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Abstract

Public bitcoin blockchain stores a lot of historical data around transac-
tions on the blockchain. With unsupervised machine learning, this data
was analyzed in order to detect if an algorithm is able to differentiate
between shady / illegal owners and clean owners. Data over 11 years
has been analyzed to see if patterns exist in the transaction behavior.
K-means, PCA and DBSCAN algorithms were used in this thesis. PCA
and DBSCAN algorithms were not able to detect a desirable clustering.
However, k-means algorithms was able to cluster the data were one clus-
ter contained significant attributes of potentially black wallets, which
was compared to an external group of black wallets labeled by the US
government. With a recall of 88%, this k-means algorithm performed
well in separating black wallets in a cluster.
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1 Introduction

The blockchain technology promotes transparency, decentralization, im-
mutability and security. An often believed feature is the anonymity dis-
cussion. Transacting on a blockchain does not guarantee anonymity.
With pseudonymous addresses, anonymity can be compromised if they
are reused. Professional service firms started to identify blockchain par-
ticipants, by using techniques as web-scraping, tracking payments or
IP address monitoring (Conti et al. (2018)). Having such an accurate
database, which constantly needs to be updated, is time-consuming and
not cost-efficient. Therefore, this thesis follows another approach, by
identifying the nature of a certain group of people on the bitcoin net-
work. Bitcoin is the first blockchain ever, and with a current market cap-
italization of $172 billion also the market leader (YahooFinance (2020),
Nakamoto et al. (2008)). In order to gather enough data to verify the hy-
potheses, this blockchain has been selected. Instead of gathering all avail-
able information about all users of the bitcoin blockchain ever recorded in
the internet, this thesis focuses on applying unsupervised machine learn-
ing on the bitcoin data, to find clusters of similar behavior from the users.
Behaviors could be to transact in shady / illegal activities, being a trader
to benefit from currency variances or by buying goods from companies
and many more behaviors. Unsupervised machine learning groups simi-
lar data points together in clusters without knowing the target variable.
The research question therefor is:
Can unsupervised machine learning clustering identify the nature of the
wallets?
The focus lies on wallets with fraudulent, shady behavior. The term
wallet used here stands for a user, who is transacting on the bitcoin
blockchain. This user (or entity) can have several addresses, but all
owners addresses belong to the same wallet. Gathering knowledge in
this area can support governments by gaining information in regard to
money laundering, terrorist financing or illegal market activities.
In this thesis real data has been analyzed from the bitcoin network. The
time horizon of the collected data is between January 16, 2009 and June
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23, 2020, with a total of 636’000 blocks.

The thesis is structured as following: The 2nd chapter begins with spe-
cific background information around the bitcoin network related to this
thesis, so mainly focuses on the anonymity and the address structure.
This chapter also informs about the current market situation of private
companies, which head into a similar direction as this thesis. Chapter
3 is a literature review about similar papers. Their research focus is in
the area of anonymity on the bitcoin network and the usage of machine
learning on blockchain data. Chapter 4 guides through the steps of the
pre-processing of the data, as the key for all machine learning algorithm
is cleared data. This means, the pre-processing part of the data, before
using any machine learning algorithm, is essential in order to get correct
results. Chapter 5 introduces the unsupervised machine learning part,
where the algorithm k-means is implemented as the most popular algo-
rithm, along with a principal component analysis and DBSCAN. After
the conclusion chapter, there is an outlook for further research possibili-
ties in this area.
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2 Background

This chapter gives some background information on the bitcoin blockchain
data, which is key to understand the later parts of this thesis. Further-
more, this chapter will cover a basic understanding of the anonymity in
the network, to bring insights on this topic of the thesis.

2.1 Raw data

The whole bitcoin network is publicly available by participating as a full
node (downloading the whole history of bitcoin1 on a machine or cloud),
or by viewing over one of the online bitcoin explorers2. When download-
ing the blockchain over a bitcoin client (284 Giga Byte (GB) per June 23,
2020) to get a full node running on the local machine or cloud, the raw
data is saved in blk*.dat files. This data in blk*.dat files is in binary for-
mat and does not necessarily need to be in the order of the blocks itself.
Binary data (values of 0 and 1) can be viewed in hexadecimal format
(values from 0 till 9 and from A till F) which then gives the possibility to
use American Standard Code for Information Interchange (ASCII) char-
acters as a support for the human readable eye (Sommer (2019)). The
data for this thesis is based on this ASCII human readable format and
saved as JavaScript Object Notation (JSON) format. Each bitcoin block
is a separate JSON file. To skip these steps of converting from binary to
hexadecimal to ASCII format, there are several bitcoin explorers which
offer an Application Program Interface (API) to get these JSON files for
each bitcoin block. One of the popular explorers is blockchain.info with
an API call possibility: "www.blockchain.info/rawblock/block_hash",
where simply the "block_hash" needs to be replaced by the favorable
block height. For the genesis block (the first block of bitcoin blockchain
#0) the url link would be: https://blockchain.info/rawblock/0 with
given output as JSON format. The JSON file structure used for this the-
sis can be found in the appendix A for the genesis block 0.

1 https://bitcoin.org/en/download
2 https://www.blockchain.com/explorer
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2.2 Addresses

In bitcoin, with its triple entry bookkeeping system, each transaction is
visible together with the corresponding addresses, transferring Bitcoins
to another address, without mentioning any names of users. These ad-
dresses are used to send Bitcoin from and to people or organizations.
An address symbolizes a unique string of digits and characters (around
26 to 42 alphanumeric identifiers) which can be remotely compared to
a bank account number. Users can generate this kind of addresses by
themselves and as many as they want. There are no costs associated in
creating bitcoin addresses (Wang and Liu (2015)). These addresses are
mostly based on hashes from the public key, however there are also other
possibilities. For example, some address types are based on hashes gen-
erated from scripts. A script defines some properties, which get executed
during a transaction and decides, if the transaction will be accepted as
valid or not. A public key is a result of an intelligent mathematical ellip-
tic multiplication based on a private key. With asymmetric encryption
when having the private key as the owner, the public keys can be de-
crypted but not in the opposite way. There are many research papers in
this area, which explains this concept in detail, see one example Koblitz
et al. (2000).

Valid bitcoin address types can have one of the following three structures:

P2PKH - Pay-to-Public-Key-Hash: This is the most common bit-
coin address and is characterized by beginning with the number 1. There
are multiple possibilities to create such an address, as for example over
(https://www.bitaddress.org/). The first such address is contained in
the genesis block #0:

1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa

This kind of address is based on a number of steps to get from the public
key to the address. It is explained in Harris and Zero (2019).
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P2SH - Pay-to-Script-Hash or SegWit: This type of address is not
hashed from a public key but instead of a whole script. They are often
called multi-signature / multi-sig addresses. This feature was introduced
in January 2012 with the bitcoin improvement proposal 16. The first
occurrence was with the following address:

342ftSRCvFHfCeFFBuz4xwbeqnDw6BGUey

How to create such an address can be seen for example on: https:

//segwitaddress.org/ (QuantaBytes (2020), Harris and Zero (2019)).

Bech32 (P2WPKH or P2WSH): This Bech32 address was used af-
ter the soft-fork Segregated Witness in August 2017 and does not rely on
the variant which uses P2PSH address format to enclose SegWit data.
Thanks to the segregated witness fork, the transaction malleability prob-
lem could be solved and it increased the blocksize (Bitcoin.Wiki (2019)).
The Bech32 addresses start with bc1 and are case insensitive (upper and
lowercase letters treated the same). This is contrary to the two examples
above. An address of this type is:

bc1qvjxyegg05zt73t6dehvzdndlpuamkxywqgf955x8aqg43z62w9lsnd59lm

To check or create such an address, sites like this can be used: https:

//segwitaddress.org/bech32/ (Harris and Zero (2019)).

When studying a group of transactions, there is a chance to cross trans-
actions, which contain null data or OP_Returns where not receiver gets
the Bitcoins, but instead they are "buried". With null data, people can
store information on the bitcoin network forever. One example was in
block 325’001, where somebody wrote "hello world" in one of the outputs
of a transaction3. In an online explorer, this kind of output is marked
as OP_Returns. A closer look in the JSON file gives more information.
For such transactions the rest of the output addresses, which are valid,
were considered for this thesis. On the whole bitcoin blockchain, there
has been one empty block, which had a coinbase transaction to an in-

3 6dfb16dd580698242bcfd8e433d557ed8c642272a368894de27292a8844a4e75
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valid output. For this reason, block 501’726 was not taken into the data
volume for this thesis, as no address was involved. The 12.5 BTC which
were generated by the system in this block is lost forever. This is one
example how Bitcoins can be burned.

2.3 Anonymity

It is highly advised from multiple sources, for users in the bitcoin network,
to generate a new address, every time a transaction is made. Later in the
thesis it will be clear that many services reuse addresses and therefore
generate super-clusters. The reuse of addresses helps identify much of
their on-chain activity for external viewers (Harrigan and Fretter (2016)).
This thesis will describe in detail how to uncover the anonymity of the
users in the network. The subchapter will highlight methods of how users
can stay anonymous.
Privacy enabling techniques in bitcoin can be broadly categorised into
three classes:

• Peer-to-peer (P2P) mixing protocols (ex. CoinJoin):
The most popular P2P mixing protocols is CoinJoin and Coin-
Shuffle. CoinJoin adds transactions together without a third party
involved in a single transaction. CoinJoin uses multi-signature sys-
tem to enhance privacy and prevent thefts. Therefore, each input
has its own signature and is independent from all other inputs. The
anonymity level depends on the number of participants in the Coin-
Join transaction. This method is vulnerable to denial-of-service
(DoS), intersection and Sybil attacks. Sybil attacks are, when
nodes illegitimately claim multiple identities (Douceur (2002)).

CoinShuffle is a decentralized protocol for coordinating CoinJoin
transaction through cryptographic mixing protocols. Their advan-
tage is internal unlinkability, robustness against DoS attacks and
theft resistance. On the other hand, this technique has a lower
anonymity level. There are further P2P protocols which can be
viewed in Conti et al. (2018).
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• Distributed mixing networks (ex. Tumbler)
The principal of distributed mixing networks is built as follows:
The user transacts his/her Bitcoin to a third-party mixing service,
and receives the Bitcoin amount minus service fees back from the
mixing service. The received Bitcoins were originally submitted
by some other users. Due to this service, it will be difficult to
match where the funds went, once submitted to the mixing service.
This kind of strategy provides a strong anonymity from external
observers. Example of such services would be MixCoin, BlindCoin
and TumbleBit. Many mixers are available through the Tor net-
work (The Onion Router), to prevent a linkage to the IP address
(Conti et al. (2018)). Tor network is a browser dedicated to protect
the privacy of the users (Jardine (2015)).

• Altcoins (ex. ZeroCoin)
With invention of the blockchain through bitcoin, there has been
a wave of other new cryptocurrencies being created on the basis
of the decentralized P2P network. These other currencies inspired
by bitcoin are collectively called altcoins. Altcoins gained on pop-
ularity because of multiple reasons. Ethereum enabled the usage
of smart contracts, where an automated script is executed, when
coins are paid. Blockchains for example Hyperledger Fabric were
built for private groups.
Altcoins like ZeroCoin, ZeroCash and Zcash are cryptographic ex-
tensions to bitcoin, which are unlinkable and untraceable transac-
tions. They are built on the zero knowledge proof protocol. They
provide assurance, that internal connections are not possible and
provide theft- and DoS resistance. However, they rely on a trusted
setup, and blockchain pruning is not possible. Pruning a blockchain
means that only certain information of the blockchain are saved in
order to work around the scalability issue (Matzutt et al. (2020)).
A famous altcoin for anonymity is Monero blockchain, which is
based on a CryptoNote protocol, and improves user privacy by
ring signatures. There is a slight chance that transaction linking
could be achieved by leveraging the ring signature size of zero, to-
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gether with an output merging. For further altcoin differentiating
see Conti et al. (2018).

Techniques or alternatives how to ensure anonymity when transacting on
the blockchain is not completed with the list above, and over time new
ways are developed. Nevertheless, as the bitcoin blockchain stores all
transaction historically a great deal of anonymity can still be uncovered,
which this thesis is about.

2.4 Private companies with user data

From an economic point of view, private companies could have an interest
in knowing, who is behind which address on the bitcoin network. Hence,
several private companies have their business model in selling labeled
data about the bitcoin network users. However, it is strongly assum-
able that large centralized players on the bitcoin network, for example
exchange platforms and wallet services, would be capable of identifying
and observing a large amount of user activity as well. Here an overview
regarding the most present firms in this area:

• The Elliptic company is a midsized company with 51-200 employ-
ees, based in London and founded in 2013 (Elliptic (2020)). They
are specialized in fighting financial crypto crime, and won the "2020
Technology Pioneer" award from theWorld Economic Forum. With
web-scraping in the clear and the dark web they search for publicly
available information to corresponding cryptocurrency addresses.
They work with the Federal Bureau of Investigation (FBI) and
Central Intelligence Agency (CIA) (Computerworld (2019)). A
published research paper documented supervised machine learn-
ing with the Elliptic labeled data set (Weber et al. (2019)).
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• The Chainalysis company with headquater in New York was founded
in 2014, is a midsized company with 51-200 employees. They es-
tablished a partnership with one of the major cryptocurrency trad-
ing platforms, Binance, in 2018 and have cooperations with the
FBI, the Drug Enforcement Administration (DEA) and the Inter-
nal Revenue Service (IRS). Furthermore, they offer cryptocurrency
investigation and compliance solutions for global law enforcement
agencies (Chainalysis (2020)). Due to the labeled data set which
they provide for customers, some research papers have used this
data for supervised machine learning, as per example Harlev et al.
(2018), Yin et al. (2019) and Nie et al. (2017).

• The CipherTrace company from California was founded in 2015
and is a small company with 11-50 employees. CipherTrace devel-
ops forensic services on the blockchain with intelligence threat so-
lutions, called Maltego. By tracing transaction flows, CipherTrace
supports cryptocurrency exchanges, banks, investigators, regula-
tors and digital asset businesses. They assure compliance with
regulatory anti-money laundering requirements. Also, the anti-
money laundering report has become an authoritative industry data
source4 (Cipher Trace (2020)).

• Bitfury was founded in Amsterdam in 2011 and with 501-1000
employees is one of the larger companies in this offering (Crys-
tal Blockchain (2020)). Bitfury is a full-service blockchain tech-
nology company. One service which goes into the anonymity as-
pect is the web-based software tool Crystal, which supports finan-
cial institutions and law enforcement to manage investigations on
blockchain (Bitfury (2020a)). In April 2020 the Crystal Blockchain
analytics team published an international bitcoin flow analytics re-
port, which shows countries who received and sent the most Bit-
coins in their exchanges. In the first quarter 2020, the volume
of bitcoins transferred between exchange platforms was $15 billion
(Bitfury (2020b)).

4 https://ciphertrace.com/resources/?reports
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3 Related Research

In this chapter related work has been analyzed in two main areas: anonymity
on the bitcoin blockchain and address clustering. Both topics are deeply
related and therefore relevant for this thesis.

Zola et al. (2019) wanted to detect illegal activities on the bitcoin blockchain
network with machine learning. They used a method to attack bitcoin
anonymity through entity characterization with implementing a cascade
of classifiers. With this characterization, outgoing classification results
could be grouped and used to enrich a final classification. Machine learn-
ing models Adaboost, RandomForest and Gradient Boosting were ap-
plied. With a global accuracy score of 99.68%, their algorithm classifies
very precisely.
The researcher Chawathe (2019) considered the bitcoin blockchain data,
while applying well-known clustering algorithms like k-means and tried
address merging based on patterns in the blockchain. As an evaluation
metrics, he used the Mahalonobis distance, which helped to evaluate the
quality of the output clustering algorithm.
The research team Huang et al. (2017) focused on clustering the bitcoin
nodes and invented a new clustering method "Behavior Pattern Cluster-
ing" (BPC). They extracted the sequences according to the transaction
amount changing over time. The research was conducted on 1’321 nodes,
and their algorithm out-performed the state-of-the-art algorithm in the
behavior pattern clustering tasks.
Researchers Ermilov et al. (2017) defined that they can identify own-
ers by two ways, behavior patterns in the blockchain data and publicly
available information from off-chain sources. To gain knowledge from
patterns, they define different heuristics like change heuristics of the out-
put. This part will be described in detail in the later chapter 4.1. For
analyzing the off-chain information, they again have two ways: a) pas-
sive approach by using web-crawling of public forums together with user
profiles and b) active approach, where they perform manual analysis of
bitcoin companies and data actualisation procedures. A greedy additive
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clustering method was used by the research team for their analysis.
Maesa et al. (2016) considered blockchain data till December 2015 and
used them in Protocol Buffers format from Google. They confirmed the
small-world hypothesis, where everything is strongly connected and an-
alyzed, if there is a wealth concentration.
The research team Harrigan and Fretter (2016) used publicly available
information to cluster different groups on the bitcoin network. They used
data up till February 2016. In their papers conclusion was describe that
especially super-clusters are primary targets for identification attacks.
ShenTu and Yu (2015) focused on both sides of the anonymity, the iden-
tification and the anonymization of users from a qualitative aspect.
The researchers Fleder et al. (2015) tried to link bitcoin public keys to
real people, either definitely or statistically. Furthermore, they created
a transaction graph to find and summarize activities of both known and
unknown users. Raw bitcoin data until December 13, 2013 was consid-
ered. They extracted the raw data from a full node and parsed it into
LevelDB. For the web-scraping they used the Python package Scrapy.
Kondor et al. (2014) researchers analyzed the transaction graph from
bitcoin data until May 2013. They found that the wealth of rich bitcoin
users increased faster than the wealth of other nodes.
Their (Meiklejohn et al. (2013)) approach was to open accounts and make
purchases from a broad range of known bitcoin merchants and service
providers to label their identity afterwards. Additionally, they collected
known or assumed addresses they found in the web. To analyze the bit-
coin data, this team downloaded a full node by April 13, 2013 and later
uploaded the raw data into a PostgreSQL database.
With raw bitcoin data until May 2012, Ron and Shamir (2013) discovered
that the network contains a huge number of small transactions, while a
subset of transactions has moved a large amount of money. Following
this observation, they focused on the large transactions in order to de-
tect the ways, how these amounts are bundled or dispersed.
Researchers Reid and Harrigan (2011) paper was one of the first to ana-
lyze the anonymity related to bitcoin, which is why their paper is one of
the most cited in this area. The raw data which was considered for the
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research was until July 2011. The researchers investigated bitcoin thefts
with external information and techniques like context discovery and flow
analysis. They separated their analysis in transaction network and the
user network. They built a partial user directory to associate bitcoin
users.

The literature knowledge was taken into account for this thesis. Chapter
4 will guide through the approach of the pre-processing stage, which
has been modified to previous research in order to generate an accurate
clustering for a later stage. While some papers used labeld data, others
focused on a specific timeline in bitcoin history. This thesis includes all
blocks accurately until June 23, 2020. Beyond the scope of this thesis
was an IP address mapping, to get the knowledge who is behind which
wallet. The focus is on which wallet owners behave in a similar way to
detect patterns.
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4 Pre-processing

To use machine learning on the bitcoin data, the data needs to be prepro-
cessed in a way, that existing algorithms can use the underlying data and
detect patterns. As blockchain data is stored on multiple nodes due to
the distributed ledger system, and does not contain a standard database
table as structured data, this process has to be completed first. There-
fore, an architectural concept has been styled in figure 1.

Figure 1: Architecture for data pre-processing with analyzing

All the computations have been done on a machine with 32 CPUs In-
tel(R) Xeon(R) CPU E5-2600 @2.20 Ghz, 128 GB RAM DDR3 1067 Mhz
ECC and 6TB Disk SATA from Western Digital. The software system
was Ubuntu 18.04.4 LTS. PostgreSQL v10.12 was used to manage stored
data. The various classifier models were implemented and evaluated us-
ing Python’s scikit-learn library (version 0.23.1).

The first step was to implement an API to the blockchain.info website,
to download all 636’000 bitcoin blocks, which was mined up till June
23, 20205. This could be done by a short PHP script (acronym stands

5 https://www.blockchain.com/btc/block/636000
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for hypertext preprocessor) which downloaded all the 636’000 blocks in
approximately a week. Figure 1 visually represent this process from
step one to step two. All 636’000 JSON files sum up to 1.1 TB. As a
comparison to download a full node from bitcoin core blockchain the total
size per June 23, 2020 was 284 GB (Blockchain.com (2020)). At the time
of this process 31 blocks6 were corrupted and could not been retrieved
from the blockchain.info API. For this reason, these blocks have been
manually filled with the block information in the respective structure in
order to have a complete data set. These 31 blocks are located in a short
period between July and September 2015.

After extracting the data, the JSON files had to be processed in order to
turn them into a table structure for analyzing purposes (figure 1 step 3).
To do so, some heuristics had to be defined to make a clustering process in
the machine learning part easier. The clustering part will be explained
in chapter 5. As the main purpose of this thesis is to find patterns
in the bitcoin data, it is interesting to know which players are on the
blockchain network. For that, some bitcoin blockchain theory needs to
be highlighted first. As already mentioned, the blockchain participants
names are anonymous, but their respective address is publicly visible.
Furthermore, some patterns are constructible in the transaction structure
itself. Each bitcoin transaction can contain 1 to N input addresses, as
well as 1 to N output addresses. One person can own one or many
addresses and has the freedom to create as many new addresses as desired.
Every transaction creates a new unspent transaction output (UTXO).
The age of such UTXOs gives information, in which block this UTXO
was first created and therefore can lead to more pattern analysis. When
making bitcoin transactions as an input owner, one or several UTXOs
will be used. When the total amount of the UTXOs are exceeding the
desired transaction amount, some rest amount needs to be returned to
the input owner. Always a whole UTXO (which can contain any amount,
depending on the previous transaction) needs to be inserted as input in

6 364675 364797 364799 364807 364831 364837 364845 364847 364886 364946
364951 364960 364965 364968 364972 364990 364994 365015 365026 365047 365049
365063 365065 365068 365074 365077 367851 367853 367859 373979 374940
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a transaction. To handle such a partial pay-out to some other bitcoin
participant, the rest of the unused UTXO amount stays in the owners
possession. It needs to be specified to which addresses the partial bitcoin
value flows. To make a short example see figure 2.

Figure 2: Two connecting bitcoin transaction with an UTXO, neglecting
transaction costs

In time period t1 address 1A sends 10 BTC to address 1B. In time period
t2 the owner of address 1B wants to send address 1C 6 BTC. To do that,
the owner must insert the whole UTXO value of the 10 BTC which was
received on t1 into the transaction. As the rest of the 10 BTC should stay
in possession of address 1B owner, he/she needs to insert a second output
in the same transaction indicating to which address this money should
flow. This is usually a newly created address, as it is strongly suggested
by the bitcoin community to do so, in order to stay more anonymous.
However, the same address can be inserted again to return this 4 BTC
to address 1B owner, who is also address 1D owner. In this example
transaction fees have been neglected.
With this knowledge seven rules have been defined, and each transaction
should fall into one of these seven rules. The goal is to map the same
owner of multiple addresses together. In the example in figure 2, address
1B and address 1D are mapped as the same owner. The term wallet is
used for this. One wallet can have multiple addresses and each wallet
gets a unique identification (ID) number. Consequently, when the JSON
files will be processed, every transaction and address gets registered in a
data frame with the corresponding walletID. In the end this will lead to
the structured table for machine learning.
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Transaction hash Bitcoin address WalletID Time Value Rule

Table 1: Main table

In the next subsection the rules for this walletID generation will be ex-
plained.

4.1 Rule heuristics

Rule 0 - Coinbase transaction
In each block the first transaction is from the system generated trans-
action, where the miner gets his/her block reward. A miner can create
Bitcoins by packing and verifying new transactions into a block while
using computation power and publishing the newly mined blocks on the
network. For this effort the miner gets the block reward paid out in
the first transaction of the block (Wang and Liu (2015)). So there is
no input address (as the bitcoin system created these Bitcoin values)
but the transaction contains output address(es) in this coinbase trans-
action. Newly generated Bitcoins belong to the miner, who mined the
block. Therefore, this rule takes the output addresses and cross-checks
them with the newly created database table (main table 1) which grows
after each transaction. If this output address from the miner has already
been used in a previous transaction, meaning that the owners walletID
already exists, then this address will be labeled with the same walletID
and added in the data frame. Otherwise a new walletID will be assigned
to this output address.

Rule 1 - A 1:1 transaction
This transaction type contains one input and one output address. Each
input address in the system has by definition some output in a previous
transaction, as the bitcoin system is historically built. Therefore, the
input address can be easily mapped to the existing walletID of the main
data frame. The output address is compared to the main data frame,
and if it exists, the same walletID will be copied. Otherwise a newly
created walletID is mapped to this output address.
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Rule 2 - A 1:2 transaction
In the frequently occurring situation, where the UTXO needs to be split-
ted, a partial amount goes back to its original owner. By paying partially
to the creditor with the UTXO some change to the owner of the input
address occurs. In theory, different versions of these "shadow" addresses
can be identified. Shadow address means a change of the Bitcoin from
the original owner and this should land in the same cluster. Androulaki
et al. (2013) state the heuristic, in the case that the transaction has two
outputs: one address, which already exists in the main data frame and
one address which is newly created. They say this is an indication, that
the new address belongs to the input owner who created a new address
to return the change value. The other output owner (in this example the
creditor) already used his/her address before. Although this approach
has been confirmed by Chawathe (2019), there has been no proof that
seven years after their analysis, the same heuristic still is true. Conclud-
ing on this, the heuristic approach has been taken out of consideration.

Another possibility, which was mentioned in the paper Kalodner et al.
(2017) has been graphically displayed in figure 3. This transaction con-
tains one output address starting with the number 3 and one output
address starting with the number 1. The address starting with 3 is a
P2SH and therefore most likely a vendor, which leads to the assump-
tion that the other output address can be linked as the shadow address
(change from the input owner). The paper introducing this heuristic is
newer (Kalodner et al. (2017)), however the usage of P2SH addresses has
increased, and now normal users (not only vendors) use the same ad-
dress starting with the number 3. For example, one of the best promoted
hardware wallets called Trezor (invented by Satoshi Lab in 2014) is only
using addresses starting with 3 since 2017 (Mackay (2019)). Considering
this uncertainty about the user of such addresses, this heuristic has not
been implemented either, as there is no clear majority for P2SH being
only vendors.
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Figure 3: Bitcoin transaction to a P2SH address, neglecting transaction
costs

Another way to recognize the shadow address was introduced by Spag-
nuolo et al. (2014), who noted, that there has been a bug in the official
bitcoin core system, where the change address has been in the first posi-
tion and the other address in the second. Bitcoin developers recognized
this anonymity issue and fixed it on February 3, 2013. This left the first
218’995 blocks with this edition. Spagnuolo et al. (2014) state that only
6.8% of the shadow addresses have been provably in the second slot of the
two output transactions. This seems to be very accurate, which is why
for this period, between the genesis block and the last block before the
fix, the first output address has been considered as a change address. The
document fix was CVE-2013-2273 and stated by the developer team "bit-
coind and Bitcoin-Qt before 0.4.9rc1, 0.5.x before 0.5.8rc1, 0.6.0 before
0.6.0.11rc1, 0.6.1 through 0.6.5 before 0.6.5rc1, and 0.7.x before 0.7.3rc1
make it easier for remote attackers to obtain potentially sensitive infor-
mation about returned change by leveraging certain predictability in the
outputs of a bitcoin transaction" (Bitcoin.Wiki (2020)). As the docu-
mentation on the internet and the research paper from Spagnuolo et al.
(2014) does not exactly cite the exact time of the fix, the blocks until
end of January 31, 2013 have been considered to be affected by this bug,
which includes blocks till height 218’995. Therefore, always the first out-
put address has been mapped with the walletID of the input address.
After block 218’995, a new way of recognizing the change address had to
be implemented which includes the following steps:
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1. First the output addresses are compared with the input address. If
one matches, it is clear that this is the change of the input address.
Leading the change address to get the same walletID as the input
address.

2. Should that not be the case, the next check would be to compare
both values of the outputs. An example is shown in figure 4: One
value of the two outputs has no partial numbers after the forth
decimal point and the other output value has a decimal number
after the 4th place. In this case the heuristic assumes, that the
partial Bitcoin value belongs to the input owner, which has a par-
tial change. Most transactions spend whole Bitcoins to another
address, but then have some change (which can be seen if it has
an amount after the 4th decimal point). In case both values have
numbers after the 4th decimal point, or alternatively if for both
addresses this is not the case, then step 3 is followed. Therefore,
to come back to figure 4, address 1H (output address) most likely
belongs to the same owner as 1G (input address).

Figure 4: Bitcoin transaction with decimal values, neglecting transaction
costs

3. Here both output addresses are checked with the main data frame.
If they exist, the walletID is copied from there, if they are newly
created addresses, then a new walletID is created.

Rule 3 - A 1:N transaction
Here the output addresses are compared to the main data frame and if
they already exist (have been used in the past), then they get the same
walletID, otherwise a new walletID is created.
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Rule 4 - A N:1 transaction
In the literature Ron and Shamir (2013) state that multiple sending ad-
dresses can be reasonable assumed to have the same owner. This heuristic
is underlined as well by two other literatures Meiklejohn et al. (2013) and
Androulaki et al. (2013) which say, if two or more addresses are inputs of
the same transaction, they are controlled by the same owner. As with a
high likelihood the input owner of the addresses is the same person, who
authorized the transaction and had access to the corresponding private
keys (Hirshman et al. (2013)). This does not need to be necessarily true
with CoinJoin transactions or mixed services. However, the probability
that different input owners only pay to one other person is rather small.
Therefore, this heuristic has been implemented in this thesis, as in prac-
tice different users rarely contribute in a single, collaborative transaction
(Conti et al. (2018)). All input addresses have been mapped to the same
walletID, which led to updating the main data frame, as the input ad-
dresses may have already been noted to different walletIDs. Graphically
displayed in figure 5, addresses 1C, 1H, 1L and 1M belong to the same
owner and will be mapped to the same walletID.

Figure 5: Input addresses mapped to the same owner

The output address is checked with the main data frame and if the ad-
dress already existed, it gets the same walletID, otherwise a new walletID
is created.
Especially when transaction fees are low, Bitcoin owners merge many of
their addresses into a single address, for usability and cheaper transac-
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tion fees in the future. Bitcoin transaction fees are higher, if multiple
addresses are involved. In this use case, the output address should get
the same walletID as the input address. However, this use case could not
be verified by literature research, and was therefore not implemented to
avoid wrong clusters.

Rule 5 - A N:2 transaction
This case is similar to rule 4 when considering the input addresses. All
input addresses have been linked to the same walletID. For the two output
addresses, the same applies like in rule 2. The repetition of the steps from
rule 2 are listed below:

1. Check if block is lower or equal to height 218’995.

2. Check if output address is same to one of the input addresses.

3. Check if only one output address has a value after the fourth deci-
mal place or lower.

4. Map existing addresses with same walletID from main data frame
or create new walletID.

Rule 6 - A N:N transaction
Here no heuristic can be used, because it is not clear how many involved
parties there are in this transaction. For this rule 6, the input addresses
have been matched with the historical addresses and received the respec-
tive walletID. The other output addresses were compared to the main
data frame, and, if not yet existing, received a new walletID.
A real life transaction with the same amount of inputs and outputs as de-
scribed for each of this seven rules above has been saved in the appendix
A.

After setting up rules and heuristics, a Python script ran through all
636’000 blocks and parsed the data into a data frame format which was
saved as a CSV file. This file contained 2.7 billion rows. The code per-
formed 24 hours on the server. Attributes like transaction hash, bitcoin
address, walletID, time, value and which rule have been saved in the
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main table, as already displayed in table 1. The first few instances of
running the code took very long (several hours for only 100 blocks). The
newly generated lines not only needed to be appended in the main data
frame, but also had to be constantly updated with walletID mappings as
well. To get around this problem, the Python code had to be modified,
where the first script processed all the JSON data and saved dependen-
cies in another data frame. In a second procedure a new script updated
the main data frame with support of the dependency data frame. This
technique lead to very fast processing and enabled the end data frame
for the next step.

Rule Transaction occurrences Percentage of rule
Rule 0, coinbase txid 18’410’043 3.4 %
Rule 1, 1:1 txid 43’536’302 8 %
Rule 2, 1:2 txid 316’271’452 58.4 %
Rule 3, 1:N txid 32’099’583 6 %
Rule 4, N:1 txid 21’660’855 4 %
Rule 5, N:2 txid 103’171’731 19 %
Rule 6, N:N txid 6’514’357 1.2 %
Total transactions 541’664’323 100 %

Table 2: Distribution of rules in the bitcoin blockchain on transaction
(txid) basis

The described heuristic rules from above have the following distribution
as displayed in table 2 along the bitcoin data set. The numbers from the
table are distributed on transaction level. With 542 million transactions
per June 23, 2020, the most prevalent transaction rule was rule 2 with
a 1 to N transaction. The rule least likely to occur was a transaction
with N inputs and N outputs, marked as rule 6. If the distribution of
the rule heuristics would be measured on the basis of addresses, then
the percentages of rule 3 until rule 6 would increase, as they have more
addresses to count for a rule. The main data frame contains 2.7 billion
rows of addresses and has a distribution of rule 0: 3.5%, rule 1: 3.2%,
rule 2: 34.1%, rule 3: 12.2%, rule 4: 11.1%, rule 5: 26.2% and rule 6:
9.7%. This percentages compared to table 2 shows, that rule 3, rule 4,
rule 5 and rule 6 have a percentage increase whereas the other three rules
have lower percentages. This can be explained that the mentioned four
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rules with percentage increase all have a N number of addresses involved.
Because every address for every transaction is listed in the data frame
with the 2.7 million rows, the overall rule’s involvement goes up when a
transaction with N in- or outputs is involved.

4.2 Off-chain analysis

Parallel to the data parsing, research for off-chain information has been
gathered as indicated in figure 1 point 5. This off-chain information
brings value to the bitcoin transactions, by showing what kind of activi-
ties they have been involved in.

This additional expansion of the data should give abundant information
to the machine learning part in a later stage. The hypothesis is, that
in some constellation of the dimensions, a cluster would appear, which
would imply that the wallet has been blacklisted, either by illegal activ-
ities or by suspicious behavior. In many research papers a web-crawling
app was built for this, which mapped published bitcoin address in the
internet with associated names or entities. Such a process would need
additional checks on eligibility of the results, which is why this method
has not been included in the thesis. However, a good reference page
is Janda (2020), where services/entities are mapped with the bitcoin
address: https://www.walletexplorer.com/. The owner of this page
provided an API access to gain this data. It turned out that the amount
of data which needed to be processed exceeded this thesis. Additionally,
this information could not be proven with external sources, as most in-
formation gathered was from own small transactions with these services
by the website host. Information from this website were not incorporated
into the thesis.
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For concentration purpose, the research on the off-chain data had to be
focused on a few categories as follows:

• Gambling

• Mining

• US blacklisted wallets

• Whale wallets

These categories have been selected, as they contribute with the off-chain
analysis into a quite significant category and the underlying data found
on the internet is trustworthy. In the category gambling, 20 addresses
have been used from the famous bitcoin gambling platform SatoshiDice
(2020), which uses the same addresses since 2017. Furthermore, the most
used gambling addresses starting to appear in 2013 on the blockchain
were added from the list Cdecker (2017) and from the conference Burks
et al. (2017).
The category mining is important, as in every single block on the blockchain,
one miner has to be involved at least once. 93 addresses have been se-
lected from the github repository of BTC.com (2020). BTC.com is an
online bitcoin explorer and offers different statistics on the bitcoin net-
work like the mapping of several miners, as F2Pool, Poolin, etc.
The FBI is tracking wallets with illegal background as well. However,
these lists are not publicly accessible. In substitution of the FBI blacklist,
the US Office of Foreign Assets Control (OFAC) has a sanction list of peo-
ple, which must not be traded with. This is also applicable for their cryp-
tocurrency addresses. The "Specially Designated Nationals And Blocked
Persons List" (SDN) contains 33 bitcoin addresses which have been added
to the category US blacklisted wallets (U.S.Government (2020a)). In ad-
dition, 61 addresses have been published in an official press release by the
United States district court (U.S.Government (2020b)). The last category
called Whale wallets has been included in the analysis. A bitcoin account
with a value of 1’000 BTC or higher is considered a Whale. Therefore,
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addresses above 1’000 BTC have been downloaded from the website Bit-
infocharts (2020), which summed up to 1’200 addresses defined as Whale
accounts.

All addresses are compared with the total overall main list to get the
transaction strings. Each transaction containing one of the above men-
tioned addresses, will get an indication in this category. The table 3
shows the categories and the amount of transactions that are affected by
them.

Category Count of Addresses Transactions affected
Gambling 20 10’145’481
Mining 93 676’259
US blacklisted wallets 94 10’489
Whale 2100 2’926’887

Table 3: Off-chain addresses mapped to transactions on bitcoin network

Surprisingly the category mining contains only 676’259 affected transac-
tions in the whole population and the US blacklisted wallets contained
even less with 10’489 affected transactions. Therefore, these two cate-
gories have been excluded for the machine learning part. In general, most
machine learning algorithms are quite sensitive to features (dimensions)
which do not contribute to additional variation of the model. Therefore,
less features which explain the model properly are preferred. Since the
idea for this thesis is to detect clusters which could lead to some sort of il-
legal activities, the US blacklisted wallets will later be compared with the
clusters generated from the algorithms. With this approach, similarities
can be detected.

4.3 Data aggregation

After the data parsing, the main data frame and the off-chain informa-
tion need to be combined and aggregated as displayed in step 6 of the
architecture from figure 1. As the main data frame contains 320 GB of
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data, a database software which can handle such a value of data needs
to be used. Since PostgreSQL is open source, user-friendly and widely
used, this database was chosen. PostgreSQL is a structured database
software and uses a syntax similar to the Structured Query Language
(SQL) (Drake and Worsley (2002)). Seven steps were processed in the
PostgreSQL before the final data output was available for the machine
learning part.

1. The main data frame with 2.7 billion rows has been loaded into
a table in PostgreSQL. The column transaction hash displays the
transaction number. Since a transaction can contain several ad-
dresses, a transaction is listed multiple times with the correspond-
ing address in the next column. The walletID was pre-given in the
first part of the pre-processing when converting from a JSON to
a CSV file. The row value contains the Satoshi amounts and for
each input address, the value is noted as 0, only output addresses in
transactions contain values. Satoshi is the smallest currency unit in
the bitcoin network and is converted with 100’000’000 Satoshis to 1
BTC (Lemieux (2013)). The rule column shows in which category
the transaction belongs.

Transaction hash Bitcoin address WalletID Time Value Rule
5dfaabc04b692a668393be60146a2ca748d21c76b57b0d284033b8d81bd47f75 15bDeG2PfXG1yAaYtQhEvjno7EN2JbFgNA 65737053 1435801555 4252221 2
7f66bcfa68e6121df428140dff3f3cd9036db8a797a7a2d9185946e70b121dae 1DiceoejxZdTrYwu3FMP2Ldew91jq9L2u 252743292 1505844750 10000 2
7f66bcfa68e6121df428140dff3f3cd9036db8a797a7a2d9185946e70b121dae 1BxBMRGtiwkGfWo9xk3RFG2yr5ohdETFLd 3777 1505844750 0 2
7f66bcfa68e6121df428140dff3f3cd9036db8a797a7a2d9185946e70b121dae 1MrZAgkGJ9MC4KVJMerLzwk3p7hk9f2L8q 3777 1505844750 3684 2
0d5e19f00b6d6d1a31ae74969c9e17a83b586e87e3f59e6d07a88bc18cf40a3f 3BMEXywsrKNhMguQSuxaztWKhXWh7MRV8b 255128346 1508482882 7078729 1
520484a42459b61fe65ac95c61f44f3d0bf7b552290ddf7d7accc450ab533cdc 33QoG5ioV4hseifKT9iaqrmD2eis7DicWA 289893470 1513786900 1E+12 1

Table 4: Main data frame with each address and each transaction

2. All the addresses from the off-chain table 5 have been searched in
the main data frame and the corresponding transaction numbers
are noted in the separate table 6.
Table 6 contains all transactions involved in an activity like gam-
bling or a Whale wallet transaction. This list has been filtered for
duplicates to make sure a transaction is listed only once with its
respective off-chain information.
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Bitcoin address Gambling Whale
33QoG5ioV4hseifKT9iaqrmD2eis7DicWA 1
1DiceoejxZdTrYwu3FMP2Ldew91jq9L2u 1

Table 5: Off-chain list of addresses and corresponding activity

Bitcoin address Gambling Whale
de6df5d2d92ecbfb4449b74f3d5d66279207598e493e2c0e45cb8410c2933cff 1
7f66bcfa68e6121df428140dff3f3cd9036db8a797a7a2d9185946e70b121dae 1
520484a42459b61fe65ac95c61f44f3d0bf7b552290ddf7d7accc450ab533cdc 1

Table 6: Off-chain transaction numbers and activity

3. All the transactions noted with the respective category, have been
joined with the main data frame as showed in table 7.

Transaction hash Bitcoin address WalletID Time Value Rule Gambling Whale
5dfaabc04b692a668393be60146a2ca748d21c76b57b0d284033b8d81bd47f75 15bDeG2PfXG1yAaYtQhEvjno7EN2JbFgNA 65737053 1435801555 4252221 2
7f66bcfa68e6121df428140dff3f3cd9036db8a797a7a2d9185946e70b121dae 1DiceoejxZdTrYwu3FMP2Ldew91jq9L2u 252743292 1505844750 10000 2 1
7f66bcfa68e6121df428140dff3f3cd9036db8a797a7a2d9185946e70b121dae 1BxBMRGtiwkGfWo9xk3RFG2yr5ohdETFLd 3777 1505844750 0 2 1
7f66bcfa68e6121df428140dff3f3cd9036db8a797a7a2d9185946e70b121dae 1MrZAgkGJ9MC4KVJMerLzwk3p7hk9f2L8q 3777 1505844750 3684 2 1
0d5e19f00b6d6d1a31ae74969c9e17a83b586e87e3f59e6d07a88bc18cf40a3f 3BMEXywsrKNhMguQSuxaztWKhXWh7MRV8b 255128346 1508482882 7078729 1
520484a42459b61fe65ac95c61f44f3d0bf7b552290ddf7d7accc450ab533cdc 33QoG5ioV4hseifKT9iaqrmD2eis7DicWA 289893470 1513786900 1E+12 1 1

Table 7: Main data frame including off-chain activities on respective
transactions

4. The "rule" column has been split into seven separate columns and
marked with a 1 if it is in the corresponding column. This is visible
in table 8 and had to be distributed in order for a later aggregation
of the data frame.

Transaction hash Bitcoin address WalletID Time Value Rule Gambling Whale rule0 rule1 rule2 rule3 rule4 rule5 rule6
5dfaabc04b692a668393be6014... 15bDeG2PfXG1yAaYtQhEvjno7E... 65737053 1435801555 4252221 2 1
7f66bcfa68e6121df428140dff3f... 1DiceoejxZdTrYwu3FMP2Ldew91... 252743292 1505844750 10000 2 1 1
7f66bcfa68e6121df428140dff3f... 1BxBMRGtiwkGfWo9xk3RFG2yr... 3777 1505844750 0 2 1 1
7f66bcfa68e6121df428140dff3f... 1MrZAgkGJ9MC4KVJMerLzwk3... 3777 1505844750 3684 2 1 1
0d5e19f00b6d6d1a31ae74969c... 3BMEXywsrKNhMguQSuxaztWK... 255128346 1508482882 7078729 1 1
520484a42459b61fe65ac95c61... 33QoG5ioV4hseifKT9iaqrmD2eis7... 289893470 1513786900 1E+12 1 1 1

Table 8: Main data frame with distributed rule columns

5. The main data frame has been aggregated on walletID level, see
table 9. For the column "time", always the first occurrence of this
wallet on the bitcoin network has been saved in this aggregation.

WalletID Value Time Gambling Whale rule0 rule1 rule2 rule 3 rule 4 rule 5 rule6
65737053 4’252’221 1435801555 2
252743292 3’561’686 1505844750 31 1 3 22 2 2 2
3777 195’225’048 billion 1505844750 37’122’931 27’861’827 17’992’372 18’823’432 238’267’144 138’843’519 166’874’727 305’662’573 108’814’426
255128346 259’991’050 1508482882 46 5 1 81
289893470 1E+12 1513786900 13 2 4 7

Table 9: Main data frame after aggregation on walletID
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6. The total value per wallet has been classified into three groups:

Value below 1 BTC (100’000’000 Satoshis)

Value of 1 BTC until 10 BTC

Value greater than 10 BTC

The values which were below one Bitcoin, were classified with a 1
in the "lowvalueflag" category. Values between 1 and 10 Bitcoins
where classified with a one in the "midvalueflag" category, and if
the value is larger than 10 BTC, both categories are 0, see table
10.

WalletID Value Time Gambling Whale rule0 rule1 rule2 ... lowvalueflag midvalueflag
65737053 4’252’221 1435801555 2 1 0
252743292 3’561’686 1505844750 31 1 3 22 0 1
3777 195’225’048 billion 1505844750 37’122’931 27’861’827 17’992’372 18’823’432 238’267’144 0 0
255128346 259’991’050 1508482882 46 5 0 1
289893470 1E+12 1513786900 13 2 4 0 0

Table 10: Main data frame with value categorization

14% of the wallets belong to the category "lowvalueflag" (44’007’954
wallets). In the category "midvalueflag", 79% of the wallets are lo-
cated (245’613’757 wallets). The rest of the wallets (22’349’902
wallets) have values higher than 10 BTC, compared with the total
amount of all wallets they are a minority with only 7%.

7. Each observation (row) sums up the values from rule 0 until rule
6. This amount is saved in the "total" column. All values from
the rule categories, gambling and Whale are divided through this
total. So the only ones untouched by this transformation are the
two dummy variables for the values. This leads to a data frame,
where the observation shows the percentage involved in a category.
Such a transformation on observation level is necessary in order
to not influence the result of behavior for users with high or low
volumn of transactions. The data frame is visualized in table 11.

The column "total rules" is just for supporting reasons and is not
considered a new dimension.
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WalletID Time Gambling Whale rule0 rule1 rule2 rule 3 rule 4 rule 5 rule 6 lowvalueflag midvalueflag total rules
65737053 1435801555 100% 1 0 2
252743292 1505844750 100% 3% 10% 71% 6% 6% 7% 0 1 31
3777 1505844750 4% 3% 2% 2% 24% 14% 17% 30% 11% 0 0 995’278’193
255128346 1508482882 33% 3% 1% 59% 4% 0 1 259’991’050
289893470 1513786900 100% 15% 31% 54% 0 0 13

Table 11: Main data frame with percentages based on sum of all rules

The final aggregated data frame is the size of 13 GB. The largest wallet
contained 1’952’250’477 BTC with the walletID 3’777, this cluster is
considered as supercluster. On this data set the data sampling from
chapter 4.4 has been performed.

4.4 Data sampling

This chapter will explain the data sampling process which is referenced in
the architecture figure 1, point 7. The first pre-processing part contained
2.7 billion rows in the CSV file, which summed up to a total of 320 GB.
After including off-chain information and aggregating the walletID the
final pre-processing file contained 311’971’613 rows, with a total of 13
GB. Those 312 million rows represent all wallets which were identified in
the bitcoin network and already mapped in the pre-processing part. One
wallet symbolizes one user/entity. This leads to the hypothesis, that
approximately 312 million users/entities have been involved in bitcoin
transactions. To handle this volume of data, without getting memory
errors in the machine learning part, a representative sample had to be
selected. In this context a memory error means, that the given RAM
space is not sufficient while performing the computation. With a server
space of 128 GB RAM and a file size of 13 GB, problems will likely oc-
cur, especially for the machine learning algorithms with the SciPy library.
Usually the SciPy algorithms contain the package pandas library, where
it is common that the whole data set is loaded in the data frame and
taking up RAM space (pandas development team (2020)). During com-
puting with this large volume the RAM space quickly reaches its limit
and returns a memory error in the best case, or it just calculates for a
very long time until the loading process breaks down. To find a feasi-
ble solution instead, a representative sample has been selected from the
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312 million wallets. A sample means, a subset from the whole quantity,
reflecting the entire data set accurately. The first step was to choose a
statistically approved method with the z-score, in order to choose the
correct sample size. To determine such a sample size four key consider-
ations need to be made.

N The population size is the number of wallets in the data set.
As each wallet represents a user or entity, the population size
is 312 million (Maple Tech. International LLC. (2020)).

ε To calculate a sample, a margin of error needs to be chosen,
indicating how much higher or lower the sample mean could
deviate from the actual mean of the population. A small
margin of error leads to a better precision. Therefore, an
error margin of 1% has been defined (Maple Tech. Interna-
tional LLC. (2020)).

Z Confidence level, representing the percentage of which the ac-
tual mean of the sample group falls within the defined margin
of error. The most common confidence level in research and
statistics lies at either 90%, 95% or 99%. To make this sample
most representative, a level of 99% has been chosen (Maple
Tech. International LLC. (2020)).
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p The standard deviation shows variance that is expected in the
data sample. As this is not clear, given the data set a value
of 0.5 is preferred, as this value will lead to a large enough
sample size. Although, there is no knowledge of the correct
distribution of the data set (uniform, binominal, random or
normal distribution), there is an important mathematical the-
orem called central limit theorem, which proves, that in a large
enough sample, the distribution tends towards normal distri-
bution. The mathematical formulation of the central limit
theorem is as follows: x̄−µ

σ/
√
n
. Here the mean is 0 and the vari-

ance 1 as n approaches infinity. In order to get a statistically
significant result, that the central limit theorem holds, a large
sample has to be selected. The proportion p is 0.5, as the area
on either side of the mean is 0.5 (50%).

With this information the z-score can be calculated. A z-score, also called
standard score, represents how many standard deviations a value falls
from the mean. To calculate a z-score the population mean as well as the
standard deviation needs to be known. With a confidence interval of 99%
for both sides, the calculation is 1+0.99

2
which returns 0.995. This value

can be checked in a standard normal distribution table for z-scores and
returns the rounded value of 2.58. With this z-score the following formula
1 will be used (Daniel and Cross (2018) Maple Tech. International LLC.
(2020)).

(1)Sample size =
z2∗p(1−p)

e2

1 + ( z
2∗p(1−p)
e2N

)

With the mentioned values inserted, a minimum sample of 16’641 re-
turns. Going forward, this value has been rounded to the next 10k, for
which a sample of 20’000 has been chosen. As the bitcoin blockchain
is a time series, where a simple cut in-between would not represent the
whole data properly. Therefore, the data for wallet creation per year has
been filtered, and the 20’000 samples distributed accordingly. The table
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13 represents the amount of wallets created in each year and the sample
size for later analysis.

year wallets sample
2010 33’525 2
2011 195’777 13
2012 540’478 35
2013 2’455’384 157
2014 12’131’927 778
2015 23’036’055 1’477
2016 33’994’234 2’179
2017 48’204’669 3’090
2018 58’435’689 3’746
2019 58’711’393 3’764
2020 74’232’482 4’759
Total 311’971’613 20’000

Table 13: Created wallets per year

The sample size does not only represent the created wallets per year, but
also correlates with the number of transactions per day.
On https://www.blockchain.com/charts/n-transactions there is a
graphical overview on how the bitcoin networks transaction per day are
distributed. Graph 6 shows this correlation together with the chosen
samples.

Each year is calculated from June 24, 20xx until June 23, 20xx+t1. The
first year starting on January 3, 2009 is calculated until June 23, 2010.
The last year is therefore June 24, 2019 till June 23, 2020 in this data
set. With PostgreSQL all the wallet data has practically been split into
11 tables, for each year one table. The tables have been sorted randomly
and the number of samples per year according to table 13 have been
exported into CSV for the machine learning part. These 20’000 samples
weighted 866 KB in the CSV file.
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Figure 6: Sample selection line plot correlating with transactions per
day line plot

5 Machine Learning

"An intelligent being cannot treat every object it sees as a unique entity
unlike anything else in the universe. It has to put objects in categories

so that it may apply its hard-won knowledge about similar objects,
encountered in the past, to the object at hand." Pinker (1997)

Machine learning is a hype word in nowadays business environment and
means basically learning from data. Machine learning is designing algo-
rithms that enable computers to learn. The field of machine learning can
be divided into multiple areas like supervised or unsupervised learning, as
well as semi-supervised, reinforcement learning, etc. Supervised learning
algorithm maps inputs to the desired outputs and is therefore devoted to
the classification problem. It divides the data in a test and training set,
and as there is a target variable, it is possible to calculate how precise
the algorithm is. Due to this learning approach, the computer gets to
learn how to classify the respective problems reasonably accurately. Un-
supervised machine learning, on the other hand, has only a set of input
data but no labels are available. There is no fixed target variable. This
makes the analysis more difficult, as the computer has to learn how to
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cluster something, but it is not defined in which way (Zhang (2010)).

Since the bitcoin data has no labeled categories to whom the address
belongs, unsupervised machine learning needs to be applied. That is
why this thesis is focusing on unsupervised machine learning. This re-
flects step number 8 on the architecture landscape from figure 1. There
are different kinds of unsupervised machine learning algorithm being ex-
plained below:

• Clustering: This category divides the entire data into groups when
no pre-defined categories/classes are available. Clustering meth-
ods can be further classified into roughly four major categories:
partitioning-based methods, density-based methods, hierarchical
methods and grid-based methods (Huang et al. (2017)).

• Dimensionality reduction: The name already states that these al-
gorithms reduce the number of dimensions. The most popular ones
are principal component analysis (PCA), independent component
analysis or non-negative matrix factorization (Huang et al. (2017)).

• Outlier detection: This unsupervised method finds unusual events
(e.g. malfunctions). The most well-known local anomaly detection
algorithm is called the local outlier factor (Goldstein and Uchida
(2016)).

• Novelty detection: This category is specialized on finding changes
in the data (Huang et al. (2017)).

There is no algorithm that works for every data set. The first step is to
analyze the data set and then choose the algorithm which works best on
it. Depending on factors like size, structure or noise, different algorithms
perform better. Having a look at the bitcoin data set, there are 20’000
observations, which are the aggregated wallets, and 11 features, which
represent the dimensions. This number of observations is very high, and
the number of dimensions is also high. However, it is not in the category
of high dimensional data, as high dimensional data is classified as the
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number of features that can exceed the number of observations. The next
impression is to find out how much noise there is in the data as well as the
shape of the data. This can be outlined by algorithms like DBSCAN for
noise and PCA for the shape. Due to the large number of observations,
a computationally effortless algorithm is preferred. Therefore, machine
learning algorithms which can deal with a large number of observations
work best (Huang et al. (2017)).

Before having a deep dive into the different machine learning algorithms
applied in this thesis, the different features (dimensions) are summarized
in table 14. Important to notice is that, the features selection had to be
defined in an early stage of the whole research, as the pre-processing part
took up several weeks. All the values within a dimension rule 0 till rule 6
are standardized between 0 and 1. A value of 0 means no address of the
specific walletID from owner X was involved in a transaction with this
rule. A value of 1 means, all the addresses from the walletID from owner
X where involved in this rule. A value of 0.5 in one rule means, 50% of
all addresses from this walletID where involved in that rule. Together all
the rule dimensions sum up to 1 (100%).

Dimensions Description

Rule 0

This dimension represents the transaction struc-
ture in the bitcoin network where the miner receives
newly generated bitcoins from the bitcoin network,
when verifying the transactions within one block.
This transaction is called coinbase transaction and
this Bitcoin money can be considered as clean, as
this is newly generated and has not been involved in
any kind of illegal activity before. Overall 3.4% of
all transactions are involved in such coinbase trans-
actions.

Rule 1
This is a 1 to 1 transaction, where one address
sends money to another address. This kind of
transaction occurs in 8% of all transactions.
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Rule 2

With 58.4%, this transaction is the most prevalent
type in the bitcoin network. It is a 1 to 2 trans-
action, meaning one address sends Bitcoins to two
addresses. Usually one of the two output addresses
belong to the input address owner, as this signals
the change of the Bitcoin.

Rule 3

This is a 1 to N transaction. One input address
sends Bitcoins to multiple addresses. This type of
transaction is occurring in 6% of all transactions.

Rule 4
Rule 4 stands for N input addresses and 1 output
address. This type of transaction occurs 4% of all
Bitcoin transactions.

Rule 5
This transaction includes N input addresses and 2
output addresses. The frequency of occurrence in
the Bitcoin network is 19%.

Rule 6
This is a N to N transaction and occurs in 1.2% of
all transactions in the Bitcoin network.

Gambling
This dimension shows which addresses have been
involved in gambling activities. 1.9% of all trans-
actions have been labeled as gambling related.

Whale

All wallets which contain over 1’000 BTC are con-
sideredWhale wallets. These rich wallets have been
identified and 0.5% of all transactions are involved
in transactions with Whales.

Lowvalueflag

This is a dummy variable, where the value 1 means
that a wallet contains less than 1 Bitcoin. From all
the wallets involved in the bitcoin network, 14%
had a total value of less than 1 BTC.

Midvalueflag

This is a dummy variable, where the value 1 means
that the wallet contains between 1 and 10 Bitcoins.
If both value flags are indicating 0, then the total
value of the wallet is over 10 Bitcoins. In 79% of
the wallets, they were marked as midvalueflag.
Table 14: Dimensions explained
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As an overview, figure 7 shows the correlation between every dimension
in a correlation matrix.

Figure 7: Correlation of dimensions

• Interestingly, the dimensions of rule 0 and rule 6 correlate strongly.
Rule 0 represents the coinbase transactions (generated from the
system) and rule 6 the N to N transactions.

• Lowvalueflag and midvalueflag correlate negatively, as each wal-
let is either categorized in a lowvalue or a midvalue. If none of
them are applicable, these dimensions have a value of 0 and will
be interpreted as a high value. The negative correlation also impli-
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cates that most of the transactions have either a value below one
or between one and ten Bitcoins.

• Category gambling does not correlate with the dimensions rule 4,
rule 5, lowvalueflag, midvalueflag and Whale.

• In general, the correlation matrix displays low correlation values
between the features. This heatmap, together with a dendrogram
out of the hierarchical clustering side, has been combined with the
Python seaborn library function clustermap. For the clustermap
no NA values (missing values) are allowed. Hence all the values
of the data set which have been left blank are filled with 0’s using
the function df.fillna(0) from pandas library (pandas development
team (2020)).

Figure 8: Boxplot over all dimensions

Figure 8 presents the distribution of each dimension as a boxplot. The
median values are marked with a blue stroke and the mean values rep-
resented by the red dots for each dimension. It is visible that rule 2 has
quite a considerable impact and shows a kind of a uniform distribution.
Rule 2 is a 1 to 2 transaction and is the most used transaction type in
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the bitcoin data. As shown in table 2 the total amount of rule 2 over all
transactions was approximately 60%.

5.1 K-Means

The most common benchmark algorithm in clustering is k-means. It
makes clusters based on geometric distances. On large data sets, the al-
gorithm performs well when the structure is “round” or spherical, equally
sized clusters, equally dense, most dense in the center of the sphere and
not contaminated by noise/outliers. K-means count as a fast, flexible and
straightforward algorithm and clusters with centroids. The algorithm
starts with randomly initiating k points in the data and then assigns
the rest of the points to the nearest of the k centroid. When all points
are assigned to one cluster, the centroids move to the average of all the
assigned points in a cluster and then the process repeats. All points are
again assigned to its nearest neighbor centroid. This will be repeated, un-
til no point changes position anymore, meaning the algorithm converges
(Dabbura (2018)). The distance-based measurement calculation is to de-
termine the similarity between data points. To calculate the distance
measures properly, the data needs to be standardized. This is the case,
because the standardizing step has been performed in the aggregation
chapter 4.3.

K-means has some problems: The main disadvantage is the difficulty to
define an optimal k (number of clusters). To handle this problem, there
are internal validation methods like the Calinski-Harabasz method or the
Silhouhette method, which can support in choosing the right k. Both
these methods and some others will be explained later in this chapter. A
second problem with k-means is that in very high dimensional space, the
Euclidean distance becomes inflated. This phenomenon is called "curse of
dimensionality". For the curse of dimensionality, a method called prin-
cipal component analysis (PCA) exists, which reduces the dimensions.
Therefore, PCA will be used in this thesis as well. Additional problems
with k-means occur when the data clusters are not globular. K-means
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will have a hard time identifying those. Overlapping data will result in
incorrect clustering, as k-means has to distribute all the data points to
one cluster.

5.1.1 Internal validation measures

In order to define the k-clusters which suits the data set best, internal
cluster validation techniques can be applied. There exist dozens of valida-
tion measures, so only a few were selected for this data set. Choices were
based on stated success in the literature and efficiency of the technique.
Two universal criteria for validity measures in general are homogeneity
and separation. This means, that good clustering brings together simi-
lar points and separates other data points, which do not belong to that
cluster. Randomness is one cause, why different outcomes are generated.

Elbow method
To visually show the validity of the number of clusters, an elbow method
was used. For each k, the sum of squared errors (SSE) are calculated and
the plot shows a chart, which demonstrates an arm, where the "elbow"
should indicate the best k. The SSE in general tends towards 0 with
increasing k number of clusters. And the elbow displays a compromise
between finding a small number of k with a low SSE score.

(2)SSE =
n∑
i=1

(xi − x̄)

n is the number of observations, xi represents the value of the i obser-
vation and x̄ is the mean of all the observations (Baarsch and Celebi
(2012)).

It is not always easy to identify the elbow with the best amount of k
clusters, which can be seen in figure 9. As a trade-off between the value
of inertia and the rising number of k, the optimal point is where the
elbow lies. Inertia is a multivariate measure for the data set where the
variance is explained (Johnson et al. (2002)). It is not always clear where
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Figure 9: K-means elbow plot

the elbow lies, so other validation methods are recommended instead or
additionally. In this thesis k = 3 was selected. Overall, with the other
inter cluster quality measures, total of three clusters are preferred, see
methods below.

Davies-Bouldin score
The Davies-Bouldin (DB) method links compactness to separation. This
is done by calculating the sum of the average distances from each point to
its respective center (compactness) and dividing by the distance between
the cluster centers (separation). The formula for the Davies-Bouldin
score is:

(3)DB =
1

k

k∑
i=1

Ri

WhereRi is maximizedmax(Rij), i 6= j andRij is calculated (Si+Sj)/Mij.
Si is the sum of the average distances from each point in the cluster i
to its centroid of its cluster. Mij stands for the distance between the
two clusters in this case. According to formula 3, a lower score in DB is
preferred. This means the cluster will be more compact itself and more
separated from others (Baarsch and Celebi (2012)).
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Figure 10: Davies-Bouldin plot

In figure 10 the Davies-Bouldin score is bumpy. As mentioned, a low
amount of the Davies-Bouldin score is preferred. The first lower amount
is at cluster k = 3, the lower value is around k = 6 (Baarsch and Celebi
(2012)).

Silhouette coefficient
The Silhouette method is based on the mean score for each data point.
The point’s individual score is based on the difference between the aver-
age distance from that point and all the other points in one cluster. Then
the minimum average distance is calculated between that point and the
other points of each other cluster. Afterwards, the difference is divided
by normalizing the term, which results in the greater value of the two
averages.

(4)Silhouette coefficient =
1

N

N∑
i=0

sxi

N are the data points. sxi = (bq,i − ap,i)/max(ap,i, bp,i). If xi is a point
in the cluster q, then bq,i = min dq,i where dq,i is the average distance
between point xi and every point of cluster p. To know which cluster size
is optimal, the Silhouette score should approach 1 (Baarsch and Celebi
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(2012)).

Figure 11: Silhouette plot

Here the Silhouette score in figure 11 is increasing, which should be the
case, but at k = 3 the score drops before it starts to rise again. K =
3 is not a suitable choice according to this internal validation method.
As all the validation methods are calculated differently, a perfect match
for all of them on the same number of k is unlikely to be the case. It is
essential to choose the best k according to the data set and the internal
validation method which displays the situation of the data point most
properly. A reliable validation method is the Calinski-Harabasz method
described below (Baarsch and Celebi (2012)).

Calinski-Harabasz
The Calinski-Harabasz (CH) method compares the between cluster scat-
ter matrix (BCSM) and the within cluster scatter matrix (WCSM). The
second fraction of the formula is a normalization factor which diminishes
the score as the number of clusters (k) increases.

(5)CH =
trace(BCSM)

trace(WCSM)
∗ N − k
k − 1

This method uses cluster centers of the data to calculate separation,
where the centers of the data set is used instead of the cluster centers. A
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good cluster size is when the CH score is maximized (Baarsch and Celebi
(2012)).

Figure 12: Calinski-Harabasz plot

A good cluster size in figure 12 is k = 3, as it produces the highest amount
of the first fifteen k’s. As the formula 5 points out, the division of the
"between cluster scatter matrix" and the "within cluster scatter matrix"
is a decent mathematical standpoint to choose the number of clusters, in
this thesis k = 3 has been chosen (Baarsch and Celebi (2012)).

5.1.2 Excecution

With the scikit-learn library from Python, the k-means algorithm with
three clusters has been performed. To get the same clusters in a repeated
run, the following parameters need to be used:

• As k-means always starts randomly at a point from where it calcu-
lates the centroids, a seed generator needs to be set, in order to get
the same result when performing the experiment again. From the
numpy library the numpy.random.seed(0) was set at the beginning.
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• In the command sklearn.cluster.KMeans() the number of clusters
needs to be set n_clusters = 3. The method for initialisation (init)
is by default the "k-means++". This one selects the initial cluster
centers for the k-means in a smart way to speed up convergence by
careful seeding (Arthur and Vassilvitskii (2006)). In the algorithm
itself the random_state which is also a seed indication is set to
0 again. This is important for replication of the algorithm. The
whole command is below (Pedregosa et al. (2011)).

sklearn.cluster.KMeans(n_clusters=3, init='k-means++',

randome_state=0)}

When performing the k-means algorithm, the output of the sample data
gives three clusters according to table 15.

Cluster Number of datapoints Percentage of total
Cluster 1 9’281 47 %
Cluster 2 4’274 21 %
Cluster 3 6’445 32 %
Total 20’000 100 %

Table 15: K-means clustersize

Table 15 shows a typical attribute of k-means. All points belong to one
of the clusters. There is no noise detection and no fuzzy clustering by
overlapping clusters. So all the data points are mapped to only one
cluster.

To get a deeper understanding about the clusters, each dimension has
been listed in relation to the clusters in boxplot figure 13.

• Figure 13 shows that cluster one has a significant higher amount in
dimension rule 2. Cluster one only includes wallets that have low-
value transactions (below 1 BTC), as the dimension lowvalueflag
has a median and mean of 1.
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Figure 13: K-means with k = 3, boxplot over 3 clusters

• Cluster two has low and high values in dimension rule 2. Next
to that, the dimension midvalueflag shows a median of 1 in this
dimension and the mean is above 60%. Also the high values are
included in cluster two. So cluster two contains almost all values
over 1 BTC.

• The third cluster shows higher means in rule 0 (coinbase trans-
actions), rule 3 (1:N transactions), rule 5 (N:2 transactions) and
dimension rule 6 (N:N transactions). Additionally, cluster three
gathers mostly lowvalue wallets as the mean and median is at 1.

This cluster structure is important to know in order to find out more
about the nature of the wallet.

For further analysis, the plotting of the data points supports the inter-
pretation. However, plotting for a multidimensional data set as in this
thesis, the functions are limited. There is one plot functionality from
scikit-learn called parallel_coordinates which shows how the clusters are
formatted over several dimensions.
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Figure 14 shows the first cluster of k-means over the different dimensions.

Figure 14: Cluster 1 k-means parallel plot based on Llewelyn (2019)

Visible are triangle shapes which show that some values rise until the
maximal value of one and some stay at 0. This plot should give an
understanding about how the different features are connected in each
cluster. Similar to the boxplot from before (figure 13), in cluster one
(blue lines in figure 14) the dimension rule 2 is clearly higher for all data
points and dimension lowvalueflag confirms that this cluster contains
small values.

Figure 15: Cluster 2 k-means parallel plot based on Llewelyn (2019)

The figure 15 displays cluster two in light green over all the dimensions.
Rule 2 and rule 5 have stronger lines and the values for midvalueflag
dimension are higher.

In figure 16 cluster three with dark green lines shows very strong at-
tributes in rule 0, rule 3, rule 5 and rule 6 as well as lowvalueflags. In all
three parallel_plots the gambling dimension is negligible.
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Figure 16: Cluster 3 k-means parallel plot based on Llewelyn (2019)

5.1.3 Validation

In unsupervised learning, it can be difficult to understand the meaning of
each cluster. To avoid this problem, US blacklisted addresses have been
grouped into the corresponding wallets as well. This should give a better
comparison of the received k-means clusters.

Figure 17: Boxplot US blacklisted values

In total 28’581 wallets were included in transactions of such blacklisted
wallets. This data has been plotted in figure 17 to get an overview of
the distribution. It is interesting to note that rule 3 and rule 6 are
occurring very often, as well as the lowvalueflag. In the boxplot figure
17 the median values are marked with a blue line and the means are
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represented by the red dots for each dimension. Observing this boxplot
with the higher mean from dimension rule 3 and rule 6 can lead to the
assumption that such blacklisted wallets behave in a way, that rule 3 (1
to N transactions) and rule 6 (N to N transactions) are often involved
together with a low value below 1 BTC. This result gives a better insight
in the k-means clustering from before figure 13, where cluster three was
highlighted specially to have a larger proportion of the three dimensions
rule 3, rule 6 and lowvalueflag. The k-means algorithm can give a pre-
selection on interesting wallets, which are likely to contain blacklisted
wallets.

Connection with mining pools
Cluster three from boxplot figure 13 has not only higher values in rule
3 and rule 6, but also in the dimension rule 0 and rule 5. These two
dimensions were not significantly present in the distribution from the US
government black listed wallets in figure 17. This means that the k-means
algorithm most likely detected similar patterns between miners who are
involved in rule 0 and the black wallets. The researchers Wang and Liu
(2015) explained how the miners transformed their behavior over time. In
the beginning all the miners where solo-miners, meaning they mined the
bitcoin blocks by themselves. However, over time due to efficiency reasons
and bundling of computation power, miners startexrm pools, where the
earned bitcoins where splitted in shares. This reward model is the most
occurring one and is called pay-per-share. This pool mining constellation,
brings the same expected payout for a miner doing solo mining, but the
variance of the payout is largely reduced. This behavior of pool mining
brings a connection of rule 0 (coinbase transactions), rule 3, rule 5 and
rule 6 where multiple inputs and multiple output addresses are involved.
The mining pool needs to distribute shares to a lot of addresses involving
multi input, multi output transactions. A more recent paper focused on
the distribution system from mining pools as well (Romiti et al. (2019)).
They analyzed three of the four largest mining pools and documented
that the pay-out system. The earnings distribution can either be a tree-
like structure, or by randomly choose a number of miners to pay in one
transaction then shift to a new ID and distribute payouts to the next

49



group of miners. Other variations are possible as well, but for this thesis
it is beneficial to see the connections between rule 0 and rule 3, rule 5
and rule 6. An extension of the payout schema structure of the paper
Romiti et al. (2019) is provided in appendix A.

Even though cluster three contains miner wallets as well, with 32% of all
the sample data (table 15) this cluster is selected for follow up research
outside of this thesis. Authorities with interest in knowing which wal-
lets are potentially black wallet owners, should analyse this cluster three
especially well.

Recall calculation
In Python scikit-learn library (Scikit-learn (2020)) there is a function
from k-means to predict new data on the clustering made from previous
data. During this thesis, the black wallets have been analyzed with the
k-means predict function to control how many data points flow into each
of the three clusters. The expected result would be, that most of the data
points from the black wallets should be categorized in k-means cluster
three. Since cluster three had much higher values in rule 3, rule 6 and
the lowvalueflag dimension. The appropriate code line for this is:

model = sklearn.cluster.KMeans(n_clusters = 3,

init='k-means++', randome_state=0).fit(sample_data)

blacklabel = model.predict(blackwallets)

Table 16 shows the result after predicting the black wallet labels from
the k-means algorithm initially trained on the sample data. With 88% of
all data points from the black wallets belonging to cluster three, this is
evidence, that the initial k-means algorithm was successful in clustering
the black wallets into a cluster.

Summarizing on this k-means chapter 5.1, it can be said, that k-means
detected a cluster which had similar attributes to the US government
blacklisted wallets. These attributes contain a significant number of data
points in the three dimensions rule 3, rule 6 together with lowvalueflag.
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Cluster Number of datapoints Percentage of total
Cluster 1 856 3 %
Cluster 2 2’570 9 %
Cluster 3 25’155 88 %
Total 28’581 100 %

Table 16: K-means predict on black wallets

A pattern emerges from black wallet owners, who like to transact in multi
input / multi output transactions, in order to blur tracks and distribute
small amounts to multiple addresses. With the verification technique of
predicting the black wallets on the trained k-means algorithm, 88% of
the black wallets landed in the same cluster three. Since the k-means
cluster of the potentially black wallets (cluster three in figure 13) also
have higher means in dimension rule 0 and rule 5, there are probably
other wallet types as well included like the mining pools. They do not
necessarily need to be black wallets. One group of owners are the miners,
which increasingly collaborate in pools in order to have steady earnings
over time. This mining pools distribute the earned new Bitcoins to its
members and therefore transact in multi input and or multi output trans-
actions as well.

5.2 PCA

In the previous subchapter, it was shown that k-means could have a
problem with the curse of dimensionality involving too many dimensions.
The principal component analysis (PCA) can help with this matter.

PCA is a technique for reducing the number of dimensions in a data set
while retaining as much information as possible. It is using the correlation
between some dimensions and tries to provide a minimum number of
variables that keep the maximum amount of variation on the original
distributed data set. While PCA calculates which dimensions contribute
the most to the clusters, it is also a technique to separate the data from
the noise. For PCA it is crucial, to pre-process the data first which has
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been done in chapter 4.3.

As PCA can be applied to any data matrix, if properly transformed
and scaled, this is a very good first step for a multivariate analysis as
for example with k-means. PCA helps to see the structure of the data,
with outliers or delineate classes. Mathematically PCA is calculating
with eigenvalues and eigenvectors of the data-matrix. Eigenvector stands
for a vector whose direction stays unchanged when applying a linear
transformation. Eigenvalues are scalars if they are high. It is considered
to contain more information on our data distribution than vice versa.
There are some basic steps to follow (Derksen (2016)):

1. Standardizing the data.

2. Calculating the covariance matrix of the whole data set.

3. Computing eigenvectors (e1, e2, ..., ed) and corresponding eigenval-
ues (λ1, λ2, ..., λd),

4. Sorting the eigenvalues in descending order.

5. Forming principal components (PC) by selecting the k eigenvectors
with the largest eigenvalues, where k is the number of dimensions
used in the new feature space (k≤d).

6. Projection into the new feature space.

Always when performing a principal component analysis, it is important
to plot a cumulative explained variance plot in order to see how much
variance is explained by the principal components. In figure 18, the first
principal component explains almost 40% of the data sets variance, the
second principal component explains around 30% and the third principal
component explains 10% which leads together to almost 80% explained
variance within the first three principal components. It is desirable to
reach a high percentage. Otherwise it can be assumed that there are
too many features which do not contribute to explaining the model in
addition to existing features.
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Figure 18: PCA explained variance

Components after PC 3 should be ignored, as they only contribute a little
increase in the total explained variation. Another term for this is called
the law of diminishing marginal returns. Including PC dimensions after
the third PC does not give much additional value to the model. It makes
sense to look at PCA’s which explain together a significant percentage
of 90% or more from the variances (Holland (2008)). To interpret the
principal component result, it is useful to analyze the correlation between
the original data variables and the principal components. The correlation
of variable Xi and principal component Yj is

(6)rij =
√
a2
ij ∗ var(Yj)/sii

aij is the i-th variable principal component weight on a principal compo-
nent j and var(Yj) is the variance of the jth principal component score
divided through s which represents the diagonal matrix of eigenvalues.

Table 17 shows the dimension composition of PCA one to three. They
are called loading vectors (James et al. (2013)). The most influential
values have been marked bold. As the values have been standardized,
all the values lie between -1 and 1. A value of 1 is perfectly correlated
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Dimensions PC 1 PC 2 PC 3
rule0 -0.0424 0.1955 -0.3041
rule1 -0.0466 0.0476 0.0320
rule2 0.2377 -0.8739 -0.0477
rule3 -0.0148 0.2030 -0.1825
rule4 -0.0064 0.0193 0.0111
rule5 -0.0681 0.1573 0.8564
rule6 -0.0593 0.2512 -0.3652
gambling -0.0004 0.0018 -0.0024
Whale -0.0037 0.0124 -0.0186
lowvalueflag -0.7513 -0.1828 0.0035
midvalueflag 0.6055 0.1812 0.0604

Table 17: Principal component loading vectors

with the principal component, and a value of -1 has the exact opposite
behavior as the principal component. Therefore, significant values lie
near the value of -1 and 1. Low correlation values lie around 0. The
main variance of the observation comes from the dimension low- and
midvalueflag, as these have the most significant impact on PC 1. PC 2
mainly comprises rule 2, rule 3 and rule 6. This composition signifies that
the observations in the data set vary significantly in these dimensions, as
PC 2 explains approximately 30% of the total variance. With only 10%
of the explained variance, the third principal component (PC 3) is less
important and is mostly composed from rule 0, rule 5 and rule 6.

Another possibility to plot the PCA data is with biplot. It shows how
strongly each feature influences a principal component. All vectors start
at the same origin and their projected directions explain how much weight
each of them has on a certain principal component. The angles between
the individual vectors give indication about the correlation between them.
The blue dots in the figure 19 represent the data points. The length of the
arrows represent the influence on the principal component. A small/large
angle to the PCA shows a positive/negative correlation, where a 90◦ angle
shows no correlation.

The biplot figure 19 shows a substantial impact on dimension lowvalueflag
as well as midvalueflag for the first PC, as they are parallel to the x-axis.
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Figure 19: PCA biplot

For the second principal component, dimension rule 2 has a strong influ-
ence. Almost unimportant in the variance of the principal components
1 and 2 are the values in the middle of the biplot, such as dimensions
gambling, rule 1, rule 4 and Whale. The biplot shows identically what
the numbers from table 17 tell. The fact that the dimensions gambling,
rule 1, rule 4 and Whale have shallow impact on the first three principal
components is consistent with their overall impact on the bitcoin net-
work. Table 14, which explained all the features already, indicated that
rule 1 has 8%, rule 4 has 4%, gambling has 1.9% and Whale has 0.5%
covered in all transactions. Nevertheless, rule 0 which has a coverage of
3.4% or rule 6 with coverage of 1.2% are lower but have more impact
on the first three principal components. This is important to notice, as
the choices of the features themselves for the machine learning part is
key. Getting this information out of the data, that certain dimensions
only contribute little to the variance, can give a better understanding in
weighting the dimensions.
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5.2.1 PCA with k-means

There are two different ways how k-means labels can be analyzed. Either
run the k-means algorithm before the PCA transformation or after PCA
transformation. First the process of labeling on the sample data and
then performing PCA is explained below:

PCA before k-means
In the earlier subchapter, k-means labeled the data points into three
clusters. These labels from k-means have been saved, and the sample
data was performed on PCA. The appropriate code from the scikit-learn
library is below.

K-means labeling

model = sklearn.cluster.KMeans(n_clusters=3,

init='k-means++', random_state=0).fit(sample_data)

clusters = model.labels_

PCA data transformation

pca = sklearn.decomposition.PCA(n_components =

3).fit(sample_data)

N_components = 3 has been selected because the first three components
explain 80% of the variance. After transforming the data with PCA it
was plotted in figure 20. The data points where highlighted according
to their k-means labels, to show how the clusters are organized. This
procedure gives the observer an overview of how the k-means clustered
the data in a visual perspective. Earlier in the k-means chapter only
a visualization with parallel coordinate plot was possible, because too
many dimensions were involved.

The three clusters are marked with different colors in figure 20, whereby
cluster three is already noted as possible black wallets. The cluster three
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Figure 20: PC 1 and PC 2 with k-means coloring

with the possible black wallets was proven to be an effective cluster, after
linking the analysis to the black listed wallets separately, documented in
chapter 5.1.3.

PCA after k-means
Now the PCA analysis with k-means clustering can be done in a different
perspective. Instead of clustering the data with k-means before the PCA
analysis, the other way around was performed. First the data was trans-
formed with PCA analysis. Then the reduced PCA data ran through the
k-means algorithm in order to show how the clusters would change. To
get the right amount of k clusters, the four internal measurement scores
explained in chapter 5.1 were performed on the PCA transformed sample
data.

The calculation from the internal validation measures on the PCA trans-
formed data is displayed in figure 21.
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Figure 21: Internal validation methods to choose the correct k cluster
size

For the two grids above (Elbow and Davies-Bouldin scores) the best
number of k should be minimalized. The grids below (Silhouette and
Calinski-Harabasz) scores should be maximized. Considering all the mea-
sures, one of the optimal number of k is four (k = 4). The elbow grid
(upper left) shows a sharp fall and at k = 4 starts to be flatter again,
which is an indication of a good cluster size. Davies-Bouldin score (up-
per right grid) falls till k = 4 before it slightly increases and then gets
lower again. This local minimum at k = 4 is supporting the conclusion
of four clusters. The left lower grid (Calinski-Harabasz) with a steadily
increasing score, makes a jump between the cluster size three and four,
which could lead to the conclusion that k = 4 could be a good measure-
ment. The lower right grid (Silhouette coefficient) is steadily increasing.
Between the cluster size three and four the increasing gap is larger than
between other data points. For this analysis k = 4 has been selected.

To calculate the values for the boxplot, each data point from the sample
was sorted in one of the new four cluster labels from the PCA - k-means
analysis.
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Figure 22 shows the PCA plot with the four clusters based on k-means
on the PCA transformed data. The plot is visualized in 3D in order to
better detect the four clusters. The three dimensions are PC 1, PC 2
and PC 3.

Figure 22: PC 1 and PC 2 with k-means clusters after PCA transformed
data

In the figure 22 it is not visible at first sight, which cluster contains the
black wallets. To have this kind of insight, the four clusters have to be
analysed individually seen in figure 23 with the features distributed per
cluster.

The first cluster contains 6’004 data points, which contributes 30% to
the overall sample size. The second cluster contains 2’996 data points,
representing 15% of the whole data set. The third cluster has 3’501 (18%)
data points in it and cluster four 7’499 points (37%).

• The boxplot of cluster one (upper left plot) from figure 23 shows a
slightly higher value of rule 0, rule 2, rule 3, rule 6 and a significant
high value of lowvalueflag. This cluster has similar attributes as
the black wallet sample which was plotted in figure 17. There rule
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Figure 23: Boxplot PCA transformed data with k-means clustering k =
4

3 and rule 6 had higher values compared to the average observation
of the data set.

• In cluster two rule 2 is increasingly present including midvalue-
flag=1. It seems that this cluster comprises rather normal transac-
tions.

• Cluster three from the left lower half from figure 23 shows that
rule 2 and rule 5 is significantly higher than the regular observa-
tion. Especially for rule 5, this means this kind of transaction (N:2
transaction) are quite unique and separated from the rest of the
dimensions.

• Cluster four is again concentrating on rule 2, with a significant value
of 1, together with a mean of 1 in the dimension lowvalueflag. With
these characteristics, it can be expected that the fourth cluster
comprises harmless wallets.
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• All 4 boxplots show lowvalueflag and midvalueflag splitted by either
0 or 1. This can be explained because in PC 1 the two dimensions
low- and midvalueflag explain a big part of the variance (figure
17). And as they explain a major part of the variance, this leads
to bigger influence on the distance measures between this two di-
mensions. That in turn influences k-means, as k-means is distance
based driven.

5.2.2 Validation

As explained in the k-means chapter 5.1, when using the k-means algo-
rithm on a data set, it is possible with the predict function to use the
k-means on a new data set. This has again been performed in the same
way as documented before. So, the US government blacklisted wallet
data set was transformed with a principal component analysis and after
that run through the k-means algorithm with the predict function. On
the boxplots figure 23 from our original sample the conclusion was that
cluster one should contain the most black wallets. Now calculating each
cluster with the respective data points gives a different conclusion, see
table 18.

US blacklisted wallets
Number of data points Percentage of total

Cluster 1 5’251 18%
Cluster 2 5’179 18%
Cluster 3 2’568 9%
Cluster 4 15’583 55%
Total 28’581 100%

Table 18: K-means predict on black wallets

It was expected that the US blacklisted wallets will show the largest
amount of data points in cluster one. However, as displayed in table 18,
the cluster one only got 18% of the black wallets in it. Most of the points
landed in cluster four. Due to this observation, a PCA clustering with
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k-means is not helpful in clustering the black wallets in one group.

5.3 DBSCAN

The algorithm in section 5.2 (PCA) tries to find hidden linear correlations
between variables. If the features are not linear but have another shape,
like a spiral, PCA will not identify the best groups. From the PCA figure
20, long structures are visible in the data set, which might indicates that
DBSCAN would be helpful in such a scenario. For these kinds of shapes,
density-based spatial clustering of applications with noise (DBSCAN)
might be a better choice.

Figure 24: DBSCAN and k-means algorithm compared, graph by Mattt
(2020)

For a better understanding how k-means and DBSCAN algorithm differ
from each other, figure 24 shows different data structures and the clus-
tering performance. When the data structure represents donut circles,
DBSCAN is able to identify this groups separately, where else k-means
due to the distance measure calculations group this circles in half. If
the data set consists of convex/concave strings near to each other, then
DBSCAN can again detect the forms, but k-means gets confused by the
distances of the two objects so near from each other. In case the data
points are blobs of different densities, k-means can lead in some cases to
a better performance, since DBSCAN has difficulties with varying den-
sities. Concentrated blobs of data points which are far from each other,
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are easily detectable by both clustering algorithms. If all points lie near
to each other without a shape or density difference, DBSCAN recognize
this as one group, as the density is the same. K-means group this cluster
into k numbers of groups, which has been predefined in the beginning.
Overall concluding, DBSCAN works with densities, and splits clusters
between dense regions. The shape of the data is not relevant (Mattt
(2020)).

DBSCAN is scalable on huge samples and medium cluster size, and is
very favorable when the underlying data has a special shape, where the
standard Euclidean distance is not the right metric. One of its best
properties is that the number of clusters does not have to be defined
beforehand, as was the case with k-means. Instead, the algorithm needs
to be pre-filled with two parameters. These parameters are called epsilon
(ε or eps) and the minimum sample size per cluster (min_points) (Scikit-
learn (2020)).

The eps parameter defines the radius of the neighborhood around a point
x. This is called the eps-neighborhood of x. X is randomly defined when
starting the algorithm.

Min_points parameter defines how many data points need to be next to
each other, to form an own cluster. When there are fewer data points
than min_points in the neighborhood, then they are considered as noise
or get attached to another cluster. The neighborhood distance is defined
by the ε distance.

DBSCAN scores to be deterministic. Given the same data set and the
same density parameters, DBSCAN returns the same clusters. This is
contrary to k-means, which can result in different clusters each run.

The algorithm works as follows:

• First, the data set is divided into n dimensions.

• Secondly, DBSCAN builds n dimensional shape around each data-
point and checks how many data points fall within that shape.
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• In the third step, DBSCAN expands iteratively each of these shapes
by counting the other nearby data points. Figure 25 displays an
overview how the points are assigned to one cluster. The red dots
are considered core points, as they include the minimum number
of points required for a cluster (min_points) within the defined
distance (ε). The yellow points display border points and they do
not count as core points, because within the ε distance, not enough
points are available. However, as these border points still count to
the core point cluster, they belong to the cluster. The blue point
illustrates a noise point, as within the reachable ε distance no other
point can be reached. In scikit-learn library these noise points get
labeled with -1, all other points belonging to a cluster get a label of
0 and above. If two core points are close (within the eps distance),
then they combine to a cluster (Lutins (2017)).

Figure 25: DBSCAN explained, graph based on Lutins (2017)

To start with the DBSCAN on the sample data the ε parameter and
min_sample parameter needed to be defined. For DBSCAN in Python
the default parameters set are 0.5 for eps and 50 for min_points. The
whole command from sklearn.cluster is as follows (Pedregosa et al. (2011)):

DBSCAN(eps = 0.5, min_samples = 50, metric = 'euclidean')

With eps = 0.5 and min_points = 50, there are five clusters and 67
noise points from the sample. The 67 noise points are outliers and
are not clustered in any of the clusters. To measure the cluster qual-
ity again some scores can be calculated. The Silhouette score is 0.28, the
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Calinski-Harabasz score is 3’007 and the Davies-Bouldin score is 1.33.
Compared to the k-means score (Silhouette = 0.43, Calinski-Harabasz
= 9’656, Davies-Bouldin = 1.18) all scores are worse in DBSCAN. Sil-
houette and Calinski-Harabasz should be maximized and Davies-Bouldin
minimized.

The parameters eps = 0.5 and min_points = 50 are a compromise of the
three different scores. When starting to lower the min_sample param-
eter by keeping the eps parameter of 0.5, the Silhouette score starts to
increase as well as the Calinski-Harabasz score. The Davies-Bouldin score
increases as well, which is a not favorable. The number of noise points
decreases, as data points have a lower barrier to count to a cluster. With
increasing the min_points parameter, the Davies-Bouldin scores lower,
however the Sillhouette and Calinski-Harabasz scores lower as well.

On the other hand when starting to modify the eps parameter by keeping
the min_points on the level of 50, then the Silhouette coefficient increases
when lowering eps score. By lowering the eps score, the Davies-Bouldin
score is lowering as well. As a result, the number of clusters increase
and so do the noise points. Increasing the eps parameter will increase
the Silhouette coefficient and the Calinski-Harabasz score. The number
of clusters is decreasing and the noise points reduce as well. An analysis
about this behavior is attached in the appendix table 20.

The rest of the chapter continues with eps = 0.5 and min_samples =
50 to have an acceptable score for all of the three internal measurement
scores.
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Figure 26: DBSCAN 5 clusters with eps = 0.5 and min_points = 50

Figure 26 displays the distribution overview of all five clusters with the
DBSCAN. The distribution of the noise points is shown in the lowest
right grid.

• Cluster A has an increased value in rule 2 with a large variance. In
addition, the value of midvalueflag is 1.

• Cluster B has also a slightly higher value of rule 2 as well, and the
value of lowvalueflag is 1.

• Cluster C’s property also shows significant high values in rule 2,
and includes only wallets with high values, as neither dimension
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lowvalueflag nor midvalueflag is visible in the boxplot.

• Cluster D contains all miners with a high value of rule 0 and low-
valueflag.

• Cluster E has significant high values in rule 3 and only includes
wallets with high values above 10 BTC.

• The noise dimension has in most dimensions significant values. In
rule 0, rule 1, rule 3 and midvalueflag the values are greater than
zero, which indicates, that these observation are more likely to in-
clude miner and 1:1 transactions with values of more than 1 Bitcoin.

This overview leads to three conclusions.

1. Rule 2 is very often occurring in the whole bitcoin data set. DB-
SCAN separates the rule with the values (cluster A: rule 2 and
midvalues; cluster B: rule 2 and low values; cluster C: rule 2 and
highvalues).

2. DBSCAN is unable to detect in this data set a cluster similar to
k-means, where rule 3 and rule 6 are higher in order to get a lead
for possible black wallets.

3. Rule 0 and rule 3 have a very own data structure, different from
the rest. They were separated by DBSCAN in cluster D and E.

67



PCA before DBSCAN
To see a graphical overview how the DBSCAN clusters the points, a PCA
analysis with the labels from the DBSCAN has been plotted in figure 27.

Figure 27: PC 1 and PC 2 with DBSCAN coloring

The first three clusters A, B and C seem for the observer larger than the
clusters D and E, which are both barely visible in the plot. The largest
cluster is the one to the left, cluster B with 15’609 points. This cluster B
represents 78% of all the data points. Cluster A has 2’831 and cluster C
1’260 data points. Almost negligible is cluster D with 109 data points and
cluster E with 124 data points. Cluster D was the group with significant
values in rule 0 and lowvalueflag. Cluster E was the group concentrating
on significant values from dimension rule 3 and high values. DBSCAN
was able to detect both these two minor groups an own density groups,
which was not the case in k-means. However, the largest group cluster B
was separated in the k-means algorithm, where one part of this cluster
B was the potential black wallets (figure 20).
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PCA after DBSCAN
To compare the above results with a different approach the data was
transformed with PCA first. After that, DBSCAN labeled the data with
the same parameter eps = 0.5 and min_points = 50. One step later, the
data with the new labels was plotted. Exactly three clusters are detected,
with no noise points. This is displayed in figure 28.

Figure 28: PC 1 and PC 2 with DBSCAN clustering after PCA trans-
formed data (eps = 0.5, min_points = 50)

Where k-means before was unable to locate the three long structured
shapes, DBSCAN did a much better job in detecting these density strings.
Cluster A contains 1’424 (7%) data points, cluster B 2’850 (14% data
points) and cluster C 15’726 (79%) data points. In the internal measure-
ment scores, Silhouette coefficient scored with 0.396, Calinski-Harabasz
with 6916.3 points and DB with 1.2 score. All three scores are performing
better than the DBSCAN scores before PCA clustering.
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Figure 29: DBSCAN 3 clusters with eps = 0.5 and min_points = 50

Figure 29 documents the three clusters, where rule 2 is again significant
in all of them together with a value.

From the eye of the observer, figure 28 looks like a perfect clustering.
But this needs to be treated carefully. The goal of the algorithm was to
find black wallets. However, only viewing the clustering graphically will
not tell, which algorithm between k-means and DBSCAN is better. Both
clustered the data differently and it is up to the observer, to choose the
best algorithm to use. The boxplot overview from DBSCAN in figure
26 led to the conclusion, that it it did not separate the potentially black
wallets from the rest of the population. Nevertheless, DBSCAN plotted
the three strings accurately in the PCA plot.

In the other two chapters k-means 5.1 and PCA 5.2, a predict function
on the US blacklisted wallets was used for an external evaluation. In
the scikit-learn library the DBSCAN function does not provide a predict
function for the US blacklisted wallets. Therefore, the conclusion needs
to be based on the overall picture from given informations. Informations
are retrieved from internal validation scores from DBSCAN clustering,

70



the boxplot overview about all clusters and the size of the clusters itself.
The validation scores before the PCA transformation were better with
k-means than with DBSCAN. Even though they performed better after
PCA transformation, the k-means internal measurement scores were still
higher. The boxplot figure 26 did not show similarities to the black
wallet properties and also the cluster sizes did not match the cluster
size for k-means. All in all, DBSCAN does not seem to perform well
in this specific task of locating potential black wallets during clustering.
What should be taken into account, is that in both analysis from k-means
and DBSCAN the dimension gambling and Whale wallets did not raise
significant impact in any of the boxplots studies above. Also in the PCA
loadings table 17, both dimensions did not contribute to a high explained
variance of the model. It can therefore be said, that the connection to
gambling or Whale wallets was not significant for black wallets. On the
other hand the rule dimensions and the value dimensions had strong
influence on the clustering results.

71



6 Conclusion

In this thesis explained is, how to uncovering patterns in the bitcoin
block-chain by using unsupervised machine learning. Applying machine
learning to such a vast data set of 1.1 TB, a logical and exact pre-
processing of the data needs to be carried out. The central part of the
pre-processing was linking different addresses to a wallet that is owned
by the same person. Based on these wallets, machine learning was per-
formed. Machine learning itself is very experimental and the algorithms
need to be carefully chosen for the underlying data set.
One of the most famous benchmarking algorithms is k-means, which
performs well on a large data set. With a final sample data set after pre-
processing 20’000 wallets, this algorithm has been applied. K-means was
able to cluster three groups, where one of them had similar attributes to
selected wallets which were blacklisted by the US government. With the
predict function, 88% of the US blacklisted wallets landed in one of these
clusters. This is an indication that k-means is able to detect patterns
in the bitcoin blockchain and to split black wallets from the rest of the
population. It is interesting to see, that the black wallets in the k-means
clusters were in the same group as miners. This is an indication that
transactions are carried out by the miners shows a similar pattern to the
owners of the black wallets.
To confirm the k-means result, a principal component analysis was per-
formed to reduce the 11 features down to three principal components.
Applying k-means on the PCA data set did not enable the desired clus-
tering between the black wallets and the rest of the wallets. So PCA
was not supporting the hypothesis in detecting the nature of the black
wallets.
Another algorithm DBSCAN was performed on the data set. DBSCAN
found different regions of densities from the feature with the most vari-
ance which is rule 2 (1 to N transaction) in combination with the value
amount of the transaction (low, mid and high value). Disregarding this
clustering of rule 2 and value, the DBSCAN was unable to locate the
region of potential black wallets. This leads to the conclusion that DB-
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SCAN is not the right choice for such a task and neither is PCA. Whereas
k-means was able to locate potentially blacklisted wallets and a tinier
clustering within this blacklisted wallet cluster leads with a high per-
centage to actual shady wallet owners.
Therefore, this thesis concludes that patterns of potential black wallets
may be detected with the k-means algorithm.
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7 Further research

The task of determining the quality of the clustering algorithm results
is not easy. To measure the output of the clusters more accurately, su-
pervised machine learning is recommended. This thesis includes only a
limited amount of off-chain data like the gambling addresses, the Whale
addresses and the US government blacklisted addresses for the machine
learning analysis. But chapter 3 referenced to papers, which used web-
scraping in order to locate as many wallets as possible with real world
identities. This approach enables finer granularity in detecting the na-
ture of the wallets and can certainly give the machine learning algorithm
new information for clustering. Running a supervised machine learn-
ing approach can also work with labeled data sets from companies like
Chainalysis (chapter 2.4). In unsupervised machine learning theory, hi-
erarchical clustering is less effective in large data sets. However, there
exist modifications like BIRCH algorithm (balanced iterative reducing
and clustering using hierarchies) which performs exceptionally well on
large data sets (Zhang et al. (1997)). This kind of algorithm can also
be included for a pattern recognition analysis on the bitcoin network.
Besides, this thesis only included a limited amount of features. This can
be expanded with features which could give interesting contributions to
the model next to the one analyzed in this thesis.
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A Appendix

Genesis bitcoin block JSON style

{

"ver":1,

"next_block":[

],

"time":1231006505,

"bits":486604799,

"fee":0,

"nonce":2083236893,

"n_tx":1,

"size":285,

"block_index":0,

"main_chain":true,

"height":0,

"weight":1140,

"tx":[

{

"hash":"4a5e1e4baab89f3a32518a88c31bc87f618f76673e2c c77ab2127b7afdeda33b",

"ver":1,

"vin_sz":1,

"vout_sz":1,

"size":204,

"weight":816,

"fee":0,

"relayed_by":"127.0.0.1",

"lock_time":0,

"tx_index":0,

"double_spend":false,

"result":0,

"balance":0,

"time":1231006505,

"block_index":0,

"block_height":0,

"inputs":[

{

"sequence":4294967295,

"witness":"",

"script":"04ffff001d0104455468652054696d65732030332

f4a616e2f32303039204368616e63656c6c6f72206

f6e206272696e6b206f66207365636f6e64206261696c6

f757420666f722062616e6b73",

"index":0

}

],

"out":[
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{

"type":0,

"spent":false,

"value":5000000000,

"spending_outpoints":[

],

"n":0,

"addr":"1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa",

"tx_index":0,

"script":"4104678afdb0fe5548271967f1a67130b7105cd6

a828e03909a67962e0ea1f61deb649f6bc3f4cef38c4f35504e51

ec112de5c384df7ba0b8 d578a4c702b6bf11d5fac"

}

]

}

],

"hash":"000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f",

"prev_block":"0000000000000000000000000000000000000000000000000000000000000000",

"mrkl_root":"4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b"

}
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Heuristics example

All the examples have been selected from bitcoin block 636’000 and
copied from the website blockchain.com.

Rule 0, coinbase transaction
20f4c57357d7b53b8cc1d2b40daf29aa0afedf3c3d37c7d5851c533f9478f884

Rule 1, 1:1 transaction
4afbb15ff3f20b925804e112708bee49e8c08ed8bb8a11e95c944da25a192e5f

Rule 2, 1:2 transaction
efef334495f02ff43f6187c1706eac87ba5a34143adf6f0755eb0fcd975246f3

Rule 3, 1:N transaction
fe988d694f35191fbe6815821052b5208026e8fec404ae667c9519a77d0ca807

xv

https://www.blockchain.com/explorer
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Rule 4, N:1 transaction
a3ad14ef4c3f00a08040243c87736da1b4c990a662c36b87e1ca6a5a08ce757b

Rule 5, N:2 transaction
44fddac1990367ccefdc8eac3466889705f8176f61197bd396c95d36b4f950af

Rule 6, N:N transaction
957494df753f83bfc2232416decfce5e70766ed6684be62e1258da9b765379cb

xvi
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Mining Pools

The three figures below show the payout pattern of the three large min-
ing pools researched by Romiti et al. (2019). The gray circles are the
reward addresses, the red circles are the addresses performing payout
transactions. Blue circles represent the pool members and green circles
are the change addresses. The orange rounded squares are coinbases of
blocks mined by the pool. Furthermore, the size of the circles (nodes)
display the differences of received BTC per transaction per address.

Figure 30: AntPool payout schema, graphic from Romiti et al. (2019)

AntPool (Figure 30) has a payout chain that originates from the same
address (A1). After it distributes with different change addresses as
inputs for the payout transactions.

Figure 31: BTC.com payout schema, graphic from Romiti et al. (2019)

In BTC.com mining pool (Figure 31) payout transactions is done with

xvii



one single collector address.

Figure 32: ViaBTC payout schema, graphic from Romiti et al. (2019)

ViaBTC mining pool (Figure 32) is structured in a way that they pay-
out the reward with multiple addresses which are always changing. This
changing addresses receive 10 BTC each from this addresses.

The paper (Romiti et al. (2019)) indicates as well that mining pools pay-
out distribution change over time and each pool has a different strategy.
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DBSCAN parameters and scores

Modification of Min_points:
Eps Min_points Clusters Noise points Silhouette coefficient Calinski-Harabasz Davies-Bouldin
0.5 10 4 50 0.30 3’589.45 1.47
0.5 20 5 52 0.29 3’003.87 1.33
0.5 30 5 53 0.29 3’004.08 1.33
0.5 40 5 54 0.29 3’003.91 1.33
0.5 50 5 67 0.28 3’006.78 1.33
0.5 60 5 67 0.29 3’009.76 1.34
0.5 70 6 69 0.29 2’675.16 1.26
0.5 80 6 85 0.29 2’678.57 1.25
0.5 90 6 87 0.29 2’678.28 1.26
0.5 100 6 114 0.29 2’677.02 1.29
Modification of eps:
Eps Min_points Clusters Noise points Silhouette coefficient Calinski-Harabasz Davies-Bouldin
0.1 50 35 2’737 0.73 3’071.37 1.04
0.2 50 27 1’514 0.49 2’133.78 1.04
0.3 50 14 890 0.21 1’424.11 1.16
0.4 50 7 217 0.28 2’393.08 1.31
0.5 50 5 67 0.28 3’006.78 1.33
0.6 50 3 36 0.40 4’617.58 1.65
0.7 50 3 20 0.40 4’618.73 1.49
0.8 50 3 6 0.39 4’620.26 1.15
0.9 50 3 1 0.40 4’613.47 1.01
1 50 1 0 NA NA NA

Table 20: DBSCAN on sample data with varying ε and min_points
parameter
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