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Abstract

Increasing the transactional throughput of public blockchains is the pri-
mary focus of blockchain research today. Achieving this without compro-
mising security or decentralization is the holy grail and will be pivotal
for many broader economic use cases on public blockchains.
This thesis provides a structured overview of potential scaling solutions
before thoroughly introducing and comparing zero-knowledge rollups and
optimistic rollups. Both are promising layer 2 solutions that claim to
scale public blockchains significantly in the near future. Furthermore,
this thesis introduces fundamental concepts such as zero-knowledge proofs
and examines potential attacks based on game-theoretic principles.
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1 Introduction

Public blockchains and the blockchain technology in general enjoyed a
tremendous rise in popularity and gained a lot of attention since the
beginning of the last decade. Initially, most public blockchains were based
around financial use cases such as decentralized cryptocurrencies, and the
beneficial properties of the blockchain technology itself were commonly
overlooked. Over the last few years, the broader economic community
slowly started to realize what benefits public blockchains in combination
with technologies such as smart contracts could actually bring. Today,
the underlying blockchain technology is perceived as the real disruptor
that may revolutionize many industries at the same time. Yet, the lack
of scalability remains an incisive issue of most public blockchains that
prevents a wide range of promising use cases from being realized. In fact,
scalability has emerged as the primary issue that needs to be resolved
in order to achieve mass-adoption, especially considering the increasing
popularity of permissionless blockchains in recent years.

In this thesis, I will provide a structured overview of various scaling
solutions that address scalability concerns of permissionless blockchains
and comprehensively introduce two very recent approaches. Both of these
solutions pledge to be the most promising and both appear likely to solve
public blockchains’ lack of scalability in the near future. Therefore, I am
going to assess, analyze and compare the two approaches called optimistic
rollups and zero-knowledge rollups.

As a preliminary remark, this thesis has a strong focus on Ethereum.
All solutions which are introduced within this thesis are based on the
Ethereum blockchain. From now on, if not noted differently, I will use
the terms Ethereum blockchain and public blockchain interchangeably.
However, throughout this thesis, Ethereum will also be benchmarked to
Bitcoin and other less established alternatives. Although the Bitcoin
blockchain may possibly be the best known blockchain, Ethereum is con-
sidered to be the most relevant public blockchain. This is because of its
economic interest, its daily on-chain traffic and especially its ability to
employ turing-complete smart contracts.
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2 The Scalability Problem

The lack of scalability is probably the core issue that most established
public blockchains like Ethereum or Bitcoin struggle with. In fact, scala-
bility has been a concern since the first day of public blockchains. When
Satoshi Nakamoto published the Bitcoin whitepaper [Nak08] and single-
handedly invented public blockchains in the end of October 2008, one of
the first public reactions to Nakamotos’s whitepaper came from James
A. Donald on November 2 and stated: «We very, very much need such a
system, but the way I understand your proposal, it does not seem to scale
to the required size [. . . ]»[Opa18]. Of course, these scalability concerns
were of a different nature, but even today, more than twelve years on,
the public blockchain’s lack of scalability still persists.

The main reason for this issue is the underlying network protocol which
requires that every transaction is processed by every node in the network.
Both, Bitcoin and Ethereum, are currently using a proof-of-work based
distributed consensus mechanism that slows down the block creation sig-
nificantly. This means that miners are competing on computationally
intensive puzzles, or more precisely, trying to find a nonce that meets a
specific target difficulty, which is a time and energy consuming task. As a
consequence of this consensus mechanism, every node in the network has
to verify these efforts by the miners and keep a copy of the current state of
the blockchain. In Ethereum, such new block creations happen every 10
to 20 seconds, whereas in Bitcoin a new block is added to the blockchain
only every 10 minutes. This drastically limits the transactional through-
put of both of these public blockchains. If you break down the number
of transactions within one block on the Ethereum blockchain, this leads
to only around 12 to 25 transaction per second on average. [CDE+16]
[WZS19]
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2.1 Scalability benchmarks

In contrast, state-of-the-art centralized global payment systems like Visa
are able to scale up to more than 65’000 transactions per second at peak
[VIS19]. Despite these impressive numbers, it should be noted that such
figures resulted from stress tests conducted by Visa engineers and not on
a daily basis. However, outside of such testing environments, the VisaNet
still handles about 2000 transactions per second on average, with peak
rates up to 4000 transactions per seconds [Mou16].

Exactly the same can be said about many newer and less established
public blockchains like EOS, BitcoinCash or Qtum, to name just a few.
Many of these alternatives were developed only a few years ago and some
of them even emerged from a hard fork of Bitcoin. The creators of these
newer blockchains had the chance to react to certain shortcomings of the
more established ones. As a result, some of these less established public
blockchains allegedly claim to scale up to several thousand transactions
per second, which is often coupled with trading off some level of decen-
tralization or security in return. In fact, when it comes to scalability
there are some promising alternatives to Bitcoin or Ethereum. However,
similarly to the VisaNet, most of them can only theoretically scale up
to such large numbers and realistically there is no demand for such high
amounts of throughputs on these platforms.

This fact is beautifully illustrated on the txstreet.com website, where
buses represent new blocks and passengers represent incoming transac-
tions. The sizes of those buses are congruent with the block sizes of
the corresponding public blockchain. On one side of the street you see
small Ethereum buses leaving very frequently and completely packed.
On the other side you see large BitcoinCash buses leaving very irregu-
larly, about every 10 minutes, with only very few passengers in total. In
addition to this, it also shows that there is a large queue of passengers
(transactions) willing to pay a lot of transaction fees to get into one of the
small Ethereum buses (blocks) as quickly as possible. [CDE+16] [O’N19]
[WZS19]
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2.2 Scalability trilemma

The scalability trilemma describes a trade-off relationship between the
following three desirable properties of a public blockchain architecture:
Decentralization, Security and Scalability.

The trilemma claims that it is not possible to equally maximize all three
of these properties at the same time. Satisfying two of them will always
come at the expense of disregarding the third. It is called scalability
trilemma, because established public blockchains typically struggle to
scale sufficiently. This becomes very clear when considering the trilemma
in the context of the Ethereum blockchain. While this specific blockchain
is very secure and perfectly decentralized, its scalability definitely falls
behind.

As described above, scalability is an essential ingredient for public block-
chains in order to achieve mass-adoption and to attract mainstream appli-
cations being deployed on-chain. On the other side, security is obviously
inevitable and a necessity for any operating system or network. There-
fore, decentralization may appear as the least important of the three.
However, a decentralized architecture with thousands of nodes is actu-
ally the core ingredient of a public blockchain and responsible for all the
benefits in the first place. Of course, all of these attributes are not a
priori binary and can be mutually aligned to serve a particular use case.

As a matter of fact, this trilemma leads to many blockchains with dif-
ferent applications, by choosing to focus according to their needs. For
example, EOS is one of the afore-mentioned newer public blockchains,
that scales very good while being secure at the same time. EOS’ weak-
ness, however, is their lack of decentralization, especially in comparison
to Ethereum. This trilemma can also be taken to the extreme when ap-
plying it to a centralized (non-blockchain) architecture. The VisaNet,
which we used as a scalability benchmark above, is completely central-
ized and therefore scales almost infinitely while also being secure at the
same time.
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Vitalik Buterin, the founder of the Ethereum blockchain, claimed that
the holy grail of developing a blockchain platform that maximizes all
three attributes is basically unachievable. Therefore, my approach is
to focus on Ethereum, a well-established public blockchain that already
exploits two attributes perfectly, and to evaluate solutions that may lead
to a significant leap in scalability, without sacrificing too much security
and decentralization. [Low20] [QG19] [VS18] [WZS19]

5



3 Scaling Ethereum

Source. Own illustration based on [Tok20].

Figure 1: Overview of Ethereum scaling solutions

Within the Ethereum community there is a common understanding that
scalability is one of the last missing pieces before its blockchain achieves
mass-adoption among both, private and corporate users. Therefore, find-
ing a feasible scaling solution is currently one of the most active research
areas and can roughly be split in two main categories: Layer 1 and Layer
2 solutions.

In this thesis, my research focus will lay on a particular group of semi-
layer 2 solutions called rollups. Nevertheless, for the purpose of com-
pleteness and general understanding, I am also going to provide a brief
introduction to the most common layer 1 and layer 2 scaling solutions.

3.1 Layer 1 solutions

Layer 1 is a synonym for the underlying blockchain architecture – the
main layer. Layer 1 solutions are directly implemented on the main
blockchain itself and therefore also called on-chain solutions. In fact, they
change parameters directly within the core Ethereum protocol, and since
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this requires general consensus of the miners, they are often implemented
in a rather lengthy process.

3.1.1 Consensus protocol switch

Probably the most obvious on-chain solution is the long-awaited switch
from the current proof-of-work to the less wasteful proof-of-stake con-
sensus mechanism. Despite not only being a sole scaling solution but
rather an upgrade of the whole Ethereum environment, I consider this
a layer 1 implementation, that also improves scalability. In contrast to
the proof-of-work protocol, where consensus is reached by successfully
solving computationally hard puzzles, in proof-of-stake a block creator
is chosen deterministically by an algorithm based on their own financial
stakes. The block creator receives only transaction fees instead of a block
reward, that a successful proof-of-work miner would be rewarded with.

This change of consensus protocol is not only going to improve Ethereum’s
transaction speed and throughput, but also going to improve the effi-
ciency by shifting away from the very resource-intensive mining of the
proof-of-work mechanism. This new environment will be implemented
with the serenity update and is conventionally called Ethereum 2.0. Be-
sides the switch from proof-of-work to proof-of-stake, it will also enable
another scaling solution called sharding and introduce a next generation
EVM called eWASM. [QG19] [Wal20] [WZS19]

3.1.2 Sharding

A well-known layer 1 solution which could be enabled by the above-
mentioned switch to Ethereum 2.0 is called sharding. The underlying
concept of sharding has already been used to improve the scalability of
other areas in the past, such as relational databases and big data plat-
forms. In the current blockchain environment all blocks and transactions
are validated by every node within the whole network. Sharding intends
to group these network nodes horizontally into different smaller units,
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called shards. Each of these shards will then reach its own consensus and
create a subset of a new block that will be added to the main blockchain.
This has the benefit that nodes no longer have to store and process the
entire transactional load of the network. Therefore, individual block cre-
ation can become much more efficient.

However, the application of sharding within the Ethereum blockchain
is still considered very complex. It would take a very careful design
of a sharding mechanism to ensure that all fragments are sufficiently
decentralized, and individual shards are not owned by a single entity.
Another challenge is the inter-shard communication, that may lead to
an even less efficient blockchain after all. The concept of sharding is
somehow related to a layer 2 solution called plasma, that I will briefly
introduce in section 3.2.2. [QG19] [Wal20] [WZS19]

3.1.3 Conclusion

Despite some remaining challenges, sharding, coupled with the switch to
a proof-of-stake consensus mechanism, could solve many of Ethereum’s
problems, including its lack of scalability. Since both of them are layer 1
solutions and somehow dependent on each other, they have the advantage
that everything could be implemented on the existing blockchain, which
would keep the architecture and the usability rather simple. If these layer
1 solutions can be implemented properly, they are definitely promising
and efficient approaches to solving the scalability problem.

Yet, such fundamental changes directly on the main blockchain itself
are usually not easy to implement. In fact, these solutions modify the
underlying parameters of an operating public blockchain that is up and
running. Such adjustments are typically very slow because they have to
be implemented very carefully with several forks in the process, which
naturally involves some risk. A successful hard fork is only possible with
a general consensus among the miners within the network.
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At the time of writing, Ethereum was in the middle of this ongoing tran-
sition called serenity update from the current environment to Ethereum
2.0. Although some hard forks have already taken place, it is still difficult
to predict the exact timeframe for when the transition to proof-of-stake
(among many other improvements) will be officially completed.

Since even very small changes on the mainchain are very hard and slow
to implement, we will now take a look at layer 2 solutions that provide
a faster and easier implementation for Ethereum. Due to the fact that a
fully functional Ethereum 2.0 network is probably still a few years away,
layer 2 solutions may already bridge the gap towards more scalability
today. [QG19] [Wal20] [WZS19]

3.2 Layer 2 solutions

Layer 2 solutions, also called off-chain solutions, are no longer imple-
mented on the main blockchain itself but rather form add-on solutions
built on top of the base layer. They intend to take workload away from
the blockchain, by shifting the transaction computation off-chain. In this
case, the Ethereum blockchain acts as an arbitrator that provides cer-
tainty and security, even though the transactions are no longer performed
on-chain. This idea opens up a large field of cryptoeconomic systems that
can optimize the efficiency and increase the throughput of an underly-
ing blockchain. However, it is still a very important aspect that these
multi-layer architectures should not sacrifice neither decentralization nor
security. [Fou20]

Again, I will briefly introduce various concepts of several layer 2 solu-
tions before analyzing a particular off-chain solution called rollups very
comprehensively in sections 4 and 5.
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3.2.1 State channels

State channels are basically a two-way interaction channel between two
parties. Such state channels can be based on multisig transactions or on
smart contracts, where the participants previously agree on the condi-
tions and deposit funds onto the channel. Since these peer-to-peer in-
teractions would otherwise all occur on the main blockchain, such state
channels can be very useful to provide a very cheap and fast way to send
and receive micro-payments. The main advantage of the state channels,
compared to a traditional blockchain transaction, is the instant finality
coupled with negligible transaction fees. As soon as the set of interac-
tions between the parties has ended, the final state will be published and
added to the blockchain.

A well-known state channel approach is the Raiden network. Raiden is in
many ways similar to the Bitcoin lightning network that enables micro-
payment channels within the Bitcoin environment. Unlike the lightning
network, Raiden is tailored for the Ethereum blockchain by enabling
the participants more complex channel interactions, including the use of
smart contracts. In addition to this, Raiden acts as a payment chan-
nel network that can connect many parties directly to each other, using
bidirectional token payment channels. This enables multi-party channels
between more than just two users. One major drawback for state chan-
nels in general is the requirement that the users need to be online all the
time, to sign and agree to the state updates. In addition to this, they
have to deposit some funds directly into the channel for an extended pe-
riod of time, which is therefore not available until the channel is closed
again. [AQC19] [Mos18] [Wal20] [WZS19] [Yua19]

3.2.2 Plasma sidechains

Sidechains are smaller blockchains that are simply attached to a public
blockchain. The idea behind them is to shift transactions away from
the mainchain and process them on faster and more efficient sidechains
that are less crowded. Traditionally, using such a sidechain also involves
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trusting a third-party, which is naturally not an ideal way to scale an
initially trustless blockchain.

Therefore, the concept of plasma was brought forward by Poon and Bu-
terin in 2017 [PB17]. This framework was introduced to minimize the
required trust in operators, which enabled sidechains to become a valid
layer 2 scaling solution. Hence, back when it was first announced, plasma
was considered to be a very promising approach to solve Ethereum’s scal-
ability problems and enable Visa-like transaction throughputs.

Poon and Buterin introduced a concept of fraud proofs, that aims to re-
duce the power of a sidechain operator. In theory, if fraudulent activities
such as double spending within or between different sidechains occur,
fraud proofs can be filed and posted to the Ethereum blockchain, and all
fraudulent transactions will be rolled back. Again, the main Ethereum
blockchain acts as an arbitrator that resolves disputes and therefore pro-
vides the shared security to the whole network of sidechains.

Individual plasma chains are bonded to the main Ethereum blockchain
via a smart contract and the individual operators will regularly commit
the processed transactions to the main layer. In fact, the transaction
data will remain within the sidechain and only the block headers will be
submitted to the mainchain. This rooting design allows plasma chains
to borrow the securities from the parent Ethereum blockchain without
having to establish its own consensus. In addition to this, it theoretically
enables exponential scalability gains, if implemented properly. [AQC19]
[Mos18] [PB17] [RQ20] [WZS19]

However, a major drawback of plasma is its lack of on-chain data avail-
ability, commonly known as the data availability problem, which I will
address in the following section. This leaves plasma chains vulnerable
to fraudulent operators and prevents the whole concept of fraud proofs
from working as intended in practice.
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3.2.3 Data availability problem

As previously described, the introduction of plasma initially intended to
enable trustless sidechains. However, storing transaction data completely
off-chain creates a specific problem, especially when users want to exit
the sidechain and go back to the Ethereum blockchain. This is the so-
called data availability problem, that poses a real challenge for several
layer 2 solutions, including plasma.

More precisely, transactions that are not directly published onto the
Ethereum mainnet cannot be reconciled by other Ethereum users. Hence,
there is always a risk that some information is lost on the way from the
sidechain back to the underlying blockchain – accidentally or deliberately.
For instance, a selective censorship [by the operator] of participant’s sub-
missions could lead to fraudulent transactions without them noticing.
Since this operator only publishes the block header to the mainchain and
not the underlying transaction data, nobody could verify the correctness
of this sidechain.

As a result of such dishonest operators, many users would want to exit
and withdraw their funds from such a fraudulent sidechain back to the
Ethereum blockchain. A successful exit, however, can only happen after
a challenge period of about one week has expired. Within this period,
all honest users would have to publish evidence that proves fraudulent
activities of the sidechain operator. These fraud proofs involve posting
the entire valid state of the sidechain onto the mainnet, which would then
lead to the Ethereum blockchain resolving the dispute and punishing
the offending party. In practice, this is arguably impossible, since these
plasma chains can reach an arbitrarily large size, that could never be
realistically published onto the Ethereum mainnet. On top of that, every
user would need to be a full node, storing the whole transaction history
of the sidechain, in order to be able to provide such fraud evidences.
This issue is conventionally known as the mass exit problem. [ABSB18]
[AQC19] [Pay19] [PB17] [RQ20] [WZS19]
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3.2.4 Conclusion

The main advantage of any layer 2 solution is that they do not have
any effects on the core Ethereum protocol and its consensus mechanism.
Since they are just add-on solutions on top of the base layer, they are
compatible with almost every on-chain solution. In fact, they could not
only coexist but even extend some future layer 1 solutions. Thus, they are
much easier to implement, without any risk of modifying an operating
system and without having to carefully upgrade the basic parameters
of the underlying blockchain via hard forks. However, one issue that
both, state channels and sidechains, encounter is the data availability
problem and the related issue of trust. This problem has hindered both
of these solutions to meet the promises of its developers in the first place.
Consequently, there has been a shift towards a more recent generation of
level-2 scaling solutions, that aims to tackle this data availability problem
– the rollups. [WZS19] [Yua19]

3.3 Rollups

The concept of rollups first appeared in 2018 when a pseudonym called
Barry Whitehat published a GitHub repository named: roll_up [Whi18].
Shortly after, Ethereum founder Vitalik Buterin published an improved
version of this initial proposal, calling them zk-rollups [But18].

The main aspect of a rollup is to keep the whole transaction data always
on-chain, while the transaction computation can be shifted off-chain to
enable efficiency gains. Therefore, I consider rollups not as a proper layer
2-solution but rather a semi-layer 2 solution. Rollups are somewhat re-
lated to plasma but claim to be trustless because they resolve the data
availability problem by publishing just enough data on-chain. They com-
press several transactions into a transaction bundle, in order to decrease
transaction size and transaction costs and thus increasing the general ef-
ficiency. Because rollups store transaction data on-chain, they are able to
significantly increase the security guarantees for individual transactors.
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These condensed (off-chain) transactions are not validated by Ethereum’s
consensus protocol but rather secured by different mechanisms to ensure
transaction validity. Depending on these approaches, we are either re-
ferring to zero-knowledge rollups, in section 4, or optimistic rollups, in
section 5. As both names already suggest, the validity of zero-knowledge
rollups is based on zero-knowledge proofs, while optimistic rollups use a
model with optimistic assumptions that relies on fraud proofs. [RQ20]
[WZS19]

In the following sections, I thoroughly introduce the approaches and com-
ponents of both rollup solutions separately, before comparing their indi-
vidual benefits and drawbacks in section 6. In some cases, it is reasonable
not to address several components, advantages or disadvantages of only
one rollup solution in isolation, until I can examine and compare both
approaches to each other in this particular subsequent section.

14



4 Zero-knowledge rollups

Back when the idea of zero-knowledge rollups first appeared in 2018,
plasma was hot property and thought to be the future scaling solution
for Ethereum. Recall the concept of plasma, that uses fraud proofs to
ensure security on a sidechain, where all the transaction data is stored
and processed, leading to the data availability problem.

In short, the basic idea of zero-knowledge rollups is related to plasma, yet
the construction is rather innovative and complex. Instead of employing
fraud proofs like in plasma, zk-rollups use zero-knowledge proofs to en-
sure security. These so-called zk-SNARKs have the benefit that they can
verify the validity of large transaction bundles and therefore represent
everything that is happening off-chain. By using such zero-knowledge
proofs, the transaction data within the rollup chain becomes accessible
to everybody on the Ethereum blockchain. Therefore, rollups can suc-
cessfully tackle the afore-mentioned data availability problem. [Wu19]

Now, I will first introduce the concept of zero-knowledge proofs in detail,
because they are the main ingredient and the distinguishing feature at the
core of zero-knowledge rollups. Thereafter, I will provide a comprehen-
sive introduction to the construction and implementation of zk-rollups,
highlighting some benefits and drawbacks along the way. However, a
complete overview of all the advantages and disadvantages will only be
possible in section 6, where I can compare zk-rollups to optimistic rollups.

4.1 Zero-knowledge proofs

Although zero-knowledge proofs are a very hot topic today, especially
in the context of public blockchains, they date back to the early 1980’s,
when Goldwasser et al. released a first proposal [GMR85]. Simply put,
a zero-knowledge proof describes a situation, where an honest prover
can prove his knowledge of a piece of information to a skeptical verifier,
without revealing any useful information to the verifier. At first glance,
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this may seem like a contradiction, but let’s look at an example that
illustrates the basic concept very intuitively.

The following example is partly based on the so-called Strange Cave of
Ali Baba by Quisquater et al. [QQQ+89]. In figure 2 you can see the
basic setup of the zk-cave. Let Paula be an honest prover and Victor
be a skeptical verifier. The zk-cave has only one entrance and suddenly
forks into two passages, A and B. These two passages are connected via
a secret tunnel that is locked by a door. This door can only be opened
with a secret key, that Paula claims to know. Victor is aware that there
is a door but has no clue how to open it. In addition to that, he enters
the zk-cave only after Paula is already in the secret tunnel, so that he
does not know which passage she took to get there. Victor now asks
Paula to come to either location A or B.

Source. Own illustration based on [QQQ
+
89].

Figure 2: The zk-cave from above

Let’s assume he chooses location A. Paula opens the door and is able
to go to the chosen location A. However, because there is a 50% chance
that Paula has already been on that side of the secret tunnel, Victor
should not be convinced yet. Victor and Paula will have to repeat this
process several (n) times, in order to get to a sufficiently large probability
(1� 2�n) which convinces Victor into believing that Paula really knows
how to open the door. For instance, after a set of 20 iterations, the
counter probability (coincidentally always being at the right end of the
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secret tunnel) of 9.54 ⇤ 10�7 is already arbitrarily low. Therefore, Paula
has probabilistically proven to Victor, that she really knows how to open
the door in the secret tunnel, without revealing any information about
how she does it.

The zk-cave experiment above describes an interactive zero-knowledge
proof, because the verifier and the prover interact with each other and
repeat the whole process until the verifier is convinced. An interactive
zero-knowledge proof has to meet the following three properties, in order
to be considered secure.

Completeness This property is satisfied if both, verifier and
prover, are honest. So, Victor can testify that
Paula always went to his chosen location without
cheating or colluding with anyone.

Soundness This implies that it is impossible for a dishonest
prover to convince an honest verifier. In our bi-
nary case, this soundness assumption can only be
fulfilled when Victor and Paula repeat this process
several times, so that the counter probability be-
comes negligible. This repetition is essential, since
zero-knowledge proofs are probabilistic and not de-
terministic.

Zero-knowledge This property makes zero-knowledge proofs unique.
Based on the experiment above, Victor only learns
that Paula knows a piece of information but does
not learn anything about the information itself. On
top of that, a third party, that is spying on them,
has no way of checking whether this experiment
was genuine or scripted.

Now, I am going to introduce two very common zero-knowledge protocols
that should provide an intuition on how such zero-knowledge proofs can
be built using fairly simple mathematics. Again, consider Paula to be the
prover of a piece of knowledge, in this case a secret number, and Victor
to be the verifier. [BBK+13] [GMR85] [QQQ+89] [Yua19]
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4.1.1 Schnorr protocol

In 1991, Claus-Peter Schnorr published a protocol [Sch91] that enables in-
teractive zero-knowledge proofs with only three interactions. The Schnorr
protocol was not the first zero-knowledge protocol, but the most common
one today. Like many other cryptographic protocols, the Schnorr pro-
tocol is also based on the difficulty of the RSA problem, which implies
that, given c and n, it is impossible to efficiently compute g and x of an
equation c = gx (mod n). In this section, I will introduce the main the-
oretical principles of the protocol, while also providing a simple overview
with a numerical example in figure 3. Please note that the colors aim to
provide an easy transition to the numerical example.

Source. Own illustration.

Figure 3: Numerical example of the Schnorr protocol

Now, c stands for a committed value and g for the corresponding gen-
erator and both values are publicly accessible. The secret number x is
individual and only known to Paula. The Schnorr protocol enables Paula
to proof her knowledge of a value x that corresponds to the committed
value c, without revealing any information about x. Paula can prove this
through the following three steps:
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(1) Paula randomly chooses a variable r. This enables her to compute
t = gr (mod n) and send t to Victor.

(2) Victor now randomly chooses a variable e and sends it to Paula.

(3) Paula then computes u = r + e ⇤ x and sends u to Victor.

Victor can now compare Paula’s outcome of gu (mod n) with his result
of t⇤ce (mod n). If Paula and Victor end up with the same result, Paula
has successfully proven her knowledge of x, without revealing anything
about it. Note that x could also be called a private key with c as its
corresponding public key. The following mathematical proof in equation
1 shows how this zero-knowledge protocol works and why Victor can
trust this protocol. [Fra14] [GLSY04] [Kog19] [Sch91]

gu (mod n) = gr+e+x (mod n)

= gr ⇤ ge+x (mod n)

= gr ⇤ (gx)e (mod n)

= t ⇤ ce (mod n),

(1)

which proves that gu (mod n) equals t ⇤ ce (mod n).

4.1.2 Pedersen protocol

The second zero-knowledge protocol that I will go into greater detail was
introduced by Torben Pryds Pedersen, also in 1991 [Ped91]. The Peder-
sen protocol is almost as important as the Schnorr protocol and probably
best known for its application within the Zerocoin protocol, an extension
of the Bitcoin protocol that uses zero-knowledge proofs in order to further
improve participant anonymity. The security of the Pedersen protocol is
also based on the discrete logarithm problem yet slightly more complex
than the Schnorr protocol, despite also only requiring three interactions.
Again, a numerical example in figure 4 will support the basic theory.
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Source. Own illustration.

Figure 4: Numerical example of the Pedersen protocol

This time, the security of the protocol is somewhat enhanced since the
initial discrete logarithm problem is extended to the following form:
c = gx ⇤ hr (mod n). Initially, the individual variables are straight-
forward from the Schnorr protocol with one exception. A new variable
h is derived from the public generator g and a random variable a in
the following way: h = ga (mod n). Again, Paula wants to prove her
knowledge of x without revealing any information:

(1) Paula randomly chooses the variables p and q. This enables her to
compute d = gp ⇤ hq (mod n) and send the variable d to Victor.

(2) Victor now randomly chooses a variable e and sends it to Paula.

(3) Paula then computes u = p+ e⇤x and v = q+ e⇤ r and sends both
variables u and v to Victor.

Victor can now compare Paula’s outcome of gu ⇤ hv (mod n) with his
result of d ⇤ ce (mod n). As we have already seen before, if both receive
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the same result, Paula has successfully proven her knowledge of x. The
proof of the Pedersen protocol is similar to the proof of the Schnorr
protocol. It can be seen in equation 2 which is included in appendix A
for completeness. [Fra14] [Ped91]

4.1.3 zk-SNARKs

Interactive zk-proofs are very good to get the intuition of how zero-
knowledge proofs actually work and what use cases they could possibly
serve. However, in practice such back and forth interactions are not very
useful, especially not in a public blockchain environment. Hence, a con-
cept called non-interactive zero-knowledge proofs is much better suited to
such an architecture. Non-interactive zero-knowledge proofs only require
one single iteration to prove knowledge. Because these non-interactive
proofs can later be verified by anyone, they can simply be published to
everybody and basically be considered a digital signature.

One particular non-interactive proof construction is called zk-SNARK,
which is an acronym for zero-knowledge Succinct Non-interactive ARgu-
ment of Knowledge [BSCG+13]. The term succinct within the acronym
refers to the fact that its proof length and verification time only depend
on a security parameter and not on the size of the statement to be proven.
Of course, this is very similar to a hash function, where for example the
hash value of the SHA-256 algorithm will always have the same length
(256 bits) according to the security parameter (256 bits). Consequently,
one zk-SNARK proof has a length of only a few hundred bits and is
verifiable within milliseconds. This allows one prover to convince many
different verifiers simultaneously with only a single message.

Yuan [Yua19] provides a neat way of looking at a zk-SNARK as an anal-
ogy to a hash algorithm. Turning arbitrary computations into a zk-
SNARK is comparable to turning arbitrary data into a hash value. And
since verifying arbitrary computations is the core essence of Ethereum,
zk-SNARKs are well suited to a public blockchain architecture. In such
an environment, among many other applications, they could ensure that
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posting invalid or malicious transactions becomes impossible for any op-
erator and thus guaranteeing the validity of a sidechain.

Despite the many bright possibilities that come with zero-knowledge
proofs and zk-SNARKs, there is also a crucial drawback related to zk-
SNARKs. The generation of such proofs is computationally intensive
and therefore relatively time-consuming. This could pose a significant
problem to a public blockchain like Ethereum that adds a new block to
the blockchain every 15 seconds. Of course, the consequences of this fact
will be addressed and further discussed in section 4.4. [BSCG+13] [Fra14]
[Nit20] [Rei16] [Yua19] [Zca20]

4.1.4 Fiat and Shamir heuristic

Recall the two interactive zero-knowledge proofs of Schnorr and Pedersen
from above. In 1986, Amos Fiat and Adi Shamir published a crypto-
graphic approach that is known as the Fiat and Shamir heuristic [FS86].
This heuristic is a fairly simple approach to turning an interactive into a
non-interactive zero-knowledge proof. The basic idea is to replace Vic-
tor’s interaction, where he sends some random variable e to Paula, with a
hash value of an arbitrary computation. This is based on the assumption
that it is impossible for Paula to predict the outcome of this cryptograph-
ically secure hash function. Figure 5 illustrates a possible application of
the Fiat and Shamir heuristic on the Pedersen protocol from above, suc-
cessfully transforming it into a non-interactive zero-knowledge proof.

This intuitive example only intends to provide an idea on how interactive
zero-knowledge proofs can be turned into non-interactive ones. Never-
theless, it is important to clarify that zk-SNARKs are not just based on
a Schnorr or Pedersen protocol and turned into a non-interactive zero-
knowledge proof by applying the Fiat and Shamir heuristic. In fact, a
zk-SNARK is a proof system with a very complex construction that is
based on several algorithms, which ultimately enables its succinctness.
I refer the reader to [BSCG+13] for a detailed introduction to the con-
struction of a zk-SNARK. [BSCG+13] [Fra14] [Kog19] [Nit20]
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Source. Own illustration.

Figure 5: Possible application of the Fiat and Shamir heuristic

4.2 Construction

Now, let’s return to zero-knowledge rollups and focus on their underlying
architecture. Zk-rollups are managed by one single smart contract on the
Ethereum mainchain, consisting of two 32 byte values as state variables.
In zk-rollups there are two different types of actors. First, there are
transactors who want to transfer tokens. Second, and somewhat similar
to the operators in plasma, there are the relayers who collect and process
a set of transactions off-chain. However, in zk-rollups they also generate
zk-SNARKs that prove the validity of the whole transaction bundle. The
zk-SNARKs are published on the Ethereum mainchain, along with the
highly compressed transaction data via calldata1, which is much cheaper
than storing or computing the transaction data on-chain. In return,
relayers are rewarded with a small transaction fee from every transactor.
1
Calldata is a special read-only area that contains data parameters of an Ethereum

transaction. [Sai19]
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Traditionally, every ERC20 token transfer requires one Ethereum trans-
action, which costs a base fee of 21’000 gas. Yet, a zk-rollup smart con-
tract bundles hundreds of transfers together and processes them into one
single transaction with the help of a zk-SNARK. For that, the transaction
data needs to be highly compressed in order to be published on-chain as
efficiently as possible. Despite this highly compressed format, the smart
contract is capable of dismantling all the individual transfers, with the
zk-SNARK mass-validating each and every one.

This massive compression of transaction data is only possible due to a
clever indexing trick, that involves the two 32 byte values within the
smart contract. Each of these values represent a merkle tree, both able
to store 224 entries. The first tree is used as an address book (AB) and
the second as a balance book (BB). Initially, both of these merkle trees
are empty. Every branch in both merkle trees is indexed with an index
number (i) starting from 0. The AB merkle tree stores an Ethereum
address at the position (AB(i)) for a particular index i. The BB merkle
tree stores the balance (along with a nonce) of this same address with
the corresponding index i.

Source. Own illustration.

Figure 6: The two merkle trees within a rollup contract
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A new transactor can register by showing that a merkle branch for a
specific index number is equal to 0 (in AB) and thus empty, i.e. in figure
6, the branch AB(3) for the index number i = 3 is still empty. In addition
to this, the previous position must not be empty, because the merkle tree
has to be filled in order. Of course, this whole merkle tree is logged, so
that the whole information within this tree is accessible to everybody
and new transactors can register to the zk-rollup.

Using the corresponding index as a representative of actual Ethereum
addresses is crucial, because it enables to shrink the size of the addresses
from 20 bytes (ETH address) to only 3 bytes (ETH index ). This applies
to both, the sender’s and the receiver’s address. In theory, the whole
Ethereum supply of around 110M Ether could roughly be represented
using 6 bytes. Thus, a transaction Value of 6 bytes should be more than
enough, while a Value up to only 4 bytes is more realistic in practice.
The Nonce and the transaction Fee for the relayers are both very small.
Hence, one single zk-rollup token transfer can be represented with only
13 bytes using the following format, illustrated in figure 7.

Source. Own illustration.

Figure 7: Zk-rollup transaction data

To submit a transaction, a transactor has to publish all the values From,
To, Value, Fee, Nonce and his Signature as a verification to a relayer, as
illustrated in figure 7. The relayer then gathers many transactions, bun-
dles them into one single transaction and generates a zk-SNARK, which
proves the validity of all signatures and balances. The main advantage of
this rollup procedure is that it enables to omit all individual signatures
which have a relatively large size of about 65 bytes. Figure 8 illustrates,
how these signatures can easily be replaced by one single zk-SNARK
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that is capable of verifying hundreds of individual signatures and has a
size of a mere 300 bytes [BSCTV13]. Deploying one single zk-SNARK
in an Ethereum transaction costs about 600’000 gas and the overhead,
that covers basic transaction costs and additional log costs, uses addi-
tional 50’000 gas. In addition to bundling the transactions, generating a
zk-SNARK and publishing everything to the mainchain, the relayer also
updates the indexing merkle trees within the zk-rollup contract after
every set of transactions. [But18] [But19b] [Wu19]

Source. Own illustration based on [But19b].

Figure 8: One zk-rollup transaction that contains a set of token transfers

4.3 Throughput

Back when Vitalik Buterin published an improved version of zk-rollups
in September 2018, he used the following values to assume a potential
transaction throughput. At that time, the cost of on-chain calldata was
68 gas per byte. This led to estimated costs of around 884 gas per zk-
rollup transaction. The gas limit of one Ethereum block was at roughly
8’000’000 gas. This resulted in an approximate transactional throughput
of about 550 transactions per second – which is by the way also the title
of his post in 2018 [But18].

Yet, these calculations were made before the Istanbul hard fork took place
at the end of 2019. Among many other improvements, this fork imple-
mented the EIP-2028, which reduced the gas cost for calldata from 68 to
only around 16 gas per byte [ASB+19]. Consequently, a transaction with
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a size of around 13 bytes now costs only a mere 208 gas instead of 884
gas. In addition to this hard fork, Ethereum miners opted to increase the
gas limit of an Ethereum block [The20]. This limit was initially increased
from 8 million to 10 million gas at the end 2019 and further increased
up to a limit of 12.5 million gas in mid 2020. Assuming the gas cost of
a zk-SNARKs and of the overhead stayed roughly the same and taking
the increased block limit and the reduced calldata costs into account, we
now look at an approximate throughput of roughly 3800 transactions per
second.

Source. Own illustration.

Figure 9: Throughput approximation of zk-rollups

Let’s put this into a perspective: recall Ethereum currently averages
around 25 transactions per second (with a potential ceiling of around
40 trx per second) and Visa records an average throughput of around
2000 transactions per second. Therefore, zk-rollups’ current ceiling of
almost 4000 transactions per second is a very decent throughput. Al-
though these numbers are very high and appear promising, we should
not overestimate them, since they are only theoretical throughput ap-
proximations. In practice, such large numbers of transactions volumes
are currently not realistic. First, because there is currently no demand
for such high throughputs and second, and more importantly, the actual
implementation of zk-rollups still poses some challenges, that I am go-
ing to address in the following section. [But18] [But19b] [Del18] [SL19]
[Wu19]
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4.4 Implementation

As with every Ethereum scaling solution, there is not just one research
group that is working on actual real-world implementations. In fact, this
is the same for the concept of zk-rollups. There are many different re-
searchers trying to develop a reasonable solution that can be implemented
in practice. Therefore, I will focus on an approach by a research group
called Matter Labs which is one of the largest research groups working
on a real-world implementation of zk-rollups.

As previously mentioned, the generation of zk-SNARKs is the actual
bottleneck of zk-rollups as it can take up to several minutes. Matching
this to the Ethereum blockchain, where a new block is added every 15
seconds, turned out to be some challenge. Consequently, Matter Labs
proposed a commit-verify approach that includes parallel computation of
zk-SNARKs, but also introduces some inevitable latency into the system.
In other words, one relayer submits a commitment of a transaction bun-
dle on the Ethereum blockchain and starts to compute the zk-SNARK
that verifies its validity. As soon as the corresponding zk-SNARK is suc-
cessfully generated, the verification of the previous on-chain commitment
will be published a few Ethereum blocks later. Of course, this comes at
the cost of a transaction latency of a few minutes, until the computa-
tionally intensive zk-SNARK is generated and able to verify the validity.
However, this commit-verify approach enables the introduction of a par-
allel computation layer, that increases the overall efficiency of zk-rollups.
Since a relayer always starts with a commitment to a specific transaction
bundle, the two merkle trees can be updated right away. As soon as the
merkle trees are updated, the next relayer can start to commit to his next
set of transactions and start computing his zk-SNARK simultaneously.

This proposed multiple-relayer model from Matter Labs uses a delegated
proof-of-stake mechanism to randomly choose a new relayer, who then
commits to the gathered and verified transactions and starts to com-
pute the mass-validation – the zk-SNARK. This delegated proof-of-stake
approach avoids a centralization of relayers.
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Figure 10 provides an illustration, on how such a parallel computation
model can be achieved. While parallel computation cannot decrease the
fairly high latency of transactions, it certainly enables a significant in-
crease of transaction throughput. [But18] [But19b] [GV19] [Wu19]

Source. Own illustration based on [GV19].

Figure 10: A multiple-relayer model for zk-rollups

4.5 Conclusion on zk-rollups

At first glance, zk-rollups provide a promising scaling solution for Ether-
eum. The general idea to use zero-knowledge proofs to tackle the data
availability problem is brilliant. There is no liveness assumption involved.
Exiting a zk-rollup contract can be achieved within minutes because it
does not involve a tiring exit procedure. The potential scalability gains
are enormous, even in worst case scenarios. Indeed, the implementation
is not straightforward but definitely solvable. The introduced latency can
technically be overlooked, since a transaction is almost secure as soon as
the relayer posted his commitment to a set of transactions.

On the other hand, there are also some drawbacks related to the con-
struction of zk-rollups. Currently, zk-SNARK constructions depend on
an initial trusted setup between a prover and a verifier. This indicates
that a set of public parameters has to be encoded within the protocol, in-

29



troducing some level of initial centralization, because they are coded by a
small group of developers. Despite the fact, that this trusted setup is still
essential today, there is a lot of research conducting this issue. One very
promising approach aiming to create efficient and trustless zk-SNARKs
was brought forward in late 2019 by Alexander Vlasov and Konstantin
Panarin [VP19], both researchers at Matter Labs.

It is also worth mentioning that the scalability gains only refer to simple
token transfers. A theoretical throughput of 3800 transactions per second
technically only indicates 3800 token transfers per second. To this date,
zk-rollups do not support commonly used smart contract standards. In
simple terms, while zk-rollups can scale token transfers pretty efficiently,
smart contract interactions still have to be performed on-chain as usual.
However, according to Alex Gluchowski, co-founder of Matter Labs, there
are approaches that may enable the support of turing-complete smart
contracts on a zk-rollup chain in the near future. [Bin20] [Glu19b]

An arguably easier way to scale Ethereum smart contracts for general
purposes might be to employ an alternative rollup solution called opti-
mistic rollups. Therefore, I provide a profound introduction to optimistic
rollups in the following section.

30



5 Optimistic rollups

Soon after Vitalik Buterin published the Ethereum whitepaper in 2013
[But13], the first layer 2 proposals had already surfaced in the Ethereum
community. Retrospectively, these solutions already resembled the gen-
eral idea of optimistic rollups quite closely. One of them was the concept
of shadow chains, by Vitalik Buterin himself in 2014 [But14]. However,
the real initial proposal for optimistic rollups was published by John
Adler in mid 2019 [Adl19a], calling it Minimal Viable Merged Consensus
back then. In fact, a few weeks later it was already conventionally called
optimistic rollups by Karl Floersch [Flo19], because of its close similarity
to zk-rollups.

First, I will introduce the concept of optimistic rollups and highlight
some similarities and differences to zk-rollups. Thereafter, I am going
to provide throughput approximations, before describing an important
ingredient called optimistic virtual machine, that ultimately allows smart
contract compatibility of optimistic rollups.

5.1 Concept

The concept of optimistic rollups is technically very similar to the con-
cept of zk-rollups. Yet, there is one significant twist: Instead of using
computationally intensive zk-SNARKs, optimistic rollups’ validity relies
on fraud proofs, as we have already seen with plasma before. Simply
put, optimistic rollups are a combination of zk-rollups and plasma, com-
bining the advantages of on-chain data availability with a very simple
fraud proof mechanism. As a result, optimistic rollups claim to tackle
the main drawbacks of zk-rollups: the very long generation process of a
zk-SNARK and the lack of support for commonly used smart contract
standards. However, in order to achieve full smart contract compatibil-
ity, optimistic rollups trade off some degree of scalability in comparison
to zk-rollups.
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Let’s start with a simple intuition on how optimistic rollups work. Op-
timistic rollups are also based on a smart contract on the Ethereum
blockchain and multiple aggregators act as nodes of the layer 2, similar
to the relayers in the context of zk-rollups. Every aggregator has to de-
posit a bond when posting a new rollup block, which prevents them from
misbehaving. Let Tommy be an honest transactor and Alfie be a bonded
aggregator.

Tommy sends a transaction containing some solidity contract code to
Alfie, who verifies this transaction and immediately returns a receipt back
to Tommy. This receipt is a guarantee for Tommy that his transaction
will be processed and included in a rollup block. Alfie processes Tommy’s
transaction locally, among many other transactions, and computes the
new state root of the optimistic rollup block. Then, he sends the rollup
block (the new state root, to be precise) to the Ethereum smart contract,
along with a bond. The smart contract only records the hashes of the
rollup blocks and does not interpret or execute anything. The whole
transaction data and state root are only made available to everybody
through calldata, as we have previously seen with zk-rollups. Up until
now, the procedures are more or less straightforward from zk-rollups,
apart from the fact that Alfie would now start to generate and later
publish a zk-SNARK to the Ethereum blockchain.

In optimistic rollups, however, Tommy’s transaction is secured by fraud
proofs. If anyone else, let’s say Polly, should discover that Alfie posted
an invalid state root, she can submit a fraud proof by providing evidence
of its invalidity. Then, the smart contract on layer 1 (or ultimately
the EVM) checks weather Polly’s claim was valid or not. If her claim
was true and the block was proven invalid, this would slash Alfie’s (and
every following) block and his deposited bond. Part of the bond will be
rewarded to Polly and part of it will be burned by the EVM. Tommy’s
initial transaction would then be reconsidered by some other aggregator.

However, one major problem is that this fraud proof mechanism intro-
duces a relatively long withdrawal period, in order to give the community
enough time to challenge malicious blocks. Only after this challenging
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period of about one week has elapsed, the transaction becomes final and
Alfie can withdraw his deposited bond. A more thorough introduction
on the consequences of a long transaction latency will follow in section
6.3.1. [Adl20] [But19b] [Flo19]

5.2 Throughput

Optimistic rollups use basically the same technique as zk-rollups to pro-
vide on-chain data-availability. The aggregators publish the transac-
tion data and the state root onto the Ethereum blockchain through call-
data. Again, the Ethereum blockchain itself is solely used as the data-
availability layer. One might argue that all the layer 1 nodes still have to
process all data coming from the rollup chain. However, since Ethereum
nodes do not have to apply any logic to on-chain calldata, it is much
cheaper in gas costs than actual on-chain storage and therefore much
more efficient. Furthermore, recall that the EIP-2028 introduced by the
Istanbul hard fork in the end of 2019 reduced the gas costs of calldata by
another four times.

Again, let’s us look at simple token transfers, in order to be able to
compare the throughput ceiling of optimistic rollups and zk-rollups. Yet,
bear in mind, that optimistic rollups, unlike zk-rollups, are not limited
to token transfers only. Recall zk-rollups’ indexing from section 4.2,
which enables a large compression of Ethereum addresses. Similarly, the
optimistic rollup contract on the Ethereum blockchain also employs these
two 32 byte merkle trees to compress the Ethereum addresses. However,
because optimistic rollups do not use zk-SNARKs that are able to replace
all individual signatures, the sender’s signatures have to be included in
every transaction. Having to include such a large signature with a size
of 65 bytes increases the size of the whole transaction by a factor of
five, from about 13 bytes to around 75 bytes – this includes the Sender’s
signature, To, Value, Fee and a Nonce, as illustrated in figure 11.

33



Source. Own illustration.

Figure 11: Optimistic rollup transaction data

A larger amount of data per transaction obviously results in higher gas
costs. Therefore, optimistic rollup aggregators are forced to pack less
token transfers into one Ethereum transaction until the gas limit of a
block has been reached. Thus, before the EIP-2028 was introduced in
the Istanbul hard fork, optimistic rollups could only reach a throughput
of around 100 transactions per second. Today, after the gas cost reduc-
tion of calldata and the gas limit increases of Ethereum blocks have been
introduced, optimistic rollups can scale up to around 700 transactions
per second. Again, comparing this to a current throughput of around
25 transactions per second, optimistic rollups can offer a pretty decent
throughput increase.

Source. Own illustration.

Figure 12: Optimistic rollup transaction data using BLS signatures

In a recent reddit post from August 2020, Vitalik Buterin pointed out
that optimistic rollups could technically switch to aggregate BLS signa-
tures pretty easily, which would replace the large 65 byte ECDSA sig-
nature within an optimistic rollup transaction. Without going into too
many details, BLS signatures could work in a very similar way as the
zk-SNARKs work in zk-rollups. They would replace all individual sig-
natures with only one large BLS signature, that verifies the correctness
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of all individual transactions. This would also introduce some fixed gas
costs of around 113’000 that cover for the large BLS signature. On the
other hand, it would also allow us to shrink the transaction size back to
only about 13 bytes. Hence, a switch to some form of BLS signatures
could eventually scale optimistic rollups up to zk-rollup’s territory in
terms of raw throughput numbers, that reach beyond 3000 transactions
per second.

Source. Own illustration.

Figure 13: Throughput approximation of optimistic rollups

Note that these throughput numbers are only estimated values and are
neither perfectly accurate nor realistic in the next couple of years. These
theoretical approximations are solely based on the data availability bot-
tleneck introduced by the Ethereum block gas limit. [Flo19] [Fos20]
[Wu19]

I used a python script for a more accurate throughput approximation
of these different optimistic rollup scenarios. I included this script in
appendix B and in this GitHub repository. This script clearly draws
some inspiration from Karl Floersch’s work on the same topic.
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5.3 Optimistic Virtual Machine

Now, let’s briefly focus on a vital ingredient of optimistic rollups, the
Optimistic Virtual Machine, or short the OVM. In mid 2019, the idea for
an OVM was introduced [Eth19] by a research group then called Plasma
Group. They have always been at the forefront of plasma research since
2017. However, in early 2020, they changed their name into Ethereum
Optimism, to emphasize their extensive research in the direction of opti-
mistic rollups – the spiritual successor to plasma. This underlined a gen-
eral shift within the Ethereum Community from the once very promising
plasma to state-of-the-art optimistic rollups.

Recall, the EVM, short for Ethereum Virtual Machine, is an environment
that handles the deployment and execution of Ethereum smart contracts.
Every transaction that involves state updates is processed and executed
by the EVM. It is a virtual environment that is distributed across all
nodes of the network and therefore also referred to as the world computer.
The OVM is the exact counterpart of the EVM but implemented on layer
2. The development of the OVM has been one of the most important
innovations for optimistic rollups, because it allows an implementation
of arbitrary smart contract logic natively on layer 2. In simple terms, the
OVM allows everyone to move a solidity smart contract onto the much
cheaper and faster rollup chain. In addition to this, the OVM could also
act as an arbitration court that checks the validity of fraud proofs. As a
result, fraud proofs become much more efficient.

The basic setup of the OVM contains three integral components: A
transpiler algorithm translates ordinary EVM bytecode into an OVM-
compatible format, in order to run any Ethereum smart contract off-
chain. A safety checker algorithm verifies that the translation of the
transpiler worked seamlessly and no exceptions occurred. An execution
manager simply stores and executes all OP codes, or simply put, pro-
cesses and executes the whole smart contract. [Eth19] [Eth20a] [Eth20b]
[Flo20] [WZS19]
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5.4 Smart contract compatibility

Let’s examine why optimistic rollups are well suited to handling turing-
complete smart contracts by focusing on three essential properties. In
order to natively support and handle complex smart contracts, a state
machine has to fulfill the following three properties: The head state has
to be valid, live at all times and available to every party.

Note that the term head state refers to a giant data structure, which
connects all individual states and transactions of all accounts, hashes
them together and stores them into one single state root – the head state.
It represents the current, most recent canonical state of the blockchain,
sidechain or rollup chain. For example, the Ethereum blockchain has one
(and only one) current head state, which is one single point of truth. Of
course, after a new block is created and added to the chain, the head
state changes. Technically, and if the three properties are met, every
participant could recompute and therefore verify the actual head state
because it is based on all past transactions. Now, let’s look at how
optimistic rollups can satisfy all of these three properties.

5.4.1 Validity

Zk-rollups use complicated zk-SNARKs to ensure validity which are in-
deed brilliant for single token transfers but not yet efficient enough to
cope with turing-complete smart contracts. In contrast, optimistic rollups
are based on a cryptoeconomic validity game, that does not involve any
extensive computations and is thus very efficient. In optimistic rollups,
any user can become an aggregator by depositing a security bond. An
aggregator collects the incoming transactions, computes the new head
state and commits the new block to the rollup contract on the Ethereum
blockchain.
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In general, there are the following three scenarios that lead to invalid
optimistic rollup blocks and thus to an invalid head state:

(a) A block does not contain the correct transactions or an error occurs.

(b) A block is based on a previously invalid block.

(c) A block skips a valid block and is not part of the longest chain.

Source. Own illustration based on [Flo19].

Figure 14: Three scenarios that lead to invalid optimistic rollup blocks

Optimistic rollups are permissionless, meaning anyone can become a val-
idator, and trustless, indicating a transactor does not have to rely on
only one aggregator. All transactors and aggregators within the network
are incentivized to verify the validity of every block, since proving a block
invalid wins them a slice of the malicious aggregator’s deposit. Yet, it
is not very realistic to expect normal users to monitor and check all
transactions, because if they had such technical capabilities, they would
probably become an aggregator themselves.

However, because of scenario (b) which states that every block based
on a previously invalid block is also invalid, all aggregators are naturally
incentivized to check the validity of the previous blocks, before publishing
their own. Hence, as long as there is at least one honest aggregator (or
any other user checking the validity) within the network, the transactions
are secure and only one valid head state exists.

38



5.4.2 Liveness

The liveness of the head state is also referred to as the censorship resis-
tance, which means that malicious aggregators cannot censor or ignore a
single transaction. Referring to the example from before, no aggregator
will ever publish his new block on top of an invalid block. Therefore,
every aggregator will (at least) verify the validity of the previous block,
before publishing his own. Should a previous block be invalid, an aggre-
gator would file a fraud proof, slashing the invalid block, and recompute
the head state based on the last valid block in the rollup chain.

Note that optimistic rollups use a non-interactive verification game, in-
dicating that fraud proofs do not need interactions and can be proven
immediately. Hence, the rollup chain will not come to a halt, even if it
contains an invalid block at one point, because an honest aggregator will
always submit a block, which forks around an invalid block. Therefore,
the liveness assumption of optimistic rollups is given. To summarize, the
head state of the optimistic rollup chain is always live, as long as there
is at least one non-censoring aggregator.

5.4.3 Availability

As previously described, optimistic rollups achieve on-chain data avail-
ability in a similar way to zk-rollups. Simply put, calldata is used as
an availability oracle for transaction data and the current head state.
Hence, all actions and the most recent information about the optimistic
rollup chain are always available to everybody on layer 1. Since there are
no restrictions to download the current head state, this property is also
satisfied.

Notice that the Ethereum blockchain itself is a state machine that satis-
fies all of these three properties, of course. In addition to this, Ethereum
has an EVM that processes all the state changes. Currently, optimistic
rollups are the only layer 2 solution that supports turing-complete smart
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contracts because they have their very own OVM and they satisfy all
three head state properties with relative ease.

To emphasize the uniqueness of optimistic rollups satisfying all three
properties, we can compare them to other popular scaling solutions. For
example, state channels cannot provide the head state availability to ev-
erybody, since they are not open and rely on a closed set of participants.
Plasma has some sudden liveness failures and, as a consequence, can-
not always ensure the liveness of the current head state. In addition to
this, the transaction data of a plasma chain is only available to sidechain
participants and not available on the Ethereum blockchain. Of course,
another interesting candidate are zk-rollups, because they would techni-
cally also satisfy all the three properties from above. Nevertheless, zero-
knowledge proofs are not yet advanced enough to fully support an EVM
(or in this case probably a construct called zkVM ), even though cur-
rent research suggests potential future implementations of such. [Adl19b]
[But19b] [Flo19] [Flo20]

5.5 Conclusion on optimistic rollups

Optimistic rollups are touted as the one off-chain solution that most
closely resembles actual on-chain scaling and thus are sometimes referred
to as the layer 1 of layer 2 solutions. Optimistic rollups are trustless as
well as permissionless. They excel at providing full support of currently
known Ethereum smart contracts. However, the use of fraud proofs in-
stead of zk-SNARKs trades in some degree of pure payment throughput.
A possible implementation of BLS signatures in the future could make
the scalability deficit compared to other layer 2 solutions become even
less significant.

Because transactors receive almost instant receipts for every transaction
they have sent to an aggregator, the long timeout periods before rollup
transactions are finalized and locked are almost negligible in practice.
Yet, I will still provide a further assessment of the consequences caused
by these long finality times in section 6.3.1. The chances of stumbling
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across a malicious aggregator are very slim and even if such an event
may occur every now and then, almost instant penalizations prevent the
rollup chain and all affected transactors from further damage. The overall
usability of optimistic rollups is good and very intuitive for Ethereum
users, and the use cases are more or less straightforward from layer 1, as
most smart contracts can be easily migrated to optimistic rollups.
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6 Comparative analysis

Despite the fact that some comparisons between optimistic and zero-
knowledge rollups have already been drawn throughout the whole thesis,
this section will dive deep into further and more specific comparisons
between the two rollup flavors.

6.1 Scalability

In fact, the throughput numbers of both rollup constructions are only ap-
proximations on the basis of the data availability bottleneck. This refers
to an approach that solely considers how many transactions could pos-
sibly be put into a single Ethereum block before its gas limit is reached.
Thus, both solutions are upper-bounded by their data-availability mech-
anism. This also explains why a solution like plasma, which completely
abandons on-chain data availability, can scale significantly higher than
rollups. The limiting factor of rollup transactions are Ethereum’s block
gas limits. Another crucial ingredient in this throughput approximation
are the actual gas costs per byte of calldata, which is used to publish the
transaction data onto the Ethereum blockchain.

Over the course of the past 15 months, there have been several imple-
mentations that benefitted both rollup solutions drastically. Firstly, the
gas limit per block has been increased from 8 million to about 12.5 mil-
lion gas and secondly, the Istanbul hard fork introduced the EIP-2028
that has cut the gas cost for calldata in quarters. While this improved
rollups’ potential throughout ceilings in comparison to other solutions,
this was the same for both rollup constructions and did not favor one or
the other.

Hence, the decisive ingredient between the two rollup solutions is still
the size of the transaction data that will be published via calldata. By
using zk-SNARKs all individual signatures become obsolete, which al-
lows zero-knowledge rollups to shrink the size of one transaction down
to a mere 13 bytes of calldata. In contrast, optimistic rollups, where
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the signature of every transactor has to be included, can compress the
transaction size only to 75 bytes of calldata, about five times the size of
a zk-rollup transaction. Of course, this ratio is congruent with the ratio
of zk-rollups’ raw throughput ceiling of about 3800 token transfers per
second compared to optimistic rollups’ 700 transfers (without a future
implementation of BLS signatures). Despite the fact that both values are
a significant increase compared to Ethereum’s throughput today, there
are still a few points that need to be considered.

Of course, optimistic rollups trade in some degree of pure token transfer
speed in order to allow arbitrary smart contract logic off-chain. Since
smart contract interactions are not as straightforward as simple token
transfers, a potential throughput number of about 700 transfers cannot
be changed to 700 smart contract interactions per second. Optimistic
rollups are definitely going to scale the amount of smart contract inter-
actions, but not up to such high ceilings. Realistically, the throughput
of optimistic rollups could even be capped at a few hundred transactions
per seconds. This could prove to be crucial in order to remain compatible
with Ethereum’s current EVM on layer 1, which would otherwise not be
able to keep up with such high throughputs.

Ultimately, let’s not forget that Ethereum’s main differentiator, com-
pared to other public blockchains, such as Bitcoin for example, are its
turing-complete smart contracts. Since optimistic rollups are the only
layer 2 solution that allows to us scale smart contracts, it should not be
underestimated by only looking at transactional throughput ceilings. In
addition to this, zk-rollups’ theoretical throughput of several thousand
transfers per second have neither been needed nor tested in practice,
hence should also not be overestimated. Both rollup solutions can de-
liver significant improvements to Ethereum when it comes to scalability
gains and most importantly, they are the only layer 2 solutions that can
tackle the data availability problem. [Adl20] [ASB+19] [Glu19b] [The20]
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6.2 Security

An essential aspect of any scaling solution is its security. Especially
because the transaction data is published onto the Ethereum blockchain,
rollups are already very secure in general. Yet, there are still certain
properties where the two rollup approaches differ, which might affect
their respective security levels. In particular, I focus on the following
two incremental security aspects when comparing optimistic and zero-
knowledge rollups: decentralization and manipulation resistance. For the
latter condition, I will briefly introduce and discuss one specific security
concern only affecting optimistic rollups.

6.2.1 Decentralization

Both rollup solutions are implemented through a single smart contract
containing all the funds from the rollup chain. As rollups are set to
become the most popular layer 2 solution in the future, the volumes that
will be held by a single smart contract are going to be massive. Thus, it
is pretty obvious that these rollup contracts will probably be targeted by
many hackers from all around the world. Because such high profits are at
stake, sooner or later all possibilities for tiny loopholes will be exploited,
no matter how expensive or complex they may seem.

Of course, such massive concentration risks are not quite on par with
common decentralization principles, that a trustless public blockchain
typically incorporates. On top of that, optimistic rollups rely on an
assumption that at least 1-of-N aggregators has to be honest. Especially
in the beginning, when there will not be an incredibly large number of
aggregators, this could potentially lead to some sort of collusion between
a small set of malicious aggregators. Although such attacks are very
hard to execute, they are also not infeasible and definitely more likely
with only a few aggregators compared to several thousand nodes on the
Ethereum blockchain.
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Considering an early implementation of optimistic rollups with only a
few users and aggregators, there are definitely more centralization risks
attached to optimistic rollups compared to zk-rollups. Ultimately, both
rollup solutions are implemented similarly with only one single smart
contract on the Ethereum blockchain and thus both approaches sacrifice
some sort of decentralization.

6.2.2 Manipulation resistance

First of all, zero-knowledge rollups are completely immune to any ma-
nipulation or censorship attack, since the included zk-SNARK is a com-
pressed representation of every individual signature. There is simply no
way for any aggregator to steal funds or corrupt the current rollup state
of a zero-knowledge rollup contract.

On the other hand, optimistic rollups use fraud proofs instead of zero-
knowledge proofs. Their security depends on the assumption of a strong
censorship resistance of the underlying Ethereum blockchain. Based on
game-theoretic principles, the layer 1 can theoretically provide such an
ordinary censorship resistance for on-chain Ethereum transactions. Nev-
ertheless, Alex Gluchowski describes a scenario [Glu19a], where a brib-
ing system could be created by using mechanism design, which would
ultimately break the censorship resistance of the underlying Ethereum
mainnet. Especially in the context of a large honeypot, say a single
rollup contract containing more than $100M worth of funds, such anti-
mechanisms could be exploited. First, I will introduce a scenario that
gives an intuition on how such an attack could possibly work and later
discuss its feasibility.

A malicious aggregator rents an enormous amount of GPUs to obtain
51% of Ethereum’s hashing power, which would cost him several hundred
thousand dollars per hour [Dic21]. Then, the attacker posts a malicious
rollup transaction that transfers all funds from the optimistic rollup to
his own account and immediately censors all incoming fraud proofs. This
is possible because he has the majority of hashing power within the net-
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work and can therefore easily start a soft fork that grows faster than
the existing chain. On a side note, this also earns him all the mining
rewards in the process, which hypothetically lowers his costs of the at-
tack significantly. Thereafter, he publicly announces his ownership of the
funds from the rollup contract and incentivizes every miner, who starts
accepting his soft fork, with slices of his scammed assets. Consequently,
he can slowly start to decrease his hashrate again and as soon as the
challenging period of the optimistic rollup transaction has expired, the
remaining funds are successfully secured.

Alex Gluchowski claims that this is almost a zero-cost attack for the
attacker and every rational and rent-seeking miner is going to comply
with his soft fork. Since the attacker only needs half of the hashrate
within the network opting to comply with his soft fork, the miners will
be confronted with conflicting interests, because they know that other
miners also benefit from complying. In fact, at the time when the soft
fork first occurs and the miners are offered a slice of the stolen funds,
immediately supporting the soft fork of the attacker is the best response
for every miner – a Nash equilibrium2.

Source. Own illustration.

Figure 15: Game-theoretic model of an attack on optimistic rollups

2
A Nash equilibrium is the optimal outcome of a game, where no player has an

incentive to deviate from his best answer, given the strategy choices of the other

players [Nas50].
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Consider the following underlying assumptions for the game-theoretic
model in figure 15. Only if there are not enough miners complying with
this soft fork (two complying mining pools are sufficient in our model),
the attacker will resign, and the attack will have failed. As a result,
the honest chain would then become the longest chain again. If this
was the case and the attack has failed, it would have been beneficial for
both mining pools not to have complied with the attacker. However,
assuming that miners act rational and are immune to the social costs
of a betrayed Ethereum community, this scenario will never even occur,
since the option comply immediately is a Nash equilibrium. The figure
15 states the rewards for two mining pools during this attack under the
assumptions from above. It clearly shows why complying immediately
is a Nash equilibrium. Bear in mind, the value 0 indicates no rewards.
Hence, given a miner has still an energy consumption, this rather implies
a loss.

In fact, with the current proof-of-work consensus mechanism, there is no
method of punishing misbehaving miners. However, with a future intro-
duction of a proof-of-stake algorithm, the community could theoretically
punish such controversial miners by slashing their stake. Yet, it is still
highly debatable if a consensus could be reached to unilaterally punish
some individual miners. It is even more unrealistic when considering that
the majority of hashing power within the network would be the subject
of punishment. Therefore, the long-awaited switch to proof-of-stake will
also fail to prevent such a fraud proof censorship attack.

A direct consequence, to minimize the chances of such an attack, was
to increase the challenging time and thus the finality time of optimistic
rollups. Setting the challenging time to at least one week would pro-
vide more time for the community to coordinate on a counter procedure.
Additionally, upholding a large hashrate for an extended period of time,
complicates an attack that did not succeed instantly. Furthermore, I
would raise some doubts on how a single attacker could possibly ob-
tain and preserve a large enough hashrate to initiate such an attack on
Ethereum in the first place. Yet, such an attack on optimistic rollups
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is definitely not impossible, especially when considering that such an at-
tack ultimately comes at relatively low costs compared to a possibly large
honeypot like an optimistic rollup contract.

Ultimately, smaller optimistic rollup implementations with a challenging
period of more than one week should technically be fine for the moment.
The general risk of a successful censorship attack on Ethereum is not
very large, but definitely not negligible at this point in time. Neverthe-
less, bear in mind that the larger the funds within a rollup contract, the
higher the chances of a successful attack, because an attacker has more
financial arguments to bribe miners. Considering that zero-knowledge
rollups are inherently immune to any kind of the above-described cen-
sorship attacks, they are definitely the better rollup solution in terms of
security, especially when it comes to manipulation resistance. [But19a]
[Dai19] [Glu19a] [Glu19b] [LK20]

6.3 Usability

Since both rollup solutions scale pretty decently, other parameters should
also be considered instead of only looking at security and raw transac-
tional throughput. Therefore, the general usability may prove to be the
decisive aspect to choose between the two rollup approaches. First, let
us compare the latency of the two systems, before focusing on how fast
funds can be withdrawn from the rollup contract.

6.3.1 Latency

The latency of a rollup system can also be described as the time until
a transaction is verifiably finalized. The different latency times between
both rollup approaches are again due to the nature of optimistic rollups’
fraud proofs and zero-knowledge rollups’ validity proofs. For the latter
rollup solution, transaction finality is pretty straightforward. As we have
seen in section 4.4, zk-rollups are probably going to be implemented via
a commit-verify approach. The commitment of the transaction happens
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almost instantly, whereas the actual verification will be published a few
Ethereum blocks later and depends solely on the generation time of zk-
SNARKs.

Currently, the computation of a zk-SNARK typically takes about 20
minutes. Hence, zk-rollup transactions can only be considered as final
after this period, when the verification of the initial commitment can be
published on the Ethereum blockchain. However, as the need for faster
zk-SNARK computation increases, specialized hardware is naturally go-
ing to improve, allowing for a significant reduction in generation times.
In addition to this, switching from CPU-based to GPU-based approaches
may further accelerate this process, as we have previously experienced
with the improvement of hash computations. Thus, it is reasonable to
expect that the latency of zk-rollups will decrease from about 20 minutes
to only a few minutes in the not too distant future.

On the other hand, when assessing the latency of optimistic rollups,
different levels of transaction finality have to be considered: full finality,
subjective finality and bonded finality.

Because of the afore-mentioned slight security concerns in the context of
optimistic rollups, the challenging period for fraud proofs has to be at
least one week. Hence, the finality time of optimistic rollups is fixed at
more than one week and should not be lowered to assure a certain security
level. This is what I refer to as full finality, since any transaction could
theoretically be reverted within this challenging period.

A different finality approach is called subjective finality. This refers to the
fact that any valid transaction that is posted to the Ethereum blockchain
can technically be considered final, since only invalid rollup blocks can
be rolled back. Remember, optimistic rollups do not rely on extensive
computation of validity proofs and as a result, transactions can be posted
on-chain almost immediately. Therefore, optimistic rollups have instant
subjective finality. This is only true to a certain extent, however, if the
rollup block is based on a pervious block that was deemed to be invalid,
it will also be rolled back. Yet, there is a way to check whether this is the
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case or not. Any transactor or aggregator can go back the entire challenge
period and start verifying every transaction and the corresponding state
root. If every previous block up until the transactors’ transaction is valid,
it is basically impossible that their own transaction will be rolled back.
However, validating every transaction of the entire challenge period is
time-consuming and can become quite expensive, because you have to
download the whole rollup state and execute every single transaction.

The third and most vague approach to finality is only based on the game-
theoretic incentives of an optimistic rollup aggregator. I call this the
bonded finality. In theory, no aggregator has any incentives to post in-
valid blocks or base their blocks on any other previously invalid block,
because they risk losing their deposited bond. Recall, that a transac-
tor receives an instant receipt from the aggregator, stating that he will
include this transaction in the next rollup block. As a matter of fact,
one could argue that this implies instant transaction finality in opti-
mistic rollups, as long as an aggregator’s bond at stake is large enough.
However, optimistic rollup blocks are theoretically only final after the
challenge period of one week has elapsed and any claim of a faster final-
ity time than the actual challenging period will always be coupled with
some security compromises. [Adl20] [Bel19] [Glu19b] [Glu20]

6.3.2 Withdrawal times

In terms of general usability, fast withdrawals from layer 2 back to layer
1 are pretty much a necessity. Yet, the situation is pretty similar to the
finality times: Withdrawing funds from a zero-knowledge rollup contract
back to the Ethereum blockchain takes about 20 minutes and could be
decreased significantly in the coming months. On the other hand, opti-
mistic rollup transactions have to reach full finality until a user can exit
the rollup chain. Therefore, it takes more than one week until funds can
be withdrawn from the optimistic rollup contract. Again, zero-knowledge
rollups have a significant advantage over its optimistic counterpart when
it comes to fast withdrawals.
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Nevertheless, this fundamental deficit could be overcome with the help
of liquidity providers. They can provide access to funds on the Ethereum
mainnet, while the actual funds of a transactor are still locked in a rollup
contract. Especially for optimistic rollups, this concept has great po-
tential to improve the usability significantly. Yet, zk-rollup could also
benefit from such instant withdrawals for some specific use cases. Bear
in mind, however, that these liquidity providers will charge a risk pre-
mium and zk-rollups’ 500 times faster withdrawal times, in comparison
to optimistic rollups, will definitely be reflected in their prices. Thus,
zero-knowledge rollups also prevail in terms of liquidity pricing. Ulti-
mately, liquidity providers will bring instant withdrawals to both rollup
approaches and drastically enhance their user experience. [Glu20] [LK19]
[LK20]
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7 Conclusion

In this thesis, I introduced and compared two very promising solutions
to scale Ethereum, both of which enable higher throughput of Ethereum
transactions without compromising either decentralization or security too
severely. One major advantage of layer 2 solutions is that several different
scaling approaches can coexist and serve different use cases. Therefore,
despite the fact that both solutions have some advantages in comparison
to one another, we ultimately do not have to choose one or the other. In
fact, I would even take this to the extreme and argue that the two solu-
tions can complement each other perfectly. Zero-knowledge rollups are
reasonably close to a real-world implementation, that allows for immi-
nent scalability gains of simple token transfers. On the other hand, due
to their ability to scale smart contracts, optimistic rollups will give zk-
rollups the time to eventually support EVM-compatible smart contracts
as well in the near future.

Furthermore, we should not dismiss the possibility that there might be
yet another twist in the hunt for a realistic and secure Ethereum scal-
ing solution anytime soon. Nevertheless, after many years of extensive
research for scaling solutions, it is now encouraging to see that a large
part of the Ethereum community seems to have finally gathered around
rollups as their most sensible scaling solution for Ethereum.

The upcoming months will be crucial for Ethereum and it will definitely
be exciting to see the continuing transition to Ethereum 2.0 in combina-
tion with the first rollup implementations going live. Whichever solution
ultimately prevails and emerges as the scaling solution of choice, there
will only ever be one real winner: the Ethereum community.
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A Proof of Pedersen protocol

gu ⇤ hv (mod n) = gp+e+x ⇤ hq+e+r (mod n)

= gp ⇤ hq ⇤ (gx)e ⇤ (hr)e (mod n)

= d ⇤ (gx ⇤ hr)e (mod n)

= d ⇤ ce (mod n),

(2)

which proves that gu ⇤ hv (mod n) equals d ⇤ ce (mod n).

B Throughput approximation in Python

The following python script is also available on GitHub.
1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Fri Oct 2 14:58:29 2020

5
6 @author: tobiasschaffner

7 """

8 #Inspired by Karl Floersch ’s work on OR’s throughput: https :// gist.github.com/karlfloersch /1

bf6ab7871f41e3a5a921c0a007ad5c6

9
10
11 # This function helps us calc how much many transitions & transactions we can fit in a block

with some calldata size

12 def get_cost_with_transition_size(transition_bytes , txs_in_a_transition =1, fixed_gas_cost =0,

IS_EIP_2028_INCLUDED=True):

13 i f not IS_EIP_2028_INCLUDED:

14 cd_gas_per_byte = 68

15 else:
16 cd_gas_per_byte = 16

17 gas_per_sstore = 20000

18 gas_cost_of_merkle_root = gas_per_sstore

19 cd_gas_per_tr = cd_gas_per_byte * transition_bytes

20 total_gas_in_block = 12500000

21
22 def sha3_gas(num_bytes):

23 num_words = num_bytes // 32

24 return 30 + 6 * num_words

25
26 sha3_gas_of_one_hash = sha3_gas (32)

27 gas_for_one_set_of_trs = sha3_gas(transition_bytes) + cd_gas_per_tr + sha3_gas_of_one_hash

28 # Note: Added ‘sha3_gas_of_one_hash ‘ gas cost per tr (transition) because merkle tree hash

cost is 2x number of leaves

29 total_trs_in_block = (( total_gas_in_block - gas_cost_of_merkle_root - fixed_gas_cost) /

gas_for_one_set_of_trs)

30 print(’total�transitions�in�block:’, total_trs_in_block)

31 print(’gas�per�transition:’, total_gas_in_block / total_trs_in_block)

32 eth_block_time = 14

33 print(’avg�txs�per�second ’, total_trs_in_block // eth_block_time*txs_in_a_transition)

34
35 state_root = 32 # bytes

36
37
38 #----------------------------------------
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39
40
41
42 # ERC20 Transfer with ECDSA signature before Istanbul Fork - Note IS_EIP_2028_INCLUDED is

changed to False

43 # Note despite being in a pre -Istanbul set -up , total_gas_in_block = 12.5M instead of 8M is used.

Parameter can be adjusted , tho.

44 ecdsa_sig = 65 # bytes. Note from the signature we can determine the sender

45 recipient_address = 3 # bytes

46 amount = 7 # bytes

47 num_txs_in_transition = 15

48 transition_size = (( ecdsa_sig + recipient_address + amount) * num_txs_in_transition) +

state_root

49 print(’size ,’, transition_size)

50 # Calculate

51 print(’\nECDSA�ERC20�Transfers�b4�Istanbul ’)
52 get_cost_with_transition_size(transition_size , num_txs_in_transition , 0, False)

53
54
55
56 # ERC20 Transfer with ECDSA signature after Istanbul Fork - Note IS_EIP_2028_INCLUDED is changed

to True

57 ecdsa_sig = 65 # bytes. Note from the signature we can determine the sender

58 recipient_address = 3 # bytes

59 amount = 7 # bytes

60 num_txs_in_transition = 15

61 transition_size = (( ecdsa_sig + recipient_address + amount) * num_txs_in_transition) +

state_root

62 # Calculate

63 print(’\nECDSA�ERC20�Transfers ’)
64 get_cost_with_transition_size(transition_size , num_txs_in_transition , 0, True)

65
66
67
68 # ERC20 Transfer with BLS signature before Istanbul Fork - Note IS_EIP_2028_INCLUDED is changed

to False

69 # Note despite being in a pre -Istanbul set -up , total_gas_in_block = 12.5M instead of 8M is used.

Parameter can be adjusted , tho.

70 sender_address = 3 # bytes

71 recipient_address = 3 # bytes

72 amount = 7 # bytes

73 num_txs_in_transition = 15

74 transition_size = (( sender_address + recipient_address + amount) * num_txs_in_transition) +

state_root

75 gas_for_bls_sig = 113000

76 # Calculate

77 print(’\nBLS�ERC20�Transfers�b4�Istanbul ’)
78 get_cost_with_transition_size(transition_size , num_txs_in_transition , gas_for_bls_sig , False)

79
80
81
82 # ERC20 Transfer with BLS signature after Istanbul Fork - Note IS_EIP_2028_INCLUDED is changed

to True

83 sender_address = 3 # bytes

84 recipient_address = 3 # bytes

85 amount = 7 # bytes

86 num_txs_in_transition = 15

87 transition_size = (( sender_address + recipient_address + amount) * num_txs_in_transition) +

state_root

88 gas_for_bls_sig = 113000

89 # Calculate

90 print(’\nBLS�ERC20�Transfers ’)
91 get_cost_with_transition_size(transition_size , num_txs_in_transition , gas_for_bls_sig , True)
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