Security and
Privacy 2020.

Raskin, M. (2016), ‘The law and legality of smart contracts’.

Raunek (2019), ‘Bill Of Lading in Shipping: Importance, Purpose,
And Types’, https://www.marineinsight.com/maritime-law/what-
is-bill-of-lading-in-shipping/. Accessed: 10.31.2019.

Sallaba, Gentner, E. (2017), ‘Grenzenlos vernetzt: Digital Twins’,
https://wuw2.deloitte.com/de/de/pages/technology-media-and-
telecommunications/articles/digital-twins.html. Accessed:
10.03.2019.

Savelyev, A. (2017), ‘Contract law 2.0:‘smart’contracts as the beginning of
the end of classic contract law’, Information & Communications Technol-
ogy Law 26(2), 116-134.

Schiller (2019), ‘Marco Polo Blockchain (R3 Corda) gewinnt immer mehr
Kunden’, https://blockchainwelt.de/marco-polo-trade-finance-
network-blockchain/. Accessed: 10.04.2019.

Schmidt-Eisenlohr, T. (2013), ‘Towards a theory of trade finance’, Journal
of International Economics 91(1), 96-112.

Schweizerischer Bundesrat (2018), ‘Verordnung iiber die Zollan-
sitze flir Waren im Verkehr mit EU- und EFTA-Mitgliedstaaten’,
https://www.admin.ch/opc/de/classified-compilation/20081202/
index.html. Accessed: 10.04.2019.

vii

Schiitz, A. and Fertig, T. (2019), Blockchain fir Entwickler: Das Handbuch
fir Software Engineers. Grundlagen, Programmierung, Anwendung. Mit

vielen Prazisbeispielen, Rheinwerk Computing.

Sharma (2019), ‘Best programming languages to build smart con-

tracts’, https://www.blockchain-council.org/blockchain/best-
programming-languages-to-build-smart-contracts/. Accessed:
11.01.2019.

Silitschanu (2019), ‘International Trade Finance - Factoring vs. Forfaiting’,
https://www.americanexpress.com/us/foreign-exchange/articles/
financing-international-trade-factoring-vs-forfaiting/. Ac-
cessed: 10.31.2019.

Smith (2018), ‘The story of the DAO, and how it shaped Ethereum’,
https://www.coininsider.com/what-happened-to-the-dao/. Ac-
cessed: 11.01.2019.

SWIFT (2016), ‘Bank Payment Obligation A new payment method’, https:
//www.swift.com/node/35051. Accessed: 10.20.2019.

Swissbilling (2019), ‘Reverse-Factoring’, https://www.swissbilling.ch/

wissen/factoring/reverse-factoring/. Accessed: 10.17.2019.

Szabo, N. (1997), ‘Formalizing and securing relationships on public net-
works’, First Monday 2(9).

Tabora (2018), ‘Databases and Blockchains, The Difference Is In Their
Purpose And Design’, https://hackernoon.com/databases-and-
blockchains-the-difference-is-in-their-purpose-and-design-
56ba6335778b. Accessed: 10.03.2019.

Tian, F. (2016), An agri-food supply chain traceability system for china
based on rfid & blockchain technology, in ‘2016 13th international con-

ference on service systems and service management (ICSSSM)’, IEEE,

pp- 1-6.

Trade Finance Global (2019a), ‘Documentary Collections (DCs)’, https://
www.tradefinanceglobal.com/services/documentary-collections/.
Accessed: 10.17.2019.

viil

Trade Finance Global (20190), ‘Letters of Credit | The TFG Ultimate
Guide’, https://www.tradefinanceglobal.com/letters-of-credit/.
Accessed: 08.15.2019.

Tricks and Parson (2018), ‘The Legal Status of Electronic Bills
of Lading’, https://iccwbo.org/content/uploads/sites/3/2018/10/
the-legal-status-of-e-bills-of-lading-oct2018.pdf. Accessed:
10.17.2019.

UBS (2015), ‘Documentary Credits and Collections’, http://tiny.cc/ubs-
international. Accessed: 10.03.2019.

Vujici¢, D., Jagodi¢, D. and Randi¢, S. (2018), Blockchain technology, bit-
coin, and ethereum: A brief overview, in ‘2018 17th International Sym-
posium INFOTEH-JAHORINA (INFOTEH)’, IEEE, pp. 1-6.

Wang (2019), ‘Why logistics scenarios matter for the future of the indus-
trial IoT’, https://www.weforum.org/agenda/2019/07/industrial-
iot-iiot-logistics-supply-chain/. Accessed: 10.05.2019.

Wax (2018), ‘Bill of Lading (Konnossement) und Telex Release: Vor-
und Nachteile in der Ubersicht’, https://freighthub.com/de/blog/
vor-nachteile-original-bill-lading-telex-release/. Accessed:
10.03.2019.

we.trade (2019), ‘The platform’, https://we-trade.com/the-platform.
Accessed: 10.31.2019.

Wood, G. et al. (2014), ‘Ethereum: A secure decentralised generalised trans-
action ledger’, Ethereum project yellow paper 151(2014), 1-32.

ix

Appendix

Solidity Code for SafeMath library'®

pragma solidity ~0.5.11;

library SafeMath {

function add(uint256 a, uint256 b) internal pure returns

—

(uint256) {
uint256 ¢ = a + b;
require(c >= a, "SafeMath: addition overflow");

return c;

function sub(uint256 a, uint256 b) internal pure returns

—

(uint256) {

return sub(a, b, "SafeMath: subtraction overflow");

function sub(uint256 a, uint256 b, string memory

—

errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 ¢ = a - b;

return c;

function mul(uint256 a, uint256 b) internal pure returns

—

(uint256) {
if (a == 0) {

return O;

uint256 ¢ = a * b;

Bysed from OpenZeppelin (2019)

require(c / a == b, "SafeMath: multiplication
— overflow");

return c;

function div(uint256 a, uint256 b) internal pure returns
<~ (uint256) {

return div(a, b, "SafeMath: division by zero");

function div(uint256 a, uint256 b, string memory

- errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 ¢ = a / b;

return c;

Solidity Code for Whitelist Smart Contract

pragma solidity ~0.5.11;

import "https://github.com/SmartOtter/TradeFinance/blob/maste
- r/SafeMath.sol";

contract Whitelist {
using SafeMath for uint256;
address payable public buyer = msg.sender;
uint256 internal minimumAmount;
uint256 internal minimumScore;
uint256 x = 1000000000000000000;

address payable public financier;

constructor() public {

X1

msg.sender == buyer;

mapping(address => bool) public whitelisted;

modifier onlyBuyer {

require(msg.sender == buyer) ;

—>

function setMinimumRequirement(uint256 _minimumAmount,
< uint256 _minimumScore) public onlyBuyer {
minimumAmount = _minimumAmount.mul(x);

minimumScore = _minimumScore;

function addWhitelist(address _financier, uint256 _score)
< public onlyBuyer {
require(_financier.balance >= minimumAmount);
require(_score >= minimumScore);

whitelisted[_financier] = true;

function removeWhitelist(address _financier) public
- onlyBuyer {

whitelisted[_financier] = false;

function validateFinancier(address _financier) public
<~ view returns(bool){

return(whitelisted[_financier]);

xii

Solidity Code for TradeFinance Smart Contract

pragma solidity ~0.5.11;

import "https://github.com/SmartOtter/TradeFinance/blob/maste
— r/SafeMath.sol";
import "https://github.com/SmartOtter/TradeFinance/blob/maste
< 1r/Whitelist.sol";

contract TradeFinance {
Whitelist w;
using SafeMath for uint256;

bytes32 internal priceSeller;
bytes32 internal quantitySeller;
bytes32 internal priceBuyer;
bytes32 internal quantityBuyer;
uint256 internal orderAmountSeller;
uint256 internal orderAmountBuyer;
uint256 y = 1000000000000000000;
string internal productname;
uint256 internal weight;

uint256 intermal quantity;

string internal shippingmode;
string internal origin;

string internal destination;
uint256 internal freightrate;
uint256 internal customsDuty;
uint256 internal balanceSellerl;
uint256 internal balanceSeller2;
uint256 internal balanceSeller3;
uint256 internal balanceCustomsi;
uint256 internal balanceCustoms2;

bytes32 public orderAddress;

xiii

bytes32 public guaranteeAddress;

bytes32 internal billAddress;

uint256 internal ordersCount;

uint256 internal guaranteesCount;

address payable public seller = msg.sender;
address payable public buyer;

address payable public freight;

address payable public customs;

address payable public financier;

uint256 internal salt;

event OrderCancelled(string description);

event OrderConfirmed(string description);

event OrderLocked(string description);

event OrderReceivedFreight(string description);
event OrderReceivedCustoms(string description);
event OrderReceived(string description);

event GuaranteeActive(string description);

event GuaranteeInactive(string description);

enum OrderState { Negotiation, Created, Locked, Freight,

— Customs, Received, Cancelled }

enum GuaranteeState { Inactive, Active }

GuaranteeState public guaranteestate;

mapping(bytes32 => Guarantee) public guarantees;

mapping (bytes32 => Order) public orders;

xiv

constructor() public {

msg.sender == seller;

struct Guarantee {
bytes32 guaranteeAddress;
bytes32 orderAddress;
address to;

bool isGuarantee;

struct Order {
bytes32 orderAddress;
address payable seller;
address payable buyer;
bytes32 priceSeller;
bytes32 quantitySeller;
uint256 weight;
string productname;
uint256 freightrate;
uint256 orderAmountSeller;
OrderState orderstate;
uint256 customsDuty;
bytes32 guarantee;

bool isOrder;

modifier onlySeller() {

require(msg.sender == seller);

d

modifier onlyBuyer() {

require(msg.sender == buyer);

e d

XV

modifier onlyFreight() {

require(msg.sender == freight);

-

modifier onlyCustoms() {

require(msg.sender == customs) ;

-

modifier inOrderState(OrderState _orderstate) {
require(orders[orderAddress] .orderstate ==

< _orderstate);

-

modifier inGuaranteeState(GuaranteeState _guaranteestate)
- A1
require(guaranteestate == _guaranteestate);

-

function access(address payable _buyer, address payable
— _freight, address payable _customs, bytes32
- _orderAddress, uint256 _salt) public onlySeller {
require(orders[_orderAddress] .orderstate ==
< OrderState.Negotiation);
buyer = _buyer;
freight = _freight;
customs = _customs;
orderAddress = _orderAddress;

salt = _salt;

Xvi

function addOrder(bytes32 _orderAddress, address payable
— _seller, address payable _buyer, bytes32
— _priceSeller, bytes32 _quantitySeller, uint256
—~ _weight,
string memory _productname, uint256 _freightrate,
<~ uint256 _orderAmountSeller, uint256 _customsDuty)
< public onlySeller {
require(orders[_orderAddress] .orderstate ==
— OrderState.Negotiation, "Error: Order cannot
< modified anymore!");
if (isOrder (_orderAddress)) revert();
orders[_orderAddress] .orderAddress = _orderAddress;
orders[_orderAddress] .isOrder = true;
orders[_orderAddress] .orderstate =

— OrderState.Negotiation;

orders|[_orderAddress] .seller = _seller;
orders[_orderAddress] .buyer = _buyer;
orders[_orderAddress] .priceSeller = _priceSeller;

orders[_orderAddress] .quantitySeller =
— _quantitySeller;
orders[_orderAddress] .weight = _weight;

orders[_orderAddress] .productname = _productname;

orders[_orderAddress] .freightrate = _freightrate;
orders[_orderAddress] .orderAmountSeller =

< _orderAmountSeller;

orders[_orderAddress] .customsDuty = _customsDuty;
orders[_orderAddress] .guarantee = "";
ordersCount++;

orderAddress = _orderAddress;

priceSeller = keccak256(abi.encode(_priceSeller,
— salt));

quantitySeller =

- keccak256(abi.encode(_quantitySeller, salt));
weight = _weight;

productname = _productname;

freightrate = _freightrate.mul(y);

xvii

orderAmountSeller = _orderAmountSeller.mul(y) ;

customsDuty = _customsDuty.div(100);

function isOrder(bytes32 _orderAddress) public view

—

returns(bool) {

return orders[_orderAddress].isOrder;

function cancelOrder(bytes32 _orderAddress) public

—

—

inOrderState(OrderState.Negotiation) onlySeller
returns(bool) {

require(orders[_orderAddress] .orderstate ==

- OrderState.Negotiation);

emit OrderCancelled("Order has been cancelled by the
- seller");

orders[_orderAddress] .orderstate =

<+ OrderState.Cancelled;

return true;

function confirmOrder(bytes32 _priceBuyer, bytes32

—

—

—

_quantityBuyer, uint256 _orderAmountBuyer, bytes32
_orderAddress) public
inOrderState(OrderState.Negotiation) onlyBuyer
returns (bool) {
if (keccak256(abi.encode(_priceBuyer, salt)) ==
— priceSeller &&
- keccak256(abi.encode(_quantityBuyer, salt)) ==
— quantitySeller && _orderAmountBuyer.mul(y) ==
- orderAmountSeller) {
require(orders[_orderAddress] .orderstate !=
— OrderState.Cancelled);
emit OrderConfirmed("Order has been confirmed by

< the buyer");

xviii

orders[_orderAddress] .orderstate =
< OrderState.Created;
return true;
} else {
emit OrderCancelled("Order has not been confirmed
< Dby the buyer");
orders[_orderAddress].orderstate =
«» OrderState.Cancelled;

return false;

function addGuarantee(bytes32 _guaranteeAddress, bytes32
— _orderAddress, address _to) public payable {
require(orderAddress == _orderAddress);
require(orders[_orderAddress] .orderstate ==
<~ OrderState.Created);
require(orders[_orderAddress] .isOrder = true);
//require(w.whitelisted[msg.sender] = true);
require(msg.value >= orderAmountSeller);
if (isGuarantee (_guaranteeAddress)) revert();
guarantees[_guaranteeAddress] .guaranteeAddress =
— _guaranteeAddress;
guarantees[_guaranteeAddress] .isGuarantee = true;
guarantees[_guaranteeAddress] .orderAddress =
«» _orderAddress;
guarantees[_guaranteeAddress] .to = _to;
guaranteesCount++;
orders[_orderAddress] .guarantee =
— _guaranteeAddress;
guaranteeAddress = _guaranteeAddress;
emit GuaranteeActive("Guarantee is Active");
guaranteestate = GuaranteeState.Active;
financier = msg.sender;
emit OrderLocked("Order payment is guaranteed by
< Dbank");

Xix

orders[_orderAddress] .orderstate =

< OrderState.Locked;

function isGuarantee(bytes32 _guaranteeAddress) public
< view returns(bool) {

return guarantees[_guaranteeAddress].isGuarantee;

function contractBalance() public view returns(uint256) {

return address(this) .balance;

function receiveOrderFreight(bytes32 _billAddress, string
— memory _shippingmode, bytes32 _orderAddress, uint256
— _weight, string memory _origin, string memory
— _destination) public inOrderState(OrderState.Locked)
- onlyFreight returns(bool) {
require(orders[_orderAddress] .orderstate ==
— OrderState.Locked);
emit OrderReceivedFreight("Order arrived at Freight
< Company");
orders[_orderAddress] .orderstate = OrderState.Freight;
billAddress = _billAddress;
shippingmode = _shippingmode;
weight = _weight;
origin = _origin;
destination = _destination;

return true;

function receiveOrderCustoms(bytes32 _orderAddress)
< public inOrderState(OrderState.Freight) onlyCustoms
- returns(bool) {

require(orders[_orderAddress] .orderstate ==

— OrderState.Freight);

XX

emit OrderReceivedCustoms("Order arrived at Customs

— broker");

orders[_orderAddress] .orderstate = OrderState.Customs;
require(orders[_orderAddress] .orderstate ==

<~ OrderState.Customs);

require(address(this) .balance >= orderAmountSeller);
address(freight) .transfer(freightrate);
require(address(this) .balance >=

< orderAmountSeller.sub(freightrate), "Error:

< Contract balance too low!");

balanceSellerl = orderAmountSeller.sub(freightrate);

balanceSeller2 = orderAmountSeller.mul (customsDuty);
balanceSeller3 = balanceSellerl.sub(balanceSeller?2);

address(seller) .transfer(balanceSeller3);

emit GuaranteeInactive("Guarantee is Inactive");
guaranteestate = GuaranteeState.Inactive;

return true;

function receiveOrder (bytes32 _orderAddress) public

— inOrderState(OrderState.Customs) onlyBuyer

— returns(bool) {
require(orders[_orderAddress] .orderstate ==
— OrderState.Customs) ;
emit OrderReceived("Order arrived at the buyer");
orders[_orderAddress] .orderstate =
s 0OrderState.Received;
balanceCustomsl = orderAmountSeller.sub(freightrate);
balanceCustoms2 = balanceCustomsl.sub(balanceSeller3);
require(address(this) .balance >= balanceCustoms?2) ;
address(customs) .transfer (balanceCustoms?2) ;

return true;

function reset(bytes32 _orderAddress, bytes32
< _guaranteeAddress) public onlySeller {

xxi

require(address(this) .balance == 0, "Error: Contract
— balance is not zero!");
require(orders[_orderAddress].orderstate ==

< OrderState.Received ||

— orders[_orderAddress] .orderstate ==

— OrderState.Cancelled);

buyer = address(0);

freight = address(0);

customs = address(0);

financier = address(0);
guarantees[_guaranteeAddress] .guaranteeAddress =
< bytes32(0);

guarantees[_guaranteeAddress] .orderAddress =

— bytes32(0);

guarantees[_guaranteeAddress] .to = address(0);
guarantees[_guaranteeAddress] .isGuarantee = false;
billAddress = bytes32(0);

salt = 0;

xxii

