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Abstract

Migration has long been considered one of the key mechanisms through which la-
bor markets adjust to economic shocks. In this paper, we analyze the migration
response of American workers to two of the most important shocks that have hit
Western economies since the late 1990s – import competition from China and the
introduction of industrial robots. Exploiting plausibly exogenous variation in ex-
posure across US local labor markets over time, we first verify that both shocks
led to a steep reduction in manufacturing employment. Next, we present our main
results, and show that, on average, robots caused a sizable reduction in popula-
tion size, whereas trade with China did not. The decline in population size due to
robots resulted from reduced in-migration into rather than increased out-migration
away from affected areas. In the second part of the paper, we explore the mech-
anisms behind these results. We show that the two labor market shocks differ in
their propagation across industries within local labor markets: while robots caused
negative spillovers to service industries, Chinese imports, if anything, favored em-
ployment growth outside of manufacturing. We provide suggestive evidence that
these propagation patterns are responsible for the differential migration response.
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1 Introduction
Workers’ geographic mobility has long been considered one of the key mechanisms

through which labor markets adjust to local economic shocks (Blanchard and Katz,

1992). It has also been described as one of the distinctive features of the American

economy: relative to their European counterparts, American workers are typically per-

ceived as being significantly more mobile and more responsive to differential economic

opportunities across labor markets (Moretti, 2012). Such responsiveness is, in turn, cru-

cial to both absorb negative economic shocks, and foster dynamism in the economy at the

local and at the aggregate level.1 The role of migration as a re-equilibrating mechanism

may have been especially important in the past twenty years, when US manufacturing

industries have been hit by strong and localized shocks – with Chinese import competi-

tion and industrial robots being widely considered the most important ones (Abraham

and Kearney, 2018).

These two shocks have not only caused a steep decline in manufacturing employment,

but also a rise in inequality of opportunities across labor markets, and a significant

reduction in overall employment rates (Autor et al., 2013; Acemoglu and Restrepo,

forthcoming; Abraham and Kearney, 2018). One explanation proposed in the literature

is that American workers’ unusually low propensity to migrate in response to economic

downturns is responsible for these persistent, regionally concentrated effects (Charles et

al., 2018; Cadena and Kovak, 2016). This view is consistent with evidence showing that

in the past thirty years, the mobility of American workers has displayed signs of declines

(Molloy et al., 2011). At the same time, neither technological nor trade-related structural

changes are likely to level off anytime soon. Recent case studies predict the global robot

stock to double by 2020, and to increase by at least three-fold until 2025 (IFR, 2016;

BCG, 2015). Given the current political climate in the US and many Western countries,

it is also not unlikely that trade volumes with China and other countries will, again,

change considerably in the years to come. Alongside these trends, new technologies

such as Artificial Intelligence (AI) recently started to transform the economy and alter

labor demand patterns (Frank et al., 2019). One of the key questions that policy makers

face today is whether local labor markets will adjust smoothly to the new technological

and trade-induced shocks or if, instead, frictions to labor mobility will prevent this

from happening, leading to persistent levels of unemployment and to growing regional

inequality.
1 For example, Mundell (1961) emphasized the role of migration as an equilibrator mechanism in the

context of optimal currency areas.
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In this paper, we investigate this issue by studying the migration response to both

trade and technology shocks across US Commuting Zones (CZs) between 1990 and 2015.

Specifically, we focus on the effects of two main variables: import competition from

China and the adoption of industrial robots. Following the existing literature (Autor

et al., 2013; Acemoglu and Restrepo, forthcoming), we construct exogenous measures

of local exposure to both shocks by combining the pre-period industrial composition of

CZs with the growth in, respectively, import competition and robot adoption in other

industrialized countries. These measures are highly correlated with the actual increase

in import competition and robots exposure across CZs over time, but are more plausibly

orthogonal to any omitted variable that might be correlated with both the shocks and

changes in economic conditions prevailing in local labor markets over time.

Dividing the sample in three periods (1990-2000; 2000-2007; and 2007-2015), and using

the instruments described above, we estimate stacked first difference regressions to iden-

tify the causal impact of both shocks on the change in CZ population. Specifically, our

empirical strategy controls for any CZ time invariant characteristics, and allows CZs to

be on differential trends depending on several baseline characteristics.2

We first verify that, consistent with existing studies, both shocks significantly reduce

manufacturing employment, albeit the effect of robots is considerably smaller than that

of Chinese imports (Acemoglu and Restrepo, forthcoming, Autor et al., 2013). Then,

we turn to our main result, and show that industrial robots cause a sizable reduction

in population size on average, whereas Chinese import competition does not. Exploring

the potential channels of this migration response, we document that the reduction in

CZ population induced by the robot shock does not arise from increased out-migration

but, instead, from a decline in in-migration.3 According to our most preferred estimates,

each new robot reduces in-migration by about three working-age individuals. This mi-

gration response significantly reduces the extent to which employment losses due to

robots adoption translate into lower employment rates.

The second part of our paper seeks to isolate the causes behind the the differential
2 In particular, we allow for time period specific differential trends in nine broad regions, along a

rich set of demographic characteristics, in four broad industries, and the degree of routine-intensity and

offshorability (following Autor and Dorn, 2013). We also account for potentially differential pre-trends

in population growth.
3 These findings are consistent with recent work by Monras (2018) for the US and Dustmann et al.

(2017) for Germany, who suggest that local labor markets adjust more due to changes in the behavior

of prospective migrants rather than that of incumbent workers.
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migration response to the two labor market shocks. First, and in line with previous

work, we document that the employment effects of robots “spill over” to industries that

are not directly affected, such as business and professional services, as well as retail

(Acemoglu and Restrepo, forthcoming). This pattern differs substantially from that as-

sociated with import competition, whose negative effects remain concentrated within the

manufacturing sector, and, if anything, may cause positive employment effects outside

of the manufacturing sector (Bloom et al., 2019; Ding et al., 2019).

Next, we offer suggestive evidence that spillovers into high-skilled industries may be

responsible for the differential migration response between the two shocks. We find

that robots reduce employment in both low-skilled (mostly within manufacturing) and

high-skilled employment (mostly outside of manufacturing) to a similar extent, and that

the migration response is largely driven by high-skilled individuals. Said differently, our

results suggest that at least some of the employment losses due to the introduction of

robots can be accounted for by high-skill jobs that, in the absence of robots, would have

been created and taken by prospective in-migrants.

Turning to the effects of Chinese imports, we document that regions where non-manufacturing

employment increased experienced a surge in population growth, due to higher in-

migration. Specifically, we find that Chinese imports generate significantly positive

employment effects outside manufacturing in regions with a high degree of specializa-

tion in services (high service intensity regions, HSI), and slightly negative, though not

statistically significant, effects in regions with a low degree of specialization in services

(low service intensity regions, LSI).4 In line with these patterns, we find that import

competition caused a rise in in-migration in HSI regions, and a mild (but not statisti-

cally significant) reduction in population in LSI regions. Overall, our evidence indicates

that, at least in the case of robot exposure and import competition, the migration re-

sponse to local labor market shocks does not depend on the overall employment effects

of such shocks, but, rather, on their impact outside of manufacturing.

One alternative explanation for our results is that the two shocks coincided with differ-

ent macro-economic conditions that, in turn, had differential effects across regions. In

particular, the main thrust of the surge in Chinese imports happened before the Great

Recession, whereas the increase in the number of robots has continued at a similar pace

throughout. One may thus worry that the interaction of the robot shock with recession-
4 This result is broadly in line with Bloom et al. (2019), who show that reallocation of employment

into non-manufacturing in response to the China shock was particularly strong in regions with initially

high levels of human capital.
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ary conditions partly affects our results. Our stacked difference setting allows us to rule

out this possibility: we show that prior to the Great Recession, the migration response

to robots is not only existent but also almost identical in size. A second concern for

the interpretation of our results is that differences in initial characteristics (e.g., the

share of employment in the tradable sector or the share of women in the labor force)

between areas exposed to robots and Chinese imports may explain the differential mi-

gration response. To rule out this possibility, we allow CZs to be on differential trends

in each period according to a large number of baseline characteristics. Reassuringly, all

our results are unchanged.

Our paper contributes to different strands of the literature. First, it is related to the

large set of papers that have studied the local labor market effects of import competition

from China and exposure to robots (Autor et al., 2013; Autor et al., 2014; Dix-Carneiro,

2014; Acemoglu and Restrepo, forthcoming; Bloom et al., 2019; Ding et al., 2019). We

complement these works by analyzing the migration response to these shocks in order to

understand if labor mobility acted as a re-equilibrator, or if, instead, workers’ geographic

immobility might be one of the mechanisms behind the sluggish recovery of local labor

markets after the shocks hit. Although a recent paper by Greenland et al. (2019) has

studied the migration response to import competition from China, to the best of our

knowledge, we are the first to compare the migration response to import competition

and robots alongside one another.5

Second, and more generally, our paper is related to a number of recent works that have

evaluated workers’ geographic mobility following specific local economic shocks (Bar-

tik, 2018; Cadena and Kovak, 2016; Kearney and Wilson, 2018; Monras, 2018). We

expand on these papers by comparing the response of the same local labor markets to

two simultaneous shocks to US manufacturing. Our results suggest that the elasticity

of migration with respect to economic shocks is not a fixed parameter that is indepen-

dent of the type of shocks hitting labor markets. On the contrary, our findings imply

that different shocks can lead to different migration responses, depending on the set of

individuals they affect, and, crucially, on the extent to which they propagate to other

industries in the same local labor market.

Finally, we hope that our paper can inform the design of specific policies aimed at

dealing with different types of shocks in the future. For example, AI is believed to not
5 Our results are somewhat in contrast with Greenland et al. (2019), who find that trade did lead to

a population response. One possible reason for the discrepancy between our results and theirs may be

the more comprehensive set of controls included in our analysis.
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only affect demand for low skilled workers, but to also transform occupations across the

whole range of skills (Brynjolfsson et al., 2018). Recent findings in Webb (2019) indicate

that high-skilled, middle-aged workers are the most exposed segment of the work-force

to AI automation. Given the large heterogeneity in migration elasticities documented in

our work, we conjecture that our findings have important implications on how much AI

technologies are expected to affect unemployment rates, regional inequality, and local

demographics in the years to come. Specifically, the geographic mobility of high skilled

workers may partly mitigate the differential employment consequences of local labor

markets, and for this reason, the impact of AI on local labor markets might be both

qualitatively and quantitatively different from that of a trade shock.

The paper is structured as follows. Section 2 describes the empirical context and presents

the two shocks we consider in our work – that is, the rise of industrial robots and Chi-

nese import competition. Section 3 presents the empirical strategy. Section 4 describes

our data and presents descriptive statistics for the main variables of interest. Section

5 estimates the effects of industrial robots and import competition from China on em-

ployment and, crucially, on internal migration across CZs. Section 6 investigates the

mechanism. Section 7 concludes.

2 Description of shocks
Our empirical analysis is focused on the two labor demand shocks that are widely con-

sidered among the most prominent causes behind the decline in employment rates since

the early 2000s: Industrial robots and import competition from China (Abraham and

Kearney, 2018).6

2.1 Robots

The use of industrial robots in the US and around the world has grown significantly since

the beginning of the 1990s. Advances in the capabilities of robots and reductions in prices

have resulted in a threefold increase of the global robot stock between 1993 and 2015

(IFR, 2016). During the same time period, the stock of robots in the US has increased

by about 1.5 robots per 1,000 workers (Figure 1). The penetration of industrial robots

is highest in the manufacturing sector, where robots typically perform tasks such as
6 Another important factor may have been the Great Recession. However, the decline employment

rates already started in the early 2000s, years before the crisis. It is thus likely that the Great Recession

exacerbated this longer term trend, but is not necessarily a root cause of it (Abraham and Kearney,

2018). We therefore focus on the two shocks to labor demand mentioned above.
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pressing, welding, packaging, assembling, painting and sealing. Within manufacturing,

the automotive industry makes heaviest use of industrial robots, followed by plastics and

chemicals, food and beverages, and the metal industries (basic metals, metal products

and industrial machinery). Outside of manufacturing, industrial robots are also used

for harvesting (agriculture) and the inspection of equipment and structures (utilities)

(Figure 2).

Even though the US has added a large number of robots since the beginning of the 1990s,

the origins of these steep changes likely lie outside of the US. Acemoglu and Restrepo

(2019) argue theoretically and document empirically that demographic trends in aging

countries like Japan, South Korea, France and Germany are likely responsible for the

invention of robots (Acemoglu and Restrepo, 2019). In this argument, a lack of young

and middle-aged workers (between the ages of 21 and 55) that are able to perform rou-

tine, manual tasks in the production process encourages the development of technology

to substitute for such workers. Acemoglu and Restrepo (2019) show empirically that

aging accounts for a large part of the cross-country variation in the development (num-

ber of automation-related patents) and adoption (number of installed robots) of such

automation technologies. Moreover, industrial robots are being exported from aging

countries to the rest of the world. That is, demographic trends in some industrialized

countries can significantly alter the technology frontier even in countries undergoing less

demographic change, such as the US.

2.2 Chinese imports

The speed of the rise in China’s exports to the Western world since the beginning of

the 1990s is unprecedented. China’s share of world exports has grown from roughly

2 percent to above 12 percent between 1990 and 2015. Even more dramatically, Chi-

nese exports to the United States increased by more than 15-fold in the period between

1991 and 2015, from about USD 250 per American worker in 1991 to more than USD

4,000 in 2015 (Figure 1). Given China’s comparative advantage, the growth in exports

to Western countries was highly skewed towards labor-intensive industries within the

manufacturing sector. The growth in Chinese imports per worker was largest in elec-

tronics and electrical equipment, followed by industrial machinery as well as textiles

and apparel. The least affected industries within manufacturing are transport equip-

ment (non-automotive), paper and printing products, and food, beverages and tobacco

(Figure 2).

Two factors are considered the main causes behind the surge of Chinese manufacturing
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since the early 1990s: China’s internal, trade-promoting policy changes in the 1980s and

1990s; and its accession to the World Trade Organization (WTO) in 2001. Beginning in

the 1980s, China introduced several policies to boost its manufacturing exports. Among

the most prominent ones are the creation of special economic zones that granted foreign

investors tax breaks, reduced custom duties and loose labor regulations to encourage

the import and final assemlby of intermediate goods into final exports (Wang, 2013) and

the privatization of state-owned firms to enhance productivity (Hsieh and Song, 2015).

These reforms already had a tremendous impact on Chinese exports in the 1990s (Figure

1). This upward trend was only reinforced in the early 2000s with the US granting

China Permanent Normal Trade Relations (PNTR) and China’s accession to the WTO.

These institutional changes reduced tariffs on imported intermediate goods, and lowered

uncertainty of Western firms about potential future changes in trade barriers.

3 Empirical strategy
To identify the effect of industrial robots and Chinese import competition on internal

migration in the US, we estimate the following equation:

∆ lnYc,t = βr
US exposure to

robotsc,t + βc
US exposure to

Chinese importsc,t + X ′c,1990γt + εc,t, (1)

where, in our main results, Yc,t is the number of working-age individuals (15 to 64 year

olds) living in local labor market c at time t.7 Following the literature, we define CZs as

the unit of observation.8 Our dataset contains 722 CZs and in our main specifications

we subdivide the 25 years between 1990 and 2015 into three time periods (1990–2000,

2000–7, 2007–15). Regressions are weighted by a CZ’s 1990 size of the outcome group.9

Standard errors allow for heteroskedasticity and arbitrary clustering by state. We include

a rich vector of baseline characteristics Xc,t to allow for differential trends.10 Given that
7 When we examine the mechanism behind our main result, we also consider other outcome variables,

among others employment (aggregate and by subgroup) as well as in- and out-migrants.
8 CZs are defined as clusters of counties that feature strong commuting ties within, and weak com-

muting ties across CZs. Compared to alternative definitions of local labor markets (counties, states,

or metropolitan areas) they represent economically relevant boundaries (unlike counties or states) and

also cover rural parts of the country (unlike metropolitan areas).
9 Cadena and Kovak (2016) show that, when examining log population size changes across labor

markets of different sizes, efficient weights must account for individuals’ sampling weights to account

for inherent heteroskedasticity. They formally derive optimal weights and show that, in practice, these

weights are almost perfectly correlated with initial population sizes of the outcome group.
10 More precisely, we include interactions between period dummies and (i) nine region dummies and

(ii) a set of pre-determined demographic characteristics, four broad industry shares, and the shares of

routine and offshorable jobs; and the outcome variable in the pre-period (1970–90).
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we estimate a regression in stacked first differences and include region-period fixed effects,

our coefficients of interest, βr and βc, are identified from differences in the exposure to

labor market shocks between CZs in a given time period and region.

We follow Acemoglu and Restrepo (forthcoming) and measure a CZ’s US exposure to

robots as a Bartik-style measure based on each industry’s increase in robot density in the

US between t and t+1 (adjusted for the overall expansion of each industry) and baseline

industry employment shares in CZ c, following Acemoglu and Restrepo (forthcoming).

More precisely, we construct

US exposure to

robotsc,t:t+1

≡
∑
i∈I

`ci,1990

(
RUS

i,t+1 −RUS
i,t

LUS
i,1990

− gUS
i,t:t+1

RUS
i,t

LUS
i,1990

)
, (2)

where RUS
i,t and LUS

i,t refer to the number of robots and employed people in US industry

i at time t, `ci,1990 = Lci,1990/Lc,1990 is the 1990 employment share of industry i in CZ

c, and gUS
i,t:t+1 is a US industry i’s output growth rate between t and t+ 1.

Local labor market conditions such as changes in population size or employment rates

may directly drive the decision of US industries or specialized local labor markets to

adopt robots. To circumvent such endogeneity concerns, we employ the same instrument

as Acemoglu and Restrepo (forthcoming), who replace US industries’ robotization with

that in five European countries and the 1990 employment shares `ci,1990 with those in

1970:

Exposure to

robotsc,t:t+1

≡
∑
i∈I

`ci,1970
1

5

∑
j∈EU5

(
Rj

i,t+1 −Rj
i,t

Lj
i,1990

− gji,t:t+1

Rj
i,t

Lj
i,1990

)
, (3)

where j indicates the five European countries Denmark, Finland, France, Italy and

Sweden.

We construct a CZ’s US exposure to Chinese imports identical to Autor et al. (2013).

Specifically, we construct a Bartik-style measure based on Chinese import growth to the

US between t and t+ 1 and initial industry employment shares in CZ c, such that

US exposure to

Chinese importsc,t:t+1

≡
∑
i∈I

`ci,t

(
MCNUS

i,t+1 −MCNUS
i,t

LUS
i,t

)
, (4)

where MCNUS
i,t is the value of Chinese imports to the US in industry i at time t. To

purge the results of endogeneity resulting from subsequent changes in US demand, we

follow Autor et al. (2013) to construct the exposure to Chinese imports by replacing

Chinese imports to the US with those to eight high-income countries other than the US
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between t and t + 1 and replace the initial industry employment shares in CZ c with

lagged shares. In particular, we construct

Exposure to

Chinese importsc,t:t+1

≡
∑
i∈I

`ci,t−1

(
MCNOT

i,t+1 −MCNOT
i,t

LUS
i,t

)
, (5)

whereMCNOT
i,t refers to the sum of Chinese imports to eight other high-income countries

(Australia, Denmark, Finland, Germany, Japan, New Zealand, Spain, Switzerland) in

industry i at time t.

It is noteworthy that areas especially exposed to either of the shocks do not only differ in

their subsequent population growth, but also in some other observable initial character-

istics (Table 1, column (8)). Regions especially exposed to robots initially had a higher

share of employment in mining, a lower share of workers in manufacturing, offshorable

jobs and tradable industries, more whites and less blacks as well as fewer women in the

labor force. For these initial differences not to bias our results, we make sure to control

for them (as well as the ones with insignificant differences) in our subequent analysis.

4 Data and descriptive statistics
In this section, we introduce the various data sources we use for the construction of our

outcome variables, main variables of interest – a CZ’s exposures to robots and Chinese

imports – as well as the covariates. Then, we provide basic descriptive statistics.

4.1 Migration

Our main outcome variable ∆ lnYc,t:t+1 = lnYc,t+1 − lnYc,t is the change in the log

number of individuals belonging to subgroup Y living in CZ c between period t and t+1.

While we mainly focus on changes in the working-age population (15-64 year olds), we

also consider other subgroups (e.g., by employment status, birthplace, education, and

age). For some analyses we also consider changes in subgroup-specific employment as

a share of total employment, ∆sYc,t:t+1 =
Yc,t+1−Yc,t

Lc,t
, where Yc,t denotes the number of

workers in subgroup Y (e.g., a certain skill-industry combination such as routine, manual

occupations in the manufacturing industry) and Lc,t denotes overall employment in CZ c

at time t. When using a stacked differences dataset containing changes from 1990–2000,

2000-7 and 2007–15, we inflate changes in the two latter periods to 10-year equivalents

for comparability.11

11 That is, we divide changes in both the dependent and explanatory variables from 2000–7 and 2007–

15 by 0.7 and 0.8, respectively, as Acemoglu and Restrepo (forthcoming) and Autor et al. (2013) do.
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We construct the majority of our outcome variables and covariates from IPUMS census

samples for 1970, 1980, 1990, and 2000, as well as the American Community Survey

(ACS) for 2007 and 2015. The sample size varies between 1 and 5% of the overall US

population depending on the year. The main advantage of this data is that it offers a

rich set of covariates for each sampled individual, such as birthplace, education levels,

age, employment status, industry, and occupation. When using ACS data, we use 3-year

samples to increase sample size.12

We complement these data with two other sources of information on population size

changes: First, we use data on aggregate population sizes of each county from the

intercensal estimates of the US Census Bureau. These have the advantage that they are

based on full count census data as opposed to 1–5% samples, but the disadvantage that

they do not feature detailed demographic characteristics. Whenever we use changes in

aggregate (working-age) population, we thus use the intercensal estimates, and when

we examine subgroups of the population (by birthplace, education, age, employment

status), we use IPUMS samples. Second, we use county-to-county migration counts from

the Internal Revenue Service (IRS). These counts are based on 1040 tax return filings,

which include an individual’s address for every year. By tracking address changes from

one year to the next, the IRS is able to report the number of in- and out-migrants of

each county for all years since 1990. We aggregate this data to the CZ level, treating

moves across counties but within a CZ as non-migrants.

Figure 4 presents the evolution of several migration rates in the US between 1980 and

2015. During this period, both cross-county and cross-CZ migration rates have been on

a downward trend (as already documented in Molloy et al. (2011), for example). IRS

and Current Population Survey (CPS) data shows that the cross-CZ and cross-county

migration rates fell by 0.8 and 1.9 p.p., respectively, between 1992 and 2015. These

falls have been accompanied by roughly proportional declines in within- and across-state

moves. Despite falling migration rates in the US overall, there is considerable variation in

the extent to which US Commuting Zones have grown or shrinked in terms of population

size. Net migration rates have been highest in the Northwest and Southeast, and lowest

in the Midwest and Northeast (Figure 3, Panel (a)).
12 The lowest geographic unit available in this dataset is not the county, but the county group (1970

and 1980) and Public Use Microdata Area (PUMA). These are combinations of counties containing at

least 250,000 (1970) or 100,000 people. Since some of these overlap with more than one CZ, we employ

the crosswalks used in Autor et al. (2013), that are based on a probabilistic assignment of individuals

into a CZ and are available at https://www.ddorn.net/data.htm.
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4.2 Exposure to robots

Following Acemoglu and Restrepo (forthcoming), we draw on three data sources to con-

struct the exposure to robots variables: First, data on shipments of industrial robots by

industry, country and year from the International Federation of Robotics (IFR, 2016);

second, initial industry employment shares by CZ from the Integrated Public Use Mi-

crodata Series (IPUMS, Ruggles et al., 2018); and third, employment and output by

industry and year for countries other than the US from the EU KLEMS dataset (Tim-

mer et al., 2007).

The IFR collects data on shipments and operational stocks of industrial robots by coun-

try and industry since 1993 “based on consolidated data provided by nearly all industrial

robot suppliers world-wide” (IFR, 2016, p.25). Industrial robots are defined as “automat-

ically controlled, reprogrammable, multipurpose manipulator[s] programmable in three

or more axes, which can be either fixed in place or mobile for use in 13 industrial au-

tomation applications” (IFR, 2016, p.29). Typical applications of industrial robots are

pressing, welding, packaging, assembling, painting and sealing, all of which are common

in manufacturing industries; as well as harvesting and inspecting of equipment, which

are prevalent in agriculture and the utilities industry, respectively (IFR, 2016, p.31–38).

The IFR data has a few limitations: While it reports aggregate robot stocks from 1993

onwards, it only contains a breakdown by industry for the US starting in 2004. For

the years before 2004, we therefore attribute the aggregate number of robots to indus-

tries proportional to the industries’ shares of the overall stock in 2004. Moreover, the

IFR classification contains three industries that do not directly correspond to an in-

dustry covered in the US census data. These are "Other manufacturing" and "Other

non-manufacturing" as well as "Unspecified". We attribute these robots according to

each industry’s share of robots within each of these categories, e.g., robots reported as

"Other manufacturing" are assigned to more specific manufacturing industries propor-

tional to each industry’s share of precisely assigned robots in manufacturing. Finally,

robot shipments to the US also include robot shipments to Canada and Mexico before

2011. This introduces some measurement error, but should not be a large concern as

the US accounts for the vast majority of robot shipments to North America (over 90%)

and our IV strategy should correct for this kind of measurement error.

In the exposure to robots variables, we interact this industry-level data on robot growth

in different countries with initial industry employment shares in each CZ. We calculate

these initial employment shares from the IPUMS samples of census and ACS data.
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Additionally, we use data on industry employment and output growth rates by country

and year from the EU KLEMS database.

4.3 Exposure to Chinese imports

In the construction of the exposure to Chinese imports variables, we directly follow Autor

et al. (2013) to extend their measures for the exposure to Chinese imports per worker to

the period 2007–2015.13 To do this, we employ two data sources: First, industry-level

data on the value of Chinese imports in 2007 USD by destination country and year from

the UN Comtrade database (United Nations, 2019); and second, data on initial industry

employment shares by CZ from the County Business Patterns (CBP; US Census Bureau,

2019). These provide county-level employment counts at the same level of granularity

(4-digit classification) as the Comtrade data. One drawback of the CBP data is that

employment counts are often only given in brackets, i.e., as lower and upper bounds.

To get single numbers of employment for all such brackets, we employ the fixed-point

algorithm developed by Autor and Dorn (2013).

4.4 Covariates

With regard to the covariates, we compute initial demographic characteristics and broad

industry employment shares from the IPUMS samples. We also consider two major con-

temporaneous changes to the demand for certain skills as potential confounders, namely

the automation of routine tasks by computers and offshoring to cheap labor locations.

To control for these, we include the initial shares of routine jobs and offshorable tasks,

following Autor and Dorn (2013).

4.5 Descriptive statistics

As a preliminary step, we verify that the correlation between the two shocks we consider

– exposure to robots and import competition – is sufficiently low for us to separately

identify their effects. Figure 3 shows the geographic distribution of the exposure to

robots and to Chinese imports between 1990 and 2015. Both shocks affected mostly the

East of the US, with the robot shock being largely concentrated in the Midwest and

particularly the Rust Belt, and the China shock being more pronounced in the South-

east and Northeast of the country. Reassuringly, the population weighted correlation

coefficient between the two is relatively low at 0.06.14

13 Our measures US exposure to Chinese imports and Exposure to Chinese imports directly correspond

to the ∆IPWuit and ∆IPWoit in Autor et al. (2013), respectively. We choose the different naming to

underline the conceptual similarity to the (US) exposure to robots variables.
14 A fact already documented in Acemoglu and Restrepo (forthcoming).
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Table 1 reports summary statistics for the main variables considered in our work. Col-

umn (1) provides means across all 722 CZs included in our sample. Columns (2) and

(3) then restrict the dataset to the upper quartile of CZs with regards to their exposure

to robots and Chinese imports, respectively. Columns (4) to (7) show the same aver-

ages, but now by quartile of their relative exposure to robots over Chinese imports.15

The first quartile in column (4) thus includes CZs that have been particularly exposed

to Chinese imports and not robots, and vice versa for the fourth quartile in column

(7). Column (8) reports the difference between columns (7) and (4) and indicates its

statistical significance.

We start by examining the change in two important outcomes – log employment and

log working-age population – across these different subsamples in the first two columns.

In line with Acemoglu and Restrepo (forthcoming) and Autor et al. (2013), CZs most

exposed to either of the two shocks have, on average, experienced weaker employment

growth than the average CZ. Moreover, population growth was lower in CZs more ex-

posed to either of the two shocks. This difference is, however, considerably more pro-

nounced for CZs exposed to robots than those exposed to Chinese imports. Column (8)

underlines this difference from a slightly different angle, comparing not areas exposed to

either of the shocks to the overall average, but areas especially exposed to robots with

areas especially exposed to Chinese imports. That is, we compare regions in the first and

fourth quartile with respect to the exposure to robots relative to the exposure to Chinese

imports. This admittedly crude comparison suggests that robots and Chinese imports

reduce employment to a similar extent, but robots affect migration patterns (i.e., reduce

population growth) to a significantly larger extent than Chinese import competition.

5 Main results
This section presents our main results. First, consistent with existing work from Autor

et al. (2013) and Acemoglu and Restrepo (forthcoming), Section 5.1 documents that

both import competition and exposure to robots reduced manufacturing employment.

Next, Section 5.2 shows that, despite similar employment effects, only exposure to robots

– but not that to trade – reduced CZ population. Unpacking the margins behind the

migration response to robots, Section 5.3 shows that the reduction in CZ population

was due to lower in-migration rather than to higher out-migration. Finally, Section 5.4

performs a variety of robustness checks.
15 Relative exposure to robots over Chinese imports is defined as the difference between a CZ’s stan-

dardized exposure to robots (mean of 0, sd of 1) and its standardized exposure to Chinese imports.
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5.1 Manufacturing employment

Our main focus is to understand how migration responds to changes in employment

opportunities driven by local exposure to robots and import competition. Since both

shocks are concentrated within manufacturing (Figure 2), we start our analysis by com-

paring their effects on manufacturing employment. We estimate Equation (1) using

as dependent variable the change in log employment in the manufacturing sector, and

report 2SLS results in Panel A of Table 2.16

In column (1), we only include interactions between time period and census division

dummies as covariates. Already this relatively parsimonious specification indicates that

both shocks reduce manufacturing employment considerably. Both coefficients are nega-

tive and statistically significant at conventional levels, with the effect of Chinese imports

being more than twice as large as that of robots (–5.57 vs. –2.33). In columns (2) to (5),

we gradually add more covariates to allow for differential trends along a set of observable

initial characteristics.

We start by including the outcome variable between 1970 and 1990 (in this case, the

change in log manufacturing employment) to capture secular labor market trends as a

potential confounder. Doing so somewhat reduces the magnitude of the coefficient and

the standard error on the effect of robots, whereas the effect of Chinese imports becomes

larger (in absolute value). These changes suggest that manufacturing might have been

on a downward trend in areas exposed to robots, and on an upward trend in areas

exposed to Chinese imports, though not pronounced enough to explain the majority of

the effect.

Columns (3) and (4) add interactions between period dummies and several 1990 char-

acteristics – in particular, a set of demographic characteristics (log population size, the

share of men, the share of the population above 65 years old, the share of the population

with less than a college degree, the share of the population with some college or more,

the population shares of Hispanics, Blacks, Whites and Asians, and the share of women

in the labor force) and shares of employment in broad industries (agriculture, mining,
16 Results from the first stage regressions are presented in Panels A and B of Table A3. Both in-

struments are highly correlated with their respective endogenous counterparts in all specifications. In

some specifications, also the instrument of the respective other shock has some predictive power over

the endogenous variable. To rule out that the effects in Panel A of Table 2 are identified from the

unintended instrument, we run the same regression again in Panels C and D, but now as two separate

IV regressions for each of the shocks (including the other instrument as a control variable). Results

remain almost identical.
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construction, manufacturing). Adding this battery of controls leaves the effect of robots

unchanged and somewhat reduces the (negative) effect of Chinese imports; in both cases,

however, results remain quantitatively large and statistically significant at the 1% level.

Finally, in column (5), we include the shares of routine and offshorable jobs in 1990, both

interacted with period dummies, so as to capture the potentially confounding effects of

other contemporaneous changes. In particular, we aim to control for the automation of

routine tasks through the spread of computers and increased offshoring to cheap labor

locations due to reduced trade costs. Once again, the inclusion of additional controls

leaves the precision and the magnitude of both point estimates virtually unchanged.

In sum, the evidence documented thus far confirms findings in Acemoglu and Restrepo

(forthcoming) and Autor et al. (2013) and shows that both robots and Chinese imports

considerably reduce manufacturing employment. The point estimates in our preferred

specification in column (5) imply that one standard deviation increase in exposure to

robots and Chinese imports reduces employment by 1.52 and 5.49 percent per decade,

respectively. These are slightly smaller in absolute terms than the effects identified in

previous work (Acemoglu and Restrepo, forthcoming, Table A15; Autor et al., 2013,

Table 5; and Bloom et al., 2019, Table 2) but not statistically significantly different

from these. This negligible difference might arise from our more conservative set of

covariates, and in particular, interactions between pre-determined characteristics and

period dummies.

5.2 Migration

Having confirmed the pronounced, negative effects of robots and Chinese imports on

manufacturing employment documented in previous work (Acemoglu and Restrepo,

forthcoming; Autor et al., 2013), we move to our main analysis, and study the impact

of robots and Chinese imports on migration. To do so, we estimate Equation (1) using

the change in log working-age population as dependent variable. Results are reported

in Panel B of Table 2.17

As before, we start with a parsimonious specification, which only includes interactions

between period and census division dummies (column (1)). Results are striking: de-

spite the similar, negative effect on manufacturing employment, the two shocks have a
17 See Panels A and B of Table A4 for first-stage results of these specifications. As in Table A3, both

instruments are highly correlated with their respective endogenous counterparts in all specifications.

Again, in some specifications, also the instrument of the respective other shock has some predictive

power over the endogenous variable. Panels C and D show that this does not change our results.
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strongly different impact on migration. In particular, while robots lead to a significant

reduction in population growth, Chinese imports have no detectable effect on popula-

tion size. As in Panel A, we sequentially add more covariates in columns (2) to (5).

Compared to Panel A, we now add pre-trends with respect to migration (rather than

employment), but all remaining covariates are the same as before. The pattern that only

robots induce a migration response remains unchanged when adding pre-trends, initial

demographic characteristics, broad industry shares and contemporaneous changes as

control variables. Adding this battery of control variables reduces the size of the effect

of robots by more than 50%, but leaves it significant at least at the 1% level in all

specifications.18 The effect of Chinese imports is not statistically different from zero in

any of the specifications.

The point estimate in our most preferred specification (column 5) implies that one

standard deviation increase in exposure to robots reduces population growth by 0.62

percentage points per decade. Since one standard deviation change in robot exposure

corresponds to an increase of roughly 0.87 robots per thousand workers, our estimates

imply that one additional robot per thousand workers reduces population growth by

0.71 percentage points. Given an average population growth of 9.3 percent per decade

across all CZs, this implies that one more robot per thousand workers causes population

growth to fall by 7.7 percent.19

In contrast with our results, Greenland et al. (2019) find that the China shock triggered

a migration response. However, their analysis differs from ours in that they rely mostly

on the Pierce and Schott (2016) definition of the China shock, and estimate stacked dif-

ference regressions for the time periods 1990–2000 and 2000–2010. Since we are worried

about the Great Recession as a potential confounder, in our baseline specification, we

chose to end our second period in 2007. In Table A6, we explicitly test whether using

the Pierce and Schott (2016) treatment of the China shock changes our results. The

effect of Chinese imports on population growth is negative and statistically significant

only when using a relatively parsimonious specification. However, these results appear
18 Acemoglu and Restrepo (forthcoming) also find evidence for a negative migration response to robots,

although their coefficient is less precisely estimated. Table A5 shows that this difference is not due to

any differences in the set of control variables, but due to i) using intercensal estimates based on full

counts instead of IPUMS samples and ii) interacting controls with time period dummies.
19 While we prefer the stacked difference specification as it allows us to more flexibly control for poten-

tial, contemporaneous changes during the time periods we observe, we also estimate the corresponding

long difference (1990–2015 and 1990–2007) specifications in the Appendix (Table A2). The results are

unchanged.
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to be non-robust to controlling for demographics, industry shares or contemporaneous

changes, or to focusing on the time period before 2007. We thus interpret the discrep-

ancy between our findings and those in Greenland et al. (2019) as due to the different

(more stringent) set of controls included in our analysis.

5.3 In-migration vs. out-migration

Lower population growth in a region may result from increased migration out of or

reduced migration into it. On the one hand, a worker displaced by robots might choose

to move to another location to find a new job. On the other, it is possible that prospective

in-migrants choose not to move to a place where their chances of finding a job have

deteriorated due to robots.

We explore these two potential channels explicitly in Table 3. The dependent variables

are the log counts of migrants in columns (1) to (3), and migration rates in columns

(4) to (6). Panel A focuses on in-migrants, whereas Panel B turns to out-migrants.

Since IRS migration data only starts in 1990, Equation (1) is estimated only for the

period 2000–2015 in order to include pre-trends as a control. Results show that robots

reduce in-migration, and do not lead to increased out-migration. The point estimates in

columns (3) and (6) imply that one standard deviation increase in exposure to robots

reduces the number of in-migrants by about 1.74 percent, or the 10-year in-migration

rate by roughly 0.20 percentage points.

To interpret the magnitude of this effect, our estimates imply that one additional robot

per thousand workers reduces the in-migration rate by about 0.23 percentage points

(0.20/0.87). Since the average decadal in-migration rate during our sample period is 41

percent, this implies a 0.56 percent reduction in the in-migration rate. Extrapolating

these numbers at the national level to illustrate the magnitudes, our estimates would

imply that one additional robot per thousand workers lowers migration flows by 370,000

working-age individuals. One additional robot per thousand workers is equivalent to

120,000 more robots in the US. Thus, our estimates imply that each additional robot

reduces in-migration flows by three working-age individuals. Between 1993 and 2015,

the number of robots in the US has increased by almost 190,000, implying a reduction

in in-migration flows of 570,000 working-age people.20

In Table 4, we explore in more detail where this reduction in in-migrants originates

from. Columns (1) and (4) replicate our results with full controls from Table 3. Next, in
20 Of course, one should not interpret these number literally, since we are not accounting for general

equilibrium effects.
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columns (2)–(3) and (5)–(6), we split up overall in-/out-migrants into those originating

from/moving to places that are less and more than 300 miles away.21 The reduction

seems to stem from both closeby locations and far away regions. From these results,

it is not clear which of the two forces is stronger. In column (5), we also estimate a

negative effect of robots on out-migration into closeby regions. This is likely due to

the fact that the robot shock is clustered geographically (Figure 3) and thus reduced

in-migration from nearby locations inevitably comes from areas that are also highly

affected by robots, too.

Columns (1)–(3) also suggest that the insignificant effect of Chinese imports in in-

migration masks substantial heterogeneity by distance. In column (2), we find some

evidence for Chinese imports increasing in-migration from nearby regions, though not

strongly enough to translate into a significant effect on overall in-migration. These may

be explained by the partly positive employment effect of Chinese imports in industries

housing highly mobile individuals (Bloom et al., 2019). We return to this point in Section

6 below.

We conclude that prospective in-migrants avoid places that suffered due to robots. The

effect is visible for in-migrants from both close and distant labor markets. Moreover,

since the robot shock is highly clustered, this reduced in-migration is also associated

with reduced out-migration from nearby areas. Most importantly, we find no evidence

for existing residents or displaced workers actively leaving affected areas.22 Perhaps

surprisingly, given their stronger, direct negative effect on manufacturing employment,

we find no evidence for Chinese imports reducing population growth. Before further

exploring the mechanisms behind our results, in the next section, we verify that our

results are not affected by pre-existing trends correlated with either of the two labor

market shocks.
21 One drawback of the IRS migration data is that it only contains exact numbers of county-to-county

migration flows for combinations with at least ten moves from one county to the other. If there are

less than ten moves, they are reported as "Other flows - same state", "Other flows - different state" or

"Other flows - foreign". We treat the former group as a move within a 300 mile distance and the latter

two as moves to/from more than 300 miles away.
22 The importance of inflows rather than outflows as an adjustment mechanism is in line with Dust-

mann et al. (2017), who find that reduced employment of natives due to a labor supply shock in

Germany is mainly driven by reduced inflows into employment, and Monras (2018), who shows that

population adjustments in response to the Great Recession are mainly due to disproportionate decreases

in in-migration.
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5.4 House prices

Lower in-migration should result in lower demand for housing. In turn, if housing supply

is not perfectly elastic, this should lead to reduced house prices in robot-exposed areas.

We empirically test this hypothesis in Table 5, which follows the same structure as Table

2 now focusing on the change in the log house price index (using data from the Federal

Housing Finance Agency on house prices by county covering 414 out of 722 CZs in 1990)

as the dependent variable.

We estimate Equation (1) for the period 2000–2015 in order to include pre-trends as

a control for a large number of CZs. Results in our preferred specification (column 5)

show that robots reduce house prices significantly.23 In contrast, Chinese imports do not

have any significant effect on house prices once we allow CZs to be on differential trends

depending on broad industry shares (columns 4 and 5). These results are consistent with

the differential migration response to both shocks documented before. Our estimates

imply that a one standard deviation increase in exposure to robots reduces house prices

by 2.52 percent, or that one additional robot per thousand workers reduces house prices

by 2.90 (2.52/0.87) percent.

5.5 Pre-trends

One potential threat to our identification strategy is that areas more exposed to robots

and Chinese imports may have experienced significantly higher or lower migration rates

prior to the treatment period. For example, if areas more exposed to robots have had

significantly lower population growth before the invention of robots, these results may

reflect secular trends in migration patterns and not the effect of robots. In our main

results, we control for potential pre-existing trends by explicitly including them as a

covariate. However, to provide greater clarity on pre-existing patterns, we explore these

more explicitly in this section.

We estimate the same regressions as before, but now using the time period 1970–1990,

a time when robot technology was, if anything, still in its infancy and China had not

started its surge in exports. We regress changes in the log counts of the working-age
23 Instead, we do not detect any significant effect on rents. This is in contrast to Acemoglu and

Restrepo (forthcoming), who find a reduction in rents in response to robots. This difference is due to

the fact that we include interactions between control and period dummies in all of our specifications. One

possible reason why robot exposure in our setting reduces house prices and not rents is that individuals

responsible for reduced in-migration are more likely to be homeowners. Another possibility is that rents

may be slower to adjust than house prices.
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population in this pre-period on the future exposure to robots and Chinese imports,

defined as the average exposure in the three subsequent time periods 1993/91–2000,

2000–7 and 2007–15. The results are shown in columns (1) and (2) of Table 6. In column

(1), we include all the covariates from our preferred specification in column (5) of Table 2,

except for the contemporaneous changes, which may have played a smaller role between

1970 and 1990. Next, we include also the control variables for contemporaneous changes

interacted with time periods, in an attempt to exactly mimic our preferred specification,

only now for the period 1970–1990. Reassuringly, neither of the two shocks’ coefficients

is statistically significant in either of the two columns.

In columns (1) and (2), we cannot detect any statistically significant pre-trends in overall

population growth in areas exposed to robots or Chinese imports, given the standard

errors of the estimates. However, the point estimates are relatively large (e.g., –0.50 in

column (2) compared to –0.62 in our preferred specification). It is thus possible that

not accounting for pre-trends may bias our results. In particular, assuming population

growth patterns are persistent, it may bias the coefficient on the exposure to robots and

China to be more negative and positive, respectively. For this reason, we specifically

control for pre-trends in all of our reported results.

In columns (3)–(6), we again turn to the period 1990–2015 and explore how sensitive

our main results are to the inclusion of pre-trends in different ways. In column (3), we

repeat our main specification from column (5), Panel B of Table 2, which includes the

change in the log working-age population between 1970 and 1990. Note that the effect

of the pre-trends themselves is positive and significant at the 1% level, suggesting that

there is some persistence in population growth patterns over time. Column (4) is almost

identical, only that it does not account for pre-trends in any way. Not accounting for pre-

trends adjusts the estimated coefficient on the exposure to robots and Chinese imports

in the expected direction. Compared to our preferred specification, the effect of robots

becomes slightly larger in absolute terms (-0.77 vs. –0.62) and remains significant at all

conventional levels. The effect of Chinese imports becomes more positive and appears

to be slightly significant (at the 10% level) when not accounting for pre-trends.

In columns (5) and (6), we test whether alternative ways of accounting for pre-trends

affect our main results. In column (5), we interact changes in log working-age population

from 1970–90 with time period dummies, thus allowing pre-existing trends to potentially

dissipate over time. The effects of robots and Chinese imports remain unchanged, and

there is some evidence for pre-existing patterns becoming less important over time. In
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column (6), we include the change in working-age population not from 1970–90, but

from the directly preceding period. We are worried that by doing so, we might add

a variable that has itself been affected by robots and Chinese imports (i.e., a “bad

control”). Nonetheless, it is reassuring that our main results remain unchanged also in

this specification.

In sum, these results show that there are no significant pre-trends in population growth

in areas exposed to either robots or Chinese imports, and that accounting for such

pre-trends in several ways nonetheless does not alter our main conclusion.24

6 Mechanism
In this section, we seek to reconcile the seemingly counter-intuitive result that, although

both shocks reduced manufacturing employment, only robots were associated with a

significant migration response.25 To do so, we analyze the employment effects of the

two shocks in more detail, testing how each of them affected employment outside the

manufacturing sector.

6.1 Effects on non-manufacturing and total employment

Our analysis so far has focused only on the effects of robots and import competition on

employment within the manufacturing sector. This analysis likely identifies the direct

effects of the two shocks, as both the growth of robots and of Chinese imports is largely

concentrated in several manufacturing industries (Figure 2). However, solely focusing on

manufacturing employment may miss important aspects of the adjustment mechanism,

such as demand spillovers or labor reallocation into non-manufacturing industries.

We now turn to the effects of both shocks on non-manufacturing and on total employ-

ment. Table 7 presents results from this exercise. To ease comparisons, Panel A repeats

results for manufacturing employment reported before. Then, Panels B and C show

results for non-manufacturing and total employment, respectively. Robots have simi-

larly strong, negative effect on employment both within and outside of manufacturing
24 It remains possible that another, unobserved factor that may be correlated with the exposure

variables gives rise to population growth patterns that are mildly different in the pre-period and strongly

different in the treatment period. We estimate our preferred specification again, but now including not

region-time dummies (9 × 3 = 27) but instead more granular state-time dummies (48 × 3 = 144) to

account for any state-specific unobservable characteristics. Reassuringly, our results remain almost

identical (i.e., -0.68** vs. -0.62*** for robots, and insignificant, positive coefficients for China).
25 This pattern is even more puzzling given that the direct effect of robots on employment (i.e., within

manufacturing) was considerably smaller, in absolute value, than that of Chinese imports.
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(panels A and B). These findings suggest that in the case of robots, indirect effects are

quantitatively large and potentially important in understanding the transmission of this

shock into migration responses.

In contrast with the patterns documented for robots, the effect of Chinese imports

remains entirely concentrated within manufacturing.26 If anything, our estimates suggest

that Chinese imports may have a positive effect on employment outside of manufacturing.

One possible explanation for this might be that trade exposure lowered physical input

prices and induced firms to reallocate towards services (Bloom et al., 2019; Ding et al.,

2019).

Consistent with the previous two panels, Panel C shows that robots caused overall

employment to decline, while Chinese imports likely induced a reallocation of economic

activity across sectors, which offset the employment losses within manufacturing.

6.2 Spillovers to other industries within CZ

We interpret any effects of these shocks outside of their industries of origin (within manu-

facturing) as indirect effects, such as negative demand spillovers (e.g., displaced workers

consuming less) or positive productivity spillovers (e.g., firms that become more produc-

tive expanding labor demand in non-directly affected domains) from manufacturing to

other industries in the same CZ.

Our previous results indicate that the two shocks differ substantially in the spillovers

they create outside manufacturing. To get a more precise picture of the differences

in spillovers, we separately estimate the effect of robots and Chinese imports on the

employment shares of 44 industry-skill combinations.27 Results are presented in Figure

5. Each cell in Panels (a) and (b) plots the coefficient on the (standardized) exposure to

robots and Chinese imports, respectively, in a regression identical to the ones in column

(5) of Table 2, but using the change in employment per corresponding industry-skill

combination as a share of initial CZ employment as the outcome variable. Since outcomes

are expressed in percentage points, it is important to rule out that the underlying initial

shares in each cell significantly differ from one another in areas affected by the two

shocks. Panels (c) and (d) provide visual inspection of this, reporting the initial share
26 These results are also consistent with Acemoglu and Restrepo (forthcoming), who find negative

demand spillovers of robots into service industries, and Autor et al. (2013), who find no significant

negative employment effect of Chinese imports on non-manufacturing.
27 See Section A.1 for details on how we define skill groups using data from the 1980 Dictionary of

Occupational Titles (DOT).

22



of employment in each cell, weighted by their exposure to robots and Chinese imports,

respectively.

Panel (a) documents that robots most strongly reduce employment in routine, manual

occupations in the manufacturing industry. The effect is not limited to this industry-skill

combination, but is also visible in other skill groups within manufacturing and, most

notably, also in industries that were not directly affected, such as business services,

professional services, retail, and construction. Panel (b) shows that the effect of Chinese

imports is also strongest for manufacturing, though not only in routine, manual, but

also in abstract, cognitive occupations. Similar to robots, the effect is visible across all

occupations within the manufacturing industry. In contrast to robots, however, there

are positive effects on employment in almost all industry-skill combinations outside of

manufacturing. These results suggest that there is a stark difference in how each of these

shocks was transmitted throughout the economy. While robots’ negative effect likely

caused negative (potentially demand) spillovers into other industries, Chinese imports

induced positive (potentially productivity) effects in other industries.28

6.3 Heterogeneous elasticities to migrate

Figure 5 shows that a defining difference between these two shocks is the extent to which

they spill over into industry-skill groups that were not directly affected, such as abstract,

cognitive occupations in retail or professional and business services. Given that these are

also the industry-skill cells that tend to employ more mobile (i.e., high-skilled) workers,

these spillovers might potentially also be the cause of the negative in-migration response

to robots.

If this conjecture were true, one should observe that i) robots reduce employment of

more mobile groups; and ii) precisely these groups are most affected in their migration

response. We explore this possibility by estimating the same specification as in column

(5) of Table 2, but now using the change in log employment and working-age population

by subgroup (i.e., high- and low-skilled, and young, middle-aged, and old). Results of

this exercise are presented in Figure 6 for employment and migration in Panels A and B

respectively.29 The first column replicates the aggregate results of column (5) of Table 2,

while the following columns present the estimated coefficients by subgroup. Consistent
28 The positive effect of Chinese imports on employment outside of manufacturing, and in particular,

professional services and management, is in line with firm-level evidence of industry switching in Bloom

et al. (2019).
29 See Figure A1 for the corresponding results for China, and Table A7 for detailed regression results.
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with Acemoglu and Restrepo (forthcoming), employment effects display relatively little

heterogeneity across demographic and skill groups: robots reduce low-skilled (less than

college) and high-skilled (some college or more) employment to a similar extent. Middle-

aged workers (31–50 years old) are the most affected of the three age groups, followed by

younger individuals (18–30). However, these differences are never statistically significant.

If spillovers into high-skilled occupations such as business and professional services in-

deed drove the migration response, high-skilled individuals should also feature a higher

elasticity to migrate. Panel B supports this interpretation, and documents that high

skilled individuals mainly drive the migration response to robots.30 Our estimates im-

ply that a 1 percent decline in employment corresponds to a 0.60 percent decline in

population size among the high-skilled sub-group of the population. Notably, this re-

sponse is more than twice as strong as that of low-skilled individuals, who only respond

with a 0.28 percent decline in population size. Among the different age groups, middle-

aged individuals are estimated to be the most mobile (0.56 percent), and somewhat

surprisingly, younger people to be the least mobile (0.29 percent).

To bolster confidence that differential spillovers into non-manufacturing (and not some

other, potential difference between the two shocks) drive our main results, we next show

that the same patterns are also visible for the China shock once effect heterogeneity

across regions is accounted for. To do so, we exploit the substantial variation across

regions in the effects of Chinese import competition on non-manufacturing employment

(Bloom et al., 2019). In Table 8, we re-estimate our preferred specification, augmenting

it with interactions between each exposure variable and dummies equal to one if a

CZ was, respectively, a high service intensity (HSI) or a low service intensity (LSI)

area.31 In columns (1)–(3), we examine the impact on total, manufacturing, and non-

manufacturing employment, and in columns (4)–(6) the impact on overall population

growth, in-migration and out-migration, respectively.

Results show that Chinese imports lead to employment growth outside manufacturing

in areas with an initially high service intensity. Consistent with our proposed mecha-

nism, these CZs also experience significantly higher population growth, due to increased

in-migration. In contrast, our estimates suggest that CZs with initially low service
30 In addition to high-skilled individuals, one might have expected immigrants to be relatively mobile,

too, as shown in Cadena and Kovak (2016). We explicitly explore this in Table A7, columns (7) and

(8), Panel B. Our results cannot speak to this, as the effect of robots on employment of immigrants is

estimated to be close to zero.
31 We base our sample split using the CZ 1990 share of employment in services.
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employment shares experience, if anything, negative spillovers into non-manufacturing,

resulting in a significantly negative employment response overall. Results on Chinese

imports in columns (1), (3) and (4) also indicate that what matters for the migration

response is not the effect of a shock on overall employment, but specifically the effect

on non-manufacturing. We believe this is an important result, which can have relevant

implications for the design of government policies aimed at smoothing local economic

shocks.

6.4 Alternative mechanisms

We now explore the possibility that the two shocks may differ systematically along key

dimensions, and for this reason led to differential migration responses. Broadly, we view

these alternative explanations as falling in two (non-mutually exclusive) categories: first,

the two shocks may differ in the time period during which they affected the economy;

second, the set of regions exposed to either shock may differ according to some pre-

existing characteristics.

Affected time periods. First, the two shocks may differ from each other in terms

of the time period, and thus the macroeconomic conditions, during which they hit the

economy. This may in turn affect the transmission of a shock throughout the economy

and, in particular, whether or not it induces a migration response. For instance, it

is conceivable that prospective in-migrants are more cautious in their location choice

when labor markets are slacker at the national level. In the case of the two shocks

we consider, the surge in Chinese imports had largely flattened out before the Great

Recession, whereas the introduction of robots steadily continued at a similar speed

during and after the crisis. However, in what follows, we document that differences

in the macro-economic environment pre-post the Great Recession cannot explain the

differential effects estimated above.

First, we estimate the migration response to both shocks now omitting the post-2007

period. Results are reported in Panel A of Table 9, which follows the same structure

of Table 2. The pattern is almost identical to our initial results that included the post-

2007 period: throughout all specifications, robots have a significant, negative impact

on population growth, whereas Chinese imports have no effect. As before, the effect of

robots roughly halves in size after including a more stringent set of covariates. According

to most our preferred specification (column 5), the magnitude of the effect is almost

identical to that estimated including the post-2007 period (–0.56 vs. –0.62). Given their

standard errors, these are not statistically different from each other. Moreover, even in
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this pre-2007 period we do not detect any migration response to Chinese imports in any

of the specifications.

Second, in Panel B of Table 9, we return to the full sample (incl. post-2007), but

now add interactions between shocks and a post-2007 dummy. We are particularly

interested in the coefficient on the interaction between exposure to robots and the post-

2007 period dummy. If recessionary conditions mediate the migration response to robots,

the coefficient on the interaction should be significant (negative or positive, depending

on the direction of the effect of the Great Recession). Results from our most preferred

specification (column 5) show that this is not the case. The coefficient on the interaction

term is negative but not statistically significant, suggesting that the size of the migration

response to robots does not significantly differ between the pre- and post-crisis period.

Affected regions. Even if regions affected by robots and by Chinese imports are

relatively similar, one may be worried that some differences exist between them along a

few variables (Table 1). To address this concern, we include all such variables as controls

in our preferred specification to account for potential confounding effects along these

characteristics. However, one may still be worried that the mediation of the employment

effect (and in particular, whether it causes a migration response) depends on some of

these characteristics. For example, it is possible that the same shock only causes a

migration response in areas with a large share of college-educated individuals. If areas

affected by robots housed significantly more college-educated workers, the reason for the

differential migration response between the two shocks might partly lie in the initial

characteristics of the affected regions, rather than in the shocks themselves. To rule out

this possibility, we run a battery of tests (unreported) in which we interact each of the

shocks with the initial covariates that significantly differ between the regions affected by

the two shocks (as in Table 1, column (8)). Reassuringly, none of these results support

the view that differences in initial, observable characteristics of affected regions explain

the differential migration response associated with the two shocks.

6.5 Discussion

Our findings suggest that the different propagation across industries within local labor

markets is a key mechanism for why otherwise similar negative shocks to manufacturing

employment generate such disparate migration responses. In what follows, we describe a

conceptual framework to explain when a shock to a given sector can propagate to others,

in turn triggering a “stabilizing” migration response.
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A framework to study spillovers. As suggested in Acemoglu and Restrepo (forth-

coming), robots represent a new factor (e.g., machines) that replaces a subset of tasks

previously performed by human labor. The equilibrium response at the industry-CZ

level can be decomposed into a i) a displacement effect, ii) a composition effect, and iii)

a productivity effect. The displacement effect captures the direct impact of the shock:

robots take over tasks previously performed by workers. The composition effect captures

the surge in demand for labor in non-automated tasks, and acts as a positive (within-

industry) spillover. The productivity effect captures a general equilibrium reaction at

the CZ level. When robots replace human labor, the cost of production falls, and, due

to complementarities in production across industries, demand for labor increases in un-

affected industries. Said differently, the productivity effect exerts positive spillovers to

other industries within a local labor market (i.e., a CZ).

In contrast to robots, import competition can not only replace tasks, but also cause

entire firms to disappear. However, existing evidence indicates that plant closures from

firm deaths are unlikely to have played a major role in the US manufacturing decline

(Bloom et al., 2019; Ding et al., 2019; Fort et al., 2018; Pierce and Schott, 2016). Ac-

cording to this literature, trade with China likely represented not only a threat to US

firms, but also an opportunity to offshore production tasks, in turn reducing the cost of

production. Hence, the China shock might be conceived as Chinese workers, rather than

robots, substituting for US workers in the production of certain tasks in a given industry.

Thus, a model as Grossman and Rossi-Hansberg (2008), where offshoring and trade in

tasks play a central role, offers a fruitful framework to analyze the effects of the China

shock. Specifically, Grossman and Rossi-Hansberg (2008) decompose the response to an

"offshoring shock" in three different effects, which parallel those described previously for

robots from Acemoglu and Restrepo (forthcoming).

Equating the terminology in Grossman and Rossi-Hansberg (2008) with that in Ace-

moglu and Restrepo (forthcoming), the displacement effect corresponds to the labor-

supply effect, the composition effect to the relative-price effect, and the productivity

effect shares the same name. For simplicity, we stick to the terminology of Acemoglu

and Restrepo (forthcoming). In both frameworks, the effects of the respective shocks

– robots in Acemoglu and Restrepo (forthcoming) and trade in Grossman and Rossi-

Hansberg (2008) – can be decomposed into the same forces in terms of direct effects

at the industry level (displacement), spillover effects within the industry (composition),

and spillover effects at the CZ level (productivity).
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We focus on the difference that the productivity effect plays in the transmission of

the two shocks to other industries in the same CZ. While the other two forces might

be relevant as well, we conjecture that the productivity effect is the key driver of the

differential effects observed in our context.32 In our setting, a large productivity effect

in manufacturing may cause employment growth in non-manufacturing, whereas a low

productivity effect may not offset negative demand spillovers from the displacement

effect. In our context, two factors can influence the size of the productivity effect: cost

savings and complementarities.

Cost savings. As noted above, cost savings result from using the new rather than the

old technology. Clearly, higher cost savings are associated with a larger productivity

effect. Existing evidence indicates that offshoring to China is likely to generate higher

cost savings than the introduction of robots: according to BCG (2018), the cost savings

enjoyed by US firms from using Chinese instead of US labor were as high as 75% between

2000 and 2007. Instead, the estimates obtained in Acemoglu and Restrepo (forthcoming)

suggest that the cost savings from using robots instead of US labor are only around 30%.

That is, trade with China was associated with cost savings that were more than twice

as large as those associated with robots. We speculate that one reason for the different

propagation patterns we observe may be the lower productivity gains that firms achieved

when introducing robots, compared to moving production to China.

Complementarities. Another force governing the strength of the productivity effect

is the degree to which industries are complements to one another. This may affect how

much other industries are able to expand due to productivity improvements in directly

affected industries. As Figure 2 shows, the bulk of the impact of the robots shock was

concentrated in the automotive industry, whereas the China shock was concentrated

mainly in the electronics industry. Notably, the automotive industry relies on interme-

diate inputs from the service sector to a much lower degree than the electronics industry.

For example, in 2011, 37% of intermediate inputs in the electronics industry were ac-

counted for by services. In contrast, this number was as low as 8% in the automotive

industry.33 Thus, higher complementarities of China-exposed industries with the ser-

vice sector may be a second factor behind the different propagation patterns estimated

above.

Other explanations: geographic clustering. Yet another feature that may have
32 In companion work, we plan to analyze in more detail potential differences in the other two effects.
33 These numbers are publicly available in the input-output accounts of the Bureau of Economic

Analysis (BEA).
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contributed to the migration response we observe is the different level of geographical

clustering of the two shocks. Figure 3 shows that exposure to robots is far more geo-

graphically clustered than exposure to Chinese imports. Geographical clustering may

partly govern the migration response for two reasons. First, a high geographical con-

centration of a shock may exacerbate any negative demand spillovers not only within

but also between regions. Stated differently, the negative spillovers triggered by a shock

would be lower, the lower the geographical clustering of such shock. It is possible that

higher clustering of robot exposure, by amplifying the magnitude of spillovers, likely

acted as a multiplier for the migration response we estimated. Second, geographic con-

centration may also affect migration directly, as the decision to migrate into or out of a

CZ likely depends not only on the labor market conditions in a given CZ, but also on

those prevailing in neighboring CZs. Prospective in- or out-migrants may use positive

labor market conditions in surrounding CZs as an insurance for a potential job loss or

for finding a new job, respectively. Due to the high geographical concentration of the ex-

posure to robots, this insurance mechanism may have been less pronounced in response

to robots.

7 Conclusion
Labor mobility is an important force that can re-equilibrate local labor markets after

an adverse economic shock. In this paper, we exploit variation in US CZs’ exposures

to robots and Chinese imports between 1990 and 2015 to study the migration response

to these two labor demand shocks alongside one another. Our main result is that, on

average, although both import competition and robots adoption cause large declines

in manufacturing employment, only robots – and not import competition – trigger a

migration response across CZs. Decomposing the margins of the population response to

robot exposure, we find that results are driven by reduced in-migration rather than by

increased out-migration. Stated differently, because of exposure to robots, prospective

in-migrants who would have migrated to the CZ absent the shock chose not to do so.

Conversely, we find no effect of robots on out-migration.

The second part of the paper explores the mechanisms behind these results. It shows

that the two shocks differ in how the initial employment effects are transmitted from

manufacturing to other industries and sectors – not originally impacted by the shocks

– in the same labor market. While robots cause significant employment losses also in

industries not directly affected, Chinese imports, if anything, cause employment growth

outside of manufacturing. We offer suggestive evidence that via these spillovers, only
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robots – but not Chinese imports – worsen employment opportunities for the most

mobile individuals (i.e., high-skilled workers) who, in turn, decide to avoid labor markets

affected by robots. Furthermore, we rule out that these different migration responses

are due to other differences between the two shocks, such as their timing or the initial

characteristics of affected areas. Finally, we offer several potential explanations for why

the two shocks may cause opposite spillovers to other industries.

Findings in our paper might inform the contemporaneous political and economic debate

on the future prospects of American labor markets. There are reasons to believe that

the structural transformation of the US economy will continue in the years to come. By

2025, the stock of industrial robots around the world is expected to grow three to four

times relative to their value in 2015 (BCG, 2015), and the political climate in the US

and other Western countries might lead to dramatic changes (likely reversals) in trade

volumes. Alongside these trends, other potentially labor-replacing technologies such as

AI are expected to cause further changes in labor demand patterns, particularly for

individuals for which we estimate the highest elasticities to migrate (Frank et al., 2019;

Webb, 2019). Our findings suggest that migration might or might not play an important

role in re-equilibrating local labor markets, depending both on the “type” of individuals

affected by the shocks and on the propagation mechanisms across industries generated

by such shocks.
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SOURCES: IFR (2016), United Nations (2019), Timmer et al. (2007)

Figure 1: Temporal variation of robot and China shock. The dashed line represents the

annual number of operational industrial robots in the US between 1993 and 2015 per

1,000 workers in 1990. The dotted line plots total annual imports from China to the US

between 1991 and 2015 per worker in 1990 (in 2015 USD).
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SOURCES: IFR (2016), United Nations (2019), Timmer et al. (2007)

Figure 2: Industry variation of robot and China shock. Panel A presents the growth in

the number of industrial robots per worker in 1990 in five European countries (Denmark,

Finland, France, Italy, Sweden) between 1993 and 2015. Panel B shows the increase

in imports from China to eight high-income countries (Autralia, Denmark, Finland,

Germany, Japan, New Zealand, Spain, Switzerland) per US worker in 1990 between

1991 and 2015. In both panels, values are normalized such that the industry with the

highest growth has a value of 1, and the industries with the lowest growth has a value

of zero.
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(a) Net migration rate

(b) Exposure to robots

(c) Exposure to Chinese imports

Figure 3: Geographic variation in the net migration rate (1992–2015), exposure to robots

(1993–2015), and exposure Chinese imports (1991–2015)
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SOURCES: Current Population Survey (CPS), Internal Revenue Service (IRS)

Figure 4: Evolution of US migration rates, 1980–2015. The black lines (left axis) show

the annual gross migration rates across US Commuting Zones (solid) and counties (long

dashed). The gray lines (right axis) show the annual migration rates across counties,

within states (dashed) and across counties, across state (dotted). IRS values for 2014

are interpolated from values in 2013 and 2015 to account for a discontinuity in the data.
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(a) Exposure to robots (b) Exposure to Chinese imports

(c) 1990 employment shares,
weighted by exposure to robots

(d) 1990 employment shares,
weighted by exposure to Chinese imports

Figure 5: Industry-skill profile of robot shock and China shock. Each cell in Panel (a)

and (b) represents the coefficient on the (standardized) US exposure to robots and US

exposure to Chinese imports, respectively, in a regression identical to the ones in column

(5) of Table 2, but using the change in employment per industry-skill combination ij as

a share of initial CZ employment ((xcij,t+1 − xcij,t)/xc,t · 100) as the outcome variable.

All regressions are weighted by a CZ’s 1990 share of national employment. Panels

(c) and (d) present the 1990 shares of employment in each industry-skill combination

(xcij,t/xc,t · 100) weighted by the exposure to robots and Chinese imports, respectively.
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Figure 6: Effect of robots on employment and migration by subgroup. Panels A and B

present the coefficient on the US exposure to robots in a regression identical to the one

in Table 2, column (5), using log changes in subgroup-specific employment and working-

age population as the outcome variable, respectively, and weighting observations by a

CZ’s 1990 national share of the respective outcome subgroup.
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Table 1: Descriptive statistics

(1) (2) (3) (4) (5) (6) (7) (8)

Exposure Exposure Relative exposure

to robots to China China Robots

Quartiles All Q4 Q4 Q1 Q2 Q3 Q4 Q4–Q1

N 722 181 181 180 180 181 181 361

Change in outcomes, 1990–2015

Log employment 23.7 14.2 15.5 22.1 30.3 23.8 18.5 –3.6

Log working-age population 14.8 12.5 14.9 17.1 19.8 11.4 11.1 –5.9**

Share of employment, 1990 (in %)

Agriculture 4.5 2.2 3.0 4.1 4.8 5.5 3.6 –0.5

Construction 6.6 6.3 6.3 6.4 6.8 6.7 6.3 –0.1

Mining 2.7 1.4 0.9 1.2 2.4 4.1 3.1 1.9***

Manufacturing 24.3 33.7 35.4 30.3 21.8 19.6 25.7 –4.6**

Routine jobs 28.5 30.9 30.2 29.1 28.3 27.4 29.1 0.0

Share of population, 1990 (in %)

Men 48.9 48.6 48.6 48.8 48.9 49.2 48.9 0.1

Above 65 years old 13.4 13.2 13.3 13.3 13.5 13.4 13.2 –0.2

Less than college 67.1 69.5 70.4 68.5 66.2 66.2 67.6 –0.9

Some college or more 28.6 26.5 25.5 27.2 29.6 29.4 28.2 1.0

White 87.0 89.7 86.7 85.2 84.3 88.1 90.2 5.0**

Black 7.8 8.3 11.3 11.0 9.2 4.8 6.1 –4.9*

Hispanic 5.8 1.6 2.1 4.9 6.5 7.5 4.2 –0.8

Asian 0.8 0.7 0.6 0.7 0.9 0.8 0.7 –0.1

Women in labor force 43.7 43.7 44.6 44.9 44.2 43.1 42.7 –2.2***

Standardized indeces, 1990 (mean 0, sd 10)

Offshorability 0.0 4.0 4.2 2.8 0.5 –2.8 –0.4 –3.2**

Tradability 0.0 4.5 5.4 3.4 –1.1 –1.7 –0.6 –4.0***

Note: This table reports unweighted averages of several variables across different subsets of CZs. Column 1
includes all 722 CZs in the sample. Columns 2 and 3 contain only CZs in the top quartile with respect to the
average exposure to robots and Chinese imports, respectively, over the three subperiods 1993/91–2000, 2000–7
and 2007–15. Columns 4–7 group all 722 CZs into quartiles according to their relative exposure to robots and
Chinese imports. To define Q1 to Q4, we first standardize both the average exposure to robots and Chinese
imports variables from columns 2 and 3 to have a mean of zero and standard deviation of one, and then compute
the difference between the two. As a result, observations in Q1 and Q4 are most exposed to Chinese imports and
robots, respectively, relative to the other shock. Column 8 reports the difference between the average value in Q1
and Q4 along with its significance level (which results from a regression of the row variable on a Q4 dummy using
the dataset of only observations in either Q1 or Q4, clustering standard errors by state. Differences with ***, **,
and * are significant at the 1%, 5% and 10% confidence level, respectively).
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Table 2: Effects on manufacturing and migration, stacked differences 1990–2015 (2SLS)

(1) (2) (3) (4) (5)

A. Manufacturing employment
US exposure to robots -2.33*** -1.60*** -1.96*** -1.60*** -1.52***

(0.71) (0.37) (0.40) (0.38) (0.41)

US exposure to Chinese imports -5.57*** -7.50*** -7.04*** -5.50*** -5.49***
(1.24) (1.48) (1.44) (1.64) (1.61)

Kleibergen-Paap F 69.3 58.5 63.1 36.5 33.1

B. Migration
US exposure to robots -1.40*** -0.76*** -0.77*** -0.69*** -0.62***

(0.51) (0.27) (0.21) (0.14) (0.14)

US exposure to Chinese imports -0.02 -0.36 -0.06 0.27 0.41
(0.99) (0.81) (0.81) (0.85) (0.80)

Kleibergen-Paap F 58.2 58.6 52.8 26.5 25.1
Region × time
Pre-trends
Demographics × time
Industry shares × time
Contemp. changes × time

Note: The dependent variable in Panel A and B is the change in the log count of man-
ufacturing employment and the working-age population, respectively, multiplied by 100 (i.e.,
[ln(yt+1) − ln(yt)] · 100). There are three time periods and 722 CZs each period, resulting in
N=2,166. All explanatory variables that are displayed are standardized to have a mean of zero
and a standard deviation of 1. Column (1) includes census division dummies interacted with time
period dummies as covariates. Column (2) also includes the change in the outcome variable between
1970 and 1990. Column (3) also controls for 1990 demographic characteristics (i.e., log population,
share of men, share of population above 65 years old, share of population with less than a college
degree, share of population with some college or more, population shares of Hispanics, Blacks,
Whites and Asians, and the share of women in the labor force), each interacted with time period
dummies. Column (4) also includes shares of employment in broad industries in 1990 (i.e., agri-
culture, mining, construction, manufacturing), each interacted with time period dummies. Column
(5) also includes the share of routine jobs and the average offshorability index in 1990, following
Autor and Dorn (2013), each interacted with time period dummies. Standard errors are robust
against heteroskedasticity and allow for arbitrary clustering at the state level (48 states). Regres-
sions are weighted by a CZ’s 1990 national share of the outcome group in each Panel, respectively.
Coefficients with ***, **, and * are significant at the 1%, 5% and 10% confidence level, respectively.
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Table 3: Effects on in- and out-migration, stacked differences 2000–2015 (2SLS)

(1) (2) (3) (4) (5) (6)

Log count of migrants Migration rates

A. In-migration
US exposure to robots -2.18*** -1.83*** -1.74*** -5.86*** -1.82 -2.03*

(0.68) (0.52) (0.54) (1.46) (1.14) (1.20)

US exposure to Chinese imports 0.14 1.06 1.49 -1.69 1.87 4.20
(1.14) (1.03) (1.10) (4.37) (3.98) (4.49)

B. Out-migration
US exposure to robots -0.71 -0.29 0.00 -1.97 -0.58 -0.15

(0.77) (0.55) (0.54) (1.66) (1.18) (1.12)

US exposure to Chinese imports 0.32 0.97 0.43 -2.24 -0.37 -1.36
(1.10) (1.35) (1.42) (3.63) (4.48) (4.39)

Region × time & pre-trends
Demographics × time &
industry shares × time
Contemp. changes × time

Note: The dependent variables in columns (1)–(3) and (4)–(6) are the log count of migrants and migration
rate, respectively. Panel A focuses on in-migration and Panel B on out-migration. For example, the log
count of in-migrants in columns (1)–(3) of Panel A is defined as the log of the sum of in-migrants in all the
years of the subperiod (e.g., 2000–2007). The log counts of migrants and migration rates are multiplied by
100 and 1000, respectively, and converted to 10-year equivalents. There are two time periods (2000–7 and
2007–15) and 722 CZs each period, resulting in N=1,444. All explanatory variables that are displayed are
standardized to have a mean of zero and a standard deviation of 1. Columns (1) and (4) include interactions
between census division and time period dummies, and the change in the outcome variable between 1992
and 2000. Columns (2) and (5) also control for demographic characteristics (i.e., log population, share of
men, share of population above 65 years old, share of population with less than a college degree, share of
population with some college or more, population shares of Hispanics, Blacks, Whites and Asians, and the
share of women in the labor force) and 1990 shares of employment in broad industries (i.e., agriculture,
mining, construction, manufacturing), each interacted with time period dummies. Columns (3) and (6) also
include the share of routine jobs and the average offshorability index in 1990, following Autor and Dorn
(2013), each interacted with time period dummies. Standard errors are robust against heteroskedasticity
and allow for arbitrary clustering at the state level (48 states). Regressions are weighted by a CZ’s 1990
national share of the working-age population. Coefficients with ***, **, and * are significant at the 1%, 5%
and 10% confidence level, respectively.
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Table 4: Effects on in- and out-migration by distance, stacked differences 2000–2015

(2SLS)

(1) (2) (3) (4) (5) (6)

In-migration Out-migration

Overall <300 mi. >300 mi. Overall <300 mi. >300 mi.

A. Log count of migrants
US exposure to robots -1.74*** -2.14*** -1.68** 0.00 -1.83*** 0.63

(0.54) (0.47) (0.71) (0.54) (0.49) (0.78)

US exposure to Chinese imports 1.49 3.17*** -0.18 0.43 0.87 1.06
(1.10) (1.17) (1.68) (1.42) (1.33) (1.88)

B. Migration rate
US exposure to robots -2.03* -0.33 -1.70* -0.15 -1.27** 0.91

(1.20) (0.93) (0.92) (1.12) (0.57) (0.93)

US exposure to Chinese imports 4.20 2.78 -0.22 -1.36 -1.85 0.66
(4.49) (3.71) (4.69) (4.39) (1.55) (3.97)

Note: The dependent variables in Panels A and B are the log count of migrants and migration rate, respectively.
Columns (1)–(3) focus on in-migration and columns (4)–(6) on out-migration. The log counts of migrants
and migration rates are multiplied by 100 and 1000, respectively, and converted to 10-year equivalents. There
are two time periods (2000–7 and 2007–15) and 722 CZs each period, resulting in N=1,444. All explanatory
variables that are displayed are standardized to have a mean of zero and a standard deviation of 1. All
columns include the full set of covariates interacted with time period dummies, i.e., census division dummies,
1990 demographic characteristics (i.e., log population, share of men, share of population above 65 years old,
share of population with less than a college degree, share of population with some college or more, population
shares of Hispanics, Blacks, Whites and Asians, and the share of women in the labor force), 1990 shares of
employment in broad industries (i.e., agriculture, mining, construction, manufacturing), and the 1990 share of
routine jobs and the average offshorability index, following Autor and Dorn (2013). Moreover, they include the
change in the outcome variable between 1992 and 2000. Standard errors are robust against heteroskedasticity
and allow for arbitrary clustering at the state level (48 states). Regressions are weighted by a CZ’s 1990
national share of the working-age population. Coefficients with ***, **, and * are significant at the 1%, 5%
and 10% confidence level, respectively.
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Table 5: Effects on house prices, stacked differences 2000–2015 (2SLS)

(1) (2) (3) (4) (5)

US exposure to robots -5.75*** -5.25** -4.43*** -2.67*** -2.52***
(1.90) (2.08) (1.02) (0.67) (0.67)

US exposure to Chinese imports -8.82*** -8.63*** -6.25*** 0.93 0.25
(2.66) (2.81) (2.14) (2.54) (3.28)

Region × time
Pre-trends
Demographics × time
Industry shares × time
Contemp. changes × time

Note: The dependent variable is the change in the log house price index (using data from the Fed-
eral Housing Finance Agency on house prices by county covering 414 CZs) multiplied by 100 (i.e.,
[ln(yt+1) − ln(yt)] · 100) and converted to 10-year equivalent changes. There are two time periods
and 414 CZs each period, resulting in N=828. All explanatory variables that are displayed are stan-
dardized to have a mean of zero and a standard deviation of 1. Column (1) includes census division
dummies interacted with time period dummies as covariates. Column (2) also includes the change
in the log house price index between 1990 and 2000. Column (3) also controls for 1990 demographic
characteristics (i.e., log population, share of men, share of population above 65 years old, share of
population with less than a college degree, share of population with some college or more, population
shares of Hispanics, Blacks, Whites and Asians, and the share of women in the labor force), each inter-
acted with time period dummies, as well as the 1990 log house price index. Column (4) also includes
shares of employment in broad industries in 1990 (i.e., agriculture, mining, construction, manufactur-
ing), each interacted with time period dummies. Column (5) also includes the share of routine jobs
and the average offshorability index in 1990, following Autor and Dorn (2013), each interacted with
time period dummies. Standard errors are robust against heteroskedasticity and allow for arbitrary
clustering at the state level (48 states). Regressions are weighted by a CZ’s 1990 national share of the
outcome group in each Panel, respectively. Coefficients with ***, **, and * are significant at the 1%,
5% and 10% confidence level, respectively.
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Table 6: Effects on migration, pre-trends (2SLS)

(1) (2) (3) (4) (5) (6)

1970–1990 1990–2015

US exposure to robots -0.48 -0.50 -0.62*** -0.77*** -0.63*** -0.44**

(0.39) (0.38) (0.14) (0.28) (0.14) (0.18)

US exposure to Chinese imports 1.03 1.04 0.41 1.34* 0.25 0.88

(0.75) (0.65) (0.80) (0.72) (0.80) (0.60)

∆70−90 log working-age population 0.38***

(0.09)

∆70−90 log working-age population 0.49***

× 1990–2000 (0.16)

∆70−90 log working-age population 0.49***

× 2000–2007 (0.07)

∆70−90 log working-age population 0.14***

× 2007–2015 (0.04)

∆t−1 log working-age population 0.35***

(0.12)

Kleibergen-Paap F 57.6 71.2 25.1 72.9 25.5 17.8

Region × time

Demog. × time & ind. sh. × time

Contemp. changes × time

Note: The dependent variable is the decadal change in the log working-age population multiplied by 100 (i.e.,
[ln(yt+1) − ln(yt)] · 100). In columns (1)–(2) and (3)–(6), there are two and three time periods and 722 CZs
each period, resulting in N=1,444 and N=2,166, respectively. In columns (1)–(2), US exposure to robots/Chinese
imports refers to the average of the changes from 1993/91–2000, 2000–7 and 2007–15. Both US exposure variables
are standardized to have a mean of zero and a standard deviation of 1. All columns includes census division
dummies, initial demographic characteristics (i.e., log population, share of men, share of population above 65 years
old, share of population with less than a college degree, share of population with some college or more, population
shares of Hispanics, Blacks, Whites and Asians, and the share of women in the labor force) and initial shares of
employment in broad industries (i.e., agriculture, mining, construction, manufacturing), each interacted with time
period dummies. Columns (2)–(6) also include the initial share of routine jobs and the average offshorability index,
following Autor and Dorn (2013), each interacted with time period dummies. Standard errors are robust against
heteroskedasticity and allow for arbitrary clustering at the state level (48 states). Regressions are weighted by a
CZ’s 1990 share of the national working-age population. In columns (1)–(2), the initial values refer to the year
1970, in columns (3)–(6) to the year 1990. Coefficients with ***, **, and * are significant at the 1%, 5% and 10%
confidence level, respectively.
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Table 7: Effects on employment, stacked differences 1990–2015 (2SLS)

(1) (2) (3) (4) (5)

A. Manufacturing employment
US exposure to robots -2.33*** -1.60*** -1.96*** -1.60*** -1.52***

(0.71) (0.37) (0.40) (0.38) (0.41)

US exposure to Chinese imports -5.57*** -7.50*** -7.04*** -5.50*** -5.49***
(1.24) (1.48) (1.44) (1.64) (1.61)

B. Non-manufacturing employment
US exposure to robots -2.08*** -1.82*** -1.52*** -1.67*** -1.61***

(0.66) (0.57) (0.36) (0.37) (0.37)

US exposure to Chinese imports 1.48 1.37 1.32 0.49 0.58
(1.15) (1.10) (0.95) (1.06) (1.03)

C. Total employment
US exposure to robots -2.73*** -2.03*** -1.86*** -1.58*** -1.54***

(0.85) (0.54) (0.33) (0.27) (0.27)

US exposure to Chinese imports -2.41** -2.91*** -2.46** -0.92 -0.89
(1.11) (1.02) (1.00) (1.07) (1.02)

Region × time
Pre-trends
Demographics × time
Industry shares × time
Contemp. changes × time

Note: The dependent variable in Panel A, B and C is the change in the log count of manufacturing
employment, non-manufacturing employment and total employment, respectively, multiplied by 100
(i.e., [ln(yt+1) − ln(yt)] · 100). There are three time periods and 722 CZs each period, resulting in
N=2,166. All explanatory variables that are displayed are standardized to have a mean of zero and
a standard deviation of 1. Column (1) includes census division dummies interacted with time period
dummies as covariates. Column (2) also includes the change in the outcome variable between 1970
and 1990. Column (3) also controls for 1990 demographic characteristics (i.e., log population, share of
men, share of population above 65 years old, share of population with less than a college degree, share
of population with some college or more, population shares of Hispanics, Blacks, Whites and Asians,
and the share of women in the labor force), each interacted with time period dummies. Column (4)
also includes shares of employment in broad industries in 1990 (i.e., agriculture, mining, construction,
manufacturing), each interacted with time period dummies. Column (5) also includes the share of
routine jobs and the average offshorability index in 1990, following Autor and Dorn (2013), each inter-
acted with time period dummies. Standard errors are robust against heteroskedasticity and allow for
arbitrary clustering at the state level (48 states). Regressions are weighted by a CZ’s 1990 national
share of the outcome group in each panel, respectively. Coefficients with ***, **, and * are significant
at the 1%, 5% and 10% confidence level, respectively.
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Table 8: Heterogeneity of effects by initial service intensity, stacked differences (reduced

form)

(1) (2) (3) (4) (5) (6)

Employment Migration

Total Manuf. Non-manuf. Pop. In-mig. Out-mig.

Exposure to robots -1.06*** -1.09*** -1.12*** -0.40*** -1.43*** 0.11
× HSI (0.13) (0.28) (0.18) (0.11) (0.41) (0.40)

Exposure to robots -1.10*** -1.03* -1.19*** -0.55*** -0.79 -0.48
× LSI (0.30) (0.55) (0.27) (0.20) (0.73) (0.72)

Exposure to Chinese imports 0.51 -3.01*** 1.21* 1.03** 1.63* 0.96
× HSI (0.52) (0.84) (0.63) (0.50) (0.85) (0.95)

Exposure to Chinese imports -1.17** -2.69*** -0.54 -0.41 -0.18 -0.28
× LSI (0.54) (0.91) (0.52) (0.40) (0.54) (0.75)

P(HSI=LSI):
– Exposure to robots 0.89 0.90 0.81 0.46 0.32 0.29
– Exposure to Chinese imports 0.02 0.79 0.02 0.01 0.04 0.19

Note: The dependent variables are the log changes of the subgroup specified in each column. Columns (1)–
(3) focus on employment and columns (4)–(6) on migration. In columns (1)–(4) and (5)–(6), the number of
observations is N=2,166 and N=1,444, respectively. The exposure to robots and exposure to Chinese imports
variables are standardized to have a mean of zero and a standard deviation of 1. HSI and LSI are indicators
for CZs with above and below average shares of workers in the service industry in 1990. All columns include
the full set of covariates interacted with time period dummies, i.e., census division dummies, 1990 demographic
characteristics (i.e., log population, share of men, share of population above 65 years old, share of population
with less than a college degree, share of population with some college or more, population shares of Hispanics,
Blacks, Whites and Asians, and the share of women in the labor force), 1990 shares of employment in broad
industries (i.e., agriculture, mining, construction, manufacturing), and the 1990 share of routine jobs and
the average offshorability index, following Autor and Dorn (2013). Moreover, they include the change in the
outcome variable in the pre-period (i.e., 1970–1990 in columns (1)–(4) and 1992–2000 in columns (5)–(6)) and
a main effect of the HSI indicator variable. Standard errors are robust against heteroskedasticity and allow for
arbitrary clustering at the state level (48 states). Regressions are weighted by a CZ’s 1990 national share of the
outcome group in columns (1)–(4) and a CZ’s 1990 national share of the overall population in columns (5)–(6).
Coefficients with ***, **, and * are significant at the 1%, 5% and 10% confidence level, respectively.
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Table 9: Effects on migration, different time periods (2SLS and reduced form)

(1) (2) (3) (4) (5)

A. 1990–2007

US exposure to robots -1.48*** -0.66*** -0.69*** -0.63*** -0.56***
(0.58) (0.26) (0.25) (0.16) (0.16)

US exposure to Chinese imports -0.56 -0.77 -0.35 -0.21 -0.05
(1.07) (0.92) (0.84) (0.95) (0.90)

Kleibergen-Paap F 41.1 41.6 38.1 16.8 16.0

B. 1990–2015 (with post-2007 interactions)

Exposure to robots -0.89*** -0.49*** -0.51*** -0.43*** -0.38***
(0.26) (0.15) (0.15) (0.10) (0.10)

Exposure to Chinese imports -0.46 -0.52 -0.19 0.04 0.11
(0.67) (0.56) (0.54) (0.43) (0.40)

Exposure to robots -0.26 -0.16 -0.19 -0.22 -0.23
× post-2007 (0.19) (0.19) (0.13) (0.16) (0.16)

Exposure to Chinese imports 1.11** 0.77* 0.29 0.20 0.16
× post-2007 (0.47) (0.45) (0.29) (0.25) (0.24)

Region × time
Pre-trends
Demographics × time
Industry shares × time
Contemp. changes × time

Note: The dependent variable is the change in the log count of the working-age population
multiplied by 100 (i.e., [ln(yt+1) − ln(yt)] · 100). All explanatory variables that are displayed
are standardized to have a mean of zero and a standard deviation of 1 when considering the
full sample of three time periods and 722 CZs. Panel A only includes two time periods (1990–
2000, 2000–7) and Panel B includes all three (also 2007–15), resulting in N=1,444 and N=2,166,
respectively. Column (1) includes only time period and census division dummies as covariates.
Column (2) also includes the change in the outcome variable between 1970 and 1990. Column
(3) also controls for 1990 demographic characteristics (i.e., log population, share of men, share
of population above 65 years old, share of population with less than a college degree, share of
population with some college or more, population shares of Hispanics, Blacks, Whites and Asians,
and the share of women in the labor force). Column (4) also includes shares of employment in
broad industries in 1990 (i.e., agriculture, mining, construction, manufacturing). Column (5) also
includes the share of routine jobs and the average offshorability index in 1990, following Autor
and Dorn (2013). Standard errors are robust against heteroskedasticity and allow for arbitrary
clustering at the state level (48 states). Regressions are weighted by a CZ’s 1990 national share
of employment (Panel A) and the working-age population (Panel B). Coefficients with ***, **,
and * are significant at the 1%, 5% and 10% confidence level, respectively.
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A Appendix

A.1 Skill content of occupation groups

While industries are well defined, the concept of skills is slightly more vague. Two poten-

tial proxies for skills are education levels and occupations. We decide to use the latter,

and in particular, the predominant task requirement of occupation groups. The main ad-

vantage of using occupational task requirements is that it seems more tightly connected

to the capabilities of some technologies. For the same reason, the existing literature also

focuses on tasks rather than education levels. In light of some of the literature’s findings,

using education levels may even yield misleading results. For example, automation of

routine tasks may displace low-education workers performing routine occupations (ma-

chine operators), but have positive spillovers on non-routine, low-education occupations

(personal services). Examining only the subgroup "low-educated" workers would miss

this crucial nuance. Therefore we prefer occupational task requirements over education

levels as a proxy for skills.

We follow Autor et al. (2003) in differentiating skills along four dimensions: abstract/routine

and cognitive/manual. We use data from the Dictionary of Occupational Titles (DOT)

from 1980 to get a proxy for the average task intensity in each of these dimensions for

eight occupation groups. In particular we use the following variables from the DOT,

each of which is rated from zero (low) to ten (high):

• Abstract: Average of Variety & change and Dealing with people

• Routine: Working under specific instructions

• Cognitive: Numerical aptitude

• Manual: Average of Eye-hand-foot coordination and Manual dexterity

We then compute the four products of abstract/routine and cognitive/manual, respec-

tively, and choose the skill dimension with the largest value as an occupation’s pre-

dominant skill requirement. The results of this are shown in Table A1. Using this

methodology, managerial & professional as well as sales support occupations require

mainly abstract, cognitive skills. Administrative support & clerical occupations are the

only group requiring mainly routine, cognitive skills, and machine operators, fabricators

& laborers the only one requiring mainly routine, manual skills. All remaining groups

(technical support, services (e.g., nurses, janitors, cooks), agricultural, crafts & repair)

use mostly abstract, manual abilities.
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Figure A1: Effect of Chinese imports on employment and migration by subgroup. Panels

A and B present the coefficient on the US exposure to Chinese imports in a regression

identical to the one in Table 2, column (5), using log changes in subgroup-specific employ-

ment and working-age population as the outcome variable, respectively, and weighting

observations by a CZ’s 1990 national share of the respective outcome subgroup.
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Table A1: Skill content of occupation groups along four dimensions. Areas shaded in

gray indicate the highest value for each occupation group. Plus and minus signs indicate

that the score of this occupation group is above and below the median of all groups,

respectively.
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Table A2: Effects on migration, long differences (2SLS)

(1) (2) (3) (4) (5)

A. 1990–2015
US exposure to robots -1.28*** -0.69*** -0.72*** -0.76*** -0.76***

(0.46) (0.25) (0.20) (0.16) (0.16)

US exposure to Chinese imports 0.18 -0.41 -0.26 -0.53 -0.53
(0.64) (0.48) (0.51) (0.58) (0.58)

Kleibergen-Paap F 158.1 150.7 107.5 54.9 54.9

B. 1990–2007
US exposure to robots -1.41** -0.68** -0.66** -0.68*** -0.68***

(0.57) (0.27) (0.26) (0.21) (0.21)

US exposure to Chinese imports -0.14 -0.58 -0.32 -0.57 -0.57
(0.99) (0.80) (0.80) (0.86) (0.86)

Kleibergen-Paap F 53.4 52.7 41.5 19.9 19.9
Region dummies
Pre-trends
Demographics
Industry shares
Contemp. changes

Note: The dependent variable in Panel A and B is the 1990–2015 and 1990–2007 change in the log
count of the working-age population, respectively, multiplied by 100 (i.e., [ln(yt+1) − ln(yt)] · 100).
There are N=722 CZs. All explanatory variables that are displayed are standardized to have a mean
of zero and a standard deviation of 1. Column (1) includes census division dummies as covariates.
Column (2) also includes the change in the log count of the working-age population between 1970
and 1990. Column (3) also controls for 1990 demographic characteristics (i.e., log population, share
of men, share of population above 65 years old, share of population with less than a college degree,
share of population with some college or more, population shares of Hispanics, Blacks, Whites and
Asians, and the share of women in the labor force). Column (4) also includes shares of employment
in broad industries in 1990 (i.e., agriculture, mining, construction, manufacturing). Column (5) also
includes the share of routine jobs and the average offshorability index in 1990, following Autor and
Dorn (2013). Standard errors are robust against heteroskedasticity and allow for arbitrary clustering
at the state level (48 states). Regressions are weighted by a CZ’s 1990 national share of the working-
age population. Coefficients with ***, **, and * are significant at the 1%, 5% and 10% confidence
level, respectively.
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Table A3: First-stages and effects on manufacturing employment with partial instru-

mentation, stacked differences 1990–2015

(1) (2) (3) (4) (5)

A. First stage, US exposure to robots
Exposure to robots 0.74*** 0.76*** 0.78*** 0.76*** 0.75***

(0.06) (0.05) (0.05) (0.05) (0.06)

Exposure to Chinese imports 0.12*** 0.07** 0.05* 0.04 0.06**
(0.04) (0.03) (0.03) (0.03) (0.03)

B. First stage, US exposure to Chinese imports
Exposure to robots 0.00 0.01 0.01 -0.02** -0.02**

(0.01) (0.02) (0.01) (0.01) (0.01)

Exposure to Chinese imports 0.65*** 0.62*** 0.60*** 0.49*** 0.49***
(0.05) (0.06) (0.05) (0.06) (0.06)

C. Only robots instrumented (2SLS)
US exposure to robots -2.33*** -1.70*** -2.09*** -1.47*** -1.40***

(0.72) (0.39) (0.43) (0.38) (0.40)

Exposure to Chinese imports -3.60*** -4.68*** -4.23*** -2.73*** -2.70***
(0.77) (0.82) (0.77) (0.70) (0.68)

First-stage F 143.6 215.6 226.4 183.3 166.8

D. Only Chinese imports instrumented (2SLS)
Exposure to robots -6.01*** -7.67*** -7.21*** -5.63*** -5.69***

(1.20) (1.45) (1.42) (1.63) (1.63)

US exposure to Chinese imports -1.72*** -1.22*** -1.52*** -1.21*** -1.15***
(0.44) (0.27) (0.27) (0.28) (0.29)

First-stage F 138.0 116.1 126.6 73.0 65.5
Region × time
Pre-trends
Demographics × time
Industry shares × time
Contemp. changes × time

Note: The dependent variable in Panels A and B is the US exposure to robots and the US exposure
to Chinese imports, respectively. The dependent variable in Panels C and D is the change in the log
count of working-age individuals multiplied by 100 (i.e., [ln(yt+1)−ln(yt)]·100). There are three time
periods and 722 CZs each period, resulting in N=2,166. All explanatory variables that are displayed
are standardized to have a mean of zero and a standard deviation of 1. All columns follow the same
structure as Table 2. In Panel C, only US exposure to robots is instrumented for (exposure to Chinese
imports included as control) and in Panel D only US exposure to Chinese imports is instrumented
for (exposure to robots included as control). Standard errors are robust against heteroskedasticity
and allow for arbitrary clustering at the state level (48 states). Regressions are weighted by a CZ’s
1990 national share of the working-age population. Coefficients with ***, **, and * are significant
at the 1%, 5% and 10% confidence level, respectively.
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Table A4: First-stages and effects on migration with partial instrumentation, stacked

differences 1990–2015

(1) (2) (3) (4) (5)

A. First stage, US exposure to robots
Exposure to robots 0.71*** 0.72*** 0.75*** 0.72*** 0.72***

(0.08) (0.07) (0.07) (0.08) (0.08)

Exposure to Chinese imports 0.10*** 0.10*** 0.08*** 0.05* 0.06**
(0.03) (0.03) (0.03) (0.02) (0.03)

B. First stage, US exposure to Chinese imports
Exposure to robots 0.00 0.00 0.01 -0.03*** -0.03***

(0.01) (0.01) (0.01) (0.01) (0.01)

Exposure to Chinese imports 0.65*** 0.65*** 0.64*** 0.50*** 0.49***
(0.06) (0.06) (0.06) (0.07) (0.07)

C. Only robots instrumented (2SLS)
US exposure to robots -1.40*** -0.77*** -0.77*** -0.70*** -0.64***

(0.51) (0.28) (0.21) (0.15) (0.15)

Exposure to Chinese imports -0.01 -0.24 -0.04 0.14 0.21
(0.64) (0.52) (0.51) (0.43) (0.40)

First-stage F 84.1 88.1 106.5 80.6 76.5

D. Only Chinese imports instrumented (2SLS)
Exposure to robots -0.99*** -0.55*** -0.58*** -0.50*** -0.45***

(0.27) (0.16) (0.14) (0.10) (0.10)

US exposure to Chinese imports -0.24 -0.48 -0.17 0.20 0.34
(0.98) (0.82) (0.81) (0.85) (0.80)

First-stage F 116.0 116.3 104.4 52.5 49.9
Region × time
Pre-trends
Demographics × time
Industry shares × time
Contemp. changes × time

Note: The dependent variable in Panels A and B is the US exposure to robots and the US exposure
to Chinese imports, respectively. The dependent variable in Panels C and D is the change in the log
count of working-age individuals multiplied by 100 (i.e., [ln(yt+1)−ln(yt)]·100). There are three time
periods and 722 CZs each period, resulting in N=2,166. All explanatory variables that are displayed
are standardized to have a mean of zero and a standard deviation of 1. All columns follow the same
structure as Table 2. In Panel C, only US exposure to robots is instrumented for (exposure to Chinese
imports included as control) and in Panel D only US exposure to Chinese imports is instrumented
for (exposure to robots included as control). Standard errors are robust against heteroskedasticity
and allow for arbitrary clustering at the state level (48 states). Regressions are weighted by a CZ’s
1990 national share of the working-age population. Coefficients with ***, **, and * are significant
at the 1%, 5% and 10% confidence level, respectively.
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Table A5: Estimates using controls used from related literature (reduced form)

(1) (2) (3) (4) (5) (6)

Employment Population

Manuf. Non-manuf. Prof. serv. Total Census IPUMS

A. Baseline results (incl. covariates×time & pre-trends)

Exposure to robots -1.50*** -1.31*** -1.04*** -1.28*** -0.35*** -0.35**
(0.28) (0.22) (0.23) (0.17) (0.09) (0.14)

Exposure to Chinese imports -3.01*** -0.03 0.49 -0.71 -0.03 -0.16
(0.82) (0.62) (0.77) (0.61) (0.44) (0.55)

B. Controls from Autor et al. (2013)

Exposure to robots -1.93*** -1.59*** -1.26*** -1.87*** -0.69*** -0.66***
(0.39) (0.33) (0.26) (0.34) (0.19) (0.19)

Exposure to Chinese imports -4.87*** -0.21 1.39 -1.81** 0.07 0.07
(1.01) (0.90) (1.00) (0.90) (0.81) (0.86)

C. Controls from Acemoglu and Restrepo (forthcoming)

Exposure to robots -1.51*** -1.25*** -0.68*** -1.55*** -0.29** -0.20
(0.31) (0.28) (0.18) (0.29) (0.14) (0.15)

Exposure to Chinese imports -3.90*** 0.09 1.49* -1.29* 0.44 0.50
(0.79) (0.74) (0.88) (0.68) (0.52) (0.56)

D. Controls from Acemoglu and Restrepo (forthcoming),
(incl. covariates×time & pre-trends)

Exposure to robots -1.01*** -1.02*** -0.86*** -1.05*** -0.34*** -0.28**
(0.29) (0.19) (0.19) (0.16) (0.12) (0.13)

Exposure to Chinese imports -2.52*** 0.43 0.85 -0.21 0.31 0.09
(0.65) (0.53) (0.72) (0.48) (0.39) (0.42)

Note: The dependent variable in each column is the change in the log count of individuals in the specified
subgroup, multiplied by 100. There are three time periods (1990–2000, 2000–7, 2007–15) and 722 CZs each
period, resulting in N=2,166. Both explanatory variables that are displayed are standardized to have a mean
of zero and a standard deviation of 1. All outcome and displayed explanatory variables are converted to 10-year
equivalents.
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Table A6: Effects on migration, Pierce and Schott (2016) China shock treatment (re-

duced form)

(1) (2) (3) (4) (5) (6)

1990–2015 1990–2007

A. Interacting baseline controls with time dummies
Exposure to robots -0.48*** -0.51*** -0.47*** -0.38*** -0.37*** -0.35***

(0.13) (0.11) (0.10) (0.13) (0.11) (0.10)

NTR Gap × post-2000 -1.14*** 0.18 -0.15 -0.64 0.18 -0.23
(0.32) (0.61) (0.49) (0.50) (0.72) (0.60)

B. Not interacting baseline controls with time dummies
Exposure to robots -0.38*** -0.45*** -0.39*** -0.33*** -0.35*** -0.30**

(0.12) (0.10) (0.10) (0.13) (0.13) (0.12)

NTR Gap × post-2000 -0.97*** -0.20 -0.43 -0.37 0.00 -0.20
(0.36) (0.60) (0.56) (0.54) (0.52) (0.50)

Region dummies & pre-trends
Demographics & industry shares
Contemp. changes

Note: The dependent variable is the change in the log working-age population. In columns (1)–(3) there
are three time periods (1990–2000, 2000–7 and 2007–15) and 722 CZs each period, resulting in N=2,166. In
columns (4)–(6), the time period 2007–15 is dropped, resulting in N=1,444. All explanatory variables that
are displayed are standardized to have a mean of zero and a standard deviation of 1. Columns (1) and (4)
include census division dummies, time period dummies, and the outcome variable between 1970 and 1990
as covariates. Columns (2) and (5) also control for demographic characteristics (i.e., log population, share
of men, share of population above 65 years old, share of population with less than a college degree, share
of population with some college or more, population shares of Hispanics, Blacks, Whites and Asians, and
the share of women in the labor force) and 1990 shares of employment in broad industries (i.e., agriculture,
mining, construction, manufacturing). In Panel A, census division dummies, demographic characteristics,
broad industry shares and contemporanreous changes are interacted with time period dummies. interacted
with time period dummies. Columns (3) and (6) also include the share of routine jobs and the average
offshorability index in 1990, following Autor and Dorn (2013), each interacted with time period dummies.
Standard errors are robust against heteroskedasticity and allow for arbitrary clustering at the state level (48
states). Regressions are weighted by a CZ’s 1990 national share of the working-age population. Coefficients
with ***, **, and * are significant at the 1%, 5% and 10% confidence level, respectively.
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Table A7: Effects on employment and migration by subgroup, stacked differences 1990–

2015 (2SLS)

(1) (2) (3) (4) (5) (6) (7) (8)

Education Age Birthplace

All Low High Young Middle Old US Non-US
Average pop., 1990 214,245 109,259 104,986 71,658 98,253 44,334 190,697 22,101

A. Employment
US exposure to -1.54*** -1.76*** -1.72*** -1.44*** -1.85*** -1.11** -1.58*** -0.07
robots (0.27) (0.26) (0.43) (0.25) (0.43) (0.48) (0.29) (0.80)

US exposure to -0.89 -0.59 -0.61 -1.35 -0.05 -0.31 -0.63 -1.54
Chinese imports (1.02) (0.98) (1.33) (1.73) (0.92) (1.37) (1.23) (3.75)

Kleibergen-Paap F 27.7 27.5 27.1 27.4 29.0 25.2 26.4 34.8

B. Migration
US exposure to -0.62*** -0.49*** -1.03*** -0.43** -1.04*** -0.56* -0.82*** 1.05
robots (0.14) (0.18) (0.29) (0.19) (0.27) (0.29) (0.20) (0.75)

US exposure to 0.41 0.37 0.18 -0.62 0.59 0.73 0.13 0.31
Chinese imports (0.80) (0.81) (1.15) (1.34) (0.86) (0.96) (1.03) (2.97)

Kleibergen-Paap F 25.1 25.5 24.5 26.1 25.7 23.6 24.4 31.7
Note: The dependent variables in Panel A and B are each subgroup’s change in the log count of employment and
working-age population, respectively, multiplied by 100 (i.e., [ln(yt+1)− ln(yt)] · 100). There are three time periods
and 722 CZs each period, resulting in N=2,166. Both explanatory variables that are displayed are standardized
to have a mean of zero and a standard deviation of 1. All columns include the full set of covariates interacted
with time period dummies, i.e., census division dummies, 1990 demographic characteristics (i.e., log population,
share of men, share of population above 65 years old, share of population with less than a college degree, share of
population with some college or more, population shares of Hispanics, Blacks, Whites and Asians, and the share of
women in the labor force), 1990 shares of employment in broad industries (i.e., agriculture, mining, construction,
manufacturing), and the 1990 share of routine jobs and the average offshorability index, following Autor and Dorn
(2013). Moreover, they include the change in the outcome variable between 1970 and 1990. Standard errors are
robust against heteroskedasticity and allow for arbitrary clustering at the state level (48 states). Regressions are
weighted by a CZ’s 1990 national share of the outcome group. Coefficients with ***, **, and * are significant at
the 1%, 5% and 10% confidence level, respectively.
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