
Master Thesis

A Quantitative Analysis of the

Ethereum Fee Market:

How Storing Gas Can Result in

More Predictable Prices

Matthias Nadler

Supervised by:
Prof. Dr. Fabian Schär
Credit Suisse Asset Management (Schweiz) Professor for
Distributed Ledger Technologies and Fintech
Center for Innovative Finance, University of Basel

Abstract

Transaction fees on the Ethereum blockchain - measured in units of gas

- are very volatile and di�cult to predict. So called �gas tokens� use

a refund mechanism of the Ethereum protocol to store and release gas.

With transaction data from the past 18 months we analyse the temporal

association of gas prices and the minting of gas tokens. We then proceed

to develop an optimized gas token with an integrated, automated market

maker and show that this new Liquid Gas Token (LGT) outperforms

the existing gas tokens, especially for transactions which make use of

the integrated exchange protocol. With the LGT and the associated

dApp we aim at streamlining the bene�ts of gas storing to increase the

accessibility for less experienced users.

Keywords: Ethereum, Smart Contracts, Transaction Fees, Gas.

JEL: G19, C41, C61

Contents

1 Introduction 1

1.1 Ethereum Transactions and Fees 1

1.2 Selecting an Optimal Gas Price 3

1.3 Transaction Gas Refunds 4

1.3.1 Calculating Gas Refunds 5

1.3.2 Consequences for the Miners 6

2 Storing Gas on Ethereum 7

2.1 The Gas Token . 10

2.2 Rise of Gas Tokens . 10

2.3 Impact of the Gas Token 13

3 Data Preparation 14

3.1 Extracting the Ethereum Data Into a Database 15

3.2 An E�cient Data Structure for Gas Price Data 15

3.3 Treating Gas Price Outliers 16

4 Analysis of Gas Prices and Volatility 17

5 The Liquid Gas Token (LGT) 21

5.1 ERC20 With Integrated Liquidity Pool 21

5.1.1 Constant Product Market Maker Model 22

5.1.2 Advantages of an Integrated AMM 23

5.1.3 LGT Speci�c AMM Implementation 25

I

5.1.4 LGT Exchange Interface 27

5.2 Gas Token Implementation 27

5.2.1 Creating and Destroying Child Contracts 27

5.2.2 Minting and Freeing LGT 32

5.3 LGT Benchmarks . 36

5.4 LGT Exchange Application 38

5.5 Usage of the LGT . 38

5.6 Gas Price Arbitrage . 39

5.7 Development and Testing 41

6 Open Source Contributions 42

7 The Future of Gas Tokens 43

References ii

Plagiatserklärung

Ich bezeuge mit meiner Unterschrift, dass meine Angaben über die bei
der Abfassung meiner Arbeit benutzten Hilfsmittel sowie über die mir
zuteil gewordene Hilfe in jeder Hinsicht der Wahrheit entsprechen und
vollständig sind. Ich habe das Merkblatt zu Plagiat und Betrug vom
22. Februar 2011 gelesen und bin mir der Konsequenzen eines solchen
Handelns bewusst.

Matthias Nadler

II

1 Introduction

Ethereum is the largest blockchain with support for complex smart con-

tracts, both by market capitalization (CoinMarketCap (2020)) and by

developer activity (Electric Capital (2019)). It hosts a wide range of

decentralized applications (dApps) including decentralized �nancial ser-

vices (DeFi), games and social platforms.

To interact with smart contracts on Ethereum, the users submit transac-

tions to the network which miners then include in new blocks to re�ect

the updated state of the blockchain. During 2019 a new block was mined

on average every 14.7 seconds and contained on average 113 transactions

(7.7 transactions per second). The amount of computation performed by

each block is limited, with more complex transactions taking up more

space in a block.

State-changing transactions on Ethereum are therefore a limited resource

and a fee is associated with sending a transaction. This fee depends

primarily on two factors: The complexity of the transaction and the

current congestion of the network (the demand for space in a block). The

complexity of a transaction is deterministic and can not be changed under

normal circumstances; the congestion of the network on the other hand

is very volatile and has a large impact on transaction fees. This leads

to an uncertainty about costs when interacting with smart contracts. In

this thesis we will quantify the volatility of these transaction costs and

propose a smart-contract based method which can lead to a reduction in

gas price volatility.

1.1 Ethereum Transactions and Fees

According to the Ethereum Yellow Paper by Gavin (2014):

�In order to avoid issues of network abuse and to sidestep

the inevitable questions stemming from Turing completeness,

1

all programmable computation in Ethereum is subject to fees.

The fee schedule is speci�ed in units of gas.�

Every transaction has a �xed, deterministic computational cost associ-

ated with it, measured in gas. For example, adding two numbers costs

3 gas and reading the balance of an account costs 700 gas. A detailed

list of gas costs for each operation can be found in Appendix G of the

Ethereum Yellow Paper (Gavin (2014)).

When creating a new transaction, the transactor has to specify the fol-

lowing parameters related to fees:

gasLimit The maximum amount of gas that can be consumed by the

transaction.

gasPrice The price in Ether the transactor is willing to pay per unit of

gas consumed.

The transaction is then signed by the transactor and sent to an Ethereum

node. From there it is broadcast to other nodes and distributed across

the network. When the transaction reaches a miner node, the miner can

add it to their pool of pending transactions (also called �mempool�).

The Ethereum Yellow Paper (Gavin (2014)) further states:

�Transactors are free to specify any gasPrice that they

wish, however miners are free to ignore transactions as they

choose. A higher gas price on a transaction will therefore

cost the sender more in terms of Ether and deliver a greater

value to the miner and thus will more likely be selected for

inclusion by more miners.�

There are no rules for miners which transactions they select from their

mempool to include in a new block, but there is a limit to how much

total gas (the cumulative gas used by all included transactions) can be

2

in a single block1. Additionally, the miner of a block receives all the

fees associated with the included transactions. If we assume the miner

as an independent, pro�t-maximizing individual, they are incentivized to

include the transactions from their mempool with the highest gas price.

We will therefore look at the Ethereum gas fee market as a �rst price

auction market: Transactors submit a bid, and then if they are included

they pay exactly the bid that they submit.

1.2 Selecting an Optimal Gas Price

When deciding which gas price to set for a transaction, the transactor

needs to consider the time sensitivity of their transaction and the gas

price of other transactions currently in the mempool2.

With a �rst price auction model, the transactor is incentivized to submit

a gas price that re�ects their value of the transaction. This is however

very ine�cient and would lead to gross overpaying in some cases. These

ine�ciencies are outlined in EIP-1559 by Buterin et al. (2019) with a

proposal to �replace this with a mechanism that adjusts a base network

fee based on network demand.�

A better approach to selecting a gas price in the current system is to try

and predict what the minimum gas price to be included within the next

n blocks would have to be, where n corresponds to the time sensitivity

of the transaction. The most popular resource for predicting gas prices

is ETH Gas Station (ETHGasStation (2020)). ETH Gas Station tries to

estimate the con�rmation time of a transaction given data from the last

10'000 blocks (∼ 41 hours) by running a poisson regression on the gas

price and the gas used by the transaction.

In May 2020 the German startup Upvest announced their new model

�FeNN� or �Fee estimations using Neural Networks� in an article by Val-

1This limit, called block gas limit, it not determined by the protocol, but agreed
upon by the mining community.

2Each node has its own mempool, but for simplicity we assume a shared mempool
that includes all pending transactions.

3

https://ethgasstation.info/

son (2020). Using state of the art machine learning technology and

adding more �factors a�ecting gas price volatility and network proper-

ties signalling demand�, they trained a model where �FeNN gas price

inferences are overall cheaper by 13.35% compared to [ETH Gas Sta-

tion].� Their research is currently not published, but they state that

�Open-sourcing the entire codebase is among our top priorities.� Further

research into this topic will help to eliminate some of the ine�ciencies of

a �rst price auction market.

1.3 Transaction Gas Refunds

Every state-changing transaction consumes a �xed, deterministic amount

of gas which has to be paid for by the transactor. To send a transaction

on Ethereum, the transactor has to specify a gas limit Tg, which is the

maximum amount of gas that can be consumed by the transaction, and

a gas price Tp which is the cost in Ether the transactor is willing to pay

per unit of gas consumed.

During the execution of a transaction, the Ethereum Virtual Machine

(EVM) will keep track of the remaining gas, g′ which is initially equal to

the gas available for the transaction g. Before executing the transaction,

an amount of gas, called the intrinsic gas g0, has to be paid3 and is

deducted from Tg. This gives us the gas available for the transaction:

g ≡ Tg − g0.

Every operation executed by the transaction will then reduce the re-

maining gas g′ by the amount associated with that operation. A detailed

list of gas costs for each operation can be found in Appendix G of the

Ethereum Yellow Paper (Gavin (2014)). The idea is to price each oper-

ation according to its computational cost.

If at any point g′ would be decreased below zero, the transaction imme-

diately fails and the state is reverted. The cost for the consumed gas

3See section 6.2. in the Ethereum Yellow Paper (Gavin (2014)). This includes for
example the cost to increment the nonce of the sender account.

4

(∼ TgTp) is still deducted from the transactors Ether balance.

If the transaction uses less gas than provided, g′ > 0, the remaining gas

g′ will be refunded. The transactor only pays for the gas used by the

transaction.

To provide an incentive to delete unused storage on the blockchain, the

Ethereum Yellow Paper (Gavin (2014)) speci�es two operations that trig-

ger a gas refund:

� Using SELFDESTRUCT to destroy a contract

� Using SSTORE in order to reset contract storage to zero from some

none-zero value

This gas refund is not simply added to the remaining gas g′, but it is

tracked in the accrued transaction substate A. More speci�cally, the set

of selfdestructed contracts is tracked in As and the gas refunded through

SSTORE is tracked in Ar. The e�ective refund is caluclated at the end

of a transaction using g′, As and Ar as seen below.

This has the immediate consequence that g must always be greater than

the total cost of the transaction, even if gas refunds occur during the

execution.

1.3.1 Calculating Gas Refunds

Based on the Ethereum Yellow Paper (Gavin (2014)), after the transac-

tion is processed, the total gas refunded g∗ is calculated by �rst adding

up the refunds tracked in A:

A′r ≡ Ar +
∑
i∈As

Rselfdestruct (1)

Where Ar is the total balance of refunds through SSTORE, As is the

count of selfdestructed contracts and Rselfdestruct is the amount of gas

refunded for selfdestructing a contract.

5

At the time of writing, resetting one contract storage variable via SSTORE4

will add 15000 gas to Ar and Rselfdestruct is priced at 24000 gas.

The total amount refunded g∗ consists of the remaining gas g′ plus the

total refund A′r which is capped at a maximum of half (rounded down)

of the total gas used5:

g∗ ≡ g′ +min

{⌊
Tg − g′

2

⌋
, A′r

}
(2)

The total amount of Ether the owner of the transaction has to pay is

thus:

C ≡ (Tg − g′ − g∗)Tp (3)

Where Tp is the gas price per unit of gas in Ether associated with the

transaction.

1.3.2 Consequences for the Miners

The Ether paid for a transaction as de�ned in (3) is deducted from the

balance of the transactor and given to the miner of the block where the

transaction is included.

Since refunds will reduce the gas cost of a transaction but not their com-

putational cost, this leads to a situation where the miner has to process

a transaction where the income they receive is no longer in relation to

the computational cost of the transaction. The miner, and later every

node in the network, pay for the computational overhead. Note that the

miner's Ether income is not directly a�ected; they are still able to �ll

their block and be paid for every gas included. The additional cost for

the miner in�icted by refunds is purely computational.

4Note that resetting a variable this way will still incur the costs for SSTORE of
5000 gas which is deducted from g′.

5For more details see section 6.2 in the Ethereum Yellow Paper (Gavin (2014)).

6

This is still not in the interest of the miner and as a pro�t maximizing in-

dividual, they would bene�t from including this in their decision making

process when selecting which transactions to include into a block. How-

ever, after looking at the source code for the most popular mining clients

(Geth and Parity), we could not �nd any evidence of such behaviour.

The most likely explanation for this is that the additional cost of checking

if a transaction contains any refunds and then calculating the resulting

loss is more expensive than simply ignoring the refunds and accepting

that there will be a small loss on some transactions. When used as

intended, these refunds will occur rarely and in small numbers, further

discouraging checking for them.

2 Storing Gas on Ethereum

Using the insights from section 1.3, we can regard any non-zero contract

storage value and every contract itself as a resource that can be freed

(destroyed) to trigger a refund. We will focus on contracts and self-

destruct to illustrate the concept, but the same applies to contract storage

values in a similar way.

Lets assume the simplest possible contract that can be self-destructed:

Algorithm 1: A simple, self-destructible contract.

pragma solidity 0.6.9;

contract Storage {

fallback() external {

selfdestruct(msg.sender);

}

}

We make use of the fallback function to trigger the self-destruct, so we

don't have the overhead of the function selector. Deploying this contract

on the Ethereum blockchain costs 69'217 gas.

We can now at any time send an empty call to the contract and trigger the

7

self-destruct, which will add 24'000 gas to our refund counter. Calling

the fallback function on this contract will report the gas used by the

transaction to be 13'022 gas. Considering that the intrinsic gas cost g0

for this call alone is 21'000 gas, we can see that a refund happened. The

reason why we do not see the full 24'000 gas refunded is that the self-

destruct call has a cost associated with it and the refund is capped at

half the total cost as seen in section 1.3.1.

To make full use of the refund, we need to combine the self-destruct

operation with another transaction. This can only be achieved with the

aid of a smart contract, as calls from an account can't involve more than

a single statement. Algorithm 2 shows such a contract:

Algorithm 2: A contract that sets 5 variables and can claim
the refund from destroying another contract.

pragma solidity 0.6.9;
contract Incrementer {

mapping(uint => uint) public counters;
function _increment() internal {

for(uint256 i = 0; i < 5; i++) {
counters[i]++;

}
}
constructor() public {

_increment();
}
function increment(address storageContract) external {

storageContract.call("");
_increment();

}
function increment() external {

_increment();
}

}

Note that we can trigger the refund even before we spend the gas. This

is possible since the remaining gas and the accruing refund are tracked

separately.

Calling Incrementer.increment() on the above contract will cost 50'929

8

gas, split as follows:

Initial call cost [21064 gas]

Incrementer.increment [159 gas]

-- Incrementer._increment [29706 gas]

Calling Incrementer.increment(storageAddress) where storageAddress is

the Ethereum address of our storage contract will cost 33'181 gas, split

as follows:

Initial call cost [21432 gas]

Incrementer.increment [299 gas]

-- Storage [CALL] [-18256 gas]

-- Incrementer._increment [29706 gas]

The self-destruction of the storage contract refunded 18'256 gas, which

means the self-destruct operation itself cost 5'744 gas (24′000− 18′256).

This number can be di�erent depending on how e�ciently the code is

implemented, but the base fee for self-destruct is always 5'000 gas (see

the Yellow Paper, Appendix G Gavin (2014)). Furthermore we also have

a slight overhead to read the function argument and call an external

contract, bringing the total savings down to 17'748 gas.

We spent 69'217 gas to save 17'748 gas. However, the storing and freeing

of the gas was done in di�erent transactions. In section 1.2 we saw

that the gas price of transactions can be di�erent, depending on the

current network load. This implies, that if we can deploy the storage

contract during times of low network load with a gas price of Plow and

self-destruct it during times of high network load with a gas price of

Phigh, the net outcome can be positive. In this example we save Ether as

long as 69217Plow < 17748Phigh =>
Phigh

Plow
> 3.9.

Conclusion: If the spread between Phigh and Plow is su�ciently large,

storing gas can be an e�cient strategy to reduce transaction costs during

network peak times.

9

This mechanism was developed, formalized and e�ciently implemented

in 2017 by the team at https://gastoken.io, Breidenbach et al. (2017).

2.1 The Gas Token

Breidenbach et al. (2017) wrapped the mechanism described above with

an ERC20 contract, tokenizing gas refunds. They did this for both meth-

ods of gas storing: SSTORE (GST1) and self-destruct (GST2).

In their �ndings, the self-destruct variation outperforms the SSTORE

variation as long as the volatility
Phigh

Plow
is above 3.71. Furthermore, the

self-destruct token has signi�cantly higher potential savings e�ciency.

For the remaining thesis, we will exclusively focus on the self-destruct

variant of the gas token.

In the GST2 implementation, each token represents the rights to destroy

and claim the refunds from 100 self-destructible child contracts similar

to the one shown in algorithm 1, but with an added check so that only

the GST2 parent contract can trigger the self-destruct.

The GST2 contract was developed in Solidity and the core mint and

free functions are implemented via assembly: A low level programming

language to interface directly with the EVM which can produce bytecode

that is computationally more e�cient than the output of the Solidity

compiler.

In late May 2020, 1inch exchange's Anton Bukov introduced the CHI gas

token in Bukov (2020a) which attempts to improve on the GST2 token.

2.2 Rise of Gas Tokens

The GST2 contract was deployed on the Ethereum main net on Septem-

ber 19th 2017 and the CHI contract was deployed on May 24th 2020.

10

https://gastoken.io

Figure 1 shows the weekly minting of those tokens since November 20176,

while �gure 2 shows the combined amount of gas tokens minted in the

same time frame.

Figure 1: A total of 5'143'049 GST2 and 869'844 CHI contracts were
minted in 256'589 resp. 11'236 transactions.

Since the start of 2020 we see an up-tick in gas token usage and especially

CHI - the token popularized by and used on 1inch.exchange - has moved

the gas tokens into the spotlight.

To �nd the amount of GST2 tokens freed, we would need access to a

6Showing data before November 2017 is unreliable, as we can't perfectly distinguish
successful from failed transactions before the Byzantium hardfork.

11

Figure 2: A total of 6'012'893 gas token contracts were minted in 267'825
transactions.

personally hosted7 archival node to track the supply, since the free trans-

actions are sub calls in other contracts and there is no way to reliably

read this information from a full node. There are also no events emitted

for minting or freeing GST2, presumably to save the associated gas cost.

There is however a strong assumption that the minting of gas tokens is

linked to the volatility and the absolute level of gas prices. In section 4

we will explore this hypothesis.

7Infura is not an alternative due to the rate limit - we need millions of API calls -
and the generally slow speed compared to a private node.

12

2.3 Impact of the Gas Token

This section brie�y discusses some positive and negative aspects of gas

tokens. No de�nite statement will be made about whether their overall

impact is bene�cial for the Ethereum ecosystem. More research in this

area is required, especially if gas tokens turn out to become more popular

and minting them takes up a signi�cant portion of block space.

The presence of gas tokens should guarantee that every block will be

�lled, as it is always bene�cial to mint them for a price of close to zero

Ether. Furthermore, it is reasonable to assume that gas tokens lead to a

soft cap of how low gas prices can drop as minting below this threshold

is generally pro�table (this e�ect becomes more signi�cant as gas tokens

become more liquid). The resulting supply of gas tokens can then be

used to reduce gas prices during times of high network congestion. Both

these e�ects work to reduce the volatility of gas prices. This e�ect is

desirable for the Ethereum end user with everything else being equal8.

By lowering the volatility it is not clear how the average gas price will

be a�ected. However, it is very likely that while the volatility is reduced,

the average gas price increases through the use of gas tokens, as gas

tokens themselves are inherently ine�cient (it takes much more gas to

mint them than is refunded when they are freed).

As described in section 1.3.2, making use of gas refunds will reduce the gas

consumed by a transaction, but not the computation required to process

the transaction. For the same block gas limit, an increased use of gas

tokens will put more computational strain on the Ethereum network,

very similar to an increased block size during peak times. This is not a

negative e�ect per se, and its impact is bounded since at most half the

transaction can be refunded, but it needs to be considered when setting

the block gas limit. Expressed in di�erent terms: Heavy use of gas tokens

will reduce the capacity of the Ethereum network.

If we assume the overall impact of gas tokens to be negative, does it still

8Further research is required to quantify the bene�t of reduced transaction cost
volatility.

13

make sense to promote and use gas tokens? We think yes, because it is

rational to use them. As long as using gas tokens provides a bene�t to the

people minting and burning them, it is rational to use them even at the

detriment of the protocol. It is our belief that a permission-less system

like Ethereum must be able to tolerate and withstand any economically

rational behaviour inside its ecosystem. Additionally, promoting the use

of gas tokens and including them in popular smart contracts is desirable

as it levels the playing �eld between experienced actors who already make

use of them and the average user.

Finally, if the e�ect of the gas token is desirable, there is de�nitely a more

e�cient way to implement it on the protocol layer without incurring such

massive computational overhad and external cost. We brie�y discuss the

future of gas tokens and proposed changes on the protocol layer in section

7.

3 Data Preparation

Working with blockchain data is very convenient, since all the data is

publicly available for free. However, there are a few challenges to over-

come before the data can be used for analyses as presented in this thesis.

The size of the Ethereum blockchain: Ethereum already has well

over half a billion transactions recorded on it's public ledger. Working

with data tables of this size requires a solid understanding of database-

and software technology to process the data in a timely manner.

Ethereum is not optimized for speed: Most conventional databases

have their focus on access speed. Ethereum however - to encourage de-

centralization by keeping the hardware requirements of nodes low - has

its focus on minimizing the space required on harddisks. The archi-

tecture of a blockchain also means that the data is stored sequentially,

each block building on its predecessor and as a further consequence of

the architecture, Ethereum does not support indexing of transactions or

blocks.

14

3.1 Extracting the Ethereum Data Into a Database

To make the data workable, we need to load it into a conventional

database that supports indexing. Accessing the Ethereum data can be

done either through an API provider like Infura (https://infura.io),

or with direct access to an Ethereum node. To facilitate the analysis of

gas prices, we need access to the gas limit and gas price of every single

transaction. Most API providers - including Infura - have strict limits

on API requests and even for paid plans it would be impossible (or very

expensive) to run hundreds of millions of calls to extract every transac-

tion.

The decision to run our own Ethereum node and database was made early

on, knowing this will take weeks to fully set up. We wrote a more in-

depth article on how to set up a personal node, sync it and con�gure it to

work with data analysis and smart contract testing frameworks (Nadler

(2020b)) and show that a personal node can be up to 20 times faster at

processing transactions than using Infura.

Once set up, we used Ethereum-ETL9 (Medvedev and the D5.ai Team

(2017)) to extract the block- and transaction data to csv-�les. From

this raw transaction data we set up a MongoDB10 database that stores

the total of 768.7 million transactions (every Ethereum transaction since

genesis and up to July 19th 2020). This database could then be indexed

for the block_timestamp and the to_address to vastly improve accessing

and �ltering for these properties.

3.2 An E�cient Data Structure for Gas Price Data

To analyse the Ethereum fee market, we are interested in historical gas

prices between the start of 2019 and July 19th 2020. To our knowledge,

no publicly available dataset exists that provides historical gas price data

9ETL stands for extract, transform, load.
10MongoDB was chosen both for its simplicity (no schemas) and its aptitude to

handle big data sets.

15

https://infura.io

with a precision down to every transaction11.

When analysing historical gas prices, we look at the gas price distribution

within each block to for example answer the question what the �lowest

gas price was, to be included in a certain block�. There is no de�nite way

to answer this question. To leave room for di�erent interpretations we

calculated the following gas price statistics for each block: Mean, median,

25th percentile, minimum distinct12, minimum and standard deviation.

To further optimize the data structure and access speed (reducing the

numbers of documents queried), we grouped the block data as described

above into hourly bins. This leaves us with 13'560 bins each containing

139 to 309 blocks for a total of 3'391'381 blocks. Loading the data from

this database into local memory now takes less than a minute. Note that

the grouping into bins does not a�ect how the data is processed, just how

it is retrieved; each block will still be handled independently.

3.3 Treating Gas Price Outliers

Ethereum gas prices are determined via a market mechanism. Therefore,

even if the mechanism is not perfectly e�cient, gas prices should re�ect

the current demand for block space and every gas price should be taken

at face value. There is however one exception to this: Miners including

their own transactions into blocks which they mine. This often takes

the form of a block �lled with zero-gas transactions. We were able to

identify numerous blocks like these; some of them even minting GST2.

These transactions would distort our data and to mitigate this we are

ignoring any transaction with a gas price of less than 1 GWEI.

11If the reader is interested in the data set we built, please contact the author.
12The lowest gas price that is higher than the minimum gas price.

16

4 Analysis of Gas Prices and Volatility

In this section we try to answer two questions: First, does the minting of

gas tokens correlate with the absolute level or the spread of gas prices?

Second, is there enough weekly spread to make gas tokens pro�table in

the short term?

Figure 3 shows the 25th percentile gas prices (among gas prices for all

transactions within a single block) since the beginning of 2019. We de-

cided to use the 25th percentile price to give a more realistic picture

because consistently �nding the lowest distinct gas price for a transac-

tion is too ambitious given the di�culty of predicting gas prices.

Figure 3: The distinct minimum gas prices since the beginning of 2019.

17

The large spike in March 2020 was caused by the �Black Thursday� event

where Ethereum lost more than half its value over night, disrupting the

whole DeFi ecosystem. We also see the meteoric rise in gas costs starting

in May 2020. We can only speculate about the reasons for this; an

increase in bot activity and/or general activity on the network seems a

likely cause and there are currently no signs for this rise to slow down or

revert.

By overlaying �gure 3 with the volume of gas tokens minted as described

in section 2.2 and �gure 2 we get an intuition for how the two are related,

shown in �gure 4.

Figure 4: More minting occurs during periods of low gas prices and after
spikes.

18

We see a very distinct increase in the minting of gas tokens during periods

of low absolute gas prices, except during the last months. We also see

spikes in minting following spikes in gas prices. This is most likely caused

by actors who used up their gas tokens during a spike and are rebuilding

their supply; and by actors realizing the usefulness of gas tokens after

being subjected to a gas price shock and entering the market to mint gas

tokens.

The rise in gas token minting since June 2020 can be explained by the

introduction of CHI and its use on the popular platform 1inch.exchange,

making a gas token available to the broader public for the �rst time.

Gas token pro�tability is related to the spread between gas prices over

a period of time (see sections 2 and 5.6). Next, we look at the relation

between this spread and the amount of tokens minted. The spread is

de�ned as
Phigh

Plow
over a period of time W (the horizon of the actor). It

is not inherently obvious which values should be used for Phigh, Plow and

W . We made the following cautious assumptions, which we think fall

into the reasonable spectrum13:

W = One week (7 days)

Phigh = The 90th percentile of block-mean gas prices during W

Plow = The 10th percentile of block-25th-percentile gas prices during W

This suggests that actors mint tokens during the cheapest 10% of blocks,

using low gas prices (25th percentile of block gas prices), and burn tokens

during the most expensive 10% of blocks, using higher gas prices (mean

block gas prices). Using the higher mean block gas prices for Phigh implies

that the transactions where gas tokens are burned are more time sensitive.

Figure 5 shows the comparison of this spread to the minting of gas tokens

with a reference line drawn at a spread of 2.8, which is approximately

when gas tokens become pro�table (see section 5.6, where this value is

derived).

13Without access to the data for when gas tokens are burned it is especially di�cult
to estimate Phigh.

19

Figure 5: The data shows little correlation between spread and the vol-
ume of minted gas tokens.

The actors don't seem to base their decision to mint gas tokens on the

observed spread of gas prices. This makes more sense if we consider

that the spread can only be observed in retrospect; predicting the future

spread is similarly di�cult and subject to the same uncertainty as pre-

dicting future gas prices. Another factor (ampli�ed by the illiquidity of

gas tokens in the past) might be that the actors have a much longer time

horizon W than seven days.

Conclusion: The presented data suggest that actors base their decision

to mint gas tokens primarily on the absolute levels of the gas prices and

react strongly to spikes in gas prices. The spread of gas prices has tight-

20

ened over the past year, making the use of gas tokens less pro�table14.

Also note that, under the assumed parameters, it is currently not prof-

itable to mint gas tokens. The fact that gas tokens are still minted (and in

higher quantities than ever), indicates that they are used for transactions

which call for a gas price signi�cantly above the assumed Phigh.

5 The Liquid Gas Token (LGT)

Gas tokens must be gas e�cient in their handling as reducing gas costs

of transactions is their primary purpose. Since the inception of GST2,

various improvements to the algorithm have been found. Additionally,

the need to mint or buy GST2 on an exchange prior to using them is

inconvenient and ine�cient.

The core goal of this thesis was to present a token that improves the GST2

(and to a lesser extent CHI) in the aspects mentioned above. First, we

combined the gas token contract with an integrated liquidity pool and

an automated market maker to facilitate highly e�cient internal swap

transactions and to provide a way to use gas tokens without owning or

buying them �rst. Second, all the proposed and discovered optimizations

were tested and implemented only if they led to an overall improvement

in the e�ciency of the token.

The result is a streamlined gas token that can be directly incorporated

into new smart contracts or EOAs (externally owned accounts). Finally,

we benchmarked the tokens and show that the LGT outperforms the

GST2 in every metric.

5.1 ERC20 With Integrated Liquidity Pool

In the world of DeFi and decentralized exchanges (DEXs), the Uniswap

V1 exchange by Adams (2017) occupies a unique spot as the largest truly

14It is possible that the increased usage of gas tokens led to this e�ect.

21

decentralized exchange without oracles, owner fees or order books. The

exchange relies on an automated market maker (AMM) that implements

a constant product price model. All its properties make the protocol a

perfect starting point when looking to integrate a market maker directly

into an ERC20 contract.

5.1.1 Constant Product Market Maker Model

The constant product model as implemented by Uniswap V1 is formally

speci�ed in Zhang et al. (2018) and de�nes a market with two di�erent

coins: In our case the native ETH token, and the ERC20 compliant

Liquid Gas Token (LGT).

This market has positive reserves of both tokens, Rlgt > 0 and Reth > 0,

a constant product k = RlgtReth and a trading fee (1− γ). According to

Angeris et al. (2019), a transaction in this market, trading ∆eth Ether

for ∆lgt LGT, must satisfy

(Rlgt −∆lgt)(Reth + γ∆eth) = k, (4)

and vice versa. The trading fee γ is applied to every trade and is dis-

tributed to the liquidity providers according to their share in the liquidity

pool as reward for providing the liquidity.

Providing liquidity to an AMM should not a�ect the market price of

the listed commodities. Since the market price in the Uniswap constant

product model is based on the reserves of both listed tokens, providing

just one of the tokens as liquidity would shift the market price. When

providing liquidity, it is therefore required to provide both tokens at the

same time in a ratio corresponding to their reserves. Formally, when

adding ∆lgt LGT to Rlgt, the user also has to add
Reth∆lgt

Rlgt
Ether to Reth.

Angeris et al. (2019) also show that the Uniswap V1 model satis�es

many desirable properties related to arbitrage, non-depletion, cost of

manipulation, liquidity provider returns and stability under a wide range

22

of market conditions.

Finally, the Uniswap V1 protocol is unrivalled in its raw gas cost e�ciency

among similar DEXs, a property which is crucial for a gas token.

5.1.2 Advantages of an Integrated AMM

Ownership changes of ERC20 tokens are expensive. Every operation to

change the balance of an ERC20 token for an address or to change the

total supply costs at least 5'000 gas15.

When a token is listed against Ether on Uniswap V1, the exchange con-

tract is the owner of these tokens. Table 1 shows the ownership changes

needed to mint or buy GST2 and then burn (free) them.

Operation Mint and Burn Buy and Burn
Reduce Balance of Exchange 0 5'000
Increase Balance of Transactor 5'000 5'000
Increase Total Supply 5'000 0
Reduce Balance of Transactor 5'000 5'000
Reduce Total Supply 5'000 5'000
Total SSTORE Cost 20'000 20'000

Table 1: ERC20 + Uniswap - The minimum gas costs incurred by supply
and ownership changes when acquiring and burning GST2.

Note that Mint and Burn always needs to be split into two transactions

as minting and burning a gas token in the same transaction is never

pro�table. Buying and burning on the other hand is usually performed

in the same transaction. This adds at least another 21'000 gas as intrinsic

cost to Mint and Burn.

When the ERC20 token and the exchange logic (including the AMM)

are within the same contract - referred to as a liquid token - we don't

need to explicitly track the balance of the exchange. In addition to the

ERC20 compliant balances mapping A→ B and totalSupply St, we track

the privately owned supply So which is the sum of all balances except for

15One SSTORE operation is required to change the contract storage variable.

23

the balance of the exchange. This lets us implicitly de�ne the balance of

the exchange Be as

Be ≡ St − So. (5)

Minting and burning an owned token is now more expensive since we

also need to update So, but it makes buying and burning a token a lot

less expensive as detailed in table 2.

Operation Mint and Burn Buy and Burn
Reduce Balance of Exchange 0 0
Increase Balance of Transactor 5'000 0
Increase Owned Supply 5'000 0
Increase Total Supply 5'000 0
Reduce Balance of Transactor 5'000 0
Reduce Owned Supply 5'000 0
Reduce Total Supply 5'000 5'000
Total SSTORE Cost 30'000 5'000

Table 2: Liquid ERC20 - The minimum gas costs incurred by supply and
ownership changes when acquiring and burning a liquid token.

Burning (freeing) a token will always reduce St to re�ect the new token

supply. For the integrated case however, reducing St will also reduce Be

by the same amount as seen in (5) without the need for an additional

SSTORE operation.

The same mechanics apply for other combined transactions such as mint-

ing and adding tokens to the liquidity pool or minting and selling tokens

to the exchange: With an integrated model, the minted token is created

by increasing St, which implicitly increases Be and triggers an Ether

transfer to the owner of the Mint and Sell transaction. A single storage

variable needs to be changed to perform a Mint and Sell action.

Conclusion: For tokens where buying, selling, investing16 or divesting

the token is closely tied to minting or burning the token, integrating the

16Investing in this context means providing liquidity: Adding the token and Ether
to the liquidity pool of the exchange.

24

exchange logic into the ERC20 contract leads to signi�cantly less contract

storage updates and to a much more e�cient work�ow.

5.1.3 LGT Speci�c AMM Implementation

Integrating an AMM into an ERC20 contract also allows us to better

tailor the AMM to our needs. The Uniswap V1 protocol is audited by

multiple sources and very unlikely to contain serious vulnerabilities or

bugs. We therefore tried to keep the code of the core functionality as

close as possible to the Uniswap V1 implementation 17

What follows is a summary of changes and digressions from the Uniswap

V1 implementation for the LGT implementation with our reasoning be-

hind them.

No token to token swaps: Uniswap V1 exchanges can be either ERC20

to Ether or ERC20 to ERC20. For our application, we only need to con-

sider the ERC20 to Ether case. It is both more e�cient18 and su�cient

in its functionality. All the logic to handle token to token transfers was

omitted.

No need to check for positive reserves: A new Uniswap exchange

is created without liquidity via the Uniswap factory contract. As seen in

section 5.1.1, the reserves for both the token and Ether need to be strictly

positive. Adding liquidity to an empty reserve also needs to be handled

di�erently. The LGT contract will mint one LGT in its constructor with

the Ether that was pre-funded or sent with the contract creation and add

them as the initial liquidity reserves. This initial liquidity is owned by a

smart contract that has no ability to remove the liquidity; it is therefore

guaranteed that the reserves of the LGT contract are always positive

which allows us to remove checks for it and streamline the code. These

change have no impact on the interface of the contract.

17Note that Uniswap V1 was written in Vyper while LGT needs to be written in
Solidity to make use of assembly. Fortunately, converting code from Vyper to Solidity
is fairly straightforward.

18This is also the most important reason why we chose Uniswap V1 over Uniswap
V2: The latter only supports ERC20 to ERC20 swaps.

25

Implicit LGT balance: As described in section 5.1.2, the balance of

the LGT exchange Be is implicitly de�ned. All functions which transfer

owned tokens to or from the exchange update So instead of Be, where So

is the total supply of externally owned tokens. This has no e�ect on the

interface or the gas costs.

LGT is well behaved: When building a general purpose exchange like

Uniswap V1, one needs to consider that the listed tokens don't strictly

conform to the expected speci�cations or even intentionally try to exploit

or harm the exchange. For a built-in exchange, we can be sure the token

behaves to the speci�cations we gave it - not accounting for unintended

bugs. This allows us to be more lenient with checks - for example we

know the LGT supply can never exceed a 256bit unsigned integer - and

it allows us to more directly interface with the functionality of the token,

improving e�ciency.

Liquidity shares are not a token: The Uniswap V1 exchange contract

will mint ERC20 compliant liquidity tokens (UNI) that can be traded

back for the respective shares of the reserves. LGT already has an ERC20

token interface (LGT itself); the liquidity shares can thus not be ERC20

compatible. Instead of opting for a more complex multi-token contract,

LGT o�ers a reduced pseudo-ERC20 interface for the liquidity shares.

They are tracked almost identically to the UNI tokens and o�er most

of the same functionality like transferring liquidity. However, due to

di�erent function- and variable names, they are not ERC20 compatible.

Reduced event coverage and less code re-use: LGT will only emit

events for adding, removing and transferring liquidity. All swaps and

transfers do not have an event associated with them. The sole reason for

this is to save gas in the functions where it is most critical. We made it

a priority to keep the minting and freeing of tokens as e�cient possible.

For the same reason we do not factor out code for these functions, but

prefer to re-write the lines to minimize the occurrence and cost of internal

function calls.

26

5.1.4 LGT Exchange Interface

Like Uniswap V1, LGT supports input and output swaps and transfers

from LGT to Ether and vice versa, it has the same input and output price

query functions and the same add- and remove liquidity functions. The

ERC20-like liquidity pool functions have a �pool� pre�x added to them.

Events are emitted for adding, removing and transferring liquidity.

We made the deliberate decision to use the same function names as the

Uniswap V1 protocol when the same behaviour can be expected. This

also makes LGT partially compatible with an Uniswap V1 interface or

frontend.

The full LGT exchange interface can be seen on the LGT github reposi-

tory (Nadler (2020a)) at /interfaces/ILiquidERC20.sol.

5.2 Gas Token Implementation

In the following sections we provide insights into the gas token part of

the LGT smart contract, highlight di�erences from its predecessors GST2

and CHI and provide an overview of the LGT interface related to minting

and freeing tokens. The full contract source code with extensive docu-

mentation, natspec and accompanying scripts can be found on the LGT

github repository (Nadler (2020a)).

5.2.1 Creating and Destroying Child Contracts

As discussed in section 2, the core functionality of a GST2 based gas

token is to create child contracts that are destructible only by the parent

27

contract. Such a contract, written in Solidity, is shown in algorithm 3:

Algorithm 3: A child contract for LGT, written in solidity.

pragma solidity 0.6.9;

contract Storage {

fallback() external {

if (msg.sender == LGT.address) {

selfdestruct(msg.sender);

}

}

}

If we break this down to EVM instructions, we get:

PUSHX <LGT.ADDRESS> // where X is the length

// of the address in bytes

CALLER

XOR

PC

JUMPI

CALLER

SELFDESTRUCT

For a normal address, the bytecode for this contract is 27 bytes long.

The bytecode to initialize the contract adds another 9 bytes for a total

of 36 bytes. There are two interesting properties for this init code:

First, the cost to create this contract scales with the length of the init

code: Each byte costs an additional 200 gas. Second, if we can get the

init code to 32 bytes or below, it will �t into a single memory slot and

further reduce the deployment complexity and cost.

Breidenbach et al. (2017) were quick to notice that there is a way to

reduce the length of the init code by using an address for the contract

with leading zeros, as these can be omitted in the byte code. An address

has a default length of 20 bytes; if we can get at least the �rst four bytes

(8 positions) to all zeroes, we can �t the init code into 32 bytes. At

28

the time when GST2 was developed, the only way to deploy a contract

was the CREATE opcode, which uses the address of the deployer and

the nonce of the deployment transaction (this combination is unique) to

deterministically calculate the address where the contract is deployed.

The team used a brute-force algorithm to �nd an address and a nonce

that will deploy the GST2 contract at an address with �ve leading zero

bytes. The chance to �nd an address with n leading zero bytes when

testing a combination of deployment address and nonce is 1
256n

. For

n = 5 this is roughly 1 in a trillion. Our own implementation in Java

of such an algorithm took on average three days to �nd an address with

�ve zero bytes. Finding an address with six zero bytes would take 256

times longer, but save another 200 gas per contract created.

Once the child contract is created, we need a way to retrieve its ad-

dress to call selfdestruct when we want to claim the gas refund. Storing

the addresses in contract storage is not a good option, as this would

cost at least 10'000 gas per contract (20'000 to store it and a refund of

10'000 when we later delete the storage slot). Breidenbach et al. (2017)

solved this elegantly by calculating the addresses of the child contracts

at runtime, using the address of the GST2 contract and the nonce of

the contract creation. The nonce can be stored at no additional cost by

splitting the totalSupply of the GST2 token into tokensBurned and

tokensMinted where

totalSupply ≡ tokensMinted− tokensBurned.

Whenever a contract is created or burned, the respective variable is incre-

mented by one. This does not increase the gas cost as we still only update

one variable to change the totalSupply. Since creating these contracts

is the only time the nonce of the GST2 contract is incremented, tokens-

Burned is equal to the nonce of the oldest created contract that is not

yet self-destructed. This allows GST2 to �nd the address by calculating

it from its own address and tokensBurned.

In April 2018, EIP-1014 (Buterin (2018)) introduced CREATE2: A new

29

way to create contracts by using the address of the deployer, a salt19 and

the bytecode of the contract. Importantly, the method to calculate the

address where the new contract is deployed (hashing the input param-

eters) is signi�cantly cheaper than the RLP method used by CREATE.

Switching to CREATE2 for child contract deployment makes burning

tokens cheaper and also removes the need for the contract nonce to be

accurate since we can use tokensBurned as the salt in CREATE2. This

was �rst shown by Bukov (2020a) in their implementation of the CHI to-

ken.

Using CREATE2 to �nd short contract addresses: Calculating the

address where a contract is deployed with CREATE2 instead of CREATE

is not only cheaper, but also faster. We no longer have to generate

public/private key-pairs and check the �rst nonces, but we can simply

alternate the salt. With CREATE2 it should be possible to signi�cantly

reduce the computational e�ort to deploy the LGT contract at a 15 byte

or even 14 byte address. Johguse (2020) published highly optimized tools

which leverage the hashing power of GPUs to �nd deployment addresses

for CREATE and CREATE2. In testing both these tools, we found that

brute-forcing short addresses is almost an order of magnitude faster using

CREATE2.

Remember that CREATE2 requires the complete contract bytecode as

a parameter. Since the LGT contract has its own address hard coded

into the child contract init code, this poses a recursive problem where

updating this address will change the bytecode, invalidating the CRE-

ATE2 deployment address. In order to solve this and use CREATE2,

we have to rewrite the LGT contract to be agnostic of its own ad-

dress. The init code for a child contract with a 14 byte address in

LGT is: 0x746d<LGT.ADDRESS>3318585733�6000526015600bf30000.

To remove the dependency from a hard coded address, we construct the

19A salt is random data; in this case with a length of 32 bytes.

30

init code in the EVM memory using assembly, as shown in algorithm 4:

Algorithm 4: Constructing the address agnostic init code for

child contracts.
mstore(0,

add(

add(

0x746d000...54x0...000, // pad to 32 byte length

shl(0x80, address())

),

0x3318585733�6000526015600bf30000

)

)

The same principle is used when retrieving the addresses of child con-

tracts with a dynamic parent contract address. The details of the im-

plementation can be seen in the function computeAddress2(salt) of the

LGT smart contract.

Once the bytecode for the LGT contract was address agnostic and �-

nalized, we started mining for a deployment address with 6 leading zero

bytes using three Nvidia RTX2080 GPUs20 with a combined hashing

power of ∼3 gigahashes per second. The estimated time to compute the

address can be calculated as:

256n

3 ∗ 109/s
= 93825s,

or roughly 26 hours. On June 25th, the LGT smart contract was success-

fully deployed at: 0x000000000000c1cb11d5c062901f32d06248ce48. We

checked every transaction for the past 6 months to �nd transactions from

or to 14 bytes or shorter addresses. Of the 85 addresses found21, most

of them were burn addresses and only a handful had a contract deployed

20Thankfully the author's �at mates are gamers and o�ered their GPUs for this
project. No external hardware was required.

21Fun fact: The shortest owned address we found that sent at least one transaction
had 13 leading zeroes (6.5 bytes): 0x0000000000000d9054f605ca65a2647c2b521422

31

(for example CHI and blue.dex). All of them deployed the contract via

CREATE. Bukov (2020b) states in a video talking about the CHI token,

that it was �quite expensive� to mine the address for their contract. As

far as we know, LGT is the �rst smart contract deployed at a 14 bytes

or shorter address using CREATE2.

Further optimizations: Bukov (2020a) saved gas by unrolling the for-

loop to mint multiple tokens in one transaction for their CHI gas token

implementation using assembly. We were able to further improve this

unrollment by using tokensMinted directly as the control variable and

with a similar approach we improved the loop to destroy child contracts

by using tokensBurned as the control variable.

5.2.2 Minting and Freeing LGT

GST2 and CHI o�er the same minting and freeing functions:

mint(amount) // Mint amount tokens

free(amount) // Free amount tokens and claim the refund

freeFrom(amount) // Free from a different, approved wallet

freeUpTo(amount) // Free all tokens if amount > balance

freeFromUpTo(amount)

Of these functions, LGT implements only the �rst three since the focus

is not on minting or freeing owned tokens. Using the integrated liquid

exchange, LGT o�ers the following additional minting and freeing func-

tions. Where present, the deadline parameter prevents the execution of

a transaction if it is past a certain date and time. This helps to miti-

gate frontrunning as described in the Uniswap V1 whitepaper by Adams

(2017).

mintFor(amount, recipient): A variation on mint() that creates the

tokens for a di�erent recipient address.

mintToLiquidity(maxTokens, minLiquidity, deadline, recipient)

payable: This function mints up to maxTokens LGT and adds both the

32

tokens and the sent Ether to the liquidity reserves. As described in 5.1.1,

adding Ether and LGT to the liquidity pool needs to be in the same

ratio as the current ratio of the reserves as to not in�uence the market

price. These parameters might have changed since the transaction was

submitted; to ensure the best outcome for the user, the amount of tokens

to mint and the amount of Ether to invest is calculated and any excess

Ether (if more than maxTokens would need to be created) is refunded

or the amount of tokens minted (if more than the sent Ether would be

required) is reduced. This function is a lot more e�cient than minting

and later investing the tokens because the tokens can be created in an

unowned state and no balances need to be updated. By simply increasing

the totalSupply we add the tokens to the balance of the exchange (see

5.1.2). The recipient is the address that receives the liquidity shares.

This is useful to have multiple pending mint transactions from di�erent

accounts22 to build liquidity on a single account.

mintToSellTo(amount, minEth, deadline, recipient): This func-

tion enables very easy and almost risk-free gas arbitrage (see section 5.6

for details). Amount LGTs are minted and immediately sold to the ex-

change, transferring the received Ether to the recipient. The integrated

exchange allows us to take huge shortcuts; the core transaction boils

down to just three statements as seen in algorithm 5:

Algorithm 5: Minting and immediately selling LGTs.

ethBought = getInputPrice(amount, tokenReserve, ethReserve);

_createContracts(amount, totalMinted);

recipient.call{value: ethBought}("");

The tokens are created in an unowned state by increasing the totalSup-

ply, implicitly adding them to the balance of the exchange. Not a single

additional SSTORE operation is required. To further illustrate just how

e�cient this function is, lets look at the detailed gas breakdown of a call

to mint and sell 3 tokens:

22It is a bad idea to have multiple transactions with similar gas prices pending from
the same account, as there is no way to guarantee the order in which they will be
included; but the nonce requires a certain order to be maintained.

33

Gas used: 147'043 gas

Initial call cost [21'912 gas]

LiquidGasToken.mintToSellTo [10'468 gas]

--LiquidERC20.getInputPrice [551 gas]

--LiquidGasToken._createContracts [5'301 gas]

----<UnknownContract>.<CREATE2> [36'224 gas]

----<UnknownContract>.<CREATE2> [36'224 gas]

----<UnknownContract>.<CREATE2> [36'224 gas]

The intrinsic cost, creating the child contracts and updating the total-

Supply, accounts for 135'584 gas. According to the Yellow Paper (Gavin

(2014), Appendix G), a call with non-zero value transfer (sending the

Ether received from the sale) costs 9'700 gas. This leaves just 1'759 gas

as the total overhead for the function. This is in contrast to an overhead

in excess of 50'000 gas which it would take to mint and sell three GST2

to Uniswap.

The minEth parameter can be set to make this arbitrage opportunity

almost risk-free: Calculate the total expected cost of the transaction

given the desired gas price and require that the payo� is greater than

this amount. The transaction is then only executed if it is pro�table,

and minimal gas losses are incurred otherwise.

mintToSell(amount, minEth, deadline): Same as above, but the

Ether is sent to the transaction owner instead of the recipient.

buyAndFree(amount, deadline, refundTo) payable: This function

can be called from within another transaction and will buy and free up

to amount LGTs. If not enough Ether is sent, the full amount of Ether

will be returned and nothing happens; if too much Ether is sent, all

excess Ether is refunded. To allow more lenient inclusion into other smart

contracts, this function does not revert under normal circumstances but

instead sends back the Ether and returns 0 (indicating failure) on any

failed check. Similar to mintToSell, this function takes full advantage

of the built-in exchange. Burning unowned tokens implicitly reduces the

LGT balance of the exchange (the token reserves) and sending Ether

34

to the contract increases the Ether reserves. No other state changing

operations are required to process the swap. We forego a detailed analysis

of the gas cost, but refer to the benchmark section (5.3) where we see

that the overhead was reduced by more than 60'000 gas as compared to

buying GST2 on Uniswap and freeing them.

buyMaxAndFree(deadline) payable: This function will buy as many

LGTs as possible using the Ether sent with the transaction and imme-

diately free them. No refunds take place for partial tokens, but the

transaction is reverted on any error. Apart from these di�erences, it

functions similar to buyAndFree. This function is recommended when

the precise amount of Ether to send is calculated on-chain prior to calling

the LGT contract.

deploy(tokenAmount, deadline, bytecode) payable: Contract de-

ployments are often associated with very high gas requirements. LGT

o�ers two functions to deploy a contract while simultaneously buying and

freeing tokenAmount LGTs to reduce the deployment cost. This �rst

deployment function uses CREATE to deploy the contract. Any excess

Ether sent with the transaction not spent on buying tokens is refunded,

but sending insu�cient Ether will revert the transaction. In a similar

fashion as the functions above, using this function is more e�cient than

including a call to free() in the constructor of the contract. Note that

you can't send Ether with the deployment and any use of msg.sender

in the constructor will refer to the LGT contract, not the initial sender

address.

create2(tokenAmount, deadline, salt, bytecode) payable: This

function works identical to deploy() above, but uses CREATE2 to de-

ploy the contract instead. By setting the salt it is possible to deploy the

contract at a previously known address. This is useful for pre-funding

the contract or deploying at an address with speci�c properties.

Highly optimized functions: For advanced users, we provide more

optimized (but also more dangerous) versions of the three most crucial

functions: mintToSell, mintToSellTo and buyAndFree. These func-

35

tions save gas in three ways: First, most checks have been removed and

lay the burden of submitting valid parameters on the caller. Second,

some parameters have been omitted or replaced by defaults to save gas.

Third, we constructed the function names in a speci�c way to save more

gas, as detailed below.

Every byte of a transaction's calldata costs 68 gas per non-zero byte

and 4 gas per zero byte. The �rst four bytes of every transaction is

called the function selector (FS) and speci�es which function in the

contract is called. These four bytes are obtained by hashing the sig-

nature (unique combination of name and input types) of the function.

By brute-forcing we can �nd a function name that will generate a func-

tion selector with three or even all four zero bytes, saving 192 or 256

gas per function call respectively. If we go back to our above example

for mintToSellTo(amount, minEth, deadline, recipient), calling

mintToSellTo25630722(amount, recipient)23 with the same amount

brings the total gas cost down from 147'043 gas to 146'503 gas, saving

540 gas. Small gas savings add up, and we are committed to provide

the most e�cient implementation of a gas token so far. The optimized

functions are as follows:

mintToSell9630191(amount) // FS: 0x00000079

mintToSellTo25630722(amount, recipient) // FS: 0x00000056

buyAndFree22457070633(amount) // FS: 0x00000000

5.3 LGT Benchmarks

In this section we will compare the e�ciency - measured in gas cost - of

the three gas tokens discussed in this thesis: GST2, CHI and LGT. We

are comparing the total cost for the following operations:

Mint Minting 25 owned gas tokens.

Free Using 1'000'000 gas and freeing 25 owned gas tokens.

23Note that we can no longer specify a deadline or minEth.

36

Mint and sell Minting 25 gas tokens and selling them to an exchange.24

Buy and free Using 1'000'000 gas, buying 25 tokens from an exchange

and freeing them.

The metric of comparison will be the total gas used to perform the re-

spective operation. The benchmarks are measured on a forked Ethereum

mainnet run in Ganache, meaning we use the deployed live versions of

all the contracts (including Uniswap). Care is taken that all contract

state variables are initialized25 and that the exchanges are su�ciently

funded. The script to perform the benchmark - which can be run locally

- is located at scripts\benchmarks\gas_token_comparison.py in the

LGT github repository (Nadler (2020a)). Table 3 compares the absolute

gas costs while table 4 shows the deviations from the best performing gas

token.

Gas Token Mint Free Mint and sell Buy and free

GST2 947'009 609'156 1'012'805 661'427

CHI * 942'679 599'767 1'008'764 651'093

LGT 946'314 * 598'078 * 944'483 * 592'697

Table 3: Comparing GST2, CHI and LGT for their absolute gas e�-
ciency. The best performing token in each category is marked with an
asterisk.

Gas Token Mint Free Mint and sell Buy and free

GST2 4'330 11'078 68'322 68'730

CHI 0 1'689 64'281 58'396

LGT 3'635 0 0 0

Table 4: Comparing GST2, CHI and LGT for their gas e�ciency. Values
are deviations from the best performing token.

As a consequence of the many optimizations detailed in section 5.2, the

precursor token GST2 performs worse than CHI and LGT in every cate-

gory. This is ampli�ed by the fact that the addresses for CHI and LGT

24For GST2 and CHI, we sell the tokens to Uniswap V1 in a separate transaction;
for LGT we sell them to the integrated exchange.

25Changing an uninitialized variable would incur an additional cost of 15'000 gas.

37

are both one byte shorter than GST2's. It would be expected that LGT

performs worse than CHI when dealing with owned tokens since an ad-

ditional SSTORE operation is used; however, thanks to further improve-

ments we discovered (especially for freeing tokens), LGT is competitive

with CHI even when looking at owned tokens.

Conclusion: For transactions that combine minting or freeing with a

swap (or investment), LGT vastly outperforms both alternatives. Opti-

mizing this functionality was the primary goal of the LGT token.

5.4 LGT Exchange Application

We provide a decentralized application (dApp) to interact with the LGT

smart contract at https://lgt.exchange. It integrates with a meta-

mask wallet and currently supports minting tokens for personal use, to

sell and to invest as well as deployment of contracts via CREATE.

Additionally it displays detailed statistics for the reserves and prices of

the exchange including personal shares and has an integrated calculator

to �nd out if using LGT is pro�table given the gas used and the gas price

of a transaction.

The dApp works on the Ethereum mainnet as well as on the Kovan and

Ropsten testnets.

Further functionality such as swaps, transfers and deployment via CRE-

ATE2 will be added in the future.

5.5 Usage of the LGT

The Liquid Gas Token can be used in four distinct ways:

As a transactor: Deploying contracts via the LGT interface can reduce

the deployment cost. Using a Relayer26 smart contract can reduce the

26See https://github.com/matnad/liquid-gas-token/blob/master/contrac

ts/LGTRelayer.sol for an example.

38

https://lgt.exchange
https://github.com/matnad/liquid-gas-token/blob/master/contracts/LGTRelayer.sol
https://github.com/matnad/liquid-gas-token/blob/master/contracts/LGTRelayer.sol

cost of transactions that don't rely on msg.sender. Finally, it is possible

to set up an EOA with the ability to reduce the cost of any transaction

it performs.

As an arbitrage actor: When the gas price is su�ciently low, any ac-

count can mint and sell LGT for an immediate pro�t. This functionality

was designed at least partially with arbitrage bots in mind: It can be

automated very easily and multiple parameters can be set to eliminate

all but a very small risk. Also see the next section for more details.

As a liquidity provider: By minting directly to the liquidity pool (or

buying and adding the tokens), an investor gets a proportional share

of the 0.5% transaction fee that is applied to every LGT transaction.

The return on this investment depends on the share of the total liquidity

pool and the number of swap and transfer transactions on the LGT smart

contract.

As a developer: LGT can be directly integrated into a new smart

contract to let users save gas on transactions. A detailed write-up can

be found at https://lgt.exchange/integration.

5.6 Gas Price Arbitrage

As shown in section 2, the LGT can be e�cient if the spread between

high gas prices Phigh and low gas prices Plow is su�ciently large. The

exact spread
Phigh

Plow
depends on too many factors to formalize and �uctu-

ates slightly as contract storage variables take di�erent lengths. We can

formulate an approximate lower bound based on empirical values:

costmint(n) ≤ 39′414 + 36′224n

costfree(n) ≤ 18′736 + 5′722n

refund(n) ≡ 24′000n,

where n is the number of contracts minted or freed. A maximum of 330

39

https://lgt.exchange/integration

contracts can be minted at once as to not exceed the current 12 million

gas block limit:

spreadmin =
costmint(330)

profitfree(330)
=

11′993′334

6′013′004
= 1.9946.

For most cases however, less than 330 tokens will be minted or freed at

the same time and the required spread to be pro�table is around a range

of 2.5 to 2.8.

Thanks to LGT's integrated AMM users doesn't need to perform com-

plicated calculations. The market value of an LGT token in relation to

Ether is given by the exchange. When attempting to make arbitrage

pro�ts during times when the gas price is low, the arbitrageur can call

the LGT price query function with the amount of tokens a they wish to

mint and sell:

LGT.getTokenToEthInputPrice(a). This returns the guaranteed pro�t

should the LGT.mintToSell(a,...) call succeed. A contract to make

use of gas arbitrage for LGT could look like described in pseudo-code

algorithm 6:

Algorithm 6: Pseudocode for a simple on-chain arbitrage �bot�.

function lgtArbitrage(amount) {

pro�t = LGT.getTokenToEthInputPrice(amount)

gasCost = (39141 + 36224 * amount + overhead) *

tx.gasprice

if(pro�t > gasCost) {

LGT.mintToSell(amount, gasCost, deadline)

}

}

Where overhead refers to any gas used other than for minting the con-

tracts (such as calling the arbitrage function itself).

Alternatively, the arbitrageur can use the provided dApp (section 5.4)

which will query and calculate the expected pro�t, the cost of the trans-

40

action27 and the expected pro�ts automatically as shown in �gure 6.

Figure 6: The LGT arbitrage interface on the lgt.exchange dApp. Click-
ing the button will broadcast the transaction from the linked account.

As long as a minimum required pro�t (minEth) is passed to the mintToSell

function, the only risk the arbitrageur takes is that the transaction will

fail due to changed market prices (too many other arbitrage transactions

were included before their transaction). This loss associated with the

failed transaction usually does not exceed 26'000 gas.

Conclusion: If during a certain time frame the gas price spread is
Phigh

Plow
' 2.8, we expect arbitrageurs to mint and sell LGT when the gas

price is ≤ Plow and transactors to buy and free LGT when the gas price

is ≥ Phigh. If the gas price spread is
Phigh

Plow
/ 2 over an extended period

of time, we expect no usage of the LGT contract.

5.7 Development and Testing

The LGT smart contract was developed in the Brownie framework (Hauser

(2019)) using PyCharm and Webstorm as IDEs of choice for python and

react (frontend) development respectively.

27Gas estimation is performed via the web3 function estimateGas.

41

The LGT smart contract uses openZeppelin's safeMath library and is

split into three modules:

ERC20PointerSupply: An ERC20 contract based on openZeppelin's

ERC20 template that splits totalSupply into totalMinted and total-

Burned (see section 5.2.1) while maintaining full ERC20 compatibility.

LiquidERC20: Extends the ERC20PointerSupply contract to add the

integrated market maker as described in section 5.1.

LiquidGasToken: Extends the LiquidERC20 contract to add and inte-

grate the gas token functionality as described in section 5.2.

All three contracts are extensively tested28 with a reported test coverage

of 100%. The tests are split into unit- and integration tests and can be

run locally after cloning the repo (Nadler (2020a))and installing Brownie.

No independent audit was performed for the LGT smart contract to date.

6 Open Source Contributions

Brownie is a relatively new smart contract framework that is still under

heavy development. While working on the LGT smart contract we came

across features that would greatly add to our developer experience like a

more detailed gas cost analysis. After contacting the Brownie developer,

we decided to take part in the development of the framework and started

submitting �xes and new features for Brownie.

Over the following months, we made around 15 major contributions to

advance the Brownie framework such as:

Detailed gas reports: Breaking down the transaction trace to show

detailed gas usage of internal and external function calls within a trans-

action. This was immensely helpful to optimize the gas costs for the LGT

smart contract.

28We use state of the art testing with a modi�ed pytest framework. See the Brownie
documentation for more details.

42

Expose more ganache parameters: Especially the unlock feature to

take over any arbitrary address on a local forked mainnet was helpful to

borrow CHI's 14 byte address before we mined our own.

Integration with react frontends: Outputting deployment artifacts

than can be used by a react based frontend to integrate smart contract

and dApp development.

Furthermore, while working on the detailed gas analysis, we discovered

a major bug in ganache that shifted the whole debug trace by one step

and led to inaccurate gas values being reported. This issue was brought

to the attention of the ganache developers and has since been �xed.

7 The Future of Gas Tokens

Section 2.3 discusses the impact of gas tokens on the Ethereum ecosystem

and concludes, that even if the e�ect would be desirable, a more e�cient

implementation must exist at the protocol layer. We are not aware of

an EIP that formalizes how this could be implemented, but one naive

idea would be to track stored gas in a variable which doesn't require any

additional computation and let transactions use this stored gas.

There are however multiple EIPs pending which, when implemented,

would change how gas tokens function such as EIP-1559 Buterin et al.

(2019) which propeses a change to the gas auction mechanism or EIP-

87 Buterin (2016) which proposes a time based cost for storage (�renting

storage�). These and other similar EIPs would drastically change how gas

tokens work and would most likely render the current gas token contracts

unusable.

Looking even further ahead to the planned switch of Ethereum to proof

of stake makes it very di�cult to predict if and in which form gas tokens

may remain relevant. This area requires further research.

43

List of Figures

1 Weekly GST2 and CHI Mintings 11

2 Weekly Total Gas Token Mintings 12

3 Historical 25th Percentile Gas Prices 17

4 Gas Prices and Gas Tokens Minted 18

5 Pro�tability of Minting Gas Tokens 20

6 LGT.Exchange Arbitrage Interface 41

List of Tables

1 GST2: Cost of Ownership Changes 23

2 LGT: Cost of Ownership Changes 24

3 LGT Absolute Benchmarks 37

4 LGT Comparative Benchmarks 37

List of Algorithms

1 Simple, Self-Destructible Contract 7

2 Claiming Gas Refunds . 8

3 LGT Child Contract . 28

4 Address Agnostic Child Init Code 31

5 Mint and Sell LGT . 33

6 On-Chain LGT Arbitrage 40

i

References

Adams, H. (2017), `Uniswap Whitepaper'.

URL: https://hackmd.io/@HaydenAdams/HJ9jLsfTz?type=view

Angeris, G., Kao, H.-T., Chiang, R., Noyes, C. and Chitra, T. (2019),

`An Analysis of Uniswap Markets', Cryptoeconomic Systems Journal .

URL: https://papers.ssrn.com/abstract=3602203

Breidenbach, L., Daian, P. and Tramèr, F. (2017), `GasToken.io -

Cheaper Ethereum Transactions, Today'.

URL: https://gastoken.io/

Bukov, A. (2020a), `1inch introduces Chi Gastoken. The 1inch team has

launched Chi, a. . . | by 1inch | Jun, 2020 | Medium'.

URL: https://medium.com/@1inch.exchange/1inch-introduces-chi-

gastoken-d0bd5bb0f92b

Bukov, A. (2020b), `Chi Gastoken and deployer.eth by #1inch'.

URL: https://www.youtube.com/watch?v=-

uJyLK9BGpo&feature=youtu.be

Buterin, V. (2016), `Blockchain rent: exponential rent-to-own edition ·

Issue #87 · ethereum/EIPs · GitHub'.

URL: https://github.com/ethereum/EIPs/issues/87

Buterin, V. (2018), `EIP 1014: Skinny CREATE2'.

URL: https://eips.ethereum.org/EIPS/eip-1014

Buterin, V., Conner, E., Dudley, R., Slipper, M. and Norden, I. (2019),

`EIP 1559: Fee market change for ETH 1.0 chain'.

URL: https://eips.ethereum.org/EIPS/eip-1559

CoinMarketCap (2020), `Cryptocurrency Market Capitalizations | Coin-

MarketCap'.

URL: https://coinmarketcap.com/

Electric Capital (2019), `Developer Report'.

ii

ETHGasStation (2020), `ETH Gas Station | Consumer oriented metrics

for the Ethereum gas market'.

URL: https://ethgasstation.info/

Gavin, W. (2014), Ethereum: A secure decentralised generalised trans-

action ledger - petersburg version, PhD thesis.

Hauser, B. (2019), `GitHub - eth-brownie/brownie: A Python-based de-

velopment and testing framework for smart contracts targeting the

Ethereum Virtual Machine.'.

URL: https://github.com/eth-brownie/brownie

Johguse (2020), `johguse · GitHub'.

URL: https://github.com/johguse

Medvedev, E. and the D5.ai Team (2017), `Ethereum ETL'.

URL: https://github.com/blockchain-etl/ethereum-etl

Nadler, M. (2020a), `GitHub - matnad/liquid-gas-token: Liquid Gas To-

ken (LGT) for Ethereum'.

URL: https://github.com/matnad/liquid-gas-token

Nadler, M. (2020b), `Supercharged Ethereum Main Net Testing on your

own Node with Brownie. | by matnad | Medium'.

URL: https://medium.com/@matnad/supercharged-ethereum-main-

net-testing-on-your-own-node-with-brownie-eb4cb886de7c

Valson, V. U. (2020), `Transaction Fee Estimations: How To Save On

Gas? Part 2 | by Pranay Valson | Upvest | Medium'.

URL: https://medium.com/upvest/transaction-fee-estimations-how-

to-save-on-gas-part-2-72f908b13d67

Zhang, Y., Chen, X. and Park, D. (2018), Formal speci�cation of constant

product (xy=k) market maker model and implementation, Technical

report.

iii

	Introduction
	Ethereum Transactions and Fees
	Selecting an Optimal Gas Price
	Transaction Gas Refunds
	Calculating Gas Refunds
	Consequences for the Miners

	Storing Gas on Ethereum
	The Gas Token
	Rise of Gas Tokens
	Impact of the Gas Token

	Data Preparation
	Extracting the Ethereum Data Into a Database
	An Efficient Data Structure for Gas Price Data
	Treating Gas Price Outliers

	Analysis of Gas Prices and Volatility
	The Liquid Gas Token (LGT)
	ERC20 With Integrated Liquidity Pool
	Constant Product Market Maker Model
	Advantages of an Integrated AMM
	LGT Specific AMM Implementation
	LGT Exchange Interface

	Gas Token Implementation
	Creating and Destroying Child Contracts
	Minting and Freeing LGT

	LGT Benchmarks
	LGT Exchange Application
	Usage of the LGT
	Gas Price Arbitrage
	Development and Testing

	Open Source Contributions
	The Future of Gas Tokens
	References

