
Master Thesis

Flash Loans and Decentralized

Lending Protocols:

An In-Depth Analysis

Florian Gronde 2012-065-694

Supervised by:
Prof. Dr. Fabian Schär
Credit Suisse Asset Management (Schweiz) Professor for
Distributed Ledger Technologies and Fintech
Center for Innovative Finance, University of Basel

Abstract

This paper deals with the concept of Flash Loans on the Ethereum

Blockchain. It presents the unique concept and elaborates on di�erent

applications. It therefore shows the functionality on the platforms Aave,

dYdX and bXz. Furthermore, it deals with comparable concepts like

Flash Swaps on Uniswap and Flash minting. It also describes the two

largest �ashloan attacks that have brought the concept into the public

eye. For an economic analysis, Flash Loans on the described platforms

were analyzed and their applications were worked out. It is shown how

the usage is distributed to the individual platforms and applications and

which tokens are in focus. It is pointed out that the most common ap-

plications are arbitrage in various forms and closing of collateral debt

positions. Further it is shown that the platform dYdX is mainly used

for arbitrage and Aave for closing of collateral debt positions, whereas

Uniswap and �ash minting is used less.

1

Keywords: Aave, bZx, Flash loans, Flash minting, Flash swaps,

Uniswap, uncollateralized loans.

Contents

List of �gures II

List of tables III

1 Introduction 2
1.1 Flash Loans - an introduction 2
1.2 Relevance of the topic 3
1.3 Objective . 4
1.4 Methodology . 4
1.5 Structure of the thesis 5

2 Decentralized loans 6
2.1 Classic P2P lending . 6
2.2 Flash loans . 8

2.2.1 Applications . 9

3 Flash loans in detail 15
3.1 Aave Lending Protocol 15
3.2 dYdX . 16
3.3 bZx . 17
3.4 Comparable approaches 18

3.4.1 FlashSwaps . 18
3.4.2 Flash-minting . 21

3.5 Flash loan attacks . 22

4 Empirical research 26
4.1 Data acquisition and preparation 26
4.2 Categorization . 29
4.3 Findings . 36

4.3.1 Utilization numbers of Flash Loans 37
4.3.2 Distribution of txns over time 39
4.3.3 Applications . 41

4.4 Token on protocols . 50
4.5 USD volumes . 53

5 Conclusion 59
5.1 Limitations and further research 60

References i

Appendix

I

List of Figures

1 Token transfers of �rst �ashloan 9

2 Token transfers of CCDP example 11

3 Token transfers of collateral swap example 13

4 Token transfers of wash trading example 14

5 Distribution of �ashloan txns over protocols 39

6 Distribution of txns on protocols over time 41

7 Distribution of txns over applications 43

8 Distribution of txns over applications subcategories . . . 46

9 Distribution of applications on all protocols over time . . 47

10 Linear regression CCDP txns and price of ETH 48

11 Distribution of arbitrage bot txns over time on protocols 49

12 Flash Loan value in mio USD per month 55

13 USD volume of Flash Loans on protocols per month . . . 56

14 Volume of Flash Loans for applications in USD 57

15 Volume of Flash Loans for applications subcategories in

mio USD . 58

II

List of Tables

1 Attributes in �nal data set 36

2 Distribution of Flash Loans over protocols 38

3 monthly usage of Flash Loans 40

4 txn count over time . 41

5 Distribution of applications over �ashloan txns 42

6 Distribution of subcategories over protocols 44

7 Txns error of failed txns on Uniswap 45

8 Top three CCDP txns per day 47

9 Top �ve potential hammer bot txns per day 50

10 Flash Loan amounts and distribution of tokens on Aave . 51

11 Flash Loan amounts and distribution of tokens on dYdX 51

12 Flash Loan amounts and distribution of tokens on Uniswap 52

13 Flash Loan value in mio USD per month 54

14 Flash Loan value in USD per protocol 56

III

List of abbreviations

API Application Programming Interface

BAT Basic Attention token

CDP Collateralized Debt Position

dApps Decentralized Applications

DeFi Decentralized Finance

DEX Decentralized Exchange

ETH Ether

EVM Ethereum Virtual Machine

P2P Peer-to-Peer

SAI Single-Collateral DAI

SC Smart Contract

txn transaction

USD US Dollar

USDC US Dollar Coin

WBTC Wrapped Bitcoin

WETH Wrapped Ether

XRP Ripple

IV

Plagiatserklärung

Ich bezeuge mit meiner Unterschrift, dass meine Angaben über die bei
der Abfassung meiner Arbeit benutzten Hilfsmittel sowie über die mir
zuteil gewordene Hilfe in jeder Hinsicht der Wahrheit entsprechen und
vollständig sind. Ich habe das Merkblatt zu Plagiat und Betrug vom
22. Februar 2011 gelesen und bin mir der Konsequenzen eines solchen
Handelns bewusst.

Florian Gronde

2012-065-694

V

Acknowledgements

Many thanks to Prof. Dr. Fabian Schär for the opportunity to work on

such an exciting topic. Thanks also to the developer community of dYdX

and to Noah Zinsmeister of Uniswap, Antonio Juliano of bZx and Austin

Williams of the project �ash minting for tips on �ashloan identi�cation

and considerations. Huge thanks to Susanne Halimi for all the technical

explanations and thoughts during the data acquisition and the push to

dive deeper into the topic by the overwhelming interest in my work and

challenging discussions. It was a joy to bring all the complex thoughts

together and learn from each other.

1

1 Introduction

1.1 Flash Loans - an introduction

On 15 February 2020, a transaction could be observed on the Ethereum

Blockchain1 that was unique at the time. Within under one minute, one

block and in one transaction, a pro�t of about US Dollar (USD) 360,000

was achieved through the advantageous use of a smart contract. The

news went viral quickly (e.g. Trustnodes (2020b)) and drew public atten-

tion to the transactions involved. The gain could be achieved by a nearly

risk-free loan in the form of a �ashloan and the subsequent exploitation

of arbitrage between di�erent decentralized cryptocurrency exchanges.

First, a �ashloan of 10,000 Ether (ETH) from the dYdX trading plat-

form was invested half on the Compound platform for conversion into

Wrapped Bitcoin (WBTC) and half on the bZx platform for shortening

the same amount WBTC. Subsequently, the price of WBTC was lowered

by means of a swap on the Uniswap platform, and the shortening resulted

in a pro�t from the settlement. The �ashloan and the protocol fee were

repaid and a pro�t of approximately USD 360,000 was achieved. Flash

loans are currently o�ered by various platforms. The most prominent is

probably Aave and dYdX. Aave developers (2020b) describe Flash Loans

as a possibility �to borrow in an undercollateralized fashion from the re-

serve [...] a certain amount of liquidity, that must be returned within the

same transaction.� Besides a relatively low protocol fee, there are no fur-

ther costs for the borrower. The only condition is that the loan must be

returned within the same transaction, within one block on the Ethereum

Blockchain. Although the very short time between taking out a loan

and repaying it seems strange at �rst, the previous example impressively

shows the possibilities of this relatively young concept. Although the

possibility of extreme capital gains by manipulating the price of other

currencies, as exploited in February and only possible because of a bug,

has now been eliminated for the described procedure, the basic concept

1transaction (txn):
0xb5c8bd9430b6cc87a0e2fe110ece6bf527fa4f170a4bc8cd032f768fc5219838

2

of risk-free loans nevertheless opens up a wide range of investment op-

portunities. It enables uncollateralized loans. That is, loans that do not

require collateral that exceeds the value of the loan. Collateralized loans

are probably the most common form of lending in the traditional �nan-

cial sector and on most Decentralized Finance (DeFi) trading platforms

for cryptocurrencies. Before a loan can be granted, a certain amount of

money must usually be available in the user's account, or other collateral

must be proven. This is not the case with uncollateralized or undercollat-

eralized loans. Here, the repayment of the loan in the same transaction

is a condition for the actual disbursement. This means that the user only

receives a loan if he pays it back almost immediately. Since no securities

are required, the repayment can be limited on using the actual credit. In

this way, the user has hardly any investment risks. Apart from the rela-

tively small protocol fee, no own funds have to be used. This guarantees

that the user will only receive a loan if he can achieve a positive return on

his investment (or at least a zero-sum investment). Otherwise the loan

cannot be repaid and the actual payout is not possible. In this way, no

investment risk arises for the lender either. He never has to provide funds

which are not paid back. On decentralised platforms, this enables almost

risk-free Peer-to-Peer (P2P) lending without having to check collateral

(Aave developers, 2020b).

1.2 Relevance of the topic

Flash loans are moving more and more into the public eye. As they are

in contrast to traditional loans in their way of functioning, they o�er a

unique investment opportunity. But above all, the high pro�ts that have

been achieved through several attacks on the lending platforms by ma-

nipulating prices, provide the basis for exciting news. Nevertheless, there

are almost no publications or researches worth mentioning on the sub-

ject of Flash Loans. This may be mainly due to the very young concept.

News on the topic is mostly limited to the analysis of the attacks. The

concept is usually only very super�cially touched upon and there is no

detailed analysis of further use of Flash Loans. Interesting aspects like

3

the functionality of the involved smart contracts of the lending platforms

on the one hand, and detailed data analysis of the purposes of Flash

Loans on the other hand are often not in focus. Reliable sources are thus

limited to the description of the loan platforms (Aave developers (2020b),

money-legos (2020), Uniswap (2020b)).

1.3 Objective

The central question of the present study can be derived from the ob-

servation of the increased interest in the topic of Flash Loans and the

simultaneous lack of scienti�c reporting. It is about the question of which

functionalities underlie the concept of Flash Loans. The following ques-

tions are the focus of the analysis: It will be elaborated how Flash Loans

basically work and why they are a unique form of credit. This is con-

nected with the description of the used smart contracts of the lending

protocol of selected platforms. Furthermore, it will be described how the

often reported attacks and the exploitation of large capital gains could

come about. Furthermore, the present work focuses on di�erent use cases

and shows in an empirical analysis the extent of the current use of Flash

Loans.

1.4 Methodology

Since there is hardly any scienti�c research on Flash Loans, the collec-

tion of the relevant data was done from scratch. For the acquisition of

data from Aave the corresponding subgraph of TheGraph (2020) was

used. Data about dYdX (2020) could be collected by querying the cor-

responding eventlogs via Etherscan (B1) (2020c). The identi�cation of

the relevant txns for �ash swaps on Uniswap (2020a) was done using

Dune Analytics (2020). Further txns for �ash minting could be acquired

through the respective contracts on Etherscan. A detailed description of

the corresponding Application Programming Interface (API) queries can

be found in the section Empirical research and the appendix. After iden-

4

tifying the relevant txns, the respective token transfers were drawn from

Etherscan. By mapping known and labelled addresses from Etherscan

token transfer, veri�ed Etherscan contract addresses (Etherscan (B1),

2020a) and Qin et al. (2020) with the addresses of the token transfers

(from, to, target, address, contractAddress) an overview of the origins

and destinations of the transfers was created. This serves as a basis for

being able to identify applications and involved protocols. Afterwards

most common contracts used in txns were analysed on their application.

Through this, many applications of Flash Loans could be identi�ed di-

rectly. Furthermore txns which were not successful were checked for their

error code to distinguish between the reasons of failure. Data acquisition,

data cleansing and the identi�cation of applications took the major part

of the work.

1.5 Structure of the thesis

The introduction gives a �rst insight into the topic and presents the ob-

jectives of the work. Subsequently, in chapter two Flash Loans are dis-

tinguished from classic peer-to-peer lending and conceivable applications

of Flash Loans are given. In addition the two comparable approaches

�ash minting and �ash swaps are explained. Chapter three deepens the

interaction of smart contracts with the protocols of the platforms Aave,

dYdX, bZx, Uniswap and an example of �ash minting. First the func-

tionalities of the protocols which are key for the usage of Flash Loans

are described in order to provide a good understanding of the mechan-

ics. Following this, an explanation of the two famous �ashloan attacks

is given. Afterwards, chapter four o�ers an empirical analysis of the use

of Flash Loans on the platforms presented. Finally, the discussion and

evaluation of the results builds up the conclusion of the paper. Note that

example transaction hashes, contract hashes, links to contracts, when the

source is of an indicative nature only and is not a scienti�c source (like

a post on twitter), as well as descriptive notes or statements which have

no explicit quotable source (like personal notes by members of protocols)

have been put into footnotes. All direct links have been marked in blue

5

for better visibility.

2 Decentralized loans

The concept �ashloan (or Flash lending) was �rst introduced by Max

Wol� (2018). However, the project around the open-source bank Marble

has not yet seen a user-ready release. But even protocols for uncollat-

eralized lending which are available live on the Ethereum main-net are

currently not usable by the broad mass of DeFi-users. Decentralized Ap-

plications (dApps) such as DeFi Saver (2020) Collateral Swap (Kevin

Truong, 2020) or �ashmint (2020) try to �ll this gap and o�er a sim-

ple interaction with �ashloan protocols or similar concepts. Nevertheless

Flash loans like on Aave, dYdX or �ash swaps on Uniswap are aimed at

developers and technically experienced users. But not only the currently

di�cult interaction with �ashloan protocols, but also the unique concept

of loans without collateral on the borrower's side poses challenges for

users in understanding them. For this reason, the following chapter �rst

distinguishes �classic� P2P lending, as it is mostly used for DeFi, from

Flash Loans. Furthermore, an intuitive description for the functionality

of Flash Loans is given. Chapter three goes into more detail about the

used protocols and smart contracts.

2.1 Classic P2P lending

In order to explain the functioning of overcollateralized loans, the lend-

ing protocol of the Aave platform described in the whitepaper of Aave

(2020a) o�ers a good starting point. The platform, which �rst started

in 2017 under the name �Ethlend�, was launched in 2018. The lending

protocol o�ers the possibility for decentralized pool lending and borrow-

ing of cryptocurrencies. In this non-custodial protocol users can provide

liquidity or borrow in over- or undercollateralized fashion. Depositors

earn a passive interest on their loans. The protocol is based on a set of

Smart Contract (SC). Deposits are paid into a pool contract. From this

6

pool contract, lenders can then borrow loans. The LendingPoolCore

contract2 stores the states of all reserves, i.e. the deposits of individual

users. As already mentioned, there are two possibilities of borrowing.

The �rst, overcollateralized loans, is the focus of this subsection. The

second, Flash Loans, will be dealt with afterwards. Overcollateralized

loans require users to lock a collateral with greater value than the loan

in their reserves. Reserves represent the core of the pools. They hold the

corresponding currencies which can be deposited and borrowed. Each

reserve has a Loan-To-Value (LTV) which is a weighted average of the

currencies held as collateral. The weighting is the corresponding value

of the collateral in ETH. The amount a user can borrow depends on the

currencies deposited still available in the reserves. A liquidation thresh-

old value is set for every reserve. The threshold for a user is a weighted

average of the thresholds of the currencies held as collateral. A loan can

be liquidated when it reaches a healthfactor Hf < 1 which is the dividend

from the total amount of collateral weighted by the average liquidation

threshold and the total amount of borrows including interest. If a col-

lateral drops in price, causing the healthfactor to drop below one, then

liquidators can buy the collaterals at a discounted price. The proceeds

from the liquidation are then used to repay the loan untill a maximum

of 50%. The amount of collaterals will be liquidated so that the health

factor rises above 1 again. The role of liquidator can be taken over by any

user and thus acquire a part of the collaterals relatively cheaply. Users

can take out loans at a �xed or variable interest rate and repay them

in full or in partial amounts at any time (Aave, 2020a). The described

functionality is similar in its basic features for many other crypto lending

platforms. Cryptocurrencies are deposited as collateral and a loan for a

certain amount of collateral can be obtained. In case of a decrease in

value of the collaterals, a liquidation can be carried out in which other

users can buy the collaterals at a reduced price to compensate a part of

the credit of the user.

2https://github.com/aave/[...]/lendingpool/LendingPoolCore.sol

7

https://github.com/aave/aave-protocol/blob/master/contracts/lendingpool/LendingPoolCore.sol

2.2 Flash loans

The Ethereum Virtual Machine (EVM) contains the possibility to revert

transactions if a certain condition is not ful�lled (Gudgeon et al., 2020).

For this purpose a so-called checkpoint is set. Discarding a checkpoint

throws away all changes that happened since that checkpoint. The EVM

is reverted to this checkpoint if the following conditions of the smart con-

tract are not ful�lled (Ethereum Foundation, 2020). This makes �ashloan

protocols possible. Since Flash Loans are uncollateralized loans, a user

does not need a credit balance in his cryptowallet or even in the interact-

ing SC, except for a small amount of the �ashloan currency to pay the

protocol fee (which also could be acquired through arbitrage gains). Note

that network fees for initiating the txn are not taken into consideration

here since they are accounted for every txn on Ethereum. When a user

requests a �ashloan, it is �rst made available to the SC. The SC of the

user can then use the loan for various actions within the duration of the

transaction and execute them. For example, it can be invested on other

platforms. Di�erent arbitrage concepts are conceivable here. Another

possible application is debt re�nance. For example, if a user has debt on

one platform at a certain interest rate and wants to switch to another

platform with a lower interest rate, one can use Flash Loans to clear

the �rst debt and switch to another platform. The Applications section

discusses the di�erent variants of arbitrage and debt re�nance.

After the execution of the SC actions, the user repays the �ashloan plus a

network fee. This is only possible if the user has made a pro�t through his

SC. As there must not previously be a credit balance in the user's wallet,

no other funds other than the actual loan can be used for repayment.

However, if a User makes a loss on his investments, he can not pay back

the loan. In this case the revert function mentioned above will be used.

The transaction is put back into the state in which the loan has not yet

been paid out. Since this all happens within one transaction, the actions

of the SC are also reversed. So there is no investment on other platforms.

This eliminates the risk of making a loss for both the user and the issuer

of the �ashloan.

8

2.2.1 Applications

Flash loans o�er a wide range of possible applications whenever a user

needs to have a large amount of cryptocurrencies at his disposal at short

notice without having or being able to invest his own funds. The following

section introduces them and gives examples for txns and projects for a

speci�c application.

Arbitrage Flash loans theoretically o�er every user the possibility to

invest large sums of cryptocurrencies. For example, a loan from Aave

is invested in another currency on a Decentralized Exchange (DEX). If

the price of the currency is lower than the price on another platform, the

currency can be sold there and an arbitrage pro�t can be made. An ex-

ample of arbitrage using Flash Loans can be observed from a transaction

on 18.01.20203. The group �Flash Boys�, who boast of having carried out

the �rst ever Flash Loan on the blockchain, were able to make a small

pro�t on the transaction (Julien Bouteloup for Flash Boys, 2020). Figure

1 illustrates the transfers within the txn:

Figure 1: Token transfers of �rst �ashloan
Source: txn:

0x4555a69b40fa465b60406c4d23e2eb98d8aee51def21faa28bb7d2b4a73ab1a9
on Etherscan

To carry out the arbitrage trade, �rst a �ashloan of 3, 137.4070 DAI was

made on Aave. After taken out the �ashloan, DAI was converted into

3txn hash:
0x4555a69b40fa465b60406c4d23e2eb98d8aee51def21faa28bb7d2b4a73ab1a9

9

https://etherscan.io/tx/0x4555a69b40fa465b60406c4d23e2eb98d8aee51def21faa28bb7d2b4a73ab1a9
https://etherscan.io/tx/0x4555a69b40fa465b60406c4d23e2eb98d8aee51def21faa28bb7d2b4a73ab1a9
https://etherscan.io/tx/0x4555a69b40fa465b60406c4d23e2eb98d8aee51def21faa28bb7d2b4a73ab1a9

the same amount of Single-Collateral DAI (SAI) through MakerDAO's

Migration contract by �rst burning the amount of DAI and then minting

the same amount of SAI. Then SAI was converted into DAI using the

platform Uniswap. It is important to note here that the amount of DAI is

now higher than before the conversion. One can conclude here that there

was a better conversion price of SAI to DAI on Uniswap than the one

previously provided by Maker. The di�erence between the amount of DAI

through the �ashloan and the amount of 3, 148.3879 DAI repaid to Aave

was 10.9809 DAI. After repayment of the loan to Aave and deduction of

the protocol fee of ∼ 7.6867 DAI, a pro�t of 3.2942 DAI was achieved

(Qin et al., 2020). Despite the relatively small pro�t, this example of the

�rst �ashloan demonstrates the possibilities and functioning of arbitrage

transactions using Flash Loans.

Closing Collateralized Debt Position (CDP) The standard in

DeFi cryptocurrency lending is overcollateralized loans. This means that

for a loan of a cryptocurrency a security in form of another currency must

be deposited. The deposited collateral is then locked until the loan can

be repaid (Aave, 2020a). In the case of very volatile cryptocurrencies, it

is possible that the currency of the loan may fall sharply in value against

the currency of the collateral. In this case, the borrower is unable to

repay the loan, because the value of the currency is lower than the value

when the loan has been taken, and his collateral remains locked. Flash

loans o�er the possibility to pay back the loan and thus release the col-

lateral. For example, a borrower who has deposited ETH as collateral for

a loan in the form of DAI can take out a �ashloan in DAI in the amount

of the CDP. With the �ashloan he pays back the CDP and can release

his collateral in ETH. Afterwards, the amount of ETH required to pay

back the �ashloan is converted into DAI by means of a decentralized ex-

change and the �ashloan is repaid. Finally, the remaining ETH that was

deposited as collateral is taken back4. An example is found in Figure 2:

4txn hash:
0x79644cd1bf45b196eb3aad9b96c1892568adc5ee830e746ed2d48d8a4081b2f2

10

Figure 2: Token transfers of CCDP example
Source: txn:

0x79644cd1bf45b196eb3aad9b96c1892568adc5ee830e746ed2d48d8a4081b2f2
on Etherscan

In the example txn, a �ashloan from Aave, equal to the outstanding dept

position of∼ 262.1786DAI on the plattformMaker is taken out. Next the

CDP is paid back. For Maker this works by burning the amount (sending

it to the origin address5). Then the collateral of ∼ 2.0951 Wrapped

Ether (WETH) is freed and withdrawn. For paying back the �ashloan,

the user �rst converts the corresponding amount from the withdraw from

WETH to DAI using the Kyber reserve. In the txn one can observe the

di�erence between the required amount for repaying the �ashloan and

the converted amount of 2.45 DAI is sent to Uniswap, which may be a

deposit that is not important for the process of CCDP. Following this,

the �ashloan of ∼ 262.4145 DAI, including a fee (read more in: 3.1

Aave Lending Protocol) is paid back and a small surplus is sent to the

user's address. It is important to note here that the remaining amount

of the collateral might have been withdrawn in another txn and is not

observable within the present one.

DeFi Saver (2020) provides a dashboard with the same functions as de-

scribed above for the platform MakerDAO. So it is possible to pay back

loans and release locked collaterals without the need for additional own

values in the form of cryptocurrencies.

5address:
0x00

11

https://etherscan.io/tx/0x79644cd1bf45b196eb3aad9b96c1892568adc5ee830e746ed2d48d8a4081b2f2
https://etherscan.io/tx/0x79644cd1bf45b196eb3aad9b96c1892568adc5ee830e746ed2d48d8a4081b2f2
https://etherscan.io/tx/0x79644cd1bf45b196eb3aad9b96c1892568adc5ee830e746ed2d48d8a4081b2f2

A similar principle as for closing CDP is also applied to the re�nance

of debt. If a user wants to switch from a DeFi platform with relatively

high interest rates on his debt to a platform with lower interest rates, the

use of Flash Loans is conceivable. First, a �ashloan is taken out in the

amount of the loan. The loan is then redeemed and the position closed.

At the same time, the collateral deposited is released. Now the collateral

is transferred to another platform and another loan is taken out at a lower

interest rate. The �ashloan is then repaid including the transaction fee.

This makes it possible to change the interest rate of a loan without having

to repay the loan from one's own funds. The costs incurred are only the

transaction fees. In case of di�erent cryptocurrencies in which the loans

are issued, a currency swap can be made and changed into the preferred

currency by using swap platforms such as Uniswap (Marc Zeller for Aave

Blog, 2020).

A similar approach is followed for self liquidation. When a collateral

drops in price, the users collateral is in danger of being liquidated. By

observing the value of the collateral and noticing a sharp drop, a user

can interact and buy back own collaterals. The procedure then follows

the one described beforehand(Marc Zeller for Aave Blog, 2020).

Collateral Swap Collateral for loans may be held in multiple curren-

cies. Aave, for example, o�ers a variety of currencies for this purpose. It

may be desirable to change the currency in which the collateral is held.

The amount of the loan depends largely on the performance and value of

the collateral. In principle, increases in the value of currencies o�er the

possibility of obtaining higher loans with these currencies. In order to

change from one collateral to another, it may be necessary to �rst redeem

the entire loan and then take it up again with a new collateral. In order

to avoid having to raise further own funds to repay the loan, a �ashloan

can also be used here. With a �ashloan, a new currency is deposited

as collateral and the other currency is withdrawn. The �ashloan and

the protocol fee are then repaid. Kevin Truong (2020) already is work-

ing on this concept under the name �Collateralswap� for the platform

12

MakerDAO6. An example is provided in Figure 3 below:

Figure 3: Token transfers of collateral swap example
Source: txn:

0xf0c72b0e64612ba607d7499acc3dbf7dfcedc2a63901d38ec742eb64f1456ae4
on Etherscan

First, a �ashloan of ∼ 25 DAI is taken out to collateral swap on behalf of

the user. The user then withdraws all collateral on MakerDAO in form of

0.5 WETH using the �ashloan. Then converts WETH for ∼ 380.64 Basic

Attention token (BAT) using Uniswap (read more in: 3.4.1 FlashSwaps).

Afterwards the user borrows ∼ 25.1314 DAI from MakerDAO by using

BAT as collateral. The �ashloan of ∼ 25.0876 DAI is paid back and a

surplus of ∼ 0.02625 DAI is sent to the user. This way the user swapped

the collateral from WETH to BAT in only one txn without using own

funds.

Wash trading The following use case brie�y presents a deliberate way

of manipulating trading volumes. Wash trading describes the procedure

of exchanges to in�uence the market by in�ationary trading of certain

assets. Wash trading gives investors the illusion of a greater trading

volume of certain assets than would actually be traded on the open mar-

ket. It �therefore distorts demand and supply of cryptocurrencies and

arti�cially a�ects the price and harms the development of the cryptocur-

rency market in the long run� (Cong et al., 2019). Alongside with this

6txn hash:
0xf0c72b0e64612ba607d7499acc3dbf7dfcedc2a63901d38ec742eb64f1456ae4

13

https://etherscan.io/tx/0xf0c72b0e64612ba607d7499acc3dbf7dfcedc2a63901d38ec742eb64f1456ae4
https://etherscan.io/tx/0xf0c72b0e64612ba607d7499acc3dbf7dfcedc2a63901d38ec742eb64f1456ae4
https://etherscan.io/tx/0xf0c72b0e64612ba607d7499acc3dbf7dfcedc2a63901d38ec742eb64f1456ae4

statement, Cong et al. (2019) �nd evidence that a large proportion of

unregulated exchanges in�ate trade volume through computer programs.

The Surveillance Report of the Blockchain Transparency Institute (2019)

estimates that the wash trading rates of the major cryptocurrencies range

from 50% to 75%7. According to Qin et al. (2020) the biggest hurdle to

wash trading is the large volume of proprietary cryptocurrencies needed

to signal a su�cient percentage increase in trading volume. Especially for

DeFi exchanges, which settle all transactions on-chain and can not use

o�-chain transactions for the pretence of higher volumes, this restriction

is binding. With the help of Flash Loans it is possible to reach very high

trading volumes in a very short time without having to raise substantial

own funds8. Figure 4 shows an example wash trading txn.

Figure 4: Token transfers of wash trading example
Source: txn:

0xf65b384ebe2b7bf1e7bd06adf0daac0413defeed42fd2cc72a75385a200e1544
on Etherscan

In this txn a �ashloan on dYdX is carried out (read more about dYdX in:

3.2 dYdX). Then 0.01 WETH was converted into ∼ 122.18978 LOOM

and back into ∼ 0.0099 WETH. Afterwards the �ashloan was paid back

(Qin et al., 2020). What distinguishes this txn from other applications,

such as arbitrage, is that the txn has been carried out although there was

a loss when swapping tokens. This indicates that the user wanted the txn

to complete to push up trading volumes and did not try to make a pro�t

from it in the �rst place. Qin et al. (2020) state that �the 24-hour trading

volume of the ETH/LOOM market increased by 25.8% (from 17.71 USD

to 22.28 USD) as a result of the two trades�.

7Bitcoin: 50%, Ethereum: 75%, Ripple (XRP): 55%, and Litecoin: 74%
8txn hash:
0xf65b384ebe2b7bf1e7bd06adf0daac0413defeed42fd2cc72a75385a200e1544

14

https://etherscan.io/tx/0xf65b384ebe2b7bf1e7bd06adf0daac0413defeed42fd2cc72a75385a200e1544
https://etherscan.io/tx/0xf65b384ebe2b7bf1e7bd06adf0daac0413defeed42fd2cc72a75385a200e1544
https://etherscan.io/tx/0xf65b384ebe2b7bf1e7bd06adf0daac0413defeed42fd2cc72a75385a200e1544

3 Flash loans in detail

The following chapter goes into detail about the smart contracts of the

platform Aave, dYdX, comparable approaches like Uniswap and �ash

minting and the interaction with them. Based on this, the attacks are

described which have brought Flash Loans into the focus of the public

and media. It is explained how the attackers were able to achieve such

high pro�ts by exploiting SC vulnerabilities and manipulating Oracle

contracts.

3.1 Aave Lending Protocol

The following section introduces the interaction of SC with the Aave

protocol and gives examples.

Aave developers (2020a) o�ers a good introduction to setting up a SC to

perform a �ashloan. The Simple �ashloan SC framework in the appendix

provides the basic framework for executing a �ashloan.

ILendingPoolAddressesProvider, FlashLoanReceiverBase and

ILendingPool are provided by mrdavey for Aave (2020).

In the contract de�nition, a constructor argument is passed to the inher-

ited FlashLoanReceiverBase contract which determines which

LendingPoolAddressProvider is used on the Network. The address has

to be changed according to the network on which the contract is de-

ployed. Here DAI on Ethereum Mainnet is used. The shown contract

calls the LendingPool contract of Aave, requesting a �ashloan through

the call of the function flashloan(). It is set up to only let the owner

of the contract execute a �ashloan of the stated amount of DAI. It is

important to notice that 1 ether refers to 1′000 tri WEI worth of 1 DAI.

The argument _params lets one de�ne additional parameters. The re-

quested amount is then transferred to the contract by the LendingPool

out of the reserve. It then calls the executeOperation() of the receiv-

ing contract speci�ed in contractde�nition. The _reserve corresponds

to the address of the underlying asset as de�ned in the address in the

15

flashloan function. _amount is the borrowed amount of the loan with

a _fee of 0.09% to be paid back. Next any application speci�ed within

the contract is carried out and the �ashloan is transferred back to the

the LendingPool contract. This contract compares the balance of the

reserve before and after the execution of applications9 to be the same

amount plus the �ashloan fee. The totalDebt is de�ned as the amount

of the loan plus the _fee. After compiling and deploying the contract

to Ethereum mainnet, an amount of DAI su�cient of the fees has to be

transferred to the contract. If this is not done, the txn is reverted and

will fail because the available liquidity after execution of applications is

less than the liquidity before plus the �ashloan fee.

3.2 dYdX

The logic of Flash Loans on dYdX follows in principle the same as on

Aave. However, dYdX has no native �ashloan feature integrated. The

solo protocol consists of SC on Ethereum which support margin trading,

borrowing, and lending (dYdX, 2020). It is account based and all state

changes of one or multiple accounts happen through so called �Actions�.

Actions support all common transactions such as deposit, borrow, trade,

transfer, buy, sell, call, liquidate and vaporize10.

To perform more complex operations, it is possible to combine several

actions into operations. The most important feature here is that collat-

eralization of the accounts is only checked at the end of each operation.

This means that multiple actions can be performed without the need for

collateralization per se. For example, loans can be taken out, used for

di�erent applications, and only need to be repaid at the end of an oper-

ation. The logic of Flash Loans on dYdX follows the same as on Aave

(money-legos, 2020). The di�erence lies in a much lower fee of only 2

9availableLiquidityAfter == availableLiquidityBefore.add(amountFee),
(Aave, 2020b)

10Pulls funds from the insurance fund to recollateralize an underwater account with
only negative balances (dYdX, 2020)

16

WEI. Despite this statement, fees of 1 WEI could be observed11, and a

statement of dYdX founder Antonio Juliano in a personal discussion12

suggests that there are no fees at all.

3.3 bZx

The protocol bZx also contains an explicit �ashloan feature through the

function flashBorrowToken within the SC LoanTokenLogicV413 (Cer-

tiK, 2020a). Although there is only one observable �ashloan txn14

that call the function and then perform actions the functionality will

be pointed out here for the sake of completeness. The only executed

�ashloan on bZx is the second famous �ashloan attack, which will be pre-

sented later. BZx �is a decentralized protocol that enables lending and

borrowing for margin trading� (bZeroX, LLC, 2018). For this purpose,

bZx uses global liquidity pools which are shared between many di�erent

exchanges (Hussey and Tran, 2020). When users deposit liquidity they

receive iTokens, which serve as interest bearing asset. These tokenized

loans reward lenders with interest proportional to the amount of iToken

held by each lender. They are minted by the contract mentioned before

by calling the function mint equivalent to an amount of asset deposited.

When borrowing assets (to trade with margin), users borrow from an iTo-

ken lending pool and receive the corresponding underlying asset. When

performing a �ashloan, the function flashBorrowToken �rst performs

a reentrancy check to prevent potential attackers from entering the ini-

tial contract again and calling the function before it has been completed

(fravoll, 2019). A pausing check validates that the function has not been

paused by an admin. The function then transfers the borrowAmount of

the asset to the address of the borrower and then might send it to the

target address by an ArbitraryCaller.sendCall within the contract

ArbitraryCaller. The target can be an external address or contract

11txn: 0xc9c1d6563f2db590c8786ad98ce07daddf9bd1e753b57ed695fe9475d234�a5
12On Discord 11.07.2020
13https://github.com/bZxNetwork/.../LoanToken/LoanTokenLogicV4.sol
14txn:
0x762881b07feb63c436dee38edd4�1f7a74c33091e534af56c9f7d49b5ecac15

17

https://github.com/bZxNetwork/bZx-monorepo/blob/36e42da78665d8da778c177d7d3a888d64230bb3/packages/contracts/extensions/loanTokenization/contracts/LoanToken/LoanTokenLogicV4.sol

which then performs some applications with the �ashloan. Afterwards,

the remaining asset balance is transferred back and a check on the asset

balance is made.

require(

address(this).balance >= beforeEtherBalance &&

ERC -20(loanTokenAddress).balanceOf(address(this))

.add(totalAssetBorrow) >= beforeAssetsBalance ,

"40"

);

Code 1: Requirement of function flashBorrowToken within

LoanTokenLogicV4

The check requires the ETH balance before the loan not to be less than

after and the ERC-20 token balance of the asset of the loan added up by

the amount borrowed not to be less than the balance before.

3.4 Comparable approaches

The following section describes the concepts �ash swaps and �ash minting

which follow the idea of Flash Loans. Although they are not explicitly

assigned to the term Flash Loans because �ash swaps technically only

involve the exchange of two tokens and �ash minting does not request

a loan, the possible applications are the same. The general functioning

of the Uniswap protocol is explained because it is key to understanding

arbitrage concepts and �ashloan attacks presented later.

3.4.1 FlashSwaps

With the launch of version 2 of Uniswap (2020b) the feature �ash swaps

was introduced. In contrast to a regular swap, where one token is ex-

changed for another, �ash swaps allow the withdrawal of the token with-

out a prior check on the corresponding amount of the other token to

be exchanged. Uniswap allows users to withdraw the entire available

amount of a token's liquidity pool without having to show the corre-

sponding amount to be exchanged. The logic again follows the logic of

Flash Loans. A user can dispose of the amount of the received tokens

18

within a transaction as long as he repays or exchanges them at the end

of the transaction including a fee of ∼ 3%. Uniswap V2 is a DEX based

on two SC on the Ethereum network (Uniswap, 2020g). It allows the

swap of ERC-20 token pairs and the swap of ERC-20 and ETH. The

two main SCs involved are a Factory contract and a Pair contract. The

UniswapV2Factory SC contains an exchange registry where a token ad-

dress is linked to the address of an UniSwapV2Pair contract. By calling

the createPair a Pair contract for a particular ERC-20 token is de-

ployed. In order not to create Pair contracts for tokens that already

exist, a comparison is made in the registry. A user can then invoke

the addLiquidity function within a router contract to add liquidity to

the respective address linked to the token. Routers are helper contracts

�that perform the safety checks needed for safely swapping, adding, and

removing liquidity� (Uniswap (2020f),Uniswap (2020e)). Each Pair con-

tract contains a liquidity pool for exactly one ERC-20 token and ETH

or two speci�c ERC-20 tokens (in the following the term �token� will be

used representative for any ERC-20 token or ETH). The exchange price

for the included tokens is determined by the ratio x · y = k between

token amount x and token amount y (Uniswap, 2020c). The ratio is

kept constant during swaps and changes only when liquidity is added

to a pool by calling the function addLiquidity. During a swap a user

receives the amount of tokens needed to keep the relation constant after

a certain amount of tokens has been deposited. Because the ratio of to-

kens changes, the exchange rate changes as well and gives incentives to

swap in the opposite direction. When liquidity is added to a pool for the

�rst time, the user has to decide which rate between tokens is considered

appropriate. Subsequent liquidity providers must adhere to the speci�ed

ratio at the time of deposit. If the ratio is di�erent from the general

market price, arbitrage possibilities arise through swaps, driving the ex-

change rate back to a level near the market price. To incentivize users

to provide liquidity the function addLiquidity within the Pair contract

mints an amount of ERC-20 liquidity tokens respective to the amount of

another token added. Liquidity tokens can be traded or burned to remove

liquidity. When burned, a user receives the respective amount of ether.

19

ETH and ERC-20 tokens are withdrawn at the current exchange rate,

not the initial rate at the deposit, which facilitate arbitrage possibilities

when burning liquidity tokens. V2 of the Uniswap protocol introduces

the possibility of �ash swaps (Uniswap, 2020d). To be technically correct,

all swaps occurring on V2 are �ash swaps. This is because it is never

required for a user to deposit the amount of one token or ETH needed

for a swap before receiving the corresponding amount of token, as long

as it is deposited within the same txn (which does not necessarily mean

that users more often do not deposit before they take out swaps). To

initiate a swap the function swap is called.
function swap(uint amount0Out , uint amount1Out , address to, bytes

calldata data);

Code 2: function swap (Uniswap, 2020d)

amount0Out and amount1Out determine the amount of the two tokens

included in the token pair that msg.sender wants to send to the to ad-

dress. In a classical swap a user usually sends the appropriate amount

to the Pair contract before calling the swap function. To determine be-

tween a usual swap and a �ash swap the parameter data is used. For

data.length= 0 the contract assumes that the payment of one token

has already been made and the tokens are transferred directly to the

to address. In case of data.length> 0, the contract calls the function

uniswapV2Call which has to be included in an external SC on the to

address but also transfers the tokens to this address.
1 function uniswapV2Call(address sender , uint amount0 , uint amount1 , bytes

calldata data) {

2 address token0 = IUniswapV2Pair(msg.sender).token0 (); // fetch the

address of token0

3 address token1 = IUniswapV2Pair(msg.sender).token1 (); // fetch the

address of token1

4 assert(msg.sender == IUniswapV2Factory(factoryV2).getPair(token0 ,

token1)); // ensure that msg.sender is a V2 pair

5 }

Code 3: function uniswapV2Call (Uniswap, 2020d)

sender corresponds to msg.sender, amount0 and amount1 to the respec-

tive amount0Out and amount1Out of the token pair of the swap. Line 2

and 3 fetch the addresses of the tokens included in the pair while line 4

checks if msg.sender is an actual Uniswap V2 pair address. After the

20

call of uniswapV2Call the respective amount of tokens including a fee of

must be transferred back. The fee of withdrawing tokens on Uniswap is

3%, whereas the amount in the reserve after the return must be greater

than before: TokenReservePre−TokenWithdrawn+(TokenReturned·
.997) >= TokenReservePre. This is because Uniswap calculates fees on

the input amount.

3.4.2 Flash-minting

Probably the most complex concept requires a short introduction to to-

ken minting. Mintable tokens are ERC-20-compatible tokens. These can

be created at any time in unlimited numbers, for example by the tool

ERC20 token generator (2020) and added to the total supply. They di�er

from standard ERC-20 tokens which have a �xed total quantity (token-

mint, 2019). Self-made tokens have no monetary equivalent at �rst. But

certain tokens like the stablecoin DAI must be deposited with collaterals

before minting, which correspond to the equivalent value of the new to-

kens in USD. In this way, DAI can maintain its coverage with the USD.

The concept �ash-minting uses the described creation of new tokens. Qin

et al. (2020) describe �ash-minting as the idea to allow an instantaneous

minting of an arbitrary amount of an asset. The only condition is that

all new tokens are destroyed within the transaction in which they were

created. Economically, this only makes sense when minting asset backed

tokens. These are 1:1 backed by another non-mintable currency. For

example Wraped Ether (WETH) is 1:1 backed by Ether. Thus mintable

tokens can represent an economic value. One WETH can also be trans-

ferred and traded at any time and always retains the equivalent value of

one ETH. Flash-mintable asset-backed tokens can be changed into the

underlying asset and anyone can mint arbitrarily many unbacked tokens

and spend them at full face value, so long as they destroy all the un-

backed tokens (and therefore restore the backing) before the end of the

transaction (Austin Williams, 2020). Despite the possibility to mint an

unlimited number of tokens, they can still be accepted as the underlying

asset. The logic is the same as for Flash Loans. All applications men-

21

tioned above are conceivable here. The di�erence with �ash minting is

that the source of funds is not a lending platform like Aave. However, the

procedure is analogous. A minimal example contract by Austin Williams

(2020) for his project �FlashWETH� is given in the following:

pragma solidity 0.5.16;

import "@openzeppelin/contracts/token/ERC -20/ERC -20. sol";

interface IBorrower {

function executeOnFlashMint(uint256 amount) external;

}

contract FlashMintableToken is ERC -20 {

function flashMint(uint256 amount) public {

// mint tokens

_mint(msg.sender , amount);

// hand control to borrower

IBorrower(msg.sender).executeOnFlashMint(amount);

// burn tokens

_burn(msg.sender , amount);

}

}

Code 4: Minimal Flash Minting Example (Adapted from Austin

Williams (2020))

The function flashMint is called to mint the tokens. Afterwards another

function has to be executed to use the tokens for applications. In the

end the same amount of tokens is burned.

3.5 Flash loan attacks

In the following, the two largest �ashloan attacks are described and it

is explained how the attackers could make ∼ 350k USD and ∼ 650k

USD pro�t. The mechanics of the attacks have been shown quite well in

various analyses (PeckShield (2020), Auguste (2020)) and a reproduction

would exceed the scope of the present work and would not provide added

value for the economic analysis of Flash Loans. Therefore, the following

section aims to provide an understanding of why Flash Loans were used

as a basis for the attacks.

The �rst attack15 took place on 2020-02-15 01:38:57 and di�ers from the

15txn:
0xb5c8bd9430b6cc87a0e2fe110ece6bf527fa4f170a4bc8cd032f768fc5219838

22

attack described later because no oracle manipulation was performed,

but a bug in a SC of a DEX (bZx) was taken advantage of (PeckShield,

2020). After taking up a �ashloan on dYdX for 10,000 ETH, 5500 ETH

were �rst deposited on Compound as collateral to borrow 112 WBTC.

Compound o�ers the possibility of earning interest by depositing into

liquidity pools and borrowing assets (Leshner and Hayes, 2019). When

users deposit assets they receive cTokens representing the Asset. In the

present txn this is observable by 274, 843.67745507 cETH. When users

borrow, they lock their deposits as collateral and receive a speci�c share

of the collateral in form of the borrowed asset, determined by a collateral

factor of the pool from which is borrowed. Next, the attacker opened up

a short 5x position on WBTC by sending 1300 ETH to bZX. In the pre-

sented attack, the user received �sETHwBTC5x�-tokens, which indicates

a deposit of ETH for 5x WBTC and called for a swap of ETH to WBTC.

BZx leverages swaps through Kyber Network. Kyber Network (2019)

provides liquidity from di�erent resources. When users request trades

for a token pair, Kyber searches reserves to �nd the best price for the

trade or the reserve which is capable of providing the liquidity required

for the trade. The only pool which had enough liquidity to provide such a

large amount was Uniswap, so the margin trading function leveraged Ky-

berSwap to swap 5637.623762 ETH for 51.345576 WBTC (PeckShield,

2020). At this point, it is considered that Uniswap could not provide

enough liquidity to service the entire amount. Because the ratio of to-

kens within the Uniswap liquidity pool of the token pair ETH/WBTC

changed (see 3.4.1 FlashSwaps), the exchange rate changed from ∼ 38.5

WETH/WBTC to ∼ 109.8 WETH/WBTC. This part of the transaction

was only executed to manipulate the conversion rate on Uniswap. WBTC

was purchased at an extremely cheap price of 0.00910766WETH/WBTC,

while the normal market price was ∼0.0275. This normally results in a

holding of WBTC which is worth less than the swaped WETH under

non-manipulated market prices. At this point, if the price fall is more

than 20%, a requirement within the iTokens_loanOpeningFunctions16

should actually intervene to revert the call and prevent the bZx liquidity

16https://github.com/bZxNetwork/.../iTokens_loanOpeningFunctions.sol

23

https://github.com/bZxNetwork/bZx-monorepo/blob/feb34f7c6e4e1aac8691408f4a6ecde9bf22b715/packages/contracts/contracts/modules/iTokens_loanOpeningFunctions.sol

pool from ending up with less liquidity than is covered by collaterals.

1 require ((

2 loanDataBytes.length == 0 && // Kyber only

3 sentAmounts [6] == sentAmounts [1]) || // newLoanAmount

4 !OracleInterface(oracle).shouldLiquidate(

5 loanOrder ,

6 loanPosition

7),

8 "unhealthy position"

9);

Code 5: require in iTokens_loanOpeningFunctions.sol

The attacker managed to bypass this check by making sure that

loanDataBytes is empty. Since sentAmounts[6] == sentAmounts[1]

is true because it guarantees that the amount of the loan equals the

amount to withdraw, the oracle was never consulted and there was no

check for liquidation (Livnev, 2020). This kind of strategy, raising the

margin over the rate which could be realized when market prices would

operate without being manipulated, is known as �margin pump�. After-

wards the pump, the attacker sold his 112 WBTC from Compound to

Uniswap using a regular swap. The price realized in the swap was 61.4

WBTC/ETH, leading to a return of 6871.4127388702245 WETH. The

�ashloan was paid back, using the remaining 3200 ETH from the initial

loan and ∼ 6800 ETH of the swap return (plus a small fee), leading to a

pro�t of ∼ 71.4174 ETH for the attacker.

Auguste (2020) states that the second attack17, which happened on 2020-

02-18 03:13:58, was using the same idea of manipulating prices but with

a di�erent method. At �rst a �ashloan was taken up by the function

flashBorrowToken of bZx. Note that the only �ashloan ever made on

bZx was made by the attack. The reasons can be found in the found in

the pause of the protocol and because the functionality is poorly doc-

umented and not explicitly advertised by the platform. The procedure

again uses Kyber to manipulate prices. For this purpose, the �ashloan

is used to make several purchases of sUSD (synth USD). sUSD is a coin

minted against the value of USD by the platform Synthetix (2020). Syn-

thetix functions as a liquidity provider very similar to Uniswap and forms

17txn:
0x762881b07feb63c436dee38edd4�1f7a74c33091e534af56c9f7d49b5ecac15

24

one of the reserves for Kyber. Kyber selects the reserve of the plat-

form with the best available price or the ability to service the requested

amount. For this purpose, 540 ETH were �rst converted on Uniswap

Kyber reserve and then 20 ETH on sUSD Kyber reserve were converted

to sUSD. This was done 18 times and each time the conversion price

got worse from ∼ 262.0492 ETH/USD to ∼ 111.2258 ETH/USD as the

liquidity in Kyber reserves decrease. bZx uses Kyber as price oracle.

Due to the manipulated prices of the Kyber Reserves, the Oracle re-

ports a price which di�ers from the actual market price. The attacker

next exchanges ∼ 3, 517.8591 ETH for ∼ 943, 837.5876 sUSD on Syn-

thetix. The amount attended to exchange have been 6000 ETH, but

Synthetix did not seem to have enough liquidity at that time. The re-

maining ETH was transferred back. The price of ∼ 268, 2989 ETH/USD

is signi�cantly above the manipulated price reported by the Kyber oracle.

Next, sUSD on bZx is exchanged for ETH. The sum of ∼ 1, 099, 841.3921

sUSD is composed of all swaps on Kyber reserves and the exchange on

Synthetix. The attacker can thus obtain ∼ 6796, 0128 ETH at a price of

∼ 161, 8362 ETH/sUSD. This is nearly 100 USD less than the price called

at the beginning of the attack. Since sUSD follows the value of the USD,

bZx sUSD worth ∼ 1, 099, 841, 3921 USD, while it returns ETH worth

1, 780, 889, 52138 (calculated at the price at the beginning of the attack)

USD. This represents a loss of ∼ 681, 048, 1293 USD. After the exchange,

the attacker repays the �ashloan consisting of ∼ 6796, 0128 ETH plus re-

maining ∼ 3082, 1409 ETH from the initial �ashloan, leading to a pro�t

of ∼ 2378, 1537 ETH.

While the �rst attack exploited a bug in a function of the bZx protocol

that did not contact the oracle, the second attack was aimed at getting

the oracle itself to deliver manipulated prices. Even if manipulative and

legally questionable, both attacks show the possibilities of Flash Loans.

They both took advantage of the opportunity to take out very high loans

in a very short time without putting themselves at investment risk. These

examples show that SC need to be better audited to be prepared for the

fact that with Flash Loans, there now is theoretically a possibility for all

DeFi users to execute txn with high sums. Further more precautions in

25

preventing oracle manipulation must be taken.

4 Empirical research

The following chapter analyses the use of Flash Loans. The analysis

focuses on the frequency of use of Flash Loans, the used decentralized

protocols on which they are executed and the amount of the loans. The

main interest lies in the categorization of use cases. Criteria are de�ned

how Flash Loans and the associated transactions can be categorized into

use cases. The aim is to �nd out which of the above mentioned possible

applications are actually used. It is of interest how high the share of

Flash Loans on the presented protocols is and which volumes in USD are

observable.

The chapter �rst describes the methodology of data collection and prepa-

ration, then goes into the categorization of use cases and concludes with

the presentation of the results.

4.1 Data acquisition and preparation

TheGraph (2020) protocol is used for data collection on Aave. It allows

to run GraphQL (The GraphQL Foundation, 2020) queries on Web3

dApps. This can be done by a simple API-call. The advantage is that it

is possible to get a large amount of information from the Ethereum block

chain with a single call.

The data collection for Flash Loans on dYdX turned out to be more com-

plex, since no subgraph exists for dYdX Flash Loans and the de�nition

of an own subgraph, due to missing o�cial de�nition of Flash Loans on

dYdX, turned out to be less reasonable. By examples of Flash Loans on

dYdX18 the following regularities could be determined: Within a transac-

18txn hashes:
0xf65b384ebe2b7bf1e7bd06adf0daac0413defeed42fd2cc72a75385a200e1544
0xb5c8bd9430b6cc87a0e2fe110ece6bf527fa4f170a4bc8cd032f768fc5219838

26

tion, applications of Flash Loans, i.e. various token transfers, are always

included in the eventlogs LogWithdraw19 and LogDeposit20. The corre-

sponding eventlogs are exclusively assigned to the SoloMargin21 SC of

dYdX. To obtain the relevant txns to be considered Flash Loans, all txns

of the contract containing the two enventlogs were identi�ed. However,

during the data analysis it was found that txns which include the simul-

taneous deposit and withdraw, but not in the form of a �ashloan, also

meet the conditions stated before. This is the case, for example, when a

user deposits a sum of x US Dollar Coin (USDC) and borrows a sum of

y DAI in the same txn22. As a result of this observation, txns containing

the transfers �withdraw� and �deposit� in which the amount withdrawn

and the amount deposited do not correspond were removed. This is also

true for the two events when two di�erent tokens are involved. The dif-

ference in amounts to be accepted was set to 2 WEI because di�erent

sources report di�erent fees (see: 3.2 dYdX)

To identify FlashSwaps, Uniswap transactions were considered which

contain a length.data argument > 0 for the function swap. This is

because the data parameter will return a data.length = 0 only if the

Pair contract has previously been paid with the appropriate amount of

one token in the token pair before the swap is executed to equalize the

pair. All returns > 0 are �ash swaps because the swap took place before

a corresponding amount of another token was deposited. The following

query on Dune Analytics (2020) returns the hashes of the matching txn.
23

SELECT call_tx_hash

FROM uniswap_v2 ." Pair_call_swap"

WHERE octet_length(DATA) > 0

LIMIT XYZ;

Code 6: Dune Analytics Query FlashSwaps

The call is pretty self-explanatory. "call_tx_hash" returns a list

19Log Hash: 0xbc83c08f0b269b1726990c8348�df1ae1696244a14868d766e542a2f18cd7d4
20Log Hash: 0x2bad8bc95088af2c247b30fa2b2e6a0886f88625e0945cd3051008e0e270198f
21contract: 0x1e0447b19bb6ecfdae1e4ae1694b0c3659614e4e
22e.g.: txn: 0x104a67d9e03081f81e4e67e25f6b4bdeb237a752c97797ed1403d09cd48731b7
23According to Noah Zinsmeister of Uniswap in a personal discussion on discord
15.07.2020

27

of the respective txn hashes, "uniswap_v2."Pair_call_swap"" refers

to the Uniswap swap function when a data.length > 0 is returned

("octet_length(DATA) > 0"). Additionally a limit can be set.

The identi�cation of �ash minting txn has been done by the two contracts

FlashWeth24 and FlasMintableETH25 by Austin Williams (2020).

Data has been collected between block 7979145 (Jun-18-2019 00:29:13

AM) and block 10464540 (Jul-15-2020 02:11:21 PM). After data cleansing

the time frame was reduced to block 9142247 (Dec-21-19 08:04:25 PM)

until block 10464540 (Jul-15-2020 02:11:21 PM).

The initial amounts of the Flash Loans on Aave could be taken directly

from TheGraph call. For dYdX the transaction action pairs �Borrow� and

�Repay� have been compared and the Flash Loan amount taken was set to

those ones with the same amount (plus a fee tollerance of upt to 2 WEI)

and the same token. This has been done with all possible care to avoid

that actions that represent a borrow and repay within the Flash Loan txn

are included in the analysis. If there were multiple candidates, the pair

that brackets other pairs was considered. For Uniswap the amounts of

the transaction action �Swap amount token on Uniswap� has been taken

into consideration. Further the identi�ed amounts have been controlled

to be transfered from UniSwapV2 because the Flashswap feature is only

available in V2.

For the identi�cation of applications of all token transfers of the txn

identi�ed as Flash Loans, �ash swaps or �ash minting were loaded from

Etherscan. A description of all used API-calls can be found in the ap-

pendix �API Calls�. After the collection of all data, as many known

addresses as possible were assigned to the token transfers that take place

within the txn. For this purpose the addresses labelled by Etherscan's

token transfers, veri�ed Etherscan contract addresses (Etherscan (B1),

2020a) and Qin et al. (2020) were used. These were mapped with the ad-

dresses of the token transfers to get a good readable overview of possible

24contract: 0xf7705C1413C�CE6CfC0fcEfe3F3A12F38CB29dA
25contract: 0x09b4c8200f0cb51e6d44a1974a1bc07336b9f47f

28

applications.

4.2 Categorization

After the data acquisition, the same or similar transfers and txns were

grouped. The following chapter presents the methods used for the iden-

ti�cation of applications. For this purpose, it shows identi�ed subcate-

gories of applications, if applicable, and describes the path of identi�ca-

tion. When a txn could be identi�ed, the corresponding smart contracts

txns and the contracts deployed by the owner address have been checked

for similar txn schemes. Subsequently, a cross-check was carried out on

a selection of txn of a contract to see whether they follow the scheme

of the application. If this was the case, all txn which were included in

the contract were assigned to the found application. The corresponding

subcategories are assigned to the txns in the data set. It is important

to notice that there is no deep explanation about the functioning of said

subcategories because the complexity of involved txns would lead the

explanations to exceed the scope of the present work by far. Instead, a

short explanation is given. Examples can be found within the data set

under the respective �subcat� tag. When more than one use cases within

an application could be determined (e.g. see: Arbitrage_hammerbots

4.2) an entry in column �subcat2� has been made.

Arbitrage

Arbitrage_bots From a known arbitrage bot26 it could be identi�ed

that several contracts deployed by the owneraddress work the same way.

The contracts basically take out a �ashloan and try to make pro�t by

a combination of buying and selling currencies on DEX, in combination

with staking these currencies, for favorable prices.

26https://0xtracker.com/traders/0x1d92ed2c7cb9bb19c654dcec059d043856b601e4

29

https://0xtracker.com/traders/0x1d92ed2c7cb9bb19c654dcec059d043856b601e4

Arbitrage_swaps The DEX �1inch� reported an arbitrage trade of

Chi Gastoken on Twitter27. Said contract swapped Gastoken minted by

1inch on Uniswap for a higher price to WETH for a pro�t of ∼ 0.07584

WETH. Other txns by the same contract show similar behaviour by

swapping tokens for higher prices.

Arbitrage_HXY A variation of arbitrage is shown by using the plat-

form Hex (2018 -2020) in combination with Flash Swaps. The platform

allows earning and staking of the token HEX by depositing ETH. Addi-

tionally, there is an ERC-20 incentive token called HEXMONEY (HXY).

HXY can be minted by a referral program or by a transfer and conver-

sion from HEX to the hex.win platform. Although some sources assume

a scam behind the platform (see: Nikolaev (2019)) it is possible to trade

HEX as well as HXY or to swap on Uniswap28. The observed arbitrage

strategy takes advantage of the minting of 1 HXY per 1000 HEX trans-

ferred to hex.win and is structured as follows:29:

A �ash swap over a high sum of 31337 HEX is taken. HEX is trans-

ferred to Hex.win and converted to HXY. The origin address30 mints the

transferred amount of 1 HXY per 100 HEX and an additional amount

of 1 HXY per 1000 HEX making up 31.337 + 3.1337 = 34.4707 HXY to

the user. The user pays the �ash swap by the tokenpair HXY/HEX and

keeps the amount of additionaly minted HXY. Again, multiple txns of the

same contract could be identi�ed because they execute similar transfers

and thus belong to the same category.

Arbitrage_comp A similar approach to the one before involves pro-

vision of liquidity loan to the protocol Compound Labs, Inc. (2020) and

receiving the incentive (or government) token �COMP�. This procedure is

27https://twitter.com/1inchexchange/status/1265198816619266048
28https://uniswap.info/token/0x2b591e99afe9f32eaa6214f7b7629768c40eeb39
29txn:
0x0a070096bd56a8aaab31370f1f3afeaad0e8ace4b755f206983ddcbc24d772e1

30address:
0x00

30

https://twitter.com/1inchexchange/status/1265198816619266048
https://uniswap.info/token/0x2b591e99afe9f32eaa6214f7b7629768c40eeb39

called COMPfarming and can be observed in varoius �ashloan txns via a

contract. Users can receive COMP by supplying, borrowing, withdraw,

or repaying an asset (Compound Labs, Inc., 2020). This incentivizes

users to interact with Compound frequently. Users take out a �ashloan

and carry out as many of the above interactions with Compound as pos-

sible. The resulting COMP tokens can then be sold and an arbitrage

pro�t is generated. All txns interacting with the contract COMPfarming

has been assigned to this subcategory.

Arbitrage_Liquidation The presented arbitrage option liquidates

accounts whose collaterals have declined in value. First, a �ashloan of

the amount of the collateral to be liquidated is taken out and then the

same amount is liquidated. The liquidator buys the outstanding amount

at a lower price, which results in a higher return of the same token. The

di�erence between the �ashloan and the received amount of the token is

an arbitrage pro�t. Txns following the same purpose could be identi�ed

by the parameters �Liquidator Repay� and �Liquidation� as found in the

transaction actions on Etherscan31.

Arbitrage_dao �Arbitrage DAO is a DeFi Union Arbitrage Fund, [...]

using a combination of on-chain liquidity and o�-chain bots designed for

arbitrage opportunities� (Julien Bouteloup for Flash Boys, 2020). The

projects contract addresses found in the data set labeled ArbitrageDAO

have been assigned to arbitrage.

Arbitrage_attack Through various reports of �ashloan attacks (Au-

guste (2020), Certik (2020b), PeckShield (2020), Trustnodes (2020a)),

several addresses could be identi�ed which could achieve an arbitrage

pro�t by exploiting vulnerabilities in the SCs of the protocols. The re-

spective owner addresses were manually checked for other SCs and, if a

similar scheme was available, they were assigned to the same application.

31e.g.: 0x475adbbc7226b121077e4bae696c526a83750c55eed408a391c5a951b0d5c2b4

31

Arbitrage_hammerbots On the famous �Black Friday� on March 12.

and 13. 2020, a collapse of the price of ETH caused many CDPs to be

undercollateralized. Keeper bots are used by DEX and are in charge to

counter act against zero bids (bids for liquidations around zero). Block-

native (2020) �nd evidence that a group of hammer bots managed to

spam nodes with txns and hindering keeper bots to successfully place

bids and keep zero bids from happening. 22 addresses of potential ham-

mer bots have been identi�ed in the report. These addresses could be

identi�ed within the data set of the present work. It is noticeable that

these txn do not include any transfers other than taking out a �ashloan

and immediate repaying them. Hammer bot-like txns are identi�ed by

the mentioned addresses and when there are only two transfers involved

in dYdX Flash Loans folowing the same scheme. Hence they do not seem

to have any other purpose than to consume node resources. Additionally,

it has been found that potential hammer bot addresses32 have interacted

with contracts which are assigned to Arbitrage_liquidation (see 4.2 Arbi-

trage_Liquidation). Because these addresses are only potential hammer

bots it is not yet clear to which extend the found relation holds, but it

seems that the strategy is comparable to actions observed on black fri-

day. Although the purpose of these txns could not be fully clari�ed as a

deeper analysis would exceed the scope of the work, it seems reasonable

to assume that they serve as a preparation for arbitrage trades, as was

the case on Black Friday.

Txns which are initiated by addresses that have been identi�ed as po-

tential hammer bots, because they also inititiated txns which follow the

same back-and-forth borrow/repay scheme, have been assigned to Ar-

bitrage_hammerbots in �subcat2� when another application have been

found previously. Again it has to be stated that one should take care in

interpreting these relationships and that a deeper analysis must be done

beforehand.

32e.g. txn of address: 0x03ebd0748aa4d1457cf479cce56309641e0a98f5 on Etherscan

32

https://etherscan.io/tx/0x3171f2e38f6c5a43f7c0ec231e15e56b9f96fd67d6fa5115a87a5b9f8daba7ec

Arbitrage protocols The following protocols are known to be proto-

cols with di�erent arbitrage strategies:

� Arb_Balancer: Balancer O�ers the possibility for arbitrage traders

to rebalance crypto portfolios. Fees for rebalancing are forwarded

to portfolio owners (Balancer, 2019). Rebalancing of portfolios

work similar as described for Uniswap (see: 3.4.1 FlashSwaps) with

the di�erence that it is not limited to token pairs but can contain

multiple assets. The strategy behind is to take out a �ashloan and

being able to rebalance large amounts of portfolios or included to-

kens when they are o� market price and keep arbitrage pro�ts. Txns

including addresses of Balancer swaps have been assigned here.

� Arbitrage_Arbcontract: The contract of Orfeed by Proofsuite

enables �ashloan based arbitrage trading. �Trianglular arbi-

trage enables a user to perform a multi-point exchange of

funds between speci�ed Assets on supported decentralized ex-

changes�´(mikedeshazer for Orfeed on Github, 2020). All txns in-

teracting with the Arbcontract have been taken into consideration

here.

Collateral_swap

Collateral_Swap_0 By labeling known contract addresses, it was

possible to identify txns interacting with addresses of the project Collat-

eralswap directly.

CCDP

CCDP_De�saver All txns interacting with the project De-

�saver have been applied to the application CCDP directly

(see: 2.2.1 Closing CDP). These include all addresses includ-

ing the name �De�saver� or the contracts LoanShifterReceiver,

CompoundSaverFlashLoan, MCDCloseFlashLoan, MCDFlashLoanTaker,

33

MCDOpenFlashLoan, MCDOpenProxyActions, MCDSaverFlashLoan and

CompoundImportFlashLoan33

Wash trading

Wash_trading_potential It remains mostly unclear under which

conditions a back-and-forth trade should be considered to be wash trad-

ing because back-and-forth trades may happen in ordinary swaps. Fol-

lowing the example in 2.2.1 Wash trading, all txns which do not con-

tain any other transfers besides the �ashloan, the back-and-forth trans-

fer and a maximum of one other transfer to another address, were in-

cluded. Furthermore, the back-and-forth transfer of the same amount

in the same currency should take place to distinguish the txns from ar-

bitrage txns. Furthermore, txns by potential hammer bots (see: Arbi-

trage_hammerbots) were excluded as they follow the same scheme but

cannot be classi�ed as wash trading. Here it must be made clear that the

identi�ed txns must be treated as potential and not de�nitive wash trad-

ing txns, as no conclusive evidence of a volume manipulating intention

can be established.

No_application

No_app_Error Txns in which an error occured due to a revert, run-

ning out of gas or a bad instruction.

No_app_Flash_minting Flash minting is not to be considered a

speci�c application because here, all applications already described are

conceivable. Nevertheless, the observed txns seem to have been used for

test purposes only because there rarely transfers other than minting and

burning observable. Therefore it cannot be assigned to a speci�c use

case.

33contracts: https://github.com/DecenterApps/[...]/contracts

34

https://github.com/DecenterApps/defisaver-contracts/tree/master/contracts

NAPP

No application could be assigned due to low occurence, unknown scheme

or because manual checks of all txns would not have been meaningful in

view of the gain in additional explanatory potential.

35

4.3 Findings

The �nal data set consists of 6857 txns and 64660 token transfers. Table

1 provides an overview over the attributes used in the data set "Master-

data.xlsx". For calculating USD values of tokens, the prices of the most

frequent tokens used were collected. This was done because unfortu-

nately exchange rates were to be found to infrequently available for most

of the unfrequent tokens involved in the data set. This is especially true

for the large amount of tokens found in FlashSwaps. This approach re-

sulted in a coverage of almost 92% of all token prices, which is considered

acceptable for a representative overview of the volumes. Exchange rates

have been taken from Coinmarketcap (CoinMarketCap (2020a), Coin-

MarketCap (2020b), CoinMarketCap (2020c)). The relevant data can be

found in the data set "Exchange_rates.csv". WETH wurde durch ETH

substituiert. [PASS DAS AN][PDF SUSI REVIEW]

Table 1: Attributes in �nal data set

Attribute Description

uid unique identi�cation index per txn
transactionHash txn hash
blockNumber blocknumber of txn
protocol protocol of initial �ashloan in lowercase
timeStamp timestamp of the block
� identi�cation of dYdX Flash Loans
errDescription description when error occured
isError error check
fname t1 labeled
tname t2 labeled
t1 transfer from
t2 transfer to
data value of token transfer
tokenSymbol Symbol of token transferred
tokenName Name of token in transferred
tokenDecimal decimal of token
application application per txn
subcat subcat per txn

36

The headers in the "Exchange_rates.csv" data set correspond to the

description provided above except the following: �curr� is the currency

of the initial Flash Loan, Flashswap or �ashminting. �timeStamp� is set

to "DD-MM-YYYY" for better mapping of exchange rates. �val� is the

value of the loan. �date� was used for mapping exchange rates (the same

as �timeStamp�). �exchange_rate� is the rate of conversion from �val� to

�usd� which is the value of the loan in USD.

The following section shows the distribution of txns over protocols and

its distribution over time on protocols. To �nd reasoning for this, it

shows which applications and subcategories have been used the most

and in which months they could be observed. It then presents the usage

of tokens per protocol and concludes by showing USD volumes of Flash

Loans over all, on protocols and for applications and subcategories.

If possible, an interpretation of the results is given. However, it is impor-

tant to note that the focus has been deliberately placed on a qualitative

analysis. Although the theory-building assumptions for the explanation

of observations are supported by the data basis with descriptive statistics,

to a large extent no signi�cance analyses or regression models are pro-

vided. This is therefore appropriate for the present work, which aims to

explain the hitherto very unilluminated topic of Flash Loans and to give

a description of the applications and the monetary use to date. All visu-

alizations of data in �gures have been done by using Seaborn of Waskom

(2012-2020) in Python.

4.3.1 Utilization numbers of Flash Loans

It was found that Aave covers half of all Flash Loans taken out in the ob-

served time frame. This is attributable to the relatively early popularity

of the implicit �ashloan feature in January 2020 (Frangella, 2020). dYdX

covers a share of 39.19%. It will be shown later that dYdX is mainly

used for arbitrage which is considered to be caused by lower fees. Aave is

mainly used for CCDP because De�saver makes use of Aave Flash Loans

and is therefore only used here. Uniswap only covers a small amount

37

(10.40%) which is due to the possibility of �ash swaps became available

only in May 2020. Further it can be observed that the concept of Flash

minting is hardly ever used. This is due to the very new and unknown

concept which is almost not covered in any reports. On bZx, the only

observable �ashloan is the second �ashloan attack described in 3.5 Flash

loan attacks. No de�nitive statement can be made here on the low level

of use. However, it is assumed that the hardly available documentation,

apart from audit reports (see: CertiK (2020a)) in conjunction with the

paused protocol following the attack (Khatri, 2020), which is expected

to relaunch on August 31 (CoinMarketCal, 2020), is the reason for no

further calls of the function. Table 2 and Figure 5 vizualize the distribu-

tion of txns and transfers over protocols. Flash loans on Aave and dYdX

include around 10 transfers per Flash Loan. Uniswap only includes an

average of 3.31 transfers per txn. This corresonds to a lot of failed txns on

Uniswap as shown later. The same is true for Flashminting. The average

transfers on bZx is high because there is only one txn observable.

Table 2: Distribution of Flash Loans over protocols

Protocol txns % transfers % ∅ transfers

Aave 3412 49.76% 34558 53.45 10.12
dYdX 2687 39.19% 27703 42.84 10.31
Uniswap 713 10.40% 2363 3.65 3.31
Flashminting 44 0.64% 36 0.06 0.81
bZx 1 0.01% 47 0.07 47

Total 6857 64660

38

dydx aave mint uni
protocol

0

500

1000

1500

2000

2500

3000

3500

tx
ns

Figure 5: Distribution of �ashloan txns over protocols
Source: own representation

4.3.2 Distribution of txns over time

The following part describes the distribution of txns over time on proto-

cols and tries to reason the observed occurrences by showing the distri-

bution of subcategories over time on protocols.

Table 3 show the monthly usage of �ashloan txns. While numbers started

to rise since the launch of the feature on Aave in February, the usage is

still very moderate.

39

Table 3: monthly usage of Flash Loans

Month txns

Dec-19 25

Jan-20 9
Feb-20 157
Mar-20 1574
Apr-20 1726
May-20 1055
Jun-20 1683
Jul-20 628

Total 6857

The average number of txns per month from February to June 2020

is 1509.5 which shows the very moderate use. December 2019 and Jan-

uary 2020 where excluded in calculating the average because Flash Loans

where o�cially only available from February on. July was excluded be-

cause there is no data available for the whole month.

Figure 6 and table 4 show the distribution of number of txns on the dif-

ferent protocols on a monthly base and supports the hypothesis that the

observed di�erences in the quantity of Flash Loans executed are partly re-

lated to the time when the �ashloan feature of Aave and Uniswap became

widely known. Uniswap V2 was launched in May 2020 which explains

observable FlashSwaps only starting in that month with a relatively low

average share of ∼ 21% in May, June and July. It has to be noted that

data for July is scarce, since data collection was done until 15.07.20.

40

Table 4: txn count over time

Month dYdX Aave Uniswap

December-19 25 0 0
January-20 3 6 0
February-20 26 114 0
March-20 375 1197 0
April-20 1054 653 0
May-20 149 773 126
June-20 957 423 303
July-20 98 246 284

Total 2687 3412 713

Dec-19 Jan-20 Feb-20 Mar-20 Apr-20 May-20 Jun-20 Jul-20
time

0

200

400

600

800

1000

1200

tx
ns

dYdX
Aave
Uniswap

Figure 6: Distribution of txns on protocols over time
Source: own representation

4.3.3 Applications

The following part illustrates the distribution of applications over all pro-

tocols and explains the observations by showing the individual shares of

subcategories on a certain protocol. Over the whole data set, 5724 txns

41

could be assigned to an application, which corresponds to ∼ 83%. There-

fore 1151 txns remain unassigned (NAPP). Table 5 and �gure 7 provide

an overview of the distribution of applications over �ashloan txns. It

is found that the most frequent use cases are Arbitrage (43.21%) and

CCDP (35.09%). No_application was assigned to txns which showed an

error because the initial purpose of said txns could not be determined.

All these txns were observed on Uniswap. Being aware that Uniswap only

have been requested for Flash swaps with the purpose of di�erent arbi-

trage strategies, it seems reasonable that these txns may have followed a

similar purpose. Although it must be noted that a large share of Uniswap

txns (∼ 22%) could not be assigned to an application at all. Collateral

swaps only make up a share of under 1% of all txn applications. There are

only 30 txns which could be identi�ed as potential wash trading. This is

mainly due to the lose de�nition of back-and-forth trades having a wash

trading purpose or not. bZx and �ash minting were excluded here since

they are not representative for the analysis of the applications. Therefore

the data set for the following analysis reduces to 6812 txns.

Table 5: Distribution of applications over �ashloan txns

application txns %

Arbitrage 2918 42.83
CCDP 2364 34.70
NAPP 1115 16.36
No_application 321 4.71
Collateral_swap 64 0.94
Wash_trading 30 0.44

Total 6812

42

NAPP Arbitrage Collateral_swap Wash_trading CCDP No_application
application

0

500

1000

1500

2000

2500

3000

tx
ns

Figure 7: Distribution of txns over applications
Source: own representation

Table 6 shows the number of unique occurrences of subcategories in txns

on the three protocols. The column �% protocol� corresponds to the oc-

currence of a subcategory on a protocol relative to all other subcategories

on that protocol. �% all� shows the share of a subcategory relative to all

other subcategories on all protocols.

43

Table 6: Distribution of subcategories over protocols

txns subcategory application protocol % protocol % all

2365 CCDP_De�saver CCDP Aave 69.31 34.72
931 Arbitrage_bot Arbitrage dYdX 34.65 13.67
781 Arbitrage_hammerbot Arbitrage dYdX 29.07 11.47
567 NAPP NAPP dYdX 21.10 8.32
474 Arbitrage_bot Arbitrage Aave 13.89 6.96
385 NAPP NAPP Aave 11.28 5.65
334 Arbitrage_swap Arbitrage dYdX 12.43 4.90
326 No_app_error No_application Uniswap 45.72 4.78
228 Identi�ed_Arbitrage_HXY Arbitrage Uniswap 31.98 3.35
158 NAPP NAPP Uniswap 22.15 2.31
64 Collateral_swap_0 Collateral_swap Aave 1.88 0.94
41 Arbitrage_Liquidation Arbitrage Aave 1.20 0.60
38 Arbitrage_swap Arbitrage Aave 1.11 0.56
25 Arbitrage_Liquidation Arbitrage dYdX 0.93 0.37
24 Wash_trading_potential Wash_trading dYdX 0.89 0.35
17 Arbitrage_hammerbot Arbitrage Aave 0.50 0.25
12 Arbitrage_Arbcontract Arbitrage Aave 0.35 0.18
10 Arb_Balancer Arbitrage dYdX 0.37 0.15
6 Wash_trading_potential Wash_trading Aave 0.18 0.09
6 Arbitrage_dao Arbitrage Aave 0.18 0.09
6 Arbitrage_Arbcontract Arbitrage dYdX 0.22 0.09
5 Arbitrage_comp Arbitrage dYdX 0.19 0.07
4 Arbitrage_attack Arbitrage dYdX 0.15 0.06
4 Arb_Balancer Arbitrage Aave 0.12 0.06
1 Arbitrage_comp Arbitrage Uniswap 0.14 0.01

6812

CCDP_De�saver being the most used unique subcategory makes up

34.72% of all txns and almost 70% of txns on Aave. As said before,

Aave is mainly used for CCDP because De�saver is making use of Aave

Flash Loans. Nearly all other identi�ed txns on Aave are initiated by

Arbitrage bots (13.89%). dYdX show a high occurrence of Arbitrage bots

and potential hammer bots, making up almost 65% of the protocol usage

and one fourth of all txns. Further, a lot of Arbitrage swaps (12.43%)

can be observed. The split up in usage between Aave and dYdX may be

explained by the di�erence in fees for taking up Flash Loans. When exe-

cuting arbitrage strategies it seems reasonable to make usage of the most

cheap protocol to to achieve the highest possible pro�t. Whereas the

comfortable use of De�saver for CCDP seems to justify paying a higher

fee for keeping collaterals from being liquidated. This seems also to be

44

true for Collateral swaps whose only being executed using Aave as well.

Uniswap show high share of 45.72% of failed txns. Table 7 shows that

most errors have been caused by a revert. It remains yet unclear if the

cause of txns beeing reverted have been an insu�cient repayment of the

token pair or if another requirement have not been ful�lled.

Table 7: Txns error of failed txns on Uniswap

errDescription txns %

Reverted 302 92.63
Out_of_gas 8 2.45
Bad_instruction 16 4.90

Total 326

Other txns happening on Uniswap whose application could be identi�ed

are using interest arbitrage on HEX.win (31.98%) because Uniswap o�ers

easy access to HEX for executing the arbitrage strategy.

Figure 8 shows the occurrence of all subcategories. It can be observed

that CCDP_De�saver, arbitrage bots and potential hammer bots make

up the major share of identi�ed subcategories.

45

NA
PP

Ar
bit

ra
ge

_h
am

m
er
bo

t

Ar
bit

ra
ge

_d
ao

Co
lla

te
ra
l_s

wa
p_

0

Ar
bit

ra
ge

_L
iqu

ida
tio

n

Ar
bit

ra
ge

_a
tta

ck

W
as

h_
tra

din
g_
po

te
nt
ial

CC
DP

_D
efi

sa
ve

r

Ar
bit

ra
ge

_b
ot

Ar
bit

ra
ge

_s
wa

p

No
_a

pp
_e

rro
r

Ar
b_

Ba
lan

ce
r

Ar
bit

ra
ge

_A
rb
co

nt
ra
ct

Ide
nt
ifie

d_
Ar
bit

ra
ge

_H
XY

Ar
bit

ra
ge

_c
om

p

subcategory

0

500

1000

1500

2000
tx
ns

Figure 8: Distribution of txns over applications subcategories
Source: own representation

Figure 9 illustrates the usage of subcategories over the time horizon of

the data set. No signi�cant �ashloan txn is observed in December and

January. The only ones occurring are on dYdX. It is assumed that these

were not carried out with the intention of initiating a �ashloan, as the

concept of Flash Loans was not known at that time, but it is worth not-

ing that it was already possible to borrow and repay the same amount

within one txn on dYdX. Txns on February 2020 consist of a large share

of unknown purpose. The highest usage of Flash Loans in March can be

found in CCDP_De�saver (∼ 42%). It was found that CCDP_De�saver

txns are noticeable high for following dates: On March 12 2020, the so

called �Black Thursday�, the price of ETH dropped by around 30% in

24 hours (PULSE, 2020), leading to �black friday� one day later. Many

tokens followed the downward trend, causing users' collaterals to drop

in value and CDPs to be in danger of liquidation (see also: 4.2 Ar-

46

bitrage_hammerbots). A comparable price drop happened on May 10

(−10.38%)(Cointelegraph, 2020).

Dec-19 Jan-20 Feb-20 Mar-20 Apr-20 May-20 Jun-20 Jul-20
time

0

100

200

300

400

500

600

700

800

tx
ns

Arbitrage_hammerbot
Arbitrage_dao
Collateral_swap_0
Arbitrage_liquidation
Arbitrage_attack
NAPP
Wash_trading_potential
CCDP_Defisaver
Arbitrage_bot
Arbitrage_swap
No_app_error
Arb_Balancer
Arbitrage_Arbcontract
Identified_Arbitrage_HXY
Arbitrage_comp

Figure 9: Distribution of applications on all protocols over time
Source: own representation

Table 8: Top three CCDP txns per day

txns date

132 Mar 12, 2020
92 Mar 13, 2020
91 May 10, 2020

Table 8 shows the three most frequent occurrences of CCDP txns per

day. It is noticeable that the presented txns happen on dates when great

price drops of ETH could be observed. Nevertheless, no strong evidence

for a general relation between the price of ETH and the number of CCDP

txns could be found. Figure 10 shows the relationship between the price

47

of ETH (taken from investing.com (2020)) and observed CCDP txns by a

linear regression line on a 95% con�dence interval. The light blue bands

around the line represent the standard error of the regression line. It

illustrates that CCDP txns can not be observed relatively often when

prices tend to be relatively high. There is a small observable relationship

between the price of ETH and the usage of CCDP, but standard errors

are wider spread for high occurrences. Three points on the left-hand side

stick out the most (marked in red) which are related to the three dates

mentioned beforehand. The three outliers seem to raise the regression

line on the left, which is partly visible in the increase in standard errors.

Figure 10: Linear regression CCDP txns and price of ETH
Source: own representation

Although no general relationship between the usage of De�saver and the

48

occurrence of price drops could be determined, it seems reasonable to say

that speci�c dates of price drops caused users to try to save collaterals

from getting liquidated. The share of nearly 70% of all txns by CCDP

on Aave tend to explain observable high volumes in March, April and

June observed from �gure 6.

A large proportion (∼ 42%) of txns in March and April are arbitrage

bots. First performed exclusively on Aave, the bots change to almost

exclusively been executed on dYdX from April 1, 2020 (with one excep-

tion on April 24, 2020). Figure 11 shows this change by displaying the

distribution of arbitrage bot txns over time on protocols on a daily base.

The large arbitrage bot txns in April of about 79% on dYdX explains the

relatively high increase in txn observed on dYdX in �gure 6.

17
/03
/20

18
/03
/20

19
/03
/20

20
/03
/20

21
/03
/20

22
/03
/20

23
/03
/20

24
/03
/20

25
/03
/20

26
/03
/20

27
/03
/20

28
/03
/20

29
/03
/20

30
/03
/20

31
/03
/20

01
/04
/20

02
/04
/20

03
/04
/20

04
/04
/20

05
/04
/20

06
/04
/20

07
/04
/20

08
/04
/20

09
/04
/20

10
/04
/20

11
/04
/20

12
/04
/20

13
/04
/20

14
/04
/20

15
/04
/20

16
/04
/20

17
/04
/20

18
/04
/20

19
/04
/20

20
/04
/20

21
/04
/20

22
/04
/20

23
/04
/20

24
/04
/20

26
/04
/20

27
/04
/20

28
/04
/20

29
/04
/20

time

0

20

40

60

80

100

120

140

tx
ns

Aave
dYdX

Figure 11: Distribution of arbitrage bot txns over time on protocols
Source: own representation

49

A noticeable large amount of potential hammer bot txns happens in June

2020. Table 9 presents the �ve most observations per day of potential

hammer bot txns. It shows a tight concentration of txns in the time be-

tween June 22 and June 27. Despite the observation of frequent common

appearance, an interpretation is still di�cult. It is yet not clear what

purpose the transaction serves, but it seems quite possible that by con-

suming node resources they are doing preparation for further arbitrage

strategies. However, as stated in 4.2 Arbitrage_hammerbots the data

basis for a conclusion is missing. The high share of txns on dYdX by

named addresses of around 73% can be observed in the high volume of

txns on dYdX in June back in �gure 6.

Table 9: Top �ve potential hammer bot txns per day

txns date

512 Jun 22, 2020
81 Jun 27, 2020
34 Jun 23, 2020
28 Jun 24, 2020
10 Jun 11, 2020

4.4 Token on protocols

In the following it is described which tokens are used on the di�erent

protocols and what share they make up.

Aave Table 10 shows the distribution over tokens of Aave Flash Loans,

the number of txns a Flash Loan in a speci�c token was taken out, the

percentage share over all txns and the average amount of one Flash Loan

of a token. Again it must be noted that the conversion rate of the tokens

to USD is based on a snapshot from Etherscan on 31.07.2020. Therefore

DAI (55.10%), ETH (34.61%) and USDC (6.89%) are most frequently

used.

50

Table 10: Flash Loan amounts and distribution of tokens on Aave

Symbol Txns % Amount ∅ Amount

DAI 1880 55.10 43777101.86055 23285.69248
ETH 1181 34.61 22262.50215 18.85055
USDC 235 6.89 524860.59799 2233.44935
BAT 70 2.05 293092.74916 4187.03927
WBTC 24 0.70 4.23861 0.17661
ZRX 14 0.4 3246.67770 231.90555
USDT 5 0.15 48725.43332 9745.08666
REP 1 0.03 0.67277 0.67277
LINK 1 0.03 617.44845 617.44845
MKR 1 0.03 5.00000 5.00000

Total 3412

dYdX Table 11 shows the distribution over tokens of dYdX Flash

Loans. ETH (42.24%), DAI (36.70%) and USDC (21.06%) are exclu-

sively used. Without taking into account USD values of the observed

token transfers, it can already be observed that dYdX volumes are well

above those on Aave. DAI Flash Loans on dYdX are about 30%, ETH

about 17220% and USDC about 756% above Flash Loans on Aave. Al-

though there are less Flash Loans taken out on dYdX, the average amount

is higher in general. This seems to be reasonable when taking into ac-

count that dYdX is mainly used for arbitrage purposes and Aave for

CCDP.

Table 11: Flash Loan amounts and distribution of tokens on dYdX

Symbol Txns % Amount ∅ Amount

DAI 986 36.70 57121686.9440938 57932.7453794054
ETH 1135 42.24 3856074.42108517 3397.42239743187
USDC 566 21.06 4491627.476891 7935.73759168021

Total 2687

Uniswap Table 12 shows the distribution over tokens of Uniswap

FlashSwaps. HEX (33.52%) and WETH (6.45%) are used the most.

51

Table 12: Flash Loan amounts and distribution of tokens on Uniswap

Symbol Txns % Amount ∅ Amount

iserr 0 0.00 0 0
HEX 239 33.52 12520186.5674295 52385.7178553535
WETH 46 6.45 274.629507614833 5.97020668727898
SLP 16 2.24 25048 1565.5
UBT 8 1.12 5762.74387153 720.34298394125
DAI 7 0.98 5000.00102243845 714.28586034835
BAT 5 0.70 33944.8159269802 6788.96318539603
COMP 5 0.70 1053.171 210.6342
ISLA 4 0.56 1047.76218132451 261.940545331128
XIO 4 0.56 16980.0176925845 4245.00442314613
KNC 3 0.42 2144.47440080784 714.82480026928
SNX 3 0.42 1529.51386040405 509.837953468017
AMPL 2 0.28 4645.82576914 2322.91288457
AUC 2 0.28 1866.2566711331 933.128335566552
BUIDL 2 0.28 406.306027279666 203.153013639833
CEL 2 0.28 555.8335 277.91675
DATA 2 0.28 13212.3511596386 6606.1755798193
ESH 2 0.28 330.044992105303 165.022496052652
JRT 2 0.28 5397.17218807722 2698.58609403861
LINK 2 0.28 747.11708571948 373.55854285974
MKR 2 0.28 5.76443003453046 2.88221501726523
NEXO 2 0.28 1998.8867129342 999.443356467098
SHIP 2 0.28 5831.73432078942 2915.86716039471
USDC 2 0.28 14871.492006 7435.746003
ANT 1 0.14 403.465023090514 403.465023090514
BAND 1 0.14 98.6562935008362 98.6562935008362
BLT 1 0.14 1612.19043858256 1612.19043858256
BNT 1 0.14 224.655563758628 224.655563758628
DONUT 1 0.14 3639.0268454507 3639.0268454507
DZAR 1 0.14 20522.392116 20522.392116
GRID 1 0.14 175.504960223652 175.504960223652
GST2 1 0.14 8.61 8.61
LRC 1 0.14 363.717615226304 363.717615226304
MCX 1 0.14 7941.32268774983 7941.32268774983
MINDS 1 0.14 106.324926180489 106.324926180489
OXT 1 0.14 301.403861505878 301.403861505878
QNT 1 0.14 2.8749153140519 2.8749153140519
REN 1 0.14 1976.90332630488 1976.90332630488
RLC 1 0.14 607.287036635 607.287036635
RPL 1 0.14 894.24341207903 894.24341207903
STAC 1 0.14 57267.4033322954 57267.4033322954
STAKE 1 0.14 2.37401091799079 2.37401091799079
UP 1 0.14 5822.64377510077 5822.64377510077
VXV 1 0.14 38.5603547551341 38.5603547551341
WBTC 1 0.14 0.23748504 0.23748504
ZRX 1 0.14 146.130895378452 146.130895378452
cDAI 1 0.14 2751.0697203 2751.0697203

Total 3412

A large share of 45.72% is failed transactions which show no value at

52

all (�iserr�). The many di�erent tokens is made up by the fact that

FlashSwaps allow the swapping of any token pair available. This makes

it hardly comparable to Aave and dYdX when it comes to the volumes

of certain tokens. The stated amounts from the token which was given

to the user in a txn has been used, not the token which was paid back.

Flash minting The analysis of the 44 �ash minting transactions

showed hardly any relevant results for the task of this study. Around 18%

of txns failed (4 out of gas and 4 reverted). A sum of 11.300442018246

fmETH and 11.122 fWETH were used in txns. Only one txn showed

more than one transfer. No applications could be identi�ed either. This

is because the concept is rarely used and the present txns seem to have

been initiated for test and proof-of-concept purposes only34. The conclu-

sion is based on the fact that almost no transfers other than the minting

itself can be observed and the amounts are very low. Although there

are concepts in the making which try to use the concept, such as �ash-

mint.app for the easy use of �ashminting35, a new token ADEX with

inherent �ash minting feature36 or a request to make DAI on Maker-

DAO �ash mintable37, these concepts do not show observable data for

the period of time under consideration.

4.5 USD volumes

The following presents the volume of Flash Loans taken out in USD

over all and over speci�c protocols and applications. From the previous

analysis, it could be concluded that DAI, ETH and UDC make up a

share of 91.88% of all tokens used. As a result, only historical prices for

this tokens were acquired since the expense of collecting prices of other

tokens were not to be found appropriate.

Table 14 and �gure 12 show the value of Flash Loans taken out per

34According to Austin Williams in a personal discussion via Mail 11.08.2020
35https://�ashmint.app
36https://www.adex.network/blog/token-upgrade-de�-features
37https://forum.makerdao.com/[...]-�ash-mint-module/3635

53

https://flashmint.app
https://www.adex.network/blog/token-upgrade-defi-features
https://forum.makerdao.com/t/mip13c3-sp2-declaration-of-intent-dai-flash-mint-module/3635

month in mio USD. After relatively low volumes in December 2019 until

February 2020, volumes raise quickly im March when Flash Loans be-

came more popular and Black Thursday and Friday made it necessary

for users to save collaterals through De�saver. After relatively low vol-

umes compared to the following months, June and July show high USD

volumes of Flash Loans.

Table 13: Flash Loan value in mio USD per month

month value in mio USD

Dec-19 0.060188488682491
Jan-20 0.018009891791302
Feb-20 9.99398983251672
Mar-20 41.8248923026221
Apr-20 4.94490782522818
May-20 9.1571141102114
Jun-20 510.02652879264
Jul-20 384.753773424701

Total 960.779404668394

54

Dec-19 Jan-20 Feb-20 Mar-20 Apr-20 May-20 Jun-20 Jul-20
time

0

100

200

300

400

500
va

lu
e
US

D
in
 m

io

Figure 12: Flash Loan value in mio USD per month
Source: own representation

Figure 13 illustrate the volume of Flash Loans in USD taken out on

protocols by month. It is quite clear that dYdX shows by far the most

volume of all three major platforms, whereas Aave remains relatively

�at in comparison. It should be noted that the results for Uniswap are

not very meaningful as the available USD values of the tokens are not

representative of the use of tokens in FlashSwaps.

55

Dec-19 Jan-20 Feb-20 Mar-20 Apr-20 May-20 Jun-20 Jul-20
time

0

500000

1000000

1500000

2000000

2500000

3000000

3500000
va

lu
e
US

D
protocol
dYdX
Aave
Uniswap

Figure 13: USD volume of Flash Loans on protocols per month
Source: own representation

Table 14 shows the aggregated Flash Loan values in USD on dYdX and

Aave. Looking at the use of the platforms in relation to their applica-

tion, the results appear to be consistent. Since dYdX is mainly used for

arbitrage, the higher values seem to make sense

Table 14: Flash Loan value in USD per protocol

protocol value in USD

dydx 927,014,127.795046
aave 33,745,408.0583357

total 960,759,535.853382

The volume in mio USD of Flash Loans taken out for a speci�c appli-

cation is shown in �gure 14. It supports the assumption that arbitrage

accounts for the majority of observed USD values. Another large part is

56

made up of unde�ned applications. Potential washtrading txns, CCDP

and collateral swap, on the other hand, do not show high values.

NA
PP

Arb
itra

ge

Co
llat
era
l_s
wa
p

Wa
sh_
tra
din
g

CC
DP

subcategory

0

100

200

300

400

US
D
va

lu
e
in
 m

io

Figure 14: Volume of Flash Loans for applications in USD
Source: own representation

The volume in USD of Flash Loans taken out for a speci�c applications

subcategory is shown in �gure 15.

Unidenti�ed applications show the largest share followed by potential

hammer bots. The relatively high proportion of the latter might be due

to the very large number. Surprisingly, arbitrage bots do not account for

a large share of the USD amounts executed. Arbitrage_comp stands out

because it is strongly in�uenced by a txn where WETH (substituted by

ETH in the data set) worth more than 42 million USD was borrowed on

dYdX in a Flash Loan38. This is also true for potential wash trading txns

where a few outliers tend to drive up the bar (for the txn hashes see data

38txn:
0x63a99ac8b81�2ee1c80bf9f0ca5809a48c�a54e88fc3f38b1cca94bec99536

57

set "Exchange_rates.csv"). Also noticeable are arbitrage attacks which

only show four txns but an average of 18, 291, 253.58 USD per txn. The

same seems to be true for Arb_Balancer, where the average value per

Flash Loan in USD is 5, 031, 584.033

NA
PP

Arb
itra
ge
_ha
mm
erb
ot

Arb
itra
ge
_da
o

Co
llat
era
l_s
wa
p_0

Arb
itra
ge
_Li
qu
ida
tio
n

Arb
itra
ge
_liq
uid
ati
on

Arb
itra
ge
_at
tac
k

Wa
sh_
tra
din
g_p
ote
nti
al

CC
DP
_D
efi
sav
er

Arb
itra
ge
_bo
t

Arb
itra
ge
_sw
ap

Arb
_Ba
lan
cer

Arb
itra
ge
_Ar
bco
ntr
act

Ide
nti
fie
d_A
rbi
tra
ge
_H
XY

Arb
itra
ge
_co
mp

subcategory

0

50

100

150

200

250

300

350

US
D
va
lu
e
in
 m
io

Figure 15: Volume of Flash Loans for applications subcategories in
mio USD

Source: own representation

58

5 Conclusion

The aim of this paper was to explain the novel concept of Flash Loans

and to provide an analysis of their use. The result is an overview of how

Flash Loans work and the presentation of possible applications as well as

a description of the famous attacks. A comprehensive and informative

data set has been created and a descriptive analysis shows its content

and, where possible, describes conclusions drawn. It has been shown

that arbitrage is the most common application of Flash Loans, followed

by CCDP in times of large price drops of cryptocurrencies. Other ap-

plications occupy only a small part. Potential wash trading txns make

up a very small part of the total applications. This is not surprising as

on-chain wash trading is easy to identify and known DEX would not be

of much use due to potential reputational damage. Wash trading similar

txns through unidenti�ed addresses seems to exist through and through

in the case of potential hammer bots. However, the �nal purpose of

the txns must remain unanswered here. Due to the strong involvement

in past mempool manipulations of the addresses, a classi�cation as ar-

bitrage for these back-and-forth transfers seems more appropriate than

being wash trading txns. Concerning the division of applications into

subcategories, it was shown that bots, arbitrage- or hammer bots, take an

essential part within arbitrage strategies. Other applications are mainly

arbitrage swaps and HXY arbitrage strategies. Concerning the use of the

di�erent protocols, Aave takes the majority of txn, closely followed by

dYdX. Uniswap shows little share, probably due to the short availability

of �ash swaps. A di�erent picture emerges when considering the amount

of Flash Loans taken out in token and the respective USD amount. It

became clear that dYdX shows by far the highest amounts. Aave shows

only a small share and Uniswap showed too much di�erent coins for an

appropriate analysis. Flash minting is hardly used at the moment, and

it remains to be seen how Flash Loans on bZx will develop once the

protocol is live again. In the course of the description of the �ashloan

attacks it became clear that Flash Loans uncovered the weaknesses of

SCs and the interaction of protocols with Oracle contracts. Furthermore

59

it could be observed in arbitrage strategies (Arbitrage_HXY and Arbi-

trage_comp) that it is now easier for users to take advantage of interest

rate strategies because interactions with protocols and the generation of

incentive tokens is possible without actually having to raise own funds.

It has been made clear that Flash Loans o�er a wide range of possible

use cased and that the usage in sheer number of txns is not very high yet.

Compared to moderate numbers of txns, the cumulated volume of Flash

Loans in USD of 960.78 mio and the average volume per Flash Loan of

around USD 141, 042 show that users make use of high values for their

purposes.

5.1 Limitations and further research

The present thesis is limited to the analysis of Flash Loans and similar

concepts on the presented platforms and analyzes for this purpose the

use in di�erent applications. There is no detailed analysis of used SC

for the individual use cases. Furthermore, the present work is lacking

in-depth analyses of certain subcategories of applications. To check for

clear evidence of mempool manipulation by hammer bots, a analysis

of mempool data should be carried out. To get insights into potential

wash trading strategies, the respective volumes of transferred tokens at

the time following the txn should be checked to examine if there was an

e�ect on trading volumes. The paper presents the current state of the art

of Flash Loans within a �xed time frame. In an SC based environment

like Ethereum a constant new and further development can be observed.

Around the concept of Flash Loans the emergence of new platforms like

the user friendly use of �ash minting39, new token with inherent �ash

minting feature40 or aggregation of di�erent Flash Loan protocols41 can

be observed. In further steps the results could be extended continuously.

It must also be noted that a large part of the time and e�ort involved

in the present work was caused by data acquisition. Especially for the

39https://�ashmint.app
40https://www.adex.network/blog/token-upgrade-de�-features
41https://www.kollateral.co

60

https://flashmint.app
https://www.adex.network/blog/token-upgrade-defi-features
www.kollateral.co

identi�cation of Flash Loans on dYdX, a time consuming data cleansing

was necessary. Therefore only data up to July are available. Based on

the �ndings of this work, data should be relatively much easier to obtain

and the data set could be expanded. Additionally, no detailed analysis

of failed txns was in scope of the present work. However, it might be

useful to �nd out the reasons for the failure of so many txns on Uniswap

in order to draw conclusions about the potential use cases.

61

References

Aave (2020a), `Aave Protocol Whitepaper V1.0', https://whitepaper.

io/document/533/aave-whitepaper. Accessed: 08.05.2020.

Aave (2020b), `LendingPool.sol', https:

//github.com/aave/aave-protocol/blob/

7998c8a5a5fc8c326b261832358b49fa3a9e8b93/contracts/

lendingpool/LendingPool.sol#L889. Accessed: 04.07.2020.

Aave developers (2020a), `Performing a Flash loan', https://docs.

aave.com/developers/tutorials/performing-a-flash-loan. Ac-

cessed: 08.05.2020.

Aave developers (2020b), `What is Aave', https://developers.aave.

com/#retrieve-contract-instances. Accessed: 08.05.2020.

Auguste, K. (2020), `The bZx attacks explained', https://www.palkeo.

com/en/projets/ethereum/bzx.html. Accessed: 16.07.2020.

Austin Williams (2020), `Flash-mintable Asset-backed Tokens', https:

//github.com/Austin-Williams/flash-mintable-tokens. Ac-

cessed: 08.05.2020.

Balancer (2019), `Whitepaper', https://balancer.finance/

whitepaper. Accessed: 01.08.2020.

Blockchain Transparency Institute (2019), `BTI Market Surveil-

lance Report � September 2019', https://www.bti.live/

bti-september-2019-wash-trade-report. Accessed: 08.05.2020.

Blocknative (2020), `Evidence of Mempool Manipulation on Black

Thursday: Hammerbots, Mempool Compression, and Sponta-

neous Stuck Transactions', https://blog.blocknative.com/blog/

mempool-forensics. Accessed: 29.07.2020.

bZeroX, LLC (2018), `bZx Litepaper', https://bzx.network/pdfs/

bZx_lite_paper.pdf. Accessed: 20.07.2020.

i

https://whitepaper.io/document/533/aave-whitepaper
https://whitepaper.io/document/533/aave-whitepaper
https://github.com/aave/aave-protocol/blob/7998c8a5a5fc8c326b261832358b49fa3a9e8b93/contracts/lendingpool/LendingPool.sol#L889
https://github.com/aave/aave-protocol/blob/7998c8a5a5fc8c326b261832358b49fa3a9e8b93/contracts/lendingpool/LendingPool.sol#L889
https://github.com/aave/aave-protocol/blob/7998c8a5a5fc8c326b261832358b49fa3a9e8b93/contracts/lendingpool/LendingPool.sol#L889
https://github.com/aave/aave-protocol/blob/7998c8a5a5fc8c326b261832358b49fa3a9e8b93/contracts/lendingpool/LendingPool.sol#L889
https://docs.aave.com/developers/tutorials/performing-a-flash-loan
https://docs.aave.com/developers/tutorials/performing-a-flash-loan
https://developers.aave.com/#retrieve-contract-instances
https://developers.aave.com/#retrieve-contract-instances
https://www.palkeo.com/en/projets/ethereum/bzx.html
https://www.palkeo.com/en/projets/ethereum/bzx.html
https://github.com/Austin-Williams/flash-mintable-tokens
https://github.com/Austin-Williams/flash-mintable-tokens
https://balancer.finance/whitepaper
https://balancer.finance/whitepaper
https://www.bti.live/bti-september-2019-wash-trade-report
https://www.bti.live/bti-september-2019-wash-trade-report
https://blog.blocknative.com/blog/mempool-forensics
https://blog.blocknative.com/blog/mempool-forensics
https://bzx.network/pdfs/bZx_lite_paper.pdf
https://bzx.network/pdfs/bZx_lite_paper.pdf

CertiK (2020a), `Audit Report', https://bzx.network/pdfs/CertiK%

20Verification%20Report%20for%20bZx.pdf. Accessed: 21.07.2020.

Certik (2020b), `Little Pains, Great Gains: How the Balancer DeFi

Contract Was Drained', https://certik.io/blog/technology/

little-pains-great-gains-balancer-defi-contract-was-drained.

Accessed: 25.07.2020.

CoinMarketCal (2020), `31 August 2020 (or earlier) Pro-

tocol Relaunch', https://coinmarketcal.com/en/event/

protocol-relaunch-38288. Accessed: 12.08.2020.

CoinMarketCap (2020a), `Dai', https://coinmarketcap.com/

currencies/multi-collateral-dai/historical-data/?start=

20190820&end=20200820. Accessed: 20.08.2020.

CoinMarketCap (2020b), `Ethereum', https://coinmarketcap.com/

currencies/ethereum/historical-data/?start=20190820&end=

20200820. Accessed: 20.08.2020.

CoinMarketCap (2020c), `USD Coin', https://coinmarketcap.com/

currencies/usd-coin/historical-data/?start=20190820&end=

20200820. Accessed: 20.08.2020.

Cointelegraph (2020), `15% Correction Drops Bitcoin Price to USD 8,100

Days Before BTC Halving'. https://cointelegraph.com/news/

15-correction-drops-bitcoin-price-to-8k-two-days-before-

btc-halving

Accessed: 20.06.2020.

Compound Labs, Inc. (2020), `Compound', https://compound.

finance/governance/comp. Accessed: 01.08.2020.

Cong, L. W., Li, X., Tang, K. and Yang, Y. (2019), `Crypto Wash Trad-

ing', Available at SSRN: https: // ssrn. com/ abstract= 3530220 or

http: // dx. doi. org/ 10. 2139/ ssrn. 3530220 .

DeFi Saver (2020), `Introducing 1-transaction CDP closing pow-

ered by �ash loans'. https://medium.com/defi-saver/

ii

https://bzx.network/pdfs/CertiK%20Verification%20Report%20for%20bZx.pdf
https://bzx.network/pdfs/CertiK%20Verification%20Report%20for%20bZx.pdf
https://certik.io/blog/technology/little-pains-great-gains-balancer-defi-contract-was-drained
https://certik.io/blog/technology/little-pains-great-gains-balancer-defi-contract-was-drained
https://coinmarketcal.com/en/event/protocol-relaunch-38288
https://coinmarketcal.com/en/event/protocol-relaunch-38288
https://coinmarketcap.com/currencies/multi-collateral-dai/historical-data/?start=20190820&end=20200820
https://coinmarketcap.com/currencies/multi-collateral-dai/historical-data/?start=20190820&end=20200820
https://coinmarketcap.com/currencies/multi-collateral-dai/historical-data/?start=20190820&end=20200820
https://coinmarketcap.com/currencies/ethereum/historical-data/?start=20190820&end=20200820
https://coinmarketcap.com/currencies/ethereum/historical-data/?start=20190820&end=20200820
https://coinmarketcap.com/currencies/ethereum/historical-data/?start=20190820&end=20200820
https://coinmarketcap.com/currencies/usd-coin/historical-data/?start=20190820&end=20200820
https://coinmarketcap.com/currencies/usd-coin/historical-data/?start=20190820&end=20200820
https://coinmarketcap.com/currencies/usd-coin/historical-data/?start=20190820&end=20200820
https://cointelegraph.com/news/15-correction-drops-bitcoin-price-to-8k-two-days-before-btc-halving
https://cointelegraph.com/news/15-correction-drops-bitcoin-price-to-8k-two-days-before-btc-halving
https://cointelegraph.com/news/15-correction-drops-bitcoin-price-to-8k-two-days-before-btc-halving
https://compound.finance/governance/comp
https://compound.finance/governance/comp
https://ssrn.com/abstract=3530220
http://dx.doi.org/10.2139/ssrn.3530220
https://medium.com/defi-saver/introducing-1-transaction-cdp-closing-powered-by-flash-loans-8a83456226f4
https://medium.com/defi-saver/introducing-1-transaction-cdp-closing-powered-by-flash-loans-8a83456226f4

introducing-1-transaction-cdp-closing-powered-by-flash-

loans-8a83456226f4

Accessed: 20.06.2020.

Dune Analytics (2020), `Dune Analytics', https://www.

duneanalytics.com. Accessed: 16.07.2020.

dYdX (2020), `dYdX documentation - solo protocoll', https://docs.

dydx.exchange/#actions. Accessed: 04.07.2020.

ERC20 token generator (2020), `tokenmint', https://tokenmint.io/

app/#/token. Accessed: 08.05.2020.

Ethereum Foundation (2020), `py-evm Documentation Release

0.3.0-alpha.14', https://readthedocs.org/projects/py-evm/

downloads/pdf/latest. Accessed: 08.05.2020.

Etherscan (B1) (2020a), `Download Data (List of Veri�ed Con-

tract addresses with an OpenSource license)', https://etherscan.

io/exportData?type=open-source-contract-codes. Accessed:

01.08.2020.

Etherscan (B1) (2020b), `Ethereum Developer APIs', https://

etherscan.io/apis. Accessed: 20.07.2020.

Etherscan (B1) (2020c), `Etherscan', https://etherscan.io. Accessed:

16.07.2020.

�ashmint (2020), `�ashmint.', https://flashmint.app. Accessed:

16.07.2020.

Frangella, E. (2020), `Flash Loans, one month in', https://medium.

com/aave/flash-loans-one-month-in-73bde954a239. Accessed:

14.08.2020.

fravoll (2019), `Checks E�ects Interactions', https://fravoll.github.

io/solidity-patterns/checks_effects_interactions.html. Ac-

cessed: 21.07.2020.

iii

https://medium.com/defi-saver/introducing-1-transaction-cdp-closing-powered-by-flash-loans-8a83456226f4
https://medium.com/defi-saver/introducing-1-transaction-cdp-closing-powered-by-flash-loans-8a83456226f4
https://medium.com/defi-saver/introducing-1-transaction-cdp-closing-powered-by-flash-loans-8a83456226f4
https://www.duneanalytics.com
https://www.duneanalytics.com
https://docs.dydx.exchange/#actions
https://docs.dydx.exchange/#actions
https://tokenmint.io/app/#/token
https://tokenmint.io/app/#/token
https://readthedocs.org/projects/py-evm/downloads/pdf/latest
https://readthedocs.org/projects/py-evm/downloads/pdf/latest
https://etherscan.io/exportData?type=open-source-contract-codes
https://etherscan.io/exportData?type=open-source-contract-codes
https://etherscan.io/apis
https://etherscan.io/apis
https://etherscan.io
https://flashmint.app
https://medium.com/aave/flash-loans-one-month-in-73bde954a239
https://medium.com/aave/flash-loans-one-month-in-73bde954a239
https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html
https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html

Gudgeon, L., Perez, D., Harz, D., Gervais, A., Livshits, B. et al. (2020),

`The Decentralized Financial Crisis: Attacking DeFi'.

Hex (2018 -2020), `Hex.win', https://hex.win. Accessed: 16.07.2020.

Hussey, M. and Tran, K. C. (2020), `What

is bZx?', https://decrypt.co/resources/

bzx-ethereum-defi-decentralized-finance-explained-guide.

Accessed: 20.07.2020.

investing.com (2020), `Ethereum', https://www.investing.com/

crypto/ethereum/historical-data. Accessed: 16.08.2020.

jay for curl on Github (2020), `curl://', https://github.com/curl/

curl. Accessed: 12.08.2020.

Julien Bouteloup for Flash Boys (2020), `Flash Boys

| Arbitrage DAO', https://medium.com/@bneiluj/

flash-boys-arbitrage-dao-c0b96d094f93. Accessed: 08.05.2020.

Kevin Truong (2020), `Collateral Swap Alpha', https:

//collateralswap.com. Accessed: 08.05.2020.

Khatri, Y. (2020), `DeFi lending protocol bZx exploited, `a portion

of ETH lost' ', https://www.theblockcrypto.com/linked/56134/

defi-lending-protocol-bzx-exploited-a-portion-of-eth-lost.

Accessed: 14.08.2020.

Kyber Network (2019), `Introduction', https://developer.kyber.

network/docs/Reserves-Intro/. Accessed: 21.07.2020.

Leshner, R. and Hayes, G. (2019), `Compound: TheMoneyMar-

ketProtocol', https://compound.finance/documents/Compound.

Whitepaper.pdf. Accessed: 21.07.2020.

Livnev, L. (2020), `No Title', https://lev.liv.nev.org.uk/pub/bzx_

debug.txt. Accessed: 16.07.2020.

iv

https://hex.win
https://decrypt.co/resources/bzx-ethereum-defi-decentralized-finance-explained-guide
https://decrypt.co/resources/bzx-ethereum-defi-decentralized-finance-explained-guide
https://www.investing.com/crypto/ethereum/historical-data
https://www.investing.com/crypto/ethereum/historical-data
https://github.com/curl/curl
https://github.com/curl/curl
https://medium.com/@bneiluj/flash-boys-arbitrage-dao-c0b96d094f93
https://medium.com/@bneiluj/flash-boys-arbitrage-dao-c0b96d094f93
https://collateralswap.com
https://collateralswap.com
https://www.theblockcrypto.com/linked/56134/defi-lending-protocol-bzx-exploited-a-portion-of-eth-lost
https://www.theblockcrypto.com/linked/56134/defi-lending-protocol-bzx-exploited-a-portion-of-eth-lost
https://developer.kyber.network/docs/Reserves-Intro/
https://developer.kyber.network/docs/Reserves-Intro/
https://compound.finance/documents/Compound.Whitepaper.pdf
https://compound.finance/documents/Compound.Whitepaper.pdf
https://lev.liv.nev.org.uk/pub/bzx_debug.txt
https://lev.liv.nev.org.uk/pub/bzx_debug.txt

Marc Zeller for Aave Blog (2020), `Sneak peek at Flash Loans', https:

//medium.com/aave/sneak-peek-at-flash-loans-f2b28a394d62.

Accessed: 08.05.2020.

Max Wol� (2018), `Introducing Marble - A Smart

Contract Bank', https://medium.com/marbleorg/

introducing-marble-a-smart-contract-bank-c9c438a12890.

Accessed: 08.05.2020.

mikedeshazer for Orfeed on Github (2020), `OrFeed', https://github.

com/ProofSuite/OrFeed. Accessed: 01.08.2020.

money-legos (2020), `Flashloans On DyDx', https://money-legos.

studydefi.com/#/dydx. Accessed: 04.07.2020.

mrdavey for Aave (2020), `EZ-Flashloan - A barebones solidity template

for Aave's �ashloans', https://github.com/mrdavey/ez-flashloan.

Accessed: 08.05.2020.

Nikolaev, I. (2019), `HEX HEX und die Kohle ist weg? � Was

steckt hinter dem �besseren Bitcoin�?'. https://cryptomonday.de/

hex-hex-und-die-kohle-ist-weg-was-steckt-hinter-dem-

besseren-bitcoin

Accessed: 16.07.2020.

PeckShield (2020), `bZx Hack Full Disclosure (With De-

tailed Pro�t Analysis)'. https://medium.com/@peckshield/

bzx-hack-full-disclosure-with-detailed-profit-analysis-

e6b1fa9b18fc

Accessed: 16.07.2020.

PULSE, D. (2020), `DeFi Status Report Post-Black Thursday', https://

defipulse.com/blog/defi-status-report-black-thursday. Ac-

cessed: 14.08.2020.

Qin, K., Zhou, L., Livshits, B., Gervais, A. et al. (2020), `Attacking the

DeFi Ecosystem with Flash Loans for Fun and Pro�t', arXiv e-prints

p. arXiv:2003.03810.

v

https://medium.com/aave/sneak-peek-at-flash-loans-f2b28a394d62
https://medium.com/aave/sneak-peek-at-flash-loans-f2b28a394d62
https://medium.com/marbleorg/introducing-marble-a-smart-contract-bank-c9c438a12890
https://medium.com/marbleorg/introducing-marble-a-smart-contract-bank-c9c438a12890
https://github.com/ProofSuite/OrFeed
https://github.com/ProofSuite/OrFeed
https://money-legos.studydefi.com/#/dydx
https://money-legos.studydefi.com/#/dydx
https://github.com/mrdavey/ez-flashloan
https://cryptomonday.de/hex-hex-und-die-kohle-ist-weg-was-steckt-hinter-dem-besseren-bitcoin
https://cryptomonday.de/hex-hex-und-die-kohle-ist-weg-was-steckt-hinter-dem-besseren-bitcoin
https://cryptomonday.de/hex-hex-und-die-kohle-ist-weg-was-steckt-hinter-dem-besseren-bitcoin
https://medium.com/@peckshield/bzx-hack-full-disclosure-with-detailed-profit-analysis-e6b1fa9b18fc
https://medium.com/@peckshield/bzx-hack-full-disclosure-with-detailed-profit-analysis-e6b1fa9b18fc
https://medium.com/@peckshield/bzx-hack-full-disclosure-with-detailed-profit-analysis-e6b1fa9b18fc
https://defipulse.com/blog/defi-status-report-black-thursday
https://defipulse.com/blog/defi-status-report-black-thursday

Synthetix (2020), `Litepaper', https://docs.synthetix.io/

litepaper. Accessed: 12.08.2020.

The GraphQL Foundation (2020), `A query language for your API',

https://graphql.org. Accessed: 20.06.2020.

TheGraph (2020), `APIs for a vibrant decentralized future', https://

thegraph.com. Accessed: 05.06.2020.

tokenmint (2019), `Mintable ERC20 TOKEN EXPLAINED', https://

tokenmint.io/blog/mintable-erc20-token-explained.html. Ac-

cessed: 08.05.2020.

Trustnodes (2020a), `Guy Flashloan Borrows $30 Million ETH

For Just $100', https://www.trustnodes.com/2020/07/06/

guy-flashloan-borrows-30-million-eth-for-just-100. Ac-

cessed: 25.07.2020.

Trustnodes (2020b), `Hacker Makes $360,000 ETH From a Flash

Loan Single Transaction Involving Fulcrum, Compound, DyDx

and Uniswap'. https://www.trustnodes.com/2020/02/15/

hacker-makes-360000-eth-from-a-flash-loan-single-

transaction-involving-fulcrum-compound-dydx-and-uniswap

Accessed: 08.05.2020.

Uniswap (2020a), `Automated Liquidity Protocol.', https://uniswap.

org. Accessed: 16.07.2020.

Uniswap (2020b), `Flash Swaps', https://uniswap.org/docs/v2/

core-concepts/flash-swaps. Accessed: 16.07.2020.

Uniswap (2020c), `How Uniswap works', https://uniswap.org/docs/

v2/protocol-overview/how-uniswap-works. Accessed: 16.07.2020.

Uniswap (2020d), `Smart Contract Integration - Flash Swaps',

https://uniswap.org/docs/v2/smart-contract-integration/

using-flash-swaps. Accessed: 16.07.2020.

vi

https://docs.synthetix.io/litepaper
https://docs.synthetix.io/litepaper
https://graphql.org
https://thegraph.com
https://thegraph.com
https://tokenmint.io/blog/mintable-erc20-token-explained.html
https://tokenmint.io/blog/mintable-erc20-token-explained.html
https://www.trustnodes.com/2020/07/06/guy-flashloan-borrows-30-million-eth-for-just-100
https://www.trustnodes.com/2020/07/06/guy-flashloan-borrows-30-million-eth-for-just-100
https://www.trustnodes.com/2020/02/15/hacker-makes-360000-eth-from-a-flash-loan-single-transaction-involving-fulcrum-compound-dydx-and-uniswap
https://www.trustnodes.com/2020/02/15/hacker-makes-360000-eth-from-a-flash-loan-single-transaction-involving-fulcrum-compound-dydx-and-uniswap
https://www.trustnodes.com/2020/02/15/hacker-makes-360000-eth-from-a-flash-loan-single-transaction-involving-fulcrum-compound-dydx-and-uniswap
https://uniswap.org
https://uniswap.org
https://uniswap.org/docs/v2/core-concepts/flash-swaps
https://uniswap.org/docs/v2/core-concepts/flash-swaps
https://uniswap.org/docs/v2/protocol-overview/how-uniswap-works
https://uniswap.org/docs/v2/protocol-overview/how-uniswap-works
https://uniswap.org/docs/v2/smart-contract-integration/using-flash-swaps
https://uniswap.org/docs/v2/smart-contract-integration/using-flash-swaps

Uniswap (2020e), `Smart Contract Integration - Providing Liquidity',

https://uniswap.org/docs/v2/smart-contract-integration/

providing-liquidity. Accessed: 16.07.2020.

Uniswap (2020f), `Uniswap V2 Overview', https://uniswap.org/blog/

uniswap-v2. Accessed: 16.07.2020.

Uniswap (2020g), `Uniswap Whitepaper', https://hackmd.io/

C-DvwDSfSxuh-Gd4WKE_ig. Accessed: 16.07.2020.

Waskom, M. (2012-2020), `seaborn: statistical data visualization',

https://seaborn.pydata.org. Accessed: 16.08.2020.

vii

https://uniswap.org/docs/v2/smart-contract-integration/providing-liquidity
https://uniswap.org/docs/v2/smart-contract-integration/providing-liquidity
https://uniswap.org/blog/uniswap-v2
https://uniswap.org/blog/uniswap-v2
https://hackmd.io/C-DvwDSfSxuh-Gd4WKE_ig
https://hackmd.io/C-DvwDSfSxuh-Gd4WKE_ig
https://seaborn.pydata.org

	List of figures
	List of tables
	Introduction
	Flash Loans - an introduction
	Relevance of the topic
	Objective
	Methodology
	Structure of the thesis

	Decentralized loans
	Classic P2P lending
	Flash loans
	Applications

	Flash loans in detail
	Aave Lending Protocol
	dYdX
	bZx
	Comparable approaches
	FlashSwaps
	Flash-minting

	Flash loan attacks

	Empirical research
	Data acquisition and preparation
	Categorization
	Findings
	Utilization numbers of Flash Loans
	Distribution of txns over time
	Applications

	Token on protocols
	USD volumes

	Conclusion
	Limitations and further research

	References
	Appendix

