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Abstract

We study the role of whistleblowing in the following inspection
game. Two agents who compete for a prize can either behave legally
or illegally. After the competition, a controller investigates the agents’
behavior. This inspection game has a unique Bayesian equilibrium
in mixed strategies. We then add a whistleblowing stage, where the
controller asks the loser to blow the whistle. This extended game has
a unique perfect Bayesian equilibrium in which only a cheating loser
accuses the winner of cheating and the controller tests the winner if
and only if the winner is accused of cheating. Whistleblowing reduces
the frequencies of cheating, is less costly in terms of test frequencies,
and leads to a strict Pareto-improvement if punishments for cheating
are sufficiently large.
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1 Introduction

We address the following problem. Two agents who compete for a prize can

choose between two strategies: play legally or cheat. If both agents play

the same strategy, either agent wins the prize with an exogenously given

probability. If only one player cheats, the probability that he wins increases.

This simple game has a unique equilibrium in dominant strategies, where

both agents cheat. This calls for a mechanism that eliminates cheating. We

first investigate a standard inspection regime, where a third agent controls

the winner of the contest. The controller faces the problem that the agents’

actions are private information, and that detecting cheating is costly. This

inspection game has a unique perfect Bayesian equilibrium, in which both

agents randomize between cheating and not cheating. Thus, this control

regime cannot eliminate cheating.

The question thus arises whether there is a mechanism that allows for

an improvement. In order to show that such a mechanism exists, we in-

troduce whistleblowing by adding a whistleblowing stage after the contest.

In this stage, the controller asks the loser whether the winner has cheated.

If the loser says YES, the controller inspects the winner, otherwise no in-

spection takes place. If the inspection reveals that the winner has cheated,

punishment takes place.

We show that whistleblowing improves the efficiency of controls. In

fact, our results make a strong case for the use of whistleblowing. First,

if punishments for detected cheaters are sufficiently large, then the cheat-

ing probabilities are smaller than in the inspection game. Moreover, in

contrast to the inspection game, cheating is eliminated in the limit when

punishments get arbitrarily large. Second, whistleblowing allows for a strict

Pareto-improvement relative to the inspection game, i.e. both agents and

the controller are ex ante strictly better off. Third, the frequency of tests is

smaller with the whistleblowing mechanism than without it. Thus, whistle-

blowing reduces control costs since testing is costly.

The whistleblowing stage improves efficiency because it allows the con-
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troller to extract private information from the loser about the behavior of

the winner in the contest. When rewards and punishments are chosen appro-

priately, in equilibrium the loser’s answer is YES if he himself has cheated

and NO if he has not, and the controller tests the winner if and only if

the loser’s answer is YES. Like in the inspection game, in equilibrium the

agents randomize between cheating and playing fair. Because the loser infers

from his own hidden action and the outcome of the contest the likely play

of the winner, he is better informed about the winner’s behavior than the

controller. In particular, if cheating is perfectly effective so that a cheating

player wins with certainty against a fair playing opponent, then a cheating

loser is sure that the winner has cheated, too. The controller cannot make

this inference without asking the loser because the agents’ actions in the

contest are private information.

There are two key elements of our model. First, a contest where agents

can improve the chance of winning by using hidden actions. Second, the

way this contest generates private information that is valuable to an outside

authority. It is generated endogenously from the outcome of the contest

and the hidden actions of each agent. An obvious example is doping in

sports, where a player can increase his winning chance by using performance

enhancing drugs, and where the players infer the likely behavior of their

competitors from the outcome of the contest and their own use of these

drugs. Another example are public procurement auctions where bidders

can either bid honestly or cheat, e.g. by bribing government officials or by

providing false cost information.1 In New York City, recently the exclusive

right to sell beverages in pubic schools has been auctioned and it is argued

“that the city could have made more money if other suppliers had been

given a fair chance to compete for the contract” (New York Times, 2004).
1According to Salem and Franze (2002), in the US “the first whistleblower statute

was enacted in 1863, at the height of the Civil War. The False Claims Act was aimed
at punishing corrupt defense contractors who were overcharging the Union Army for its
supplies. This statute actually empowered ordinary citizens to sue qui tam (in the name of
the sovereign) and allowed them to keep a portion of damages awarded. The law survives
today and has won whistleblowers more than $200 million in the past 30 years alone.”
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If cheating is very effective, then a cheating firm who does not obtain the

contract is sure that the winning bidder has cheated, too. Under a leniency

clause, which rewards cooperating losers, the cheating loser is willing to

reveal his private information to the authorities who then investigate the

winner’s behavior. Finally, the model could be applied to elections where

the parties can buy votes or falsify the election outcome.

Despite the growing importance of whistleblowing and leniency clauses as

a method of exposing and controlling mismanagement, financial fraud, and

corruption, the economic literature on whistleblowing and leniency clauses is

rather small.2 There is a recent literature on antitrust legislation that inves-

tigates whistleblowing as an instrument to fight cartels (e.g. Apesteguia et

al., 2003; Motta and Polo, 2003; Rey, 2001; and Spagnolo, 2002). The goal

of the antitrust authority is to design a leniency program that deters the

formation of cartels (Spagnolo, 2002) or to extract information from cartel

members once the antitrust authority has opened an investigation (Motta

and Polo, 2003). In Kofman and Lawarée (1996b) a principal employs a

manager and an auditor who is supposed to supervise the manager. The

problem is that the auditor and the manager may collude. The main dif-

ference with respect to the strategic interaction between the two agents in

Kofman and Lawarée (1996b) and in our model is that in the former, the

auditor and the manager may collude while in our model the two agents

compete for a prize in a prisoner’s dilemma-like game.

Recently, Benoît and Dubra (2004) and Kofman and Lawarée (1996a)

have studied models, in which it may be in the interest of a strategic player to

withhold information. In Benoît and Dubra, a police union may optimally
2The year 2002 has been extraordinarily successful for whistleblowers. First, the Time

magazine featured three women as “persons of the year 2002” for whistleblowing. They
were responsible for the disclosure of fraudulent accounting practices at Enron and World-
com, and neglected terrorist warnings prior September 11 at the FBI. Second, in response
to several accounting scandals in the US, the Sarbanes-Oxley act of 2002 not only pro-
hibits retaliation against whistleblowers, but also solicits, encourages and reinforces the
very act of whistleblowing. According to Salem and Franze (2002) “the Sarbanes-Oxley
act is not the first federal whistleblower protection law, but given its multi-faceted enforce-
ment scheme, its aggressive potential penalties and its broad application, it is arguably
the most forceful and the most important.”
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choose to be uninformative about the behavior of its members by always

sending the same message, i.e. by always testifying that an accused police

officer has behaved lawfully. In Kofman and Lawarée (1996a), a principal

may initially choose to only sometimes inform one agent about whether

another agent is present. Thereby, the principal can improve his welfare

because the uncertainty faced by the agent(s) affects their behavior in the

desired manner. This is in contrast to our model, where such withholding

of information is not an equilibrium outcome because it is not sequentially

rational. The agent who is asked to testify will not withhold the information

that the other agent has played illegally if he is aware of this. Moreover,

since the whistleblowing mechanism leads ex ante to a Pareto improvement,

it would ex ante not be in the interest of the agents to make arrangements

such that withholding information becomes sequentially rational even if they

could do so.

Our approach is also broadly related to the economics of law enforce-

ment, initiated by Becker (1968). This literature focuses mainly on crimes

committed by isolated agents. With respect to leniency programs, this lit-

erature provides ample evidence that lowering sanctions for self-reporting

agents is welfare improving (e.g. Innes, 1999a,b; Malik, 1993; Kaplow et al.,

1994).

In this literature and also in the antitrust literature, the controller can

typically commit to a testing probability. In contrast, we require that the

controller’s behavior is sequentially rational. There are two reasons. First,

with commitment whistleblowing does not occur on the equilibrium path,3

while in the equilibrium of our model, whistleblowing occurs with positive

probability. Second, commitment in inspection games may trivially elimi-

nate cheating completely as suggested in Avenhaus et al. (2002). In con-

trast, when no commitment is feasible as in our model cheating is never

fully eliminated. Such a commitment is questionable if controlling is costly.
3 In Motta and Polo (2003), whistleblowing can occur after an investigation has opened

because the whistleblower can reduce his punishment. However, this is not whistleblowing
in the sense of initiating an investigation as in our paper.



2 THE INSPECTION GAME 6

The problem is that in equilibrium the costly inspections must be carried

out even though everybody knows that nobody cheats. For example, the

war against doping could certainly be won if sufficient resources would be

employed. However, once this war has eliminated doping it is difficult to

justify the expenses since everybody is clean.

The paper is structured as follows. In Section 2 we introduce the inspec-

tion game. Section 3 investigates the whistleblowing game, and Section 4

compares the two mechanisms. In Section 5, we allow in turn for the pos-

sibilities that cheating is less than perfectly effective and that tests might

be less than perfectly reliable. Section 6 concludes. All proofs are in the

Appendix.

2 The inspection game

We consider a situation where one or more players (called the agents or in-

spectees) choose between behaving legally and illegally, while another player

(the controller or inspector) chooses between controlling (or testing) and not

controlling the agent(s). Payoffs are such that agents prefer to behave ille-

gally (or to “cheat”) if the controller does not control, while they prefer to

behave legally if there is control. The controller, on the other hand, prefers

not to control if agents play legally, while if they cheat, he prefers to control.

Therefore, our game will have no equilibrium in pure strategies.4

We describe our inspection game in the context of sports competition,

where two athletes compete for a valuable resource (a prize) only one of

them can win. They face the choice between playing “clean” or playing

“doped”, where the use of performance enhancing drugs increases an agent’s

chances of winning the competition. The controller’s objective is to reduce
4 In a standard inspection game, it assumed that the controller commits to a certain

inspection frequency (see Avenhaus et al. (2002)). We depart from this assumption for
the reasons we discussed at the end of the introduction. Examples for typical inspection
games are fare dodging in public transport (Avenhaus, 1997). Other examples are tax
avoidance (Greenberg, 1984), arms inspection and disarmament, and the enforcement of
environmental law.
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the frequency of testing and the frequency of doping.5 Given the examples

and illustrations discussed in the introduction, the game is amenable to

interpretations outside of sports.

The inspection game is played by two agents, labelled 1 and 2, and a

controller, labelled 3. It consists of two stages.6 In the first stage the agents

compete for a prize of value 1. Agents’ sets of pure strategies in this stage

are {c, d}, where c stands for playing clean and d for using performance
enhancing drugs. The probability that agent 1 dopes is denoted by α and

the probability that agent 2 dopes is β. The probability that agent 1 wins

the prize if both agents are clean or if both agents are doped is σ ≥ 1
2 ,

so that agent 1 is the better player. The probability that agent 2 wins is

accordingly 1 − σ. The winning probabilities are exogenous and common

knowledge.7 We assume for now that doping is completely effective: a doped

agent wins with certainty if the opponent is clean. In Section 5 we relax this

assumption.

After the competition, in the second stage the controller decides whether

to test the winner. The controller’s set of pure strategies is {T,NT}, where
T stands for test and NT for no test. Consistent with the assumption that

σ is common knowledge, the controller knows which agent is the better one.

Therefore, the controller can use different testing probabilities for either

agent. The probability that agent 1 is tested if he wins is denoted by t1
and the probability that agent 2 is tested after winning is t2. Thus, t1 and

t2 denote the controller’s mixed strategy of testing winner 1 and winner 2,

respectively. For now we assume that the tests are reliable, i.e. there are no

test errors. In Section 5 we relax this assumption, too.8

5For a game theoretic analysis of doping and the anti-doping measures of the Interna-
tional Olympic Committee see Berentsen (2002).

6 In a standard inspection game there is typically one inspector and one inspectee (see
e.g. Güth and Pethig, 1992) or one controller and many isolated acting inspectees (an
overview of such games is given by Avenhaus et al., 2002). In contrast, our model describes
the situation of one inspector and two interacting agents.

7 In practice, the odds set by bookmakers could be used to approximate σ.
8An alternative way of modelling were to assume that there are moral costs of doping

that vary across the population of agents and that though the controller can commit to a
testing probability, he faces an increasing and convex cost function of increasing the testing
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The controller’s payoff is given as follows. If the test indicates that the

winner is doped, the controller receives the reward S > 0. The disutility of

testing is K ∈ (0, S), so that the payoff is S −K > 0. If we normalize his

payoff by S, we get 1− k > 0, where k = K
S .
9 If the test indicates that the

winner is clean, the controller gets −k < 0. Finally, if the controller makes
no test, his payoff is zero.

If a player is tested positive after winning, he gets the punishment P ≥
−1. If P < 0, the winner’s payoff is reduced but still strictly positive. If

P = 0, the punishment is disqualification so that the winner does not receive

the prize. Finally, if P > 0, the winner’s payoff is strictly negative. It implies

that the controller cannot only confiscate the prize but can impose some

additional punishment in terms of utility to a cheater. The loser’s payoff

is always zero.10 The punishment P leaves the payoffs of the controller

unaffected. Such a deadweight loss penalty reflects the fact that in sports

the penalty consists of disqualification and a ban from further competitions.

It is also accurate in situations where detected cheaters are fired or sent

to jail.11 Finally, throughout the paper we assume that in contrast to the

testing probabilities punishments and rewards cannot be conditioned on

individual agents.

probability. We suspect that this purification of mixed strategies in the spirit of Harsanyi
(1973) would generate an interior solution by and large equivalent to the equilibrium of
our model.

9One can also consider the inspection game as a game in which the controller also
competes for the prize. He wins the prize of value one if he proves that the winner has
cheated. In this setting the controller would never test the loser because his payoff would
be −k.
10We assume that the loser does not inherit the prize. The strategic effect of inheritance

on the doping behavior is analyzed in Berentsen (2002).
11 In some control situations the penalty is a transfer from the cheating agent to the

controller as for example for fare dodgers (as in Avenhaus, 1997). It is straightforward to
change our framework to cover situations where the penalty is a transfer from the cheating
agent to the controller.
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Figure 1: The inspection game.

The inspection game is depicted in Figure 1. In order to keep the figure

simple, the controller’s information set when agent 2 is the winner (W = 2)

is not drawn. The controller (player 3) only observes which agent has won,

but he has no information about the actions carried out by either player.

2.1 Equilibrium

Before we investigate the equilibrium, it is useful to derive the winning

probabilities and the conditional probabilities that the winner is doped. Let

Pr(W = 1) and Pr(W = 2) denote the winning probabilities of agent 1 or

agent 2 in the inspection game. They are

Pr(W = 1) = σ(1− α)(1− β) + α(1− β) + σαβ and

Pr(W = 2) = (1− σ)(1− α)(1− β) + (1− α)β + (1− σ)αβ.

Consider the winning probability of agent 1. With probability (1−α)(1−β)
both agents are clean and with probability αβ both are doped. In either
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case he wins with probability σ. With probability α(1−β) only he is doped
in which case he wins with probability 1.

Let Pr(d | W = 1) and Pr(d | W = 2) denote the conditional prob-

abilities that agents 1 and 2, respectively, are doped if they win. These

probabilities are

Pr(d |W = 1) =
α(1− β) + σαβ

(1− β) (σ(1− α) + α) + σαβ
and

Pr(d |W = 2) =
(1− σ)αβ + (1− α)β

(1− α) ((1− σ)(1− β) + β) + (1− σ)αβ
.

In equilibrium all agents must be indifferent between their pure strategies,

which implies that for the controller and the agents the following conditions

must hold.

The controller’s expected payoff of testing winner 1 is the conditional

probability that winner 1 is doped minus the costs of testing, that is Pr(d |
W = 1)− k, while his (expected) payoff of not testing is zero.12 In equilib-
rium both strategies have to yield the same (expected) outcome, so that the

controller’s equilibrium condition for testing winner 1 or winner 2 are

Pr(d |W = 1)− k = 0 (1)

Pr(d |W = 2)− k = 0. (2)

The expected payoff for agent 1 of playing c is E1[c] = σ(1 − β). With

probability (1− β) player 2 is clean in which case he wins with probability

σ. In all other cases he loses. The expected payoff of playing d is E1[d] =

(1− t1)(σβ+(1−β))− t1(σβ+(1−β))P . With probability 1−β player 2 is
clean in which case he wins with certainty and with probability β player 2

is doped in which case he wins with probability σ. With probability (1− t1)
he is not tested by the controller in which case he receives the prize of value

1 and with probability t1 he is tested and receives punishment P . Thus the

equilibrium condition for agent 1 is

σ(1− β) = (1− t1(1 + P ))(σβ + (1− β)). (3)
12Throughout the paper, we call agent 1 (2) winner 1 (2) if he has won the game.
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The equilibrium condition for agent 2, derived in the same way, is

(1− σ)(1− α) = (1− t2(1 + P ))((1− σ)α+ (1− α)). (4)

Lemma 1 In any equilibrium the following is true:

(i) the favorite player (agent 1) is more likely to dope than the underdog

(α ≥ β; with strict inequality if σ > 1
2);

(ii) the underdog is more likely to be tested than agent 1 (t2 ≥ t1; with

strict inequality if σ > 1
2);

(iii) Pr(W = 1) = σ and Pr(W = 2) = 1− σ.

The fact that in any equilibrium α ≥ β is a consequence of the equi-

librium conditions (1) and (2). They imply that in any equilibrium the

conditional probabilities that agent 1 and 2 are doped after winning are the

same. If both agents dope with the same probability, and because agent 2

is more likely to lose if both agents are doped, he is more likely to be doped

after winning. Consequently, α must be greater than β. Agent 2 is more

likely to be tested if he wins because, all else equal, doping is relatively more

attractive for agent 2 than for agent 1.

Interestingly, the possibility of cheating does not affect the probabilities

of winning the game, i.e. Pr(W = 1) = σ and Pr(W = 2) = 1− σ.13 Thus,

the winning probabilities are identical in games (i) without doping oppor-

tunities, in games (ii) with doping opportunities without controls, and (iii)

in games with doping opportunities and controls and punishments. This is

reminiscent of a result reported by Snyder (1989) and Rosen (1986) in the

context of contests where effort choice does not affect the winning probabil-

ities in equilibrium.14

13This result relies on our assumption that there are no direct cost of doping (e.g.
health).
14 In this literature, the contest success function is H(x, y) = ah(x)

ah(x)+(1−a)h(y) , where
H(x, y) denotes the winning probability of agent X if his effort is x and the opponent’s is
y. The function h(.) satisfies h(0) = 0, h0(0) > 0 and h00 ≤ 0 and a ∈ (0, 1) is the natural
(dis)advantage of X. In any pure strategy equilibrium with identical effort costs, Snyder
shows that H(x∗, y∗) = a. We thank Gerd Mühlheusser for pointing this out to us.



3 THE WHISTLEBLOWING GAME 12

Proposition 1 The strategy profile (t∗1; t
∗
2;α

∗;β∗) is the unique Bayesian

Nash Equilibrium of the inspection game. The doping probabilities are

α∗ =
1−Ψ− k(1− 2σ)

2σ
,β∗ =

1−Ψ+ k(1− 2σ)
2(1− σ)

and the testing probabilities

t∗1 =
β∗

k(1 + P )
, t∗2 =

α∗

k(1 + P )
,

where Ψ =
p
(1− k)(1− k(1− 2σ)2).

The equilibrium strategies have the following comparative static prop-

erties. First, the favorite player’s cheating probability is increasing in σ,
∂α∗

∂σ > 0, while the underdog’s is decreasing, ∂β∗

∂σ < 0. Second, for the test-

ing probabilities we have ∂t∗1
∂σ < 0 and

∂t∗2
∂σ > 0. Consequently, the differences

in the cheating probabilities α∗−β∗ and the testing probabilities t∗2− t∗1 are
both increasing in σ. Third, the agents’ cheating probabilities are increasing

in k.

Finally, the agents’ equilibrium strategies are independent of the punish-

ment P .15 The punishment P has no impact on the cheating probabilities

because both agents randomize so as to keep the controller indifferent be-

tween testing and not testing and the controller’s payoff is independent of

P . Increasing P , however, reduces the testing probabilities because the

controller must keep the agents indifferent between cheating and not cheat-

ing. The same argument explains also why the agents increase their doping

probabilities if k increase, i.e. ∂α∗

∂k > 0 and
∂β∗

∂k > 0.

3 The whistleblowing game

This raises the question whether an improvement is possible if the controller

can extract information that is available to the agents but not to him. For
15For this result the assumption that P is a deadweight loss is crucial. If, in contrast,

punishment P is a transfer from the agents to the controller, the agents’ equilibrium
strategies would depend negatively on P .
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that purpose, we now extend the game with a whistleblowing stage. We

model this stage as a signalling game between the controller and the loser,

where after the contest, the loser sends a message to the controller. The

message space is {D, I}, where D is the message “The winner is doped”

and I is the message “I don’t know”. Thus, when sending message D, the

loser “blows the whistle”. After receiving a message, the controller decides

whether to test the winner, and the game ends. Note that this kind of

whistleblowing is to be understood normatively as something that might be

used to reduce the use of doping rather than as a positive description of

existing real world whistleblowing mechanisms.

In what follows, we assume that while the equilibrium strategies α and

β are inferred by (and thus in a sense “known” to) every player in the game,

the actual play (i.e. c or d) is private information of the respective agent.

This private information is used by the loser to update his beliefs about

the winner’s behavior. In particular, due to the effectiveness of doping, a

doped loser can infer with certainty that the winner is doped, which is an

inference the controller cannot make because he does not observe the play

of the game.

Our goal is to design an incentive-compatible reward and punishment

scheme, which allows the controller to extract the loser’s private information

about the winner’s behavior in the contest. More specifically, we want to

design a “whistleblowing mechanism” between the loser and the controller,

where the loser and the controller behave as follows: The doped loser, who

infers the winner’s behavior with perfect accuracy, “blows the whistle” and

the clean loser sends the message “I don’t know”. The controller tests the

winner if and only if the loser blows the whistle.16

16Alternatively, one could also have the winner testify. If doping is perfectly effective,
then a winner who is clean knows that the loser is clean, too. However, if a doped winner
is punished, then the only sequentially rational strategy for winners is to send the same
message regardless of their behavior. On the other hand, if the winner were granted
immunity if doped and given a small reward if correctly testifying that the loser is clean,
then there might be an equilibrium with a separating winner. However, we conjecture that
such a mechanism would be more costly in terms of tests and rewards than the mechanism
we study because the reward would have to be given to the clean winner and the loser
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3.1 Strategies and beliefs

An agent’s strategy in the whistleblowing game consists of three choices. For

example, for player 1 it consists of the probability α with which he dopes,

the probability that he sends message D given that he is clean, denoted by

m1(c), and the probability that he sends message D given that he is doped,

denoted by m1(d). Thus, a strategy for agent 1 is

δ1 = (α,m1(c),m1(d)).

For example, the strategy δ1 = (α, 0, 1) means that agent 1 dopes with

probability α, sends the message I with certainty if he is a clean loser,

and sends the message D with certainty if he is a doped loser. Likewise, a

strategy for agent 2 is δ2 = (β,m2(c),m2(d)).

We denote the beliefs of agent 1 after losing the competition by µ1(d | c)
and µ1(d | d).17 For example, after losing the competition, µ1(d | c) is agent
1’s belief that the winner (agent 2) is doped given that he himself is clean.

Note that our assumption on the effectiveness of doping implies that no

clean agent will ever win against a doped player. Therefore, µ1(d | d) = 1.
Agent 2’s beliefs are denoted accordingly.

The controller’s strategy still consists of the testing probabilities t1 and

t2. In contrast to the inspection game, these testing probabilities are now

contingent on the loser’s message. Therefore, a mixed strategy for the con-

troller is now denoted as

δ3 = (t1(I), t1(D); t2(I), t2(D)).

If player 1 wins the game, the controller’s beliefs are µ3(d | W = 1,D) and

µ3(d | W = 1, I). For example, µ3(d | W = 1,D) is the controller’s belief

would have to be tested. Thus, the more effective the mechanism, the more rewards
need to be given. Still. there are other more elaborate mechanisms one could consider. A
natural candidate if winner’s immunity is possible is to have both the winner and the loser
testify and test the winner if and only if the loser accuses him of being doped while the
winner is given a small reward if he says the loser is clean and if the loser does not accuse
the winner. By making clean winning more attractive this might reduce the number of
instances where the loser is doped, and thus reduce both the frequency of doping and the
number of tests.
17The beliefs of the winner are irrelevant for the game so we do not state them.
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that winner 1 is doped if player 2 sends the message D. The controller’s

beliefs when player 2 wins the game are denoted accordingly.

3.2 The whistleblowing stage

We first describe the payoffs in the whistleblowing stage and then we consider

the incentive constraints that have to hold in the whistleblowing equilibrium.

The loser’s payoff is −Φ(D,C) ≤ 0 if he sends message D and the test

indicates that the winner is clean. It is Φ(D,D) ≥ 0 if he sends message D
and the test indicates that the winner is doped. In all other cases we set the

loser’s payoff equal to zero because we do not want to punish or reward a

loser whose message is “I don’t know.” Likewise, we do not wish to reward

or punish a loser when there is no test.18

We want to implement the whistleblowing mechanism, which is a sepa-

rating equilibrium of the whistleblowing game defined as follows: First, the

loser sends message D if and only if he is doped. Second the controller tests

if and only if he receives message D. Thus, the whistleblowing mechanism

requires that the expected payoff of a doped loser from sending message D,

denoted as Ei (D | d), has to be greater than the expected payoff of sending
message I, which is Ei (I | d) = 0. That is, for i = 1, 219

µi (d | d)Φ(D,D) + (1− µi (d | d)) (−Φ(D,C)) > 0. (5)

The mechanism also requires that the expected payoff of a clean loser from

sending message D, Ei (D | c), is smaller than the expected payoff of sending
message I, Ei (I | c) = 0. That is, for i = 1, 2

µi (d | c)Φ(D,D) + (1− µi (d | c)) (−Φ(D,C)) ≤ 0. (6)

There are four conditions for the controller. The first two conditions make

sure that he does not test given message I, i.e. E3(T |I) ≤ E3(NT |I) = 0,
18Note that the controller infers the behavior of the loser from the loser’s message. The

whistleblowing mechanism therefore involves a “courageous” leniency clause (Spagnolo,
2002), which involves a reward for the cheating loser who blows the whistle, rather than
merely reducing his expected sanctions.
19Recall that for now we assume that tests are completely reliable.



3 THE WHISTLEBLOWING GAME 16

implying for i = 1, 2

µi (d | c) (1− k) + (1− µi (d | c)) (−k) ≤ 0. (7)

Note that (7) takes into account that in equilibrium if agent j wins and the

controller receives message I, then the controller’s beliefs µ3 (d |W = j, I)

equal loser i’s beliefs µi (d | c), i.e. µ3 (d |W = j, I) = µi (d | c). This equal-
ity of beliefs is the crucial element of the whistleblowing mechanism: In equi-

librium, the controller extracts the private information of the loser, which

allows for a more efficient testing scheme.

The other two constraints ensure that the controller tests the winner

given message D, i.e. E3(T |D) ≥ E3(NT |D) = 0, implying for i = 1, 2

µi (d | d) (1− k − Φ(D,D)) + (1− µi (d | d)) (−k +Φ(D,C)) ≥ 0. (8)

Note again that (8) takes into account that in equilibrium if agent j wins

and the controller receives message D, then the controller’s beliefs are

µ3 (d |W = j,D) = µi (d | d), i.e. he has the same beliefs as the loser.
We impose the following restrictions for Φ(D,D) and Φ(D,C):

Φ(D,D) > 0, (9)

1− k > Φ(D,D), and Φ(D,C) > k. (10)

These restrictions imply the following. First, since doping is perfectly effec-

tive, we have µi (d | d) = 1 and µi (c | d) = 0. Consequently, the incentive

constraint (5) simplifies to Φ(D,D) > 0. Consequently, (9) implies that

(5) is satisfied in any equilibrium in which both agents dope with strictly

positive probability. Second, assumptions (10) imply that the controller has

a dominant strategy to test given message D, i.e. (8) holds in any equi-

librium. Third, assumptions (10) also imply that if constraint (7) holds,

then (6) holds, too. Consequently, if both agents dope with strictly positive

probability, the binding constraints are (7), which can be written as

µi (d | c) ≤ k for i = 1, 2. (11)
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The whistleblowing stage is depicted in Figure 2. In order to keep the

figure simple, we only consider the case where agent 2 is the winner so that

the signaling game is between loser 1 (the sender) and the controller (the

receiver). In the first information set, which contains two nodes, player 1 is

clean and his beliefs are µ1 (. | c). In the upper node winner 2 is doped and
in the lower node he is clean. However, loser 1 cannot distinguish these two

nodes. In the second information set, loser 1 is doped and his beliefs are

µ1 (d | d) = 1 because doping is perfectly effective.

Figure 2. Whistleblowing stage.
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3.3 Whistleblowing equilibrium

In the whistleblowing equilibrium, the loser’s message is D if he has cheated

and I if he is clean, and the controller tests the winner if and only if the

message is D. The agents still randomize between doping and playing clean.

Consequently, the equilibrium conditions for the agents require that the

expected payoff of playing clean is the same as the expected payoff of doping.

That is, for i = 1, 2, in equilibrium Ei(c) = Ei(d), which implies

σ(1− β) = (1− β)− σβP + (1− σ)βΦ(D,D) and (12)

(1− σ)(1− α) = (1− α)− (1− σ)αP + σαΦ(D,D). (13)

Equality (12) is agent 1’s indifference relation. The left-hand side is the

expected payoff of playing clean. With probability 1 − β player 2 is clean

as well and agent 1 wins the contest with probability σ. Note that agent 1

does not blow the whistle after losing because he is clean. The right-hand

side is the expected payoff for cheating. According to the first term, with

probability 1− β agent 2 is clean. In this case agent 1 wins with certainty

(since he is doped) and receives the prize of value one and agent 2 does not

blow the whistle because he is clean. According to the second term, with

probability β agent 2 is also doped. Consequently, agent 1 wins the contest

with probability σ. In this case agent 2 blows the whistle so that agent 1’s

payoff is −P . Finally, according to the third term, agent 2 is doped with
probability β and wins the contest with probability 1−σ. In this case agent
1 blows the whistle yielding payoff Φ(D,D).

Solving for α and β yields the equilibrium doping probabilities of agent

1 and 2, respectively. They satisfy

α∗∗ =
σ

σ [1− Φ(D,D)] + (1− σ)P
and β∗∗ =

1− σ

(1− σ) [1− Φ(D,D)] + σP
.

Note that α∗∗ ≥ β∗∗ because σ ≥ 1
2 . Then, we can state the following

Proposition.
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Proposition 2 The whistleblowing game has a unique perfect Bayesian equi-

librium if

P >
σ

1− σ

µ
Φ(D,D) +

1− k
σk

¶
(14)

holds. The behavioral strategy profile is

δ1 = (α
∗∗, 0, 1), δ2 = (β∗∗, 0, 1), and δ3 = (0, 1; 0, 1).

The equilibrium beliefs are

µ1(d | c) =
β∗∗

β∗∗ + (1− σ)(1− β∗∗)
, µ2(d | c) =

α∗∗

α∗∗ + σ(1− α∗∗)

µ3(d |W = 2, I) = µ1(d | c), µ3(d |W = 1, I) = µ2(d | c)

µ3(d |W = 2,D) = µ1(d | d) = µ3(d |W = 1,D) = µ2(d | d) = 1.

In contrast to the inspection game, the equilibrium probabilities of dop-

ing now depend negatively on P , so that increasing P reduces the frequency

of doping. The reason for this result is that, in contrast to the inspection

game, the players choose their doping probabilities to make each other in-

different. If an agent increases his doping probability, he also increases the

probability that the other agent is tested when he wins and receives punish-

ment P . The equilibrium probabilities of doping depend positively on the

whistleblowing reward Φ(D,D) because an agent obtains this reward only

if he is a doped loser and sends the message D. Because the controller plays

a pure strategy (which is contingent on the message received), the costs of

testing, k, do not affect the agents’ equilibrium strategies or beliefs. As in

the inspection game, the favorite player is more likely to be doped than the

underdog (α∗∗ ≥ β∗∗), with ∂α∗∗

∂σ > 0, ∂β∗∗

∂σ < 0, and ∂(α∗∗−β∗∗)
∂σ > 0.

Condition (14) is derived from the controller’s incentive constraint (7),

respectively (11), which guarantees that he does not test after receiving

message I. This constraint only holds if P is sufficiently large. If P is too

small, the doping probabilities α∗∗ and β∗∗ are so large that the controller

wants to control after receiving message I. Obviously, testing after message

I leads to a break-down of the whistleblowing equilibrium.
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4 Comparing the games

We now compare the doping frequencies, the testing frequencies, and the

expected payoffs of the agents and the controller in the whistleblowing game

with those in the inspection game.

Proposition 3 There exist critical values Pα ≥ Pβ > 0 defined in the proof
such that if P ≥ Pα, α∗∗ ≤ α∗ and if P ≥ Pβ, β∗∗ ≤ β∗.

According to Proposition 3 if the punishment is sufficiently large, the

cheating probabilities are lower in the whistleblowing mechanism than in

the inspection game. Moreover, the more talented player must be pun-

ished harsher than the underdog (Pα ≥ Pβ) in order to reduce his cheat-
ing frequency below the one in the inspection game. The intuition behind

Proposition 3 is that increasing P reduces the doping probabilities in the

whistleblowing game but not in the inspection game. In the inspection game,

increasing P only reduces the equilibrium probabilities of testing.

We now consider under which conditions the whistleblowing equilibrium

Pareto dominates the equilibrium of the inspection game.

Proposition 4 The unique equilibrium of the whistleblowing game Pareto-

dominates the unique equilibrium of the inspection game if P > Pα.

Proposition 4 makes a strong case for the use of the whistleblowing

mechanism: All participants are ex ante better off if P > Pα. The intuition

behind this result is that the controller’s payoff is strictly positive in the

whistleblowing game. In contrast, it is zero in the inspection game. Sec-

ond, the expected utilities of both agents are larger in the whistleblowing

mechanism compared to the inspection game if P > Pα.

Finally, we compare the testing frequencies. In the inspection game the

probabilities that player i is tested is Pr(W = i)t∗i for i = 1, 2, which by

Lemma 1 is equivalent to t∗1σ and t
∗
2 (1− σ), respectively. So the testing

frequency is

FSC = t
∗
1σ + t

∗
2 (1− σ) =

σβ∗ + (1− σ)α∗

k (1 + P )
.
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Note that FSC strictly increases in k, since both t∗1 and t
∗
2 increase in k.

Hence, FSC is smallest as k approaches 0.

In the whistleblowing game the controller tests if and only if both players

are doped, i.e. the testing frequency is

FWB = α∗∗β∗∗.

Note that FWB strictly increases in Φ(D,D), so that FWB is smallest as

Φ(D,D) approaches 0.

Proposition 5 For any P > 1, there is a Φ(D,D) such that FWB < FSC

whenever the whistleblowing equilibrium exists.

Proposition 5 further strengthens the case for the use of the whistle-

blowing mechanism, because lower testing frequencies reduce the cost of

implementing controls. It is worth mentioning that P > 1 is a sufficient

condition, which we have derived under the assumption that the control

costs approach zero (k → 0), which makes the standard inspection scheme

most effective. For higher values of k, P can be reduced below 1 and we still

have FWB < FSC .

5 Extensions

In this section we investigate the effects of less than perfectly effective doping

and the effects of unreliable tests.

5.1 Less effective doping

We now allow for the possibility that doping is less than perfectly effective.

For simplicity, we assume that both agents are equally talented, i.e. we

assume σ = 1
2 . We denote by s ∈ (

1
2 , 1] the probability that an agent wins

the contest if he has doped and the other one has not. When s < 1 a doped

loser faces some uncertainty about the behavior of the winner. In contrast,

when s = 1 as in the previous section, then a doped loser knows for sure

that the winner has doped. We first consider the inspection game and then

the whistleblowing mechanism.
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5.1.1 The inspection game

Since both agents are equally talented in this section, in equilibrium the

conditional probabilities Pr(d | W = 1) and Pr(d | W = 2) and the doping

probabilities α and β must be equal. Consequently, the indifference relations

(1) and (2) for the controller satisfy

Pr(d |W = 1) = Pr(d |W = 2) = k,

where

Pr(d |W = i) = 2α(1− α)s+ α2.

Solving for α yields the equilibrium doping probabilities

α0 = β0 =
s−
√
k − 2ks+ s2
2s− 1 .

The doping probabilities are decreasing in s. For s = 1 we have α0 =

1 −
√
1− k, and for s → 1

2 , α
0 → k. Note also that α0 is increasing in k.

Of course, the testing probabilities are identical too, i.e. t1 = t2 = t. For

agents to be indifferent between d and c, an equality analogous to (3) and

(4) must be satisfied. Therefore,

1

2
(1− α0) + (1− s)α0 = (1− t (1 + P ))[s(1− α0) +

1

2
α0]

holds. Solving for t yields

t0 =
1

1 + P

α0 (2s− 1)
k

.

Note that at s = 1
2 , t

0 = 0. In summary, increasing the effectiveness of

doping (i.e. increasing s) yields lower doping probabilities and higher testing

probabilities in the inspection game with less than perfectly effective doping.

5.1.2 The whistleblowing game

Allowing for less than perfectly effective doping changes the whistleblowing

models as follows. First, it affects the doped loser’s beliefs µi(d | d) and
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µi(d | c) and hence the expected payoff of blowing the whistle. In partic-
ular, a doped loser is uncertain about the behavior of the winner because

an agent can win against a doped opponent without the use of performance

enhancing drugs. Second, since in the whistleblowing equilibrium the con-

troller’s beliefs are equal to the loser’s beliefs, the controller’s beliefs are

affected as well. Third, the equilibrium doping probabilities change because

the expected payoffs of doping and playing clean are modified as shown

below.

The agents’ expected payoffs of playing clean respectively doped are

equal because both agents are equally talented. The equilibrium strategies

satisfy

Ei (c) = (1− α) /2 + (1− s)α and

Ei (d) =
α

2
[(−P ) + Φ(D,D)] + (1− α) [s− (1− s)Φ(D,C)] .

Then, Ei (c) = Ei (d) yields the equilibrium doping probabilities

α00 = β
00
=

2s− 1− 2(1− s)Φ(D,C)
1 + P − Φ(D,D)− 2(1− s)Φ(D,C) .

In contrast to the inspection game with less than perfectly effective doping,

the doping probabilities are increasing in s. As before, the loser’s incentive

constraints (5) and (6) and the controller’s incentive constraints (7) and (8)

must hold.20

Proposition 6 If agents are equally talented (i.e. σ = 1
2) and doping is

less than perfectly effective (i.e. s ∈ (12 , 1)), then there exist values for P ,
Φ(D,C) and Φ(D,D) with P > −1, 0 < Φ(D,D) < 1− k and Φ(D,C) < k
such that the whistleblowing game has a perfect Bayesian equilibrium with

the behavioral strategy profile

δi = (α
00, 0, 1) for i = 1, 2, and δ3 = (0, 1; 0, 1).

20Recall that due to the symmetry of agents, strategies, beliefs and the constraints are
the same for both.
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The beliefs for i = 1, 2, j 6= i are

µi(d | d) =
α00

α00 + 2(1− α00)(1− s) , µi(d | c) =
2sα00

2sα00 + (1− α00)
,

µ3(W = i | D) = µj(d | d) and µ3(W = i | I) = µj(d | c).

5.2 Unreliable tests

We now consider unreliable tests. We assume that the controller gets the

premium of value one if and only if he tests the winner and the test indicates

that the winner is doped. Likewise, agents get their payments P,Φ(D,D)

and Φ(D,C) contingent on the result of the test. The power of the test

(i.e. the probability that the test indicates that an agent is doped if he has

played d) is denoted as θDD, and the size of the test (i.e. the probability

that the test indicates that the agent is doped if he is clean) is 1− θCC . We

assume that

1 ≥ θDD, θCC ≥
1

2
.

These restrictions are without much loss of generality because if 12 ≥ θCC , θDD ≥
0 we could simply invert the interpretation of the test. To ensure that the

expected control costs are smaller than the potential benefit of testing a

doped winner we impose

k < θDD.

We first consider the inspection game and then the whistleblowing mecha-

nism.

5.2.1 The inspection game

When tests are less than perfectly reliable, the equilibrium conditions (1),

(2), (3), and (4) must be modified as follows. For the controller they are

Pr(d |W = 1)θDD + [1− Pr(d |W = 1)] (1− θCC)− k = 0 (15)

Pr(d |W = 2)θDD + [1− Pr(d |W = 2)] (1− θCC)− k = 0. (16)

Then, the equilibrium doping probabilities are

eα = 1− eΨ− ek(1− 2σ)
2σ

, eβ = 1− eΨ+ ek(1− 2σ)
2(1− σ)
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where ek = k+θCC−1
θDD+θCC−1 and

eΨ =

q
(1− ek)(1− ek(1− 2σ)2). From Section

2 we know that ∂α
∂k > 0 and ∂β

∂k > 0. Hence, if ek > k, then α > α∗ andeβ > β∗. Making tests more reliable by increasing θDD decreases the doping

probabilities. In contrast, making tests more reliable by increasing θCC

increases the doping probabilities.

The equilibrium conditions for the agents are

σ(1− eβ) (1− t1PC) = (σeβ + (1− eβ))(1− t1PD) (17)

(1− σ)(1− eα) (1− t2PC) = ((1− σ)eα+ (1− eα))(1− t2PD) (18)

where we have defined PC = (1− θCC) (1 + P ) and PD = θDD (1 + P ). The

testing probabilities satisfy

t1 =

µ
1

1 + P

¶Ã
β0

θDDk + (1− θCC)
¡
β0 − k

¢! and

t2 =

µ
1

1 + P

¶µ
α0

θDDk + (1− θCC) (α0 − k)

¶
.

5.2.2 The whistleblowing game

Unreliable tests change the agents’ equilibrium strategies through two chan-

nels. First, the expected punishment for a doped winner who is tested is

smaller since bP = θDDP − (1− θDD) < P.

With probability θDD the test is positive and he receives punishment P .

With probability 1 − θDD the test is negative and he receives the prize of

value one.

Second, the modified expected transfers for whistleblowing are

bΦ (D,D) = θDDΦ(D,D)− (1− θDD)Φ(D,C)bΦ(D,C) = θCCΦ(D,C)− (1− θCC)Φ(D,D)

where bΦ (D,D) is the expected reward for whistleblowing if the winner is
doped, and bΦ(D,C) is the expected punishment for whistleblowing if the
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winner is clean. For example, with probability θDD the test is positive and

the whistleblower receives the reward Φ(D,D). With probability 1 − θDD

the test is negative and he receives Φ(D,C).

The following comparisons with the whistleblowing game under perfectly

reliable tests are insightful. First, since bΦ (D,D) < Φ(D,D), a doped loser
has a smaller incentive to send message D, the expected reward for doing

so being smaller. Second, because bΦ(D,C) < Φ(D,C), a clean loser has
a greater incentive to send message D, since the expected punishment is

smaller. Third, the controller’s expected payoff of testing given message

D is smaller with unreliable tests. In contrast, his incentive to test given

message I is larger since he has a chance that a clean agent tests positive.

Given these modifications, the agents’ equilibrium strategies satisfy

bα = σ

σ
h
1− bΦ (D,D)i+ (1− σ) bP and bβ = 1− σ

(1− σ)
h
1− bΦ (D,D)i+ σ bP .

It is interesting to note that the effects of increasing θDD on bα and bβ are
ambiguous because bΦ (D,D) enters negatively and bP positively in the equa-
tions for bα and bβ. As in the whistleblowing game with perfectly reliable
tests, the equilibrium doping probabilities bα and bβ are strictly decreasing in
P .

Our findings are summarized in the following proposition.

Proposition 7 If tests are less than perfectly reliable, then for bΦ(D,D) > 0
and for bP > σ

1− σ

µbΦ(D,D) + 1

σ

θDD − k
k − (1− θCC)

¶
, (19)

the whistleblowing game has a perfect Bayesian equilibrium with the behav-

ioral strategy profile

δ1 = (bα, 0, 1), δ2 = (bβ, 0, 1), and δ3 = (0, 1; 0, 1).
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The equilibrium beliefs are

µ1(d | c) =
bβbβ + (1− σ)(1− bβ) , µ̂2(d | c) =

bαbα+ σ(1− bα) ,
µ3(d |W = 2, I) = µ̂1(d | c), µ3(d |W = 1, I) = µ2(d | c),

µ3(d |W = 2,D) = µ1(d | d) = µ3(d |W = 1,D) = µ2(d | d) = 1.

Condition (19) is derived from the controller’s incentive constraint (7)

using bα and bβ, which guarantees that he does not test after receiving message
I. This constraint only holds if P and hence bP is sufficiently large. If P is

too small, the doping probabilities bα and bβ are so large that the controller
wants to control after receiving message I.

6 Conclusions

In this paper, we have analyzed the role of whistleblowing in an inspection

game with two agents and a controller. In the presence of perfectly effective

cheating and reliable tests we have found that whistleblowing improves the

efficiency of controls because it allows the controller to extract private infor-

mation from the agents. In fact, our results make a strong case for the use of

the whistleblowing mechanism. First, if punishments for detected cheaters

are sufficiently large, the cheating probabilities are smaller than in an in-

spection game. In contrast to the inspection game, cheating is eliminated

as punishments get arbitrarily large. Second, whistleblowing allows for a

strict Pareto-improvement relative to the inspection game. Third, the fre-

quency of tests are smaller under the whistleblowing mechanism than in the

inspection game. Thus, whistleblowing reduces control costs since testing is

costly.

We consider the following extensions of the model worthwhile. Allowing

for n > 2 agents might be useful in the case where doping is less than

perfectly effective. If doping is not perfectly effective, the doped loser faces

some uncertainty as to the strategy played by the winner. If there are two

or more losers, the controller might want to test only if two (or more) losers
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send the message D. Thus, increasing the number of agents might partially

outweigh the effects of less effective doping. Another way to extend the

model consists of using fines, i.e. transfer payments, rather than deadweight

loss penalties, and to analyze cheating in tournaments that involve more

than one round.

We think our inspection game captures many relevant features of cheat-

ing and the fight against cheating, though we have not explicitly modelled

the dynamic issues inherent in many cheating situations. For example, in

sports new performance enhancing drugs are being developed that allow

cheating athletes to be a step ahead of the controlling authorities. As a

consequence, cheating will never be fully eliminated.
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7 Appendix

Proof of Lemma 1. Equations (1) and (2) imply Pr(d | W = 1) =

Pr(d |W = 2). Then, Pr(d |W = i) = Pr(W=i∩d)
Pr(W=i) , i = 1, 2, implies that

Pr(W = 2)

Pr(W = 1)
=
Pr(W = 2 ∩ d)
Pr(W = 1 ∩ d) . (20)

Using the fact that Pr(W = i) = Pr(W = i ∩ d) + Pr(W = i ∩ c) to replace
Pr(W = 1) and Pr(W = 2) in (20), we get

Pr(W = 2 ∩ d) + Pr(W = 2 ∩ c)
Pr(W = 1 ∩ d) + Pr(W = 1 ∩ c) =

Pr(W = 2 ∩ d)
Pr(W = 1 ∩ d)

or be re-arranging

Pr(W = 2 ∩ d) Pr(W = 1 ∩ c) = Pr(W = 1 ∩ d) Pr(W = 2 ∩ c).

Using the definitions for these probabilities and re-arranging once more

yields
1− σ

σ
=

µ
β

1− β

¶µ
1− α

α

¶
, (21)

which implies that in any equilibrium α ≥ β because σ ≥ 1
2 . This is the

proof of part (i) of Lemma 1.

To see that the underdog is more often tested, define the relative attrac-

tiveness of doping for agent i as Ei[d]Ei[c]
, which from (3) and (4) is equal to one

in any equilibrium. Therefore,

E1[d]

E1[c]
= [1− t1 (1 + P )]

µ
β

1− β
+
1

σ

¶
= [1− t2 (1 + P )]

µ
α

1− α
+

1

1− σ

¶
=
E2[d]

E2[c]
.

But since
³

β
1−β +

1
σ

´
<
³

α
1−α +

1
1−σ

´
, we have t1 < t2, which proves part

(ii).

Finally, using equation (21) in equation (20) we get after simplifying
Pr(W=2)
Pr(W=1) =

1−σ
σ . Replacing Pr(W = 2) by 1−Pr(W = 1) proves part (iii) of

Lemma 1.¥
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Proof of Proposition 1. >From (1), (2), (3), and (4), the equilibrium

conditions are

α(1− β) + σαβ

σ(1− α)(1− β) + α(1− β) + σαβ
= k (22)

(1− α)β + (1− σ)αβ

(1− σ)(1− α)(1− β) + β(1− α) + (1− σ)αβ
= k (23)

(1− t1(1 + P ))(σβ + (1− β)) = σ(1− β) (24)

(1− t2(1 + P ))((1− σ)α+ (1− α)) = (1− σ)(1− α).(25)

This system of four equations has the unique solution (t∗1, t
∗
2,α

∗,β∗).¥

Proof of Proposition 2. The proof involves two steps. We first show

that the strategy profile and beliefs described by Proposition 2 are a perfect

Bayesian Nash equilibrium (PBE). After this we prove that the equilibrium

is unique.

Existence: Assume first that the cheating probabilities as defined in

the text are α = α∗∗ and β = β∗∗. Then, if (9) and (10) hold, and if the

controller has the same beliefs as the loser, the only binding constraint is

(11) where

µ3(d | W = 1, I) = µ2(d | c) =
α∗∗

α∗∗ + σ(1− α∗∗)
and

µ3(d | W = 2, I) = µ1(d | c) =
β∗∗

β∗∗ + (1− σ)(1− β∗∗)
.

Consequently, we need

k ≥ max
½

α∗∗

α∗∗ + σ(1− α∗∗)
,

β∗∗

β∗∗ + (1− σ)(1− β∗∗)

¾
. (26)

Inserting the equilibrium values α∗∗ and β∗∗ into condition (26) we get

k ≥ max
½

1

1 + P − σ(P +Φ(D,D))
,

1

1 + σ(P +Φ(D,D))− Φ(D,D)

¾
.

Note that 1+P −σ(P +Φ(D,D)) ≤ 1+σ(P +Φ(D,D))−Φ(D,D) because
σ ≥ 1

2 . Therefore,

k ≥ 1

1 + P − σ(P +Φ(D,D))
, (27)
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which can be re-arranged to get condition (14) of Proposition 2.

Assume now that all incentive constraints hold. Then, α and β satisfy

the expression given in the Proposition. Therefore, the strategy profile and

the beliefs in Proposition 2 constitute a PBE.

Uniqueness: We now show that the equilibrium is unique. We first

show that there is no pooling equilibrium, i.e. that there is no equilibrium in

which one or both agents send the same message regardless of whether they

are doped or not. Note first that testing given message D is a dominant

strategy for the controller because Φ(D,C) > k and 0 < Φ(D,D) < 1 −
k. Consequently, for a doped loser sending message I is not sequentially

rational: The doped loser is sure that the winner is doped and will be

tested if he sends message D, so that his expected payoff of sending D is

Φ(D,D) > 0, while the payoff of sending I is 0. Hence, sending message I

is not sequentially rational for a doped loser.

Therefore, the only candidates for pooling equilibria consist of strategy

profiles where the pooling loser always saysD. Because testing is a dominant

strategy given message D, the winner (who may or may not pool himself)

will be tested with probability one if he wins. But if an agent is certain to

be tested if he wins, he will never dope: If tested with probability one, his

expected payoff of doping is negative, while the expected payoff of playing

clean is positive. But given that his opponent never dopes, the expected

payoff of always saying D is negative. Thus, it is not a best response for the

pooling agent to always say D. Hence, there are no pooling equilibria.

We next show that there are no separating and no hybrid equilibria. The

plan is as follows: In step 1 we show that there are no equilibria in which

a clean loser sends message D with positive probability. We then show in

step 2 that there are no equilibria in which the controller tests both agents

with a positive probability when receiving message I. In step 3 we show

that there is no PBE, in which the controller tests at least one agent with

strictly positive probability given message I.

Step 1: We first show that there are no equilibria in which mi(c) > 0 for
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at least one agent i. To see this, note that mi(c) > 0 implies that

µi(d | c)Φ(D,D) + µi(c | c) (−Φ(D,C)) ≥ 0 (28)

i = 1, 2. But if (28) holds, then

µi(d | c)(1− k) + µi(c | c) (−k) > 0

because in equilibrium µ3(d |W = j, I) = µi(d | c).21 Hence, if the expected
payoff of clean agent i of sending message D is non-negative, then the con-

troller’s expected payoff of testing given message I is strictly positive. But

this implies that winner j, for j 6= i, is tested with certainty. Consequently,
he will never dope and therefore (28) cannot hold. Thus in any equilibrium

mi(c) = 0, i = 1, 2.

Step 2: We now show that there is no separating PBE, in which the

controller’s testing probabilities are 0 < ti(I) ≤ 1 for both i.
First, consider the case with ti(I) = 1 for at least one i. Given that

sequential rationality requires the doped loser to say D and that testing is

a dominant strategy given message D (i.e. ti(D) = 1, i = 1, 2), ti(I) = 1

implies that agent i will always be tested, which cannot be an equilibrium.

Next consider the case with 0 < ti(I) < 1 for i = 1, 2. This cannot be

an equilibrium. For such a strategy to be part of an equilibrium strategy

profile, the controller’s expected payoff of testing the winner given that the

loser has sent message I must be equal to the payoff of not testing, which is

zero. Thus, for the controller we need

α

σ(1− α) + α
− k = 0 and β

(1− σ)(1− β) + β
− k = 0

yielding bα = kσ
1−k(1−σ) and

bβ = k(1−σ)
1−kσ .

The payoff to the loser if the winner is tested positive is Φ(D,D). Be-

cause agents 1 and 2 must be indifferent between the two (pure) behavioral
21Note that if the message I is sent under the strategy profile considered, the loser is

clean. Therefore, the controller shares the belief of the clean loser if the message is I.
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strategies, we need

(1− β)(1− t1(1 + P ))− σβP + (1− σ)βΦ(D,D) = σ(1− β) and

(1− α)(1− t2(1 + P ))− (1− σ)αP + σαΦ(D,D) = (1− σ)(1− α).

Using bα and bβ and re-arranging yields
t1 =

1− σ

(1− k)(1 + P )(1− k [1− Φ(D,D) + σ(Φ(D,D) + P )]) (29)

t2 =
σ

(1− k)(1 + P )(−1 + k [1 + P − σ(Φ(D,D) + P )]). (30)

By assumption t1 and t2 are strictly positive probabilities. Because the

fraction in equation (29) is positive, the term in brackets in equation (29) also

has to be positive. Thus we must have k [1− Φ(D,D) + σ(Φ(D,D) + P )] <

1. On the other hand, because the fraction in (30) is positive, the term in

brackets needs to be greater than zero. Thus, k [1 + P − σ(Φ(D,D) + P )] >

1. But this can never simultaneously be the case, because

k [1 + P − σ(Φ(D,D) + P )] > k [1− Φ(D,D) + σ(Φ(D,D) + P )]

implies σ < 1
2 , which is a contradiction. Hence, 0 < ti(I) < 1 for i = 1, 2

cannot be part of an equilibrium.

Step 3. From step 2 we know that both t1(I) > 0 and t2(I) > 0 is

not compatible with equilibrium. By sequential rationality of the doped

loser and the dominant strategy to test given message D of the controller,

we know also that ti(I) = 1 for i = 1, 2 is not possible in an equilibrium.

Therefore, we are left to show that there is no equilibrium with ti(I) = 0 and

0 < tj(I) < 1 for j 6= i. Assume to the contrary t2(I) = 0 and 0 < t1(I) < 1.
Then, agent 1 must keep the controller indifferent. That is, α is such that

α

α+ σ(1− α)
− k = 0. (31)

On the other hand, agent 1 must also keep agent 2 indifferent. Hence, α

also solves

(1− α) + σαΦ(D,D)− (1− σ)αP = (1− α)(1− σ). (32)
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But α solves (31) and (32) if and only if Φ(D,D) = 1−σ
σ

³
P − 1−k

k(1−σ)

´
, which

contradicts (14). Hence, this is not an equilibrium. Analogous reasoning

rejects the case with t1(I) = 0 and 0 < t2(I) < 1.

This concludes the proof that the equilibrium is unique.¥

Proof of Proposition 3. The proof is straightforward and only involves

the comparison of α∗∗ with α∗ and β∗∗ with β∗. The critical values are

Pα =
σ

1− σ

µ
1− α∗

α∗
+Φ(D,D)

¶
and (33)

Pβ =
1− σ

σ

µ
1− β∗

β∗
+Φ(D,D)

¶
. (34)

Next, use (21) to replace 1−α∗
α∗ in (33) to get

Pα =

µ
1− β∗

β∗

¶
+

σ

1− σ
Φ(D,D) ≥ 1− σ

σ

µ
1− β∗

β∗

¶
+
1− σ

σ
Φ(D,D) = Pβ,

because σ ≥ 1
2 . Finally, note that α

∗∗ and β∗∗ are strictly decreasing in

P . In contrast, α∗ and β∗ are independent of P . Consequently, if P ≥ Pα,
α∗∗ ≤ α∗ and if P ≥ Pβ, β∗∗ ≤ β∗.¥

Proof of Proposition 4. In the unique equilibrium of the inspection

game, the expected payoff of the controller is zero because in equilibrium he

is indifferent between testing and not testing, where not testing yields zero

payoff. In contrast, in the whistleblowing game the controller’s expected

payoff is strictly positive, because with positive probability he receives the

accurate message D and tests the winner, which yields a positive payoff.

Consequently, the controller is strictly better off in the whistleblowing game

compared to the inspection game.

In both games, the agents are indifferent between doping and not doping.

Consequently, in both games the expected payoffs must be equal to the

expected payoff of playing clean, which are σ(1 − β∗) and σ(1 − β∗∗) for

agent 1 and (1− σ)(1 − α∗) and (1− σ)(1 − α∗∗) for agent 2, respectively.

Consequently, in the whistleblowing game if β∗∗ < β∗, agent 1 is strictly
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better off and if α∗∗ < α∗, agent 2 is strictly better off. Proposition 3

implies that if P > Pα, β∗∗ < β∗ and α∗∗ < α∗. Thus, if P > Pα, the

expected utilities of both agents and the controller are strictly larger in the

whistleblowing game than in the inspection game. ¥

Proof of Proposition 5. We show that the limit of FSC as k goes to

0 is greater than the limit of FWB as Φ(D,D) approaches 0 (where the

whistleblowing equilibrium does not necessarily exist). Because FSC strictly

increases in k and FWB is independent of it, FSC > FWB for any greater

k then follows immediately. Therefore, FSC > FWB will also be feasible

through appropriate (i.e. sufficiently small) choice of Φ(D,D) for any k for

which the whistleblowing equilibrium exists. The limit

lim
Φ(D,D)→0

Fwb =
σ(1− σ)

(1− σ + σP )(σ + P − σP )

is straightforward to find. By L’Hôpital’s rule, the limit of FSC is

lim
k→0

Fsc = 2
σ(1− σ)

1 + P
.

Now, for P > 1 we have

2
σ(1− σ)

1 + P
>

σ(1− σ)

(1− σ + σP )(σ + P − σP )
, (35)

since inequality (35) can be simplified to yield

(1− P )2σ(1− σ) >
1

2
(1− P ), (36)

which is always true because for P > 1, the right-hand side of (36) is nega-

tive, while the left-hand side is positive.¥

Proof of Proposition 6. The incentive constraints of the agents are

µi(d | d)Φ(D,D)− (1− µi(d | d))Φ(D,C) ≥ 0 and (37)

µi(d | c)Φ(D,D)− (1− µi(d | c))Φ(D,C) ≥ 0. (38)
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Solving (37) and (38) for Φ(D,D)
Φ(D,C) yields

1− µi(d | d)
µi(d | d)

≤ Φ(D,D)
Φ(D,C)

≤ 1− µi(d | c)
µi(d | c)

. (39)

The incentive constraints of the controller are

µi(d | d)(1− k − Φ(D,D))− (1− µi(d | d)) (k − Φ(D,C)) ≥ 0 and(40)

µi(d | c)(1− k)− (1− µi(d | c)) k ≤ 0. (41)

implying

1− µi(d | d)
µi(d | d)

≤ 1− k − Φ(D,D)
k − Φ(D,C) ≤ 1− µi(d | c)

µi(d | c)
and (42)

1− µi(d | d)
µi(d | d)

≤ 1− k
k
≤ 1− µi(d | c)

µi(d | c)
. (43)

Now let Φ(D,C) = k
1−kΦ(D,D). Then,

Φ(D,D)
Φ(D,C) =

1−k−Φ(D,D)
k−Φ(D,C) = 1−k

k . Con-

sequently, conditions (39), (42), and (43) collapse to

µi(d | c) ≤ k ≤ µi(d | d). (44)

The first inequality guarantees that the controller does not test given mes-

sage I and the second guarantees that the controller test given message

D.

For s > 1/2, the beliefs µi(d | c) and µi(d | d) are continuous, increasing
and concave functions in the opponent’s doping probability, with µi(d | c) <
µi(d | d) if the doping probability is strictly greater than zero and strictly
less than one. Moreover, symmetry implies that α = β, µ1(d | c) = µ2(d | c),
and µ1(d | d) = µ2(d | d). Then, since ∂β

∂P = ∂α
∂P < 0, we have dµ1(d|d)

dP =
∂µ1(d|d)

∂β
∂β
∂P < 0 and

dµ2(d|c)
dP = ∂µ2(d|c)

∂α
∂α
∂P < 0.

To see that it is always possible to find a Φ(D,D) > 0 and a P > −1
such that (44) holds, we let µi(d | c) = k because µi(d | c) < µi(d | d). This
implies from the definition of the beliefs that

α00 =
k

2s (1− k) + k . (45)
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The equilibrium doping probability is

α00 =
s− 1

2 − (1− s)Φ(D,C)
1
2 [1 + P − Φ(D,D)]− (1− s)Φ(D,C)

.

Use Φ(D,C) = k
1−kΦ(D,D) to get

α00 =
(2s− 1) (1− k)− 2(1− s)kΦ(D,D)

[1 + P − Φ(D,D)] (1− k)− 2(1− s)kΦ(D,D) . (46)

Then (45) and (46) imply

k

2s (1− k) + k =
(2s− 1) (1− k)− 2(1− s)kΦ(D,D)

[1 + P − Φ(D,D)] (1− k)− 2(1− s)kΦ(D,D)

If we let Φ(D,D)→ 0 we get

k

2s (1− k) + k =
2s− 1
1 + P

.

Solving for P yields

P = (2s− 1) 2s (1− k) + k
k

− 1

Evidently, if s→ 1
2 , then P → −1. Otherwise, P > −1.¥

Proof of Proposition 7. Assume first that the cheating probabilities are

α = bα and β = bβ. The whistleblowing mechanism requires that the expected
payoff of a doped loser from sending message D, Ei (D | d), has to be greater
than the expected payoff of sending message I, Ei (I | d) = 0. That is, for
i = 1, 2

µi (d | d) bΦ(D,D)− µi (c | d) bΦ(D,C) > 0. (47)

The mechanism also requires that the expected payoff of a clean loser from

sending message D, Ei (D | c), is smaller than the expected payoff of sending
message I, Ei (I | c), which is also zero. That is, for i = 1, 2

µi (d | c) bΦ(D,D)− µi (c | c) bΦ(D,C) ≤ 0. (48)
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There are four conditions for the controller. The first two conditions make

sure that he does not test given message I, i.e. E3(T |I) ≤ E3(NT |I) = 0,
implying for i = 1, 2

µ3 (d |W = i, I)Φ(T | I, d) + µ3 (c |W = i, I)Φ(T | I, c) ≤ 0, (49)

where Φ(T | I, d) = θDD(1 − k) + (1 − θDD)(−k) is the expected payoff
if the controllers tests a doped loser given message I and Φ(T | I, c) =
(1 − θCC)(1 − k) + θCC(−k) is the expected payoff if the controller tests a
clean loser given message I. Note that Φ(T | I, d)−Φ(T | I, c) > 0.

The other two constraints ensure that the controller tests the winner

given message D, i.e. E3(T |D) ≥ E3(NT |D) = 0, implying for i = 1, 2

µ3 (d |W = i,D)Φ(T | D,d) + µ3 (c |W = i,D)Φ(T | D, c) > 0, (50)

where Φ(T | D, d) = Φ(T | I, d) − bΦ(D,D) is the expected payoff if the
controllers tests a doped loser given message D. Likewise Φ(T | D, c) =
Φ(T | I, c) − bΦ(D,C) is the expected payoff if the controller tests a clean
loser given message D.

We impose the following restrictions for bΦ(D,D) and bΦ(D,C):
bΦ(D,D) > 0, and (51)

1− k > bΦ(D,D), and bΦ(D,C) > k. (52)

The reminder of the proof is similar as the proof of Proposition 2. The

restrictions (51) and (52) require

bΦ(D,D)bΦ(D,C) > 1− θDD
θDD

.

They imply the following: First, because doping is perfectly effective, we

have µi (d | d) = 1 and µi (c | d) = 0. Consequently, the incentive constraint
(47) simplifies to bΦ(D,D) > 0. Thus, given restriction (51), (47) is satis-

fied. Second, (52) implies that (50) holds, i.e. the controller has a dominant

strategy to test given message D. Third, in equilibrium the controller be-

liefs µ3 (d |W = i, I) are equal to loser j’s beliefs, i.e. µ3 (d |W = i, I) =
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µj (d | c). This equality of beliefs and (52) imply that if constraint (49)
holds, then (48) holds, too.

Consequently, (49) is the only relevant constraint. It can be written for

i = 1, 2

µ3 (d |W = i, I) ≤ bk = −(1− θCC) + k

θCC + θDD − 1
. (53)

The controller’s beliefs satisfy

µ3(d |W = 1, I) = µ2(d | c) =
bαbα+ σ(1− bα) and

µ3(d |W = 2, I) = µ1(d | c) =
bβbβ + (1− σ)(1− bβ)

Consequently, we need

bk > max( bαbα+ σ(1− bα) , bβbβ + (1− σ)(1− bβ)
)
. (54)

Inserting the equilibrium values bα and bβ into condition (54) we get
bk > max( 1

1− σbΦ(D,D) + (1− σ) bP , 1

1− (1− σ) bΦ(D,D) + σ bP
)
.

Note that 1 − σbΦ(D,D) + (1− σ) bP ≤ 1 − (1− σ) bΦ(D,D) + σ bP because

σ ≥ 1
2 . Therefore, we need

bk > 1

1− σbΦ(D,D) + (1− σ) bP (55)

which can be re-arranged to get the condition in the Proposition (19).

Finally, the doping probabilities bα and bβ satisfy E1(c) = E1(d). The be-
liefs of the agents and the controller are derived as before. We conclude that

a perfect Bayesian equilibrium exists when tests are not perfectly reliable if

(19) holds.¥



7 APPENDIX 40

References

Apesteguia, José, Martin Dufwenberg, and Reinhard Selten (2003). Blow-

ing the Whistle. Discussion Paper No. 9/2003, Bonn Graduate School

of Economics, Universität Bonn.

Avenhaus, Rudolf (1997). Entscheidungstheoretische Analyse der Fahrgast-

Kontrollen. Der Nahverkehr 9, 27-30.

Avenhaus, Rudolf, Bernhard Von Stengel, and Shmuel Zamir (2002). In-

spection Games. In Aumann, Robert J., and Sergiu Hart (Eds.), Hand-

book of Game Theory, Vol. 3.

Becker, Gary (1968). Crime and Punishment: An Economic approach.

Journal of Political Economy 76(2), 169-217.

Benoît, Jean-Pierre and Juan Dubra (2004), Why Do Good Cops Defend

Bad Cops?, International Economic Review (forthcoming).

Berentsen, Aleksander (2002). The Economics of Doping. European Jour-

nal of Political Economy 18(1), 109-127.

Greenberg, Joseph (1984). Avoiding Tax Avoidance: A (Repeated) Game-

Theoretic Approach. Journal of Economic Theory 32(1), 1-13.

Güth, Werner and Rüdiger Pethig (1992). Illegal Pollution and Monitoring

of Unknown Quality. In Pethig, Rüdiger (Ed.), Conflicts and Cooper-

ation in Managing Environmental Resources, Chapter 10, 275 - 330.

Springer Verlag.

Harsanyi, John C. (1974), Games with Randomly Disturbed Payoffs: A

New Rationale for Mixed-Strategy Equilibrium Points, International

Journal of Game Theory 2: 1-23.

Innes, Robert (1999a). Remediation and Self-Reporting in Optimal Law

Enforcement. Journal of Public Economics 72(3), 379-393.



7 APPENDIX 41

Innes, Robert (1999b). Self-Policing and Optimal Law Enforcement When

Violator Remediation Is Valuable. Journal of Political Economy 107(6),

1305-1325.

Kaplow, Louis and Steven Shavell (1994). Optimal Law Enforcement with

Self-Reporting of Behavior. Journal of Political Economy 102(3), 583-

606.

Kofman, Fred and Jacques Lawarée (1996a), A prisoner’s dilemma model

of collusion deterrence, Journal of Public Economics 59: 117-36.

Kofman, Fred and Jacques Lawarée (1996b), On the Optimality of Allowing

Collusion, Journal of Public Economics 61: 383-407.

Malik, Arun S. (1993). Self-Reporting and the Design of Policies for Regu-

lating Stochastic Pollution. Journal of Environmental Economics and

Management 24(3), 241-257.

Motta, Massimo and Michele Polo (2003). Leniency Programs and Cartel

Prosecution. International Journal of Industrial Organization 21(3),

347-379.

New York Times (2004), ’Favoritism’ Charge Raised in Snapple Deal,

March 19.

Rey, Patrick (2001). Towards a Theory of Competition. University of

Toulouse.

Rosen, Sherwin (1986). Prizes and Incentives in Elimination Tournaments.

American Economic Review 76(4), 701-715.

Salem, George R. and Laura M. Franze (2002). The Whistleblower Provi-

sions of the Sarbanes-Oxley Act of 2002.

http://www.niri.org/regulations/SarbanesOxley/

WhistleblowerProvisions2002.pdf



7 APPENDIX 42

Snyder, James (1989). Election Goals and the Allocation of Campaign

Resources, Econometrica 57(3), 637-660.

Spagnolo, Giancarlo (2002). Self-Defeating Antitrust Laws: How Leniency

Programs Solve Bertrand’s Paradox and Enforce Collusion in Auc-

tions. University of Mannheim.

hhttp://www.cepr.org/meets/wkcn/6/6607/papers/spagnolo.pdfi


