
WIRTSCHAFTS WISSENSCHAFTLICHES ZEN TRUM (WWZ)

DER UNIVERSITÄT BASEL

WWZ Forum, Petersgraben 51, CH - 4003 Basel
Fax +41 61 267 33 33 e-mail: forum-wwz@unibas.ch www.wwz.unibas.ch/forum

March 2004

Development of an Intelligent Tutoring System
for AHP (Analytic Hierarchy Process)

 Alessio Ishizaka

 2

The Author:

Alessio Ishizaka was researcher at the Department for Information Systems of the University
of Basel, Department of Business and Economics (WWZ).

For further infomation please contact:

Prof. Dr. oec. Markus Lusti, Economic Theory
markus.lusti@unibas.ch

A publication of the University of Basel, Department of Business and Economics (WWZ)

Address for information:

WWZ Forum, Petersgraben 51, CH-4003 Basel Fax +41 61 267 33 33

The WWZ Research Papers document the results of research projects at the WWZ.

© WWZ 2005 and the author, Reproduction for other purposes than the personal use needs the

permission of the authors and the WWZ Forum. Please contact the WWZ Forum

TABLE OF CONTENTS

TABLE OF FIGURES..3

RÉSUMÉ ...4

ABSTRACT..5

CHAPTER I..6

INTRODUCTION..6

CHAPTER 2...7

AHP ..7

2.1 Introduction..7

2.2 Comparison Matrix...10
2.2.1 Consistency ...10
2.2.2 How to Build a Consistent Matrix ...11
2.2.3 Inconsistency Tolerance...13

2.3 Conclusion ..15

2.4 Summary...15

CHAPTER 3...17

SIMULATION OF PRIORITY DERIVATION..17

3.1 Introduction..17

3.2 Derivation of Priorities ...18
3.2.1 Mean of the Normalized Values ..18
3.2.2 The Eigenvalue Approach..19
3.2.3 The Geometric Mean..22

3.3. Simulations ..22
3.3.1 Description ..23
3.3.2 Results ...25

3.4 Conclusion ..27

3.5 Summary...27

CHAPTER 4...29

 2

CURRICULUM ..29

4.1 Introduction..29

4.2 Presentation of the Exercises ...30
4.2.1 Exercise 1 ..30
4.2.2 Exercise 2 ..31
4.2.3 Exercise 3 ..31

4.3 Conclusion ..32

4.4 Summary...33

CHAPTER 5...34

DESCRIPTION OF AHP-TUTOR ...34

5.1 Introduction..34

5.2 Programming Language...34

5.3 Architecture..35

5.4 Conclusion ..38

5.5 Summary...38

CHAPTER 6...40

EXPLANATION MODULE ...40

6.1 Introduction..40

6.2 Meta-Interpreter ...40

6.3 Tracer ..41
6.3.1 Definition of the Trace Model ...41
6.3.2 Visualisation of Explanations ..42
6.3.3 Information Extraction and Analysis...45

6.4 Conclusion ..50

6.5 Summary...50

CHAPTER 7...52

CONCLUSION ..52

BIBLIOGRAPHY..55

 3

Table of figures

Figure 2.1: Taxonomy of MADM methods...9
Figure 2.2: Taxonomy of MADM methods needing cardinal information.................10
Figure 2.3: Comparison matrix...11
Figure 2.4: A matrix with the different types of comparisons....................................12
Figure 2.5: Principal diagonal of a comparison matrix..12
Figure 2.6: Dependent comparisons..13
Figure 2.7: Independent comparisons ...13
Figure 2.8: Transitive comparisons...13
Figure 2.9: Reciprocal comparisons..14
Figure 2.10: What-If explanation for transitive comparisons15
Figure 2.11: Matrix with the proposed comparison...15
Figure 2.12: Matrix with changed premises ..15
Figure 3.1: Derivation methods based on the minimization of the distance20
Figure 3.2: Characteristic equation of the consistent matrix21
Figure 3.3: Characteristic equation of the near consistent matrix21
Figure 3.4: Random Consistency Index. ...22
Figure 3.5: Number of ranking contradictions with regard to the dim. and the C.R. ..26
Figure 3.6: Number of ranking contradictions between each method27
Figure 3.7: Mean difference between two reversed priorities28
Figure 5.1: Architecture of AHP...37
Figure 5.2: Example of AHP-Tutor interface..39
Figure 6.1: Additional argument memorising the trace ...42
Figure 6.2: Trace structure..42
Figure 6.3: Trace tree structure...43
Figure 6.4: Part of a textual explanation ...44
Figure 6.5: Part of a graphical explanation ...44
Figure 6.6: Diagram of the analysis and the visualization of the explanations45
Figure 6.7: Global variable recording the position in the explanation tree.................47
Figure 6.8: Process flow in the explanation component ..48
Figure 6.9: Flowchart of a backtracking process ...49
Figure 6.10: Structure of an explanation tree ..49
Figure 6.11: Algorithm traversing the trace and generating the explanation tree50
Figure 6.12: Depth-first traversal of a trace ..51

 4

Résumé

Ce travail considère, décrit et discute l’implémentation d’AHP-Tutor, un Système
Tutoriel Intelligent (STI) enseignant divers concepts et méthodes de dérivation des
priorités d’une matrice des comparaisons d’AHP. Le but de notre système est de
proposer des exercices. La théorie correspondante doit être acquise de façon tradi-
tionnelle en classe, par des livres ou par un enseignement assisté par ordinateur
conventionnel.

A la suite d’une recherche bibliographique, nous avons retenu cinq méthodes qui
seront implémentées dans notre système:

- la méthode de la valeur propre dominante droite

- la méthode de la valeur propre dominante gauche

- la méthode de la moyenne des valeurs normalisées

- la moyenne géométrique des lignes

- la moyenne géométrique des colonnes

Une étude comparative de ces méthodes sur 500 matrices inconsistantes ne relève
aucune différence majeure dans le classement des solutions.

Basé sur ces recherches, un curriculum de trois types d’exercices a été élaboré.
Chaque exercice a un style d’enseignement différent: guidage strict, résolveur et
découverte libre. Le choix du style a été fixé par les objectifs à enseigner.

AHP-Tutor a été développé avec Visual Prolog 5.2 et fonctionne sous MS Win-
dows. L’accent a été mis sur le module expert qui est la colonne vertébrale d’un
système tutoriel intelligent. Sa composante explicative présente à l’étudiant les
étapes conduisant à la réponse. Elle reprend le raisonnement du système pour
l’adapter à l’élève. Cette composante est indépendante du domaine.

 5

Abstract

This work describes and discusses the implementation of AHP-Tutor, an Intelli-
gent Tutoring System (ITS) that provides training in various methods of derivation
of priorities from an AHP comparison matrix. The purpose of our system is to of-
fer exercise problems. The corresponding theoretical knowledge has to be acquired
by other means, for example in the classroom, from books or through conventional
computer-assisted learning.

Based on bibliographical research, five methods were selected for implementation:

- the method of the maximal right eigenvalue

- the method of the maximal left eigenvalue

- the method of the mean of the normalized values

- the geometric mean of the rows

- the geometric mean of the columns.

A comparative study applying these methods to 500 inconsistent matrices did not
reveal any major difference in the classification of alternatives.

Based on these findings, a curriculum consisting of three types of exercises was
developed. Each exercise uses one of the following three teaching styles: strict
guidance, solver, or free discovery. The choice of style was fixed according to the
teaching objectives.

AHP-Tutor was developed with Visual Prolog 5.2 and runs under MS Windows.
The main emphasis is on the expert module, which is the backbone of an intelli-
gent tutoring system. Its explanation component shows the student the steps lead-
ing to the solution. It reuses the reasoning of the system and adapts it to the stu-
dent. This component is domain-independent.

 6

Chapter I

Introduction

In a class of students some solve the exercises quickly and with few errors, other
display more difficulties. Solving the exercise on the blackboard shows the correct
solution, but generally does not allow the students to locate their mistakes. Better
corrections are made when the teacher follows a student individually.

Intelligent Computer Assisted Learning, offering the permanent availability of an
artificial teacher, makes it possible to assist students individually. It corrects erro-
neous calculations immediately. Thus, it offers to each student an adaptable learn-
ing environment.

This work is interested in the implementation of an Intelligent Tutoring System on
the theoretical basis of the decision method Analytic Hierarchy Process (AHP). In
our University, AHP is taught in the fifth semester. Each of four theoretical les-
sons is accompanied by a training lesson which makes it possible to acquire prac-
tical knowledge which cannot be learned passively by books or by listening to a
teacher. The student is confronted with problems, makes mistakes, and experi-
ences dead ends to reveal gaps in his knowledge.

The first four lessons are devoted to the application of AHP. Among these, two
use the commercial software Expert Choice. The knowledge taught helps to use
the supporting software, but is unaware of how the results are calculated. It is not
enough to rationally evaluate the method and can even lead to the inappropriate
use of the software. Therefore, the four other lessons teach the theoretical basis of
AHP. The first two cover the paragraph 2.5 of the text book [LUSTI02, p. 32-43].
The two subsequent ones are practical. They illustrate the theory by means of the
intelligent tutoring system AHP-Tutor developed in this project.

After this introduction, chapter 2 reminds the basis of AHP. In chapter 3 five pri-
orities derivation methods are compared in a Monte Carlo simulation. In chapter 4,
the curriculum of AHP-Tutor is described. Chapter 5 introduces its architecture,
and chapter 6 exposes the explanation component.

 7

Chapter 2

AHP

2.1 Introduction

A complex world needs complex decisions. To assist in this difficult task, decision
support methods have been developed. They try to supersede choices based on ex-
perience or intuition and allow decisions based on scientifically based arguments.
A decision support method tries to model the preference system in the mind of the
decision-maker.

According with the nature of the problem, different families of methods have been
proposed. The Analytic Hierarchy Process (AHP) is a multicriterial method which
tries to satisfy several conflicting criteria. More precisely, it belongs to the Multi-
attribute Decision Making (MADM) field because the decision space is discrete1
[for example HWANG81, p. 1-4; ZIMME96, p. 303-304].

There are different methods of MADM, which can be classified by different crite-
ria, for example: the kind of data used or the number of people implied in the deci-
sion [TRIAN00, p.3-4].

[CHEN92, p.20-23] gives a classification which is widely recognised by the scien-
tific community. It is based on two criteria (see figure 2.1):

• Is information required by a decision-maker?

• Which kind of decision is required?

[MAYST94, p.16-17] introduces a supplementary ramification for the methods
needing cardinal information: the methods with full aggregation and those with
semi aggregation. The methods with full aggregation consider an optimum and the
classification of alternatives is always possible. Methods with semi aggregation
accept the possibility of incomparability and thus of intransitivity. Only certain

1 Problems with continue decision space belong to the Multi-Objective Decision Making (MODM) filed

 8

elements are brought out. If an optimum does not exist, one prefers to present a
subset of alternatives instead of imposing one.

Multi-attribute

decision

making

Information from

the decision-maker

is needed

No

Yes

Feature of the

 information

Major classes of

methods

Threshold

Ordinal

Cardinal

Dominance

Maximin

Maximax

Conjunctive method

Disjunctive method

Lexicographic Method

Elimination by aspects

Weighted Sum Model

Weighted Product Model

AHP

Electre

I. II. III.

Figure 2.1: Taxonomy of MADM Methods (according to [CHEN92, p.23])

Each multi-attribute decision process with cardinal information (figure 2.2) is
based on four steps:

a) Determine the goal, the criteria and the alternatives.

b) Allocate values to criteria representing their relative importance and deliver
values to alternatives representing their effects on these criteria.

c) Process the values to determine a classification of the solutions.

d) Analyse the sensibility of the results.

[TRIAN00, p.5] mentions only the first three steps but every manual describing a
decision method will recommend closing the process with a sensibility analysis. It
systematically varies the values allocated to the different parameters of the method
to assess the uncertainty of the derivation.

 9

MADM

needing

cardinal

information

from the

decison

maker

Full

aggregation

Semi

aggregation

Weighted Sum Model

 [FISHBU67]

Multi Attribute Utility Theory

(MAUT)

[KEENE76]

Additive Utility

[JACQU78]

Analytic Hierarchy Process

[SAATY80]

Electre

[ROY68]

Qualiflex

[PAELI76]

Oreste

[ROUBE79]

Régime

[HINLO83]

Prométhée

[BRANS84]

Macbeth

[BRANA93]

Figure 2.2: Taxonomy of MADM methods needing cardinal information [MAY-
ST94, p.17].

 10

2.2 Comparison Matrix

2.2.1 Consistency

The Analytic Hierarchy Process (AHP) evaluates decision alternatives by pair
wise comparisons, thus allowing more accurate judgements than the simple
weighted product model [SAATY94, p.8-9]. The comparisons are recorded in a
matrix (figure 2.3). This matrix is square and reciprocal.

 A =

Figure 2.3: Comparison matrix

The elements aij of a comparison matrix A compare the alternatives i and j of a de-
cision problem. The aij are said to be consistent if they respect the following tran-
sitivity (2.1) and reciprocity (2.2) rules (examples 2.1 and 2.2):

(2.1) aij = aik · akj where i, j and k are any alternatives of the matrix

Example 2.1:
Suppose you like an apple twice as much as an orange (a12 = 2) and an orange
three times as much as a banana (a23 = 3). If you like an apple six times as much as
a banana (a13 = 6), the transitivity rule is respected.

 (2.2)
ji

ij
a

a
1

=

Example 2.2:
If you like an apple twice as much as an orange (a12 = 2), then you like an orange
half as much as an apple (a21 = 1/2).

A comparison matrix is reciprocal because its inferior part is reciprocal to the su-
perior part and all the elements of the principal diagonal are 1. Therefore a transi-
tivity test of one of the two parts of the matrix is sufficient:

(2.3) aij = aik · akj for j > k > i

1 ... aij ... a1n
... 1

1/aij ... 1
... 1 ...

1/a1n 1

 11

Hence, for each element aij a number of j-(i+1) equations (2.3) have to be re-
spected (example 2.3).

Example 2.3:
The comparison a25 has to conform to the equations a25 = a23 · a35 and a25 = a24 ·
a45.

These equations can be expressed only by terms of the first diagonal above the
principal diagonal (i.e. a12, a23, …, an-1n) (example 2.4):

(2.4) aij = aii+1 · ai+1i+2 · … · aj-1j

Example 2.4:
 a25 = a23 · a35

 a25 = a23 · a34 · a45

An n x n matrix contains n2 comparisons. n-1 of the elements can be chosen freely,
the other elements have to consider the reciprocity (2.2) and transitivity rules (2.4).

2.2.2 How to Build a Consistent Matrix

A step-by-step method checks the consistency of each comparison entered
[ISHIZ04a]. This method is more efficient than filling in the comparison matrix
completely and then reconsidering the comparisons for better consistency. This
method consists of four phases which correspond to the types of comparisons:
comparisons on the principal diagonal, independent comparisons, transitive com-
parisons and reciprocal comparisons (figure 2.4).

Figure 2.4: A matrix with the different types of comparisons

1) The principal diagonal contains all comparisons of an alternative with itself
(figure 2.5):

1

a35=a34 · a45

Comparisons on
the principal di-
agonal

Reciprocal com-
parisons

Independent
comparisons

Transitive com-
parisons

 12

 1
 1
 1
 1

Figure 2.5: Principal diagonal of a comparison matrix.

2) Independent comparisons are not linked to other comparisons by the transitiv-
ity or reciprocity rules. This is the case if the first n-1 comparisons are distrib-
uted over all columns or rows respectively (counter example in figure 2.6).

1 0.33 0.5 4
 1 8
 1
 1
 1

Figure 2.6: Instead of a single comparison the fourth column contains two en-
tries. This way, the first n-1 comparisons are dependent, because of
a14 = a13 · a24 (transitivity rule). To keep the comparisons inde-
pendent each entry has to be in a new column.

Beginning with the first row (a12, a13, …,a1n) is questionable. It can be argued
that comparing alternatives linewise compromises the (psychological) inde-
pendence of the comparisons, an advantage of the pairwise AHP method com-
pared to the simultaneous procedure. We therefore choose the first diagonal as
a starting point (figure 2.7). Furthermore, this choice allows the calculation of
the other comparisons of the upper matrix by multiplication instead of division

(
kj

ij

ik
a

a
a =).

1 0.5
 1 2
 1 1
 1 0.25
 1

Figure 2.7: Choosing the first diagonal above the principal diagonal as a start-
ing point.

 13

3) Transitive comparisons can be deduced from the first diagonal entered in the
second step (2.4) (figure 2.8). The comparison between alternative 1 and alter-
native 5, for example, is given by: a15 = a12 · a23 · a34 · a45 = 0,5 · 2 · 1 · 0,25 =
0,25.

1 0.5 1 1 0.25
 1 2 2 0.5
 1 1 0.25
 1 0.25
 1

Figure 2.8: The upper part of the first diagonal is deduced by the transitivity
rule.

4) Each entry in the lower part of the comparison matrix is the reciprocal of the

corresponding upper part entry (2.2). In figure 2.9, for example, a51 is
15

1

a
.

1 0.5 1 1 0.25
2 1 2 2 0.5
1 0.5 1 1 0.25
1 0.5 1 1 0.25
4 2 4 4 1

Figure 2.9: The lower part is the reciprocal of the upper part.

2.2.3 Inconsistency Tolerance

For the construction of a consistent matrix only the second step is necessary (sec-
tion 2.2.2). The first step is trivial; the last two steps can be deduced by the transi-
tivity (2.4) and the reciprocity rules (2.2). This was proposed in [WEDLE93] for
the calculation of missing comparisons.

This procedure is not reliable for the transitive comparisons (step three) because it
introduces values which are not necessarily present in the decision maker’s mind.
For instance, a weak preference value of 3 (on the fundamental scale) for the com-
parisons A vs. B and B vs. C would imply a predominant or absolute value for A
vs. C of 9 (= 3 · 3).

To overcome this problem, our system lets the user choose the comparison scale
and the error tolerated in the translation rule:

 14

• The fundamental scale one to nine has shortcomings [DYER90]. For some
problems a wider scale (e.g. one to fifteen) and for others a shorter scale is
more appropriate. A description of various scales can be found in [TRIAN00,
p.23-45].

• To allow a certain degree of inconsistency, a tolerated error e (percentage of
the height value of the comparison scale) is introduced [ISHIZ04a]. Hence, the
transitivity rule (2.4) is supplemented by an error term:

(2.5) aij = aii+1 · ai+1i+2 · … · aj-1j+1 ±
100

he !

 where e is the tolerated error

 h is the height value of the comparison scale

If the extended transitivity rule (2.5) is violated, the user is required to modify ei-
ther the value entered (left part of (2.5)) or the comparisons of the first diagonal
(right part of (2.5)). Modifying the values of the first diagonal induces changes on
the transitive comparisons. The user is offered both matrices and can adopt the
most appropriate (example 2.5).

Example 2.5:
Suppose the user chooses 4 for the comparison a14 of the matrix of figure 2.10 and
0 for the tolerated error. But according to the transitivity rule (2.5) the user is sup-
posed to enter a14 = 0.5 · 2 · 1 = 1. If the user maintains his entry, he can modify
the comparisons a12, a23, and a34 of the first diagonal and see the effects on the
comparisons above the first diagonal. Then he can either adopt the solution pro-
posed by the program (figure 2.11) or proceed with his own matrix (figure 2.12).

1 0.5 1 ?
 1 2 2
 1 1 0.25
 1 0.25
 1

Figure 2.10: Comparison matrix. The comparison a14 is requested.

 1 0.5 1 1

 15

 1 2 2
 1 1 0.25
 1 0.25
 1

Figure 2.11: Matrix with proposed
comparison (a14 = 1).

1 1 2 4
 1 2 4
 1 2 0.25
 1 0.25
 1

Figure 2.12: Matrix after changing
premises (a12 = 1 and a32 = 2).

2.3 Conclusion

This chapter showed how to classify the various methods of decision support. We
learned that AHP is a method needing information from the decision maker on a
cardinal scale and having a full aggregation.

The second part of the chapter described a method to build a consistent or a near
consistent matrix. This method is more efficient than filling in the comparison ma-
trix completely and then reconsidering the comparisons for better consistency.

The next chapter describes the different methods for deriving the priorities and
comparing them in a Monte Carlo simulation.

2.4 Summary

♦ Decision support systems help decision makers in the choice of a solution for a
complex problem.

♦ AHP needs information of the decision maker on a cardinal scale and have a
full aggregation.

♦ The multi-attribute decision process is based on four steps:
a) Determine the goal, the criteria and the alternatives.

b) Allocate values to criteria representing their relative importance and deliver
values to alternatives representing their effects on these criteria.

c) Process the values to determine a classification of the solutions.

d) Sensibility analysis.

 16

♦ The Analytic Hierarchy Process (AHP) evaluates decision alternatives by pair-
wise comparisons, thus allowing more accurate judgements than the simple
weighted product model.

♦ A comparison matrix is consistent if all the comparisons obey the reciprocity

rule
ji

ij
a

a
1

= and the transitivity rule aij = aik · akj.

♦ The construction of a consistent matrix can be decomposed in four steps corre-
sponding to the various types of comparisons: comparisons of the principal di-
agonal, independent comparisons, transitive comparisons and reciprocal com-
parisons.

♦ The redundancy of the information in the matrix allows logically inconsistent
comparisons, which nevertheless may be psychologically valid. For this pur-
pose, a tolerated error is introduced in the transitivity rule: aij = aii+1 · ai+1i+2 ·

… · aj-1j+1 ±
100

he ! where e is the tolerated error and h is the height value of the

comparison scale.

 17

Chapter 3

Simulation of Priority Derivation

3.1 Introduction

Several methods have been developed to derive priorities from AHP matrices.
They can be divided in two groups [GOLAN93]: the eigenvalue approach and the
methods minimizing the distance between the user-defined matrix and the nearest
consistent matrix.

Among the eigenvalue methods, we distinguish the principal right eigenvalue
[SAATY77], [SAATY80], the principal left eigenvalue [JOHNS79] and the modi-
fied eigenvalue method. Because of the reciprocity of the matrix, the last utilizes
only the upper triangle to calculate the priorities. Unfortunately, the ranking de-
pends on the order of the alternatives in the matrix [COGGE85], [TAKED87].

A minimum distance can be reached by different metrics. This has lead to the de-
velopment of different derivation methods (figure 3.1), in particular the loga-
rithmic least squares also called geometric mean [CRAWF85], the least squares
[JENSE84], the weighted least squares [CHU79], [BLANK87], and the logarith-
mic least absolute values [COOK88].

Method Minimum of:
Logarithmic least
squares method

2

11

)ln()ln(!!
==

"
"

#

$

%
%

&

'
(

n

j j

i
ij

n

i p

p
a

Least squares method 2

11

!!
==

"
"

#

$

%
%

&

'
(

n

j j

i
ij

n

i p

p
a

Weighted least squares
()

2

11

!!
==

"#
n

j

ijij

n

i

ppa

Logarithmic least
absolute values !!

==

+""
n

j

ijij

n

i

ppa
11

)ln(ln
2

1

 18

Figure 3.1: Derivation methods based on the minimization of the distance, pi is the
researched priority of alternative i, aij is the comparison between alter-
native i and j and n is the dimension of the comparison matrix

With the exception of the logarithmic least squares equation, the methods are dif-
ficult to apply. In particular, the least squares method has several minima and
makes the choice ambiguous. Saaty [SAATY84a] gives an example where the
least squares method even produces an illogical result.

A heated discussion has arisen over the “best” method. One side supports the ei-
genvalue method [SAATY84a], [SAATY84b], [HARKE97], [SAATY01], [SAA-
TY03], the other side argues for the geometric mean [BARZI87], [BARZI90],
[BARZI97], [BARZI01]. This dispute seems to be futile because experimental
studies [BUDES86], [GOLAN93] show that each method is best in at least one
criterion (usually among the criteria it explicitly seeks to optimize), but neither is
optimal by all or even most criteria.

This chapter describes a Monte Carlo simulation studying the differences between
five derivation methods: the right eigenvalue method, the left eigenvalue method,
the geometric mean of the rows, the geometric mean of the columns and the mean
of the normalised values. Other experimental studies [BUDES86], [GOLAN93]
have investigated the “best” derivation method. Our study tries to show under
which conditions the rankings of the above methods are similar and which factors
influence a ranking contradiction. The first part of the chapter reviews the five
methods theoretically. Then we describe a Monte Carlo simulation comparing the
methods, and finally we evaluate the results.

3.2 Derivation of Priorities

In a perfectly consistent matrix, all the comparisons aij obey the equality aij =
j

i

p

p
,

where pi is the priority of the alternative i. Each method satisfies this propriety and
calculates identical priorities for consistent matrices. To deal with inconsistencies
two theories are proposed: the perturbation theory and the distance minimization.

3.2.1 Mean of the Normalized Values

This is the oldest method and is based on three steps (example 3.1):

1. Sum of the elements of the column j:

 19

2. Normalization of the column j
3. Mean of row i

Example 3.1:

Consider the following comparison matrix:

The method “mean of the normalized values” derives the priorities as follow:

1. Add the elements of the columns: (1.5, 9, 4.5)

2. Normalize the columns

3. Calculate the mean of the rows: (0.67, 0.11, 0.22)

In the case of inconsistent matrices, this method cannot be mathematically justi-
fied.

3.2.2 The Eigenvalue Approach
[SAATY77], [SAATY80] proposes the principal eigenvector pr as the desired pri-
orities vector. It is derived from the following equation:

(3.1) A · pr = λ · pr where A is the comparison matrix

 p
r is the priorities vector

 λ is the maximal eigenvalue

Saaty justifies the eigenvalue approach for slightly inconsistent matrices with the
perturbation theory, which says that slight variations in a consistent matrix imply
slight variations of the eigenvector and the eigenvalue (example 3.2).

Example 3.2:
The figure 3.2 represents the characteristic equation of the consistent matrix A.
The maximal eigenvalue is 3 (dimension of the matrix) and the associated eigen-
vector is pr = (0.67, 0.11, 0.22). The figure 3.3 draws the characteristic equation of

1 6 3
1/6 1 1/2
1/3 2 1

0.67 0.67 0.67
0.11 0.11 0.11
0.22 0.22 0.22

 20

the near consistent matrix B, slightly modified from the matrix A. We can see that
the characteristic equation, the eigenvalues and the priorities are also slightly
modified.

 consistent matrix near consistent matrix

 A = B =

p
r = (0.67, 0.11, 0.22) p

r = (0.61, 0.12, 0.27)

Figure 3.2: Characteristic equation of
the consistent matrix A

Figure 3.3: Characteristic equation of
the near consistent matrix B

The eigenvalue method is less transparent than the minimization of the distance.
Many authors have underlined the lacking clarity of the eigenvalue process
[JOHNS79], [CHU79]. To clarify the eigenvalue method we interpret the power
method, a numerical method to calculate the maximal eigenvector (e.g
[LUSTI02]).

The power method defines an iterative process:

1. The pairwise matrix is squared
2. The row sums are then calculated and normalised, it is the first approximation

of the eigenvector
3. Using the last resulting matrix, repeat step 1 and 2

1 6 3
1/6 1 1/2
1/3 2 1

1 6 2
1/6 1 1/2
1/2 2 1

 21

4. Step 3 is repeated until the difference between these sums in two consecutive
priorities calculations is smaller than the stop criterion

Example 3.3:

Considering the inconsistent matrix B of figure 3.3, the priorities are derived as
follows:

1. Square the matrix

2. Sum and normalise the rows: (0.615, 0.116, 0.268)
3. Repeat step 1 and 2: (0.614, 0.117, 0.268)
4. Stop if the difference between the priorities of steps 2 and 3 is smaller than the

stop criterion

In example 3.3, the value a13 = 7 is the sum of:

 a13 = a11 · a13 = 1 · 2 = 2

 a13 = a12 · a23 = 6 ·
2

1 = 3

 a13 = a13 · a33 = 2 · 1 = 2

These three lines are the direct and indirect comparisons deduced by the transitiv-
ity rule (2.1). Since the matrix is inconsistent, the three estimations are not equal.
The power method of squaring the matrix takes the sum of all the three estima-
tions, taking into account direct and indirect estimations. A consistency can be
measured with the Consistency Index (C.I.):

(3.2.)
n

në
C.I

!
=. where n is the dimension

 λ is the eigenvalue

and the Consistency Ratio (C.R.)

(3.3)
..

..
..

IR

IC
RC = where R.I. is the Random Consistency Index

Dimension n 1 2 3 4 5 6 7 8 9 10
R.I. 0 0 0,58 0,90 1,12 1,24 1,32 1,41 1,45 1,49

3 16 7
0.583 3 1.333
1.333 7 3

 22

Figure 3.4: Random Consistency Index

The rank reversal problem for scale inversion is the most pertinent criticism of the
eigenvalue method [JOHNS79]. The solution of the eigenequation (3.1) gives the
right eigenvector pr , which is not necessary the same as the left eigenvector '

p
r , so-

lution of '
p
r T· A = λ · '

p
r T ⇔ AT · '

p
r = λ · '

p
r . The solution depends on the for-

mulation of the problem! This right and left inconsistency (or asymmetry) arises
only for inconsistent matrices with a dimension higher than three [SAATY84a].

3.2.3 The Geometric Mean

The priorities are given by the geometric mean (example 3.4).

Example 3.4:
The priorities from the matrix of the example 3.1 calculated with the geometric
mean are:

p1 = 62.2361
3 =!! , p2 = 44.0

2

1
1

6

1
3 =!! , p3 = 87.012

3

1
3 =!!

Normalizing, we obtain: pr = (0.67, 0.11, 0.22)

The geometric mean minimizes the logarithmic error [CRAWF85]:

(3.4)
2

11

)ln()ln(!!
==

"
"

#

$

%
%

&

'
(

n

j j

i
ij

n

i p

p
a where aij is the comparison between i and j

 pi is the priority of i.

This method is insensitive to an inversion of the scale: the geometric mean of the
rows and the columns give the same ranking.

[SAATY90] criticizes this method because he sees no reason to work with a loga-
rithmic scale. He adds that the calculation is made only with a row, i.e. the indirect
estimations are not considered [SAATY84a], [SAATY84b].

3.3. Simulations

We generated matrices of different dimensions and inconsistencies in a Monte
Carlo simulation and compared the results of the five derivation methods. Our

 23

study tries to show under which conditions the rankings are similar and which fac-
tors influence on ranking contradictions.

[BUDES86] and [TRIAN90] generate randomly matrices and assign them to an
inconsistency group. We do not think this method reflects the process used by de-
cision makers when filling a matrix. We also expect the rate of unusable matrices
(totally inconsistent matrices) to be very high.

[GOLAN93] have improved the matrix generation process. Only the first row is
randomly selected from a uniform distribution in the interval [1, 9]. The other

comparisons aij are randomly selected from the distribution aij ![
i

j

a

ak

1

1

100

)100(

!

!"
,

i

j

a

ak

1

1

100

)100(

!

!+
], where j > i >1 and k ! [10, 20, … ,90] . This method expects the

errors of the decision maker to be multiplicative: aij · eij , where eij is the error fac-
tor. Multiplicative errors consider low values to be less perturbation sensitive than
high values. For example, if we have an error of e = 2, the initial comparison 2 is
subject to a shift of 2 = (4 · 2) - 2 units. For the same error, the comparison 4 is
subject to a shift of 4 = (4 · 2) - 4 units.
This method suffers from other problems: The first row contains discrete values
from the interval [1, 9], but the other entries contains continuous values which
could even be outside the comparisons scale!

Our simulation approach uses an additive error aij + eij. Additive errors modify all
values of the comparison scale equally. All matrix values come from a discrete in-
terval [1, 9] and we discuss how to deal the extremities of the scale.

3.3.1 Description

The experiment is based on five steps:

1) Building inconsistency groups

For dimensions from three to seven, we build five groups of inconsistent matrices
based on the consistency ratios ([0, 0.02[; [0.02, 0.04[; [0.04, 0.06[; [0.06, 0.08[;
[0.08, 0.1[). We have chosen consistency ratios smaller than 0.1 (Saaty’s limit to
accept matrices as “near consistent”). For each group, twenty matrices have been
generated, which results in a total of 500 matrices.

2) Generating a consistent matrix

 24

A consistent matrix is constructed in four steps [ISHIZ04a]. Only the first diago-
nal is randomly selected from the fundamental scale values [1/9, 1/8, …, 1, 2, …,
9], the other comparisons can be deduced by the transitivity and the reciprocity
rules. If a value is induced outside the fundamental scale, the matrix is rejected.

3) Introducing impurities

The number of impurities introduced in the upper part of the matrix is randomly

selected from the interval [0, 1, …,
2

2
nn !], where n is the dimension of the ma-

trix. This impurity is represented as a shift in the comparison scale (equivalent to
an additive error term) reaching at most 45 % of the extreme preference 9, i.e ± 4
scale positions (see example 3.5). The comparisons modified by slight perturba-
tions (impurities) are chosen randomly. The process is stochastic; therefore a com-
parison can be modified by more than one perturbation. The amplitude of the
maximal allowed shift is a delicate question. The introduced error should attempt
to reflect the inconsistencies of a typical decision maker. It should not be too small
to exclude possible scenario. We suppose a maximal shift of 4 units to be a good
choice. Anyway, if the impurities are too high and induce strong inconsistencies
(i.e. a consistency ratio of more than 0.1) then the matrix is rejected.

Example 3.5:
If the consistent comparison is 3, a shift from at most 4 positions scales is admit-
ted. The new value can be between 1/3 and 7.

 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6 7 8 9

The probability of each new value is equal to 100 / 9 = 11.11 %, where the de-
nominator 9 is the number of possible new values. If the original comparison value
is greater than 5 or smaller than 1/6 then the number of shift possibilities is less
than 9.

Is the decision maker also subject to a border effect and how? Two contradictory
theories exist:

- The extreme value is used more frequently than others. Every time the user
wishes to enter a value outside the scale, the highest authorised value will be
chosen. For example, if a decision maker places aij = 5 and ajk = 4 then aik = 9
will probably be entered.

- Psychologist argues that extreme values are less used than middle values (e.g.
[BEREK01]).

 25

We suppose that these tendencies compensate for each other and no border effect
exists. To avoid a border effect, the probability of each new value remains 11.11%
and the original comparison gets the remaining probabilities. For example, if the
entry is 8, the new value can be 9, 7, 6, 5, or 4 with a probability of 11.11 % for
each number and 8 with a probability of 100 - (5 · 11.11) = 44.45 %.

4) Assigning the matrix to an inconsistency group

The Consistency Ratio (C.R.) is calculated and the matrix is classified into one of
the five inconsistency groups (see step 1) or rejected if the C.R. is equal or higher
than 0.1.

5) Deriving the priorities

The priorities are calculated with the following five methods:
- Mean of the Normalised Values (MNV)
- Right Eigenvalue Method (REM)
- Left Eigenvalue Method (LEM)
- Geometric Mean of the Rows (GMR)
- Geometric Mean of the Columns (GMC)

The solutions are collected and analysed. The results are shown in the next para-
graph.

3.3.2 Results

The five derivation methods do not always result in the same rankings. The num-
ber of ranking contradictions with regard to the dimension of the matrix and the
consistency ratio is represented in figure 3.5.

 dim 3 dim 4 dim 5 dim 6 dim 7 total
C.R. < 0.02 0 0 2 2 3 7
C.R. < 0.04 0 2 3 2 6 13
C.R. < 0.06 0 2 4 4 9 19
C.R. < 0.08 0 3 6 10 11 30
C.R. < 0.10 0 4 6 12 16 38

total 0 11 21 30 45

Figure 3.5: Number of ranking contradictions with regard to the dimension of the
matrix and the consistency ratio

We observe that the ranking contradiction phenomenon increases with the dimen-
sion of the matrix and the inconsistencies. This is easily explicable. If the number

 26

of alternatives increases, the possibilities of reversal rise too. The process is analo-
gous to the disorder measured by the consistency ratio: when it increases, the
probabilities of reversal are higher.
All methods provide the same ranking for matrices of dimension three.

The highest number of ranking contradictions occurs between the right eigenvalue
method (REM) and the left eigenvalue method (LEM) (figure 3.6). Relatively few
ranking contradictions were found between the right eigenvalue method (REM)
and the mean of the normalised values (MNV). It is probably the reason why the
mean of the normalised values is widely used as an approximate method of the ei-
genvalue method.
According to theory, no ranking contradiction appears between the geometric
mean of columns (GMC) and rows (GMR).

[%] REM LEM GMR GMC

MNV 34 89 63 63

REM - 59 59

LEM - - 61 61

GMR - - - 0

Figure 3.6: Percent of ranking contradiction between each method

Figure 3.7 represents the mean difference between two reversed priorities. We il-
lustrate the difference between two reversed priorities with the following example
3.6:

Example 3.6:
The priorities are calculated with method A and B: priorities of method A =
(0.244; 0.439; 0.11; 0.101; 0.106) and priorities of method B = (0.25; 0.455;
0.104; 0.098; 0.094). A contradiction arises between ranks 4 and 5. The difference
between the two reversed priorities is for the method A: 0.106 – 0.101 = 0.005 and
for the method B: 0.098 – 0.094 = 0.004.

This difference seems to be independent of the dimension of the matrix. The high-
est values can be observed for the left eigenvalue method (LEM). These differ-
ences are small (≤ 0.021) when compared to the comparison scale used (interval of
1 unit).

 27

 MNV REM LEM GMR GMC

Dim 4 0.008 ±
0.000

 0.006 ±
0.000

 0.022 ±
0.001

 0.005 ±
0.000

 0.006 ±
0.000

Dim 5 0.008 ±
0.000

 0.007 ±
0.000

 0.015 ±
0.000

 0.008 ±
0.000

 0.013 ±
0.000

Dim 6 0.015 ±
0.000

 0.018 ±
0.001

 0.018 ±
0.001

 0.010 ±
0.000

 0.012 ±
0.000

Dim 7 0.009 ±
0.000

 0.010 ±
0.000

 0.012 ±
0.000

 0.008 ±
0.000

 0.008 ±
0.000

Figure 3.7: Mean difference between two reversed priorities classed by dimension
and method

3.4 Conclusion

Five priority derivation methods have been compared in a Monte Carlo simulation.
To obtain the same ranking of priorities with the five methods, it is preferable to
decrease the dimension and the inconsistencies of a matrix. Anyhow, the differ-
ences between the solutions of different methods are minor. Only very close pri-
orities suffer from ranking contradiction. They seem to be due to the uncertainty of
subjective judgements. In these cases, a sensitivity analysis can elucidate the deci-
sion.

3.5 Summary

♦ For the priorities derivation two methods are generally used: the eigenvalue ap-
proach and the geometric mean.

♦ The eigenvalue method argues that slight perturbations on a consistent matrix
induce slight perturbations on the eigenvalue and the correspondent eigenvec-
tor.

♦ The geometric mean minimises the logarithmic distance.

♦ The mean of the normalised values calculates exact priorities for consistent ma-
trices. No theory is known for inconsistent matrices.

 28

♦ A simulation based on many inconsistent matrices to study the ranking contra-
diction phenomena was made. The ranking contradiction is frequent between
the right eigenvalue and the left eigenvalue but inexistent between the geomet-
ric mean of the rows and the geometric mean of the columns and for matrices
of dimension three.

♦ The number of ranking contradictions grows with the dimension of the matrix
and the consistency ratio.

♦ The differences between the solutions of different methods are minor. Only
very close priorities suffer from ranking contradiction. In these cases, a sensi-
tivity analysis can elucidate the decision.

 29

Chapter 4

Curriculum

4.1 Introduction

This chapter describes the three families of problems composing the curriculum of
AHP-Tutor [ISHIZ03]. The main prerequisite of the exercises is the Weighted
Sum Model (see for example [CHEN92, p.36] and [TRIAN00, p. 6-7]). The goal
is to illustrate the theoretical basis of AHP (chapter 2 and 3). In particular, the ex-
ercises are supposed to …

• prove the eigenvalue approach in a consistent matrix

• recognize the different types of comparisons

• build a consistent or near consistent matrix

• calculate the priorities with:

- the maximal right eigenvalue approach

- the maximal left eigenvalue approach

- the geometric mean of the rows

- the geometric mean of the columns

- the mean of the normalised values

• calculate the Consistency Index (C.I.)

• calculate the Consistency Ratio (C.R.)

• observe the effect of perturbations on the priorities

• compare the different methods of priorities derivation.

 30

4.2 Presentation of the Exercises

4.2.1 Exercise 1

The objective of the first exercise is to demonstrate the eigenvalue approach in a
consistent matrix [SAATY94 p.48-50, SAATY01]. The exercise contains three
steps that lead to the eigenvalue equation:

 (4.1) A · w = n · w A is the comparison matrix
 w is the eigenvector
 n is the dimension of the comparison matrix

a) The wording of an exercise gives the alternatives with their priorities. The stu-
dent is expected to build the comparison matrix with these priorities. For this
purpose, he or she will use the formula:

(4.2)
j

i
ij

p

p
a =

Example 4.1:
A melon (1), a pineapple (2) and an orange (3) weigh 1kg, 0.25 kg and 0.125
kg respectively. For example, with formula (1) the weight comparison between

a melon and a pineapple is 4
25.0

1

12
==a . The complete comparison matrix is:

!
!
!

"

#

$
$
$

%

&

15.0125.0

2125.0

841

b) In the second step, the student is asked to multiply the comparison matrix with
the comparison vector, which reproduces the left part of the eigenvalue equa-
tion (2.1).

Example 4.2:

A · w
!
!
!

"

#

$
$
$

%

&

=

!
!
!

"

#

$
$
$

%

&

'

!
!
!

"

#

$
$
$

%

&

=

375.0

75.0

3

125.0

25.0

1

15.0125.0

2125.0

841

 31

c) The third part of the exercise should reproduce the right part of (4.1). The stu-
dent has to find out that the dimension of the comparison matrix is also a
common divisor of the calculated vector.

Example:

A · w =

!
!
!

"

#

$
$
$

%

&

'=

!
!
!

"

#

$
$
$

%

&

=

!
!
!

"

#

$
$
$

%

&

'

!
!
!

"

#

$
$
$

%

&

=

125.0

25.0

1

3

375.0

75.0

3

125.0

25.0

1

15.0125.0

2125.0

841

n · w

4.2.2 Exercise 2

a) Construction of a consistent or near consistent matrix

The objective of the first part of this exercise is to practice the steps shown in
the section 2.2.2 to obtain a consistent or near consistent comparison matrix.

b) Priorities derivation

In the second part of the exercise, the student has to calculate the priorities
(section 3.2).

c) Consistency measure

For the right and left maximal eigenvalue method, the system proposes to cal-
culate the consistency index (3.2) and the consistency ratio (3.3). For this pur-
pose the student extracts the eigenvalue (4.2) from the eigenvalue equation
(3.1). The choice of the line i is free. However, depending on the fixed preci-
sion in the calculation of the priorities with the power method, slight variations
can be observed.

(4.2)
j

n

i

iji

p

pa!
=

"

= 1# where j! [1, 2, …, n]

4.2.3 Exercise 3

The five proposed methods produce the same priorities for a constant matrix but
not when inconsistencies are present. Two theories clash (section 3.1):

• The methods of the maximal eigenvalue are based on the perturbation theory.
They affirm that slight perturbations induce only slight perturbations on the

 32

priorities and the associated eigenvector. In particular, the maximal eigenvalue
is always equal or greater than the dimension of the comparison matrix.

• The geometric mean which minimises the logarithmic distance.

Since arguing in mathematical terms (like in [ISHIZ04c, p. 48-77]) would over-
whelm the average user, we let the student experiment with small changes to the
comparison matrix.

The student is requested to build a perfectly consistent matrix with the step-by-
step method introduced in the section 2.2.2. Next, he or she must introduce pertur-
bations by slightly modifying the comparisons. The student can, in particular, ob-
serve the slight variations of the eigenvalue and eigenvector, the illogical rank re-
versal by the eigenvalue methods, the rank consistency by the geometric mean of
the rows and the columns, and the increase of the ranking contradiction with the
dimension or the inconsistencies.

To select a method for the derivation of priorities is still an open problem (chapter
3). The goal of this exercise is not to impose a certain method but to give the stu-
dent an opportunity to form his own opinion.

This exercise, contrary to the other two, is not guided. The student is free to ex-
periment with all comparison changes. He does not need to know rules but is ex-
pected to make observations instead.

4.3 Conclusion

This chapter describes the curriculum of AHP-Tutor, which is composed of three
exercises. The first is the easiest but most fundamental, since it demonstrates the
validity of the maximal eigenvalue for the priorities derivation. From the wording
of the exercise to the solution, the resolution path is imposed. That is why we call
it a closed exercise.

The second exercise requires the construction of a consistent or near consistent
matrix. It is less constraining, because the student has the choice to allot the com-
parisons values. The calculation of the priorities and the indices of consistency are
rather long and difficult. This part of the system functions in “revolver mode”.
This means that the calculations are realised by the intelligent tutor and their de-
velopments can be consulted. The student is free either to solve the problem in
parallel with the system and to check its solution, or to accept without going
deeper into the suggested solution.

 33

The third exercise represents a variation of the second. The student is free to mod-
ify the comparisons and to observe the effects. Contrary to the first exercise, it is
open.

These three exercises have different degrees of constraints. The degree depends on
the difficulty of the problem modelling and the pedagogy adopted to teach it.

4.4 Summary

♦ The first exercise shows the validity of the maximal eigenvalue for a consistent
matrix.

♦ The second exercise, after construction of a consistent or near consistent ma-
trix, asks to calculate the priorities with five methods.

♦ The determination of the consistency index implies the calculation of the
maximal eigenvalue.

♦ The third exercise observes the effects of inconsistencies on the priorities from
the five derivation methods.

♦ The degree of freedom a student has in an intelligent tutoring system depends
on the difficulty of the problem modelling and the pedagogy adopted to teach
it.

 34

Chapter 5

Description of AHP-Tutor

5.1 Introduction

Chapter 4 exposed the exercises. AHP-Tutor was developed in Visual Prolog 5.2
and runs on MS Windows. We describe its architecture and the language used.

5.2 Programming Language

AHP-Tutor focuses, like previous work of our department, on the expert module
of intelligent tutoring systems. For the development of the knowledge-base and the
explanatory component the logical programming language Prolog [CLOCK87] is
adequate. [LUSTI87, p. 152-159] exhaustively describes the advantages and the
disadvantages of this language. In particular, Prolog exhibits the following fea-
tures:

• It is based on a formal theory (logic of the first order), which is relatively close
to natural language

• It is non-deterministic, insofar as it often provides all the solutions without hav-
ing to specify the order and the sequence of the programming instructions to
solve a problem. Nevertheless, it also allows a procedural interpretation

• It allows symbolic and numeric processing

• It supports unification (a variable is replaced by a constant, another variable or
a functional expression if it does not contain the variable)

• It supports list processing and research by backtracking.

Disadvantages are the difficult procedural structuring of programs and the unreli-
ability due to variables with a no preset size. AHP-Tutor was developed, with the
exception of the online help, in Visual Prolog 5.2. This language is a compiled
variant of Standard Prolog, which allows to increase execution speed and to gener-
ate safer code. Unfortunately, compilation makes meta-programming difficult
(section 6.2).

 35

Visual Prolog supports visual programming which makes it easier to design
graphical interfaces. It does, however, not reach the quality of the programming
environments in Visual Basic or C++, but was sufficient for our work. If the com-
munication interface should be improved, in particular by adding multimedia func-
tionalities, it would be essential to develop an interface in a procedural language
and to create the ITS specific modules in Prolog (see [TRAPP00]).

5.3 Architecture

The architecture of AHP-Tutor mirrors the traditional structure of intelligent tutor-
ing systems (figure 5.1):

• Expert Module:

- solver

- explanation component

- supervisor

• Student Module:

- performance model

- error model

- error recorder

• Pedagogical Module

• Communication Module (user interface).

This decomposition must be looked at like a logical organization of the project
modules. It does not mean that all these components are autonomous agents.

Pedagogical expertise is distributed in each component: in the expert module the
explanations are pedagogically motivated just like the communication with stu-
dents. The pedagogical module, with the supervisor, controls the course of the ex-
ercises.

The cornerstone of any intelligent tutoring system is the expert module. For this
reason, the main emphasis was put on this module, the others are rudimentary.

 36

Database of

exercices

exercise 1

exercise 2

exercise 3

Authoring component

exercise 1

exercise 2 et 3

Solver component

explanation

dialog

explanation

tree

Explanations component

Expert module

Error

recorder

help (theory)

exercise 1

exercise 2

Performs evaluation

 component

supervisor

In
te

rfa
c
e

exercise 1

Error model

Student module

Error

database

Figure 5.1: Modular architecture of AHP-Tutor. The plain arrows indicate the in-
teractions. The dashed arrows symbolize communications with the
student.

A) Authoring component

The authoring component facilitates the formulation of new problems for the
teacher. The author is able to view the solution of the first type of exercises.

 37

This function is not possible for the other exercises, because the results depend
of the entries of the student.

The author, who is also domain expert, has to specify the number of accepted
errors in each part of the exercises, to consider the subjacent theory acquired.
This information will be used by the student module.

B) Expert module

The expert module is of a transparent box type. It can solve the problems de-
scribed in the curriculum (chapter 4) with identical reasoning of a human ex-
pert and justify its calculations by the explanation component.

C) Supervisor

The supervisor detects the errors, looks if they are indexed in the error data-
base, announces them to the student, communicates the right answer, proposes
an explanation and records the errors.

D) Error model

During tests with students, some errors were recurring. These were based on
erroneous rules. We thus decided to count and store them with an adequate ex-
planation.

E) Performs model and error recorder

These two components form the student module based on a performance
model. They extract information related to the student’s achievement. A data-
base reports the number of errors per rule.

The appraiser decides whether the student acquires a sufficient level to con-
tinue the exercise or if it is better to repeat the unity. This judgement is based
on the number of errors accepted by the teacher for this exercise (section A: the
authoring component).

F) Help

The primary goal of intelligent tutoring systems is to offer exercises to be
solved. The referring theory must be acquired differently, for example in class
or by books. AHP-Tutor offers a hypertext help containing the necessary the-
ory.

 38

G) Interface

As AHP-Tutor neither aims to reproduce emotional models (via voice recogni-
tion, camera,…) nor to propose a highly pedagogical interface (for example by
using multimedia or three-dimensional techniques), a simple conventional in-
terface is sufficient. It is window-based and the entries are made by mouse and
keyboard (figure 5.2).

Figure 5.2: Example of AHP-Tutor interface

5.4 Conclusion

This chapter described the various components of AHP-Tutor. We saw that it fol-
lows the classical ITS architecture featuring four interdependent modules. The ac-
cent is on a domain-independent explanation component, which is described in the
next chapter.

5.5 Summary

♦ AHP-Tutor was implemented in Visual Prolog 5.2. This logical programming
language is well adapted to the development of the expert module.

 39

♦ The architecture of AHP-Tutor is based on four macro-components: the expert
module, the student module, the pedagogical module and the interface. How-
ever, not all of these components are autonomous agents.

 40

Chapter 6

Explanation Module

6.1 Introduction

Explanations are an integral part of any teaching process. A tutorial system should
be able not only to solve problems but also to explain them. For this purpose, the
steps leading to the solution must be protocolled. Two techniques are generally
used: meta-interpreters and tracers.

6.2 Meta-Interpreter

In meta-programming data are programs [YALCI91]. Since Prolog code and data
have the same format (i.e. Horn clauses), this language is particularly appropriate
for meta-programming. Meta-interpreters are generally used to add supplementary
functions to an existing interpreter.

[RATZ93, p.16-18] and [TRAPP00, p. 49-50] describe simple meta-interpreters
protocolling the successive steps to the solution of the problem. Meta-interpreters
can be implemented to provide four explanations styles:

• Why is a question being asked (WHY-explanation).

• How has the correct solution been reached (HOW-explanation). When the stu-
dent asks for a solution, the system solves the problem, protocols the solution
path and offers the student a user-friendly way of traversing the protocol. The
student can traverse it breadth-first (left to right and right to left) or depth-first
(downwards and upwards).

• How would alternative assumptions (e.g. different initial values) modify a so-
lution (WHAT IF-explanation).

• Why is a student answer not correct (WHY NOT-explanation). Supposing the
knowledge source is rule-based, the student might then ask why his answer
cannot be deduced by the domain and case knowledge. The explanation com-
ponent would then give the rules which cannot be satisfied.

 41

Meta-programming in standard Prolog is easy because its source code is inter-
preted and therefore accessible at run-time. Other Prolog systems produce com-
piled code, which is faster but complicates meta-programming [LUSTI90]. We
therefore prefer to implement a tracer [ISHIZ04b].

6.3 Tracer

A tracer collects a detailed protocol (trace) of the execution of a program. To un-
derstand how a program reaches its result, we add side effects producing supple-
mentary information on the intermediary states of the execution. This information
is analysed and summarised before being presented to the user. The construction
of a tracer can be divided into four steps [DUCAS94]:

1. definition of a trace model
2. extraction of information from this model
3. analysis/abstraction of the extracted information
4. visualisation of the result of the analysis.

These four steps are often considered neither explicitly nor separately. In AHP-
Tutor [ISHIZ02], for example, the steps 2 and 3 are concomitant.

The tracer of AHP-Tutor reuses the implementation proposed in JA-Tutor
[LUSTI87, LUSTI95]. It is adapted to the windowing technology (windows in-
stead of direct output on the screen).

6.3.1 Definition of the Trace Model

An additional argument is added to selected Prolog predicates (figure 6.1). It pro-
tocols the execution trace of the predicate. Thus the resolution process and the ex-
planation of the problem are closely connected. A problem cannot be solved with-
out generating a trace and vice versa.

Predicate (Argument1, …, ArgumentN, Trace)

Figure 6.1: The additional argument Trace is added to selected predicates

The structure of a trace t is defined in the explanation component (figure 6.2).

Trace = t (predicate, LTrace) % Structure of trace t
LTrace = Trace* % List of trace structures

Figure 6.2: The additional trace argument is structured (syntax of Visual Prolog)

 42

The additional trace argument is tree structured (figure 6.3). A trace (or protocol
tree) contains rules (intermediate nodes) and facts (terminal nodes or leaves). A
fact is a consequence without premise.

 consequence premise

Trace = t (rule(Arguments), [Trace,…,Trace]) % intermediate node
Trace = t (fact(Arguments), []) % terminal node

Figure 6.3: A trace is a tree

The following example shows the construction of simple trace:

Example 6.1:
(1) knowledge base:

a (t (A, [TraceB, TraceC])) :- b (TraceB), c (TraceC).
b (t (B, [TraceD, TraceE])) :- d (TraceD), e (TraceE).
c (t (C, [])).
d (t (D, [])).
e (t (E, [])).

(2) The question a? instantiates its argument with t (A, [t (B, [t (D, []),t (E, [])], t
(C, [])]), where A is the result and the second argument is the protocol list, which
can be read as follows:

A holds because
 B holds because
 D holds because it is a fact
 E holds because it is a fact
 C holds because it is a fact.

6.3.2 Visualisation of Explanations

To better understand the implementation, we anticipate the visualisation of expla-
nations. Explanations can be represented textually (dialog of figure 6.4) or graphi-
cally (tree of figure 6.5).

 43

Figure 6.4: Part of a textual explanation

Figure 6.5: Part of a graphical explanation

 44

The textual explanation displays only one consequence and its conditions (figure
6.4). The user can then navigate freely through the entire tree, gradually looking
for deeper explanations. The graphical explanation allows the access to the entire
tree by scrolling (figure 6.5). The tree can be expanded or closed by clicking on a
node.

When a solution is presented to the student, he or she can ask how it has been
achieved. The student can choose its preferred visualisation mode (figure 6.6).

Procedure

Procedure

Procedure

Explanation

component

Consequence

Premise

1

2

3

4

5

1

1

Textual explanation

Graphical explanation

Each arrow corresponds to a call of a new component. The following arguments
are passed:

1. a list containing the trace and the displaying mode of the explanation
(textual or graphical)

2. a list containing a consequence (head of the list) and its conditions
(queue of the list)

3. the answer of the student (closure of the window or navigation in the
explanation tree)

4. a list containing the whole explanation tree
5. nothing (closure of the window).

Figure 6.6: Diagram of the analysis and the visualization of the explanations

 45

6.3.3 Information Extraction and Analysis

6.3.3.1 Introduction
The inference engine not only traces rules and facts but also reformulates the trace
and comments on a solution. Explicit meta-knowledge in a declarative form is
used for this purpose. This paragraph describes how the information contained in
the trace is extracted, analysed and commented. The predicate explain(rule
/n), for example, adds an explanatory comment to a rule (cf. example 6.2).

Example 6.2
The following clause comments on the result of the transitivity rule:

explain (transitivity(Result)) :-
 write(“According to the transitivity rule the multiplica-

tion of the comparisons gives ” + Result).

The extraction of the information from the trace depends on the explanation mode.
The next paragraphs detail on the implementation of both textual and graphical
explanations.

6.3.3.2 Textual Explanation
The explanations to be displayed are in a list generated by the explanation compo-
nent. The head contains the consequence and the conditions are in the tail (figure
6.6).

While passing arguments to a dialog in Visual Prolog is easy, returning the argu-
ments without losing the context is not trivial. To keep the context of an explana-
tion dialog we use two global variables. The first global variable records the level
in the explanation tree. The following picture denotes the root by the level number 1.
After each step downwards the number is incremented by 1 (figure 6.7).

The second global variable communicates one of the following user alternatives to
the explanation component:

- Explain one of the conditions (visit a son)
- Return to the predecessor (visit the father)
- Return to the root of the explanation tree
- Leave the explanation dialog.

 46

Figure 6.7: Global variable recording the position in the explanation tree

The explanation component is initialised as follows:
- The list of explanations to display is empty
- The initial tree level is 1 (the root)
- The return value is 0.

For each node visited, the comments for the consequence and the conditions are
displayed. When a leaf is reached, the system writes the consequence and instead
of the lacking premise, it shows the message: “No further explanation possible”.

Figure 6.8 analyses the process flow in the explanation component. Backtracking
allows to explore alternatives in order to find a valid solution. In figure 6.8, the
search for alternatives backtracks to the predicate analysing the student’s answer
within the explanation dialog (the circle in figure 6.8). Since this predicate is not
deterministic, four alternatives are proposed:

1. backtracking (if the returned value is equal or lower than zero)
2. leave the dialog (if the returned value is 1)
3. cut the trace (visit a son) and restart the explanation process
4. restart the explanation process.

The 3rd and the 4th alternatives are unconditional. If the conditions of the first two
alternatives do not hold, the 3rd alternative is chosen. The 4th alternative is
adopted only when backtracking (figure 6.9). Options 3 and 4 have distinct func-
tions:
- Alternative 3 visits a son. Its tree is extracted and analysed.
- Alternative 4 does not modify the trace. Therefore the displayed explanation is

not changed. After having visited a son, the father can be easily reviewed with
backtracking.

Backtracking to the root allows reviewing the explanation tree from the start on.
The number of backtracking steps is equal to the number of descendants visited.

root 1

2

3 grandson 1
1

son 1 son 2

grandson 2
2

 47

To know this number, the explanation dialog returns the current level of the tree
(figure 6.7). After each backtracking step the tree level is decremented. This proc-
ess is stopped at the root level.

Initialisation:

 - position = 1 (root)

 - returned value = 0

leaf of

the tree

Explanation

dialog

returned value =

returned value + 1

Backtracking

position = position - 1

Cut the trace

position = position + 1

other

Analyse

the

response

Leave the

dialog

Explanation

dialog

Explain the

consequence

yes

Explain the

consequence

Explain the

premise

returned

value < 0

no

yes no

other

Backtracking

position = position - 1

Backtracking

position = position - 1

returned value = 1returned value <= 0

Figure 6.8: Process flow of the explanation component

 48

Backtracking
Cut the trace

and explain

Leave the

dialog

Analyse the

response

Explain

1) returned value <= 0 2) returned value =1 3) other 4) other

Backtracking

Figure 6.9: Flowchart of a backtracking process. The fourth alternative (explain-
ing the trace without cutting it) is chosen only after backtracking

6.3.3.3 Graphical Explanation
To prepare the generation of graphical explanations, the trace has to be collected
by a depth-first traversal of the relevant clauses. Then the comments bound to the
rules are read and included in the tree to be displayed (figure 6.10). The tree predi-
cate has the following arguments:

1. the text to be displayed
2. a constant indicating whether the node is initially open or closed (un-

marked /marked)
3. the sons (conditions) of the node.

Tree = tree(<wording of the explanation>, <unmarked/marked>,
 [<Tree of the first condition>, …, <Tree of the n-th con-
dition >])

Figure 6.10: Structure of an explanation tree

The figure 6.11 describes the generation of the explanation tree from the trace. The
traversal of the trace is an application of depth-first search (figure 6.12). The root
is visited then the left subtree and the right subtree are traversed.

 49

traverse(Conditions of the virtual root*, Explanations*) (1)

traverse(Conditions*, Explanations*){ (2)
 IF Conditions* is empty THEN (3)
 Explanations* = empty (4)

 ELSE (5)
 separate head and tail of Conditions* (6)

 separate the Consequence and the Conditions in

 the head of Conditions* (7)
 explain (Consequence, Explanation) (8)

 traverse(Conditions of the head*, Explanations
 of the descendants*) (9)
 traverse(Tail of Conditions*, Explanations of the

 brothers*) (10)

 Explanations* = [tree(Explanation,marked,
 Explanations of the descendants*)& Explanations

 of the brothers*] (11)

 END IF (12)
} (13)

Comments:

(1) Extraction of the explanation bound to the root. The arguments of the func-
tion are the list of the Conditions of the virtual root* (i.e. the
trace) and Explanations* which contains the returned explanation.

(2) Recursive traversal of the rest of the tree. Conditions* is an input argu-
ment, Explanations* is the returned list.

(8) Explanation of the consequence of the head of Conditions*. Consequence
is an input, Explanation is an output argument.

(9) Visit of the first son
(10) Visit of the other sons
(11) Assembling the explanations of the visited node (descendants and their sib-

lings)
Figure 6.11: Algorithm traversing the trace and generating the explanation tree
 (* means list)

 50

11

2

3

4

5

6
7

8

9

10

1

virtual root

real root

Figure 6.12: Depth-first traversal of a trace

6.4 Conclusion

Explanations are essential in the teaching process. Two implementation architec-
tures can be used: meta-interpreters and tracers. Since meta-interpreters are diffi-
cult to implement in a compiled language, we have proposed a tracer which can
easily be implemented in a compiled Prolog. The explanation component is modu-
lar and independent of the domain. Its reuse in an other context is easy.

We applied our software to students of a course in Decision Support Systems. The
practical experience showed that, at least initially, some students had to be moti-
vated to appreciate system provided explanations instead of teacher help. This may
be attributed to the prototype frugal user interface. Most students first chose the
textual mode, because it allows a better focus on the problematic solution steps.
After the clarification of selected steps, the graphical mode was used to get a
global view or summary of the resolution process. So both explanation modes
complemented each other.

6.5 Summary

♦ For explanation styles can be easily implemented by meta-interpreters:
- How ?

- Why ?

 51

- What if ?

- Why not ?

♦ Meta-interpreters and tracers can be used to protocol the steps leading to the
solution.

♦ A meta-interpreter can be easily implemented in Standard Prolog. But it is dif-
ficult to realise in a compiler like Visual Prolog.

♦ A tracer records the steps leading to the solution of a problem. The recorded
protocoll can be extracted, analysed and visualised.

♦ The trace is stored in a supplementary argument added to each Prolog predi-
cate.

♦ An explanation is associated with each used rule. The student can visualise
them separately in a verbal dialog or in a graphical tree. The trace and the asso-
ciated explanations form a recursive tree. A recursive algorithm translates the
trace in a displayable tree with the associated explanation.

♦ The explanation dialog allows the student to navigate freely through the entire
tree, gradually looking for deeper explanations.

♦ The explanation component of AHP-Tutor is independent of the domain

 52

Chapter 7

Conclusion

We have presented the design and realisation of the intelligent tutoring system
AHP-Tutor. This final chapter discusses the results achieved. It points out the
goals of the project and briefly presents the framework of the development. It is
precisely within this framework where we knew our profitable or unhappy ex-
periments. They will be used for discussions.

The general objective of this work was to help the students of our university, but
also any other user of the decision method AHP, to understand how the priorities
are derived from a comparison matrix.

In our university [LUSTI02, p.32-43], two methods are taught: the method with
the maximal right eigenvalue and the method of the average of the normalised val-
ues. Concurrently to these two methods, we also adopted the methods of the geo-
metric mean of the rows, the geometric mean of the columns and the maximal left
eigenvalue. The chapter 3.2 reviewed their subjacent theories. They are divided
into two groups:

• The perturbation theory, which affirms that the introduction of small impurities
in a consistent matrix modifies only slightly the associated priorities and eigen-
values.

• The theory of the distance minimization (logarithmic, in the case of the geo-
metric mean) separating the built matrix and a consistent matrix.

Following this theoretical research, we undertook a study on 500 different incon-
sistent matrices to observe the divergence of the derived priorities by the various
methods. As described in the theory, a ranking contradiction is frequent between
the methods of the maximal right eigenvalue and the maximal left eigenvalue. This
phenomenon never occurs between the methods of the geometric mean of the rows
and the geometric mean of the columns.

We also observed an increase of the ranking contradiction phenomenon with the
dimension of the matrix and the consistency ratio. An analysis of the set of re-

 53

versed priorities pairs showed a weak difference between their two values. In these
cases, a clarification by a sensitivity analysis is warranted and if necessary, a stat-
ute of parity between the two solutions is more equitable. A use of several meth-
ods of priorities derivation is advisable, because it makes it possible to confirm a
classification or to underline litigious positions.

After having studied the various methods of derivation of the priorities, we drew
up a curriculum comprising three types of exercises with each one representing a
different teaching style:

• The demonstration of the method of the maximal eigenvalue uses strict guid-
ance. By this style, we teach the student a presumably optimal way (at least
from the point of view of the teacher) leading to the solution. This continuum
of strongly structured constraints does not leave any place for the teacher, but
simplifies the communication with a student.

• The calculation of the priorities by the various methods functions as a resolver.
It makes it possible to use a strong interaction which disburdens the student of
calculations (and miscalculations) and allows him to better concentrate on the
reasoning.

• The influence of inconsistencies on the priorities and the comparison of the
various methods use a learning method by free discovery. As teachers and stu-
dents employ different approaches of discovery, a role can be reserved for the
first: the formulation of problems. He then remains invisible and leaves the
student to explore the exercise. Each intervention imposes an external con-
straint on the student, which has to justify (why this problem it was posed) and
to adapt in case of difficulties (to change the wording of the problem).

The second and the third exercises use the same modules, only the initialisation
changes. The major difference is the teaching style, which also confers different
learning goals.

It seems significant to us to adapt the teaching style not only for the student, but
also on the taught subject. It would be interesting to make this process dynamic.
However, a dynamic adaptation requires the complicity of a student module which
would lay down the next objectives. The present student module of AHP-Tutor is
too rudimentary, it does not allow it.

Beside the research project, this project contains also a software development
component. AHP-Tutor was entirely developed in Visual Prolog in order to benefit
from the properties of an artificial intelligence language. Its power was appreci-

 54

ated in the expert module and in particular in the explanatory component. This
compiled version of the standard Prolog allows to accelerate the execution of the
program and to make the code safe. This language is, on the other hand, inappro-
priate to matrix algebra.
The use of a library programmed in C or C++ would be advantageous, however,
the construction of an explanatory trace would be more difficult. Visual Prolog
does allow only for a limited communicative interface. To improve this aspect, it
would be necessary to adopt a client-server architecture. This solution is adopted
more and more frequently in computer aided learning. The client, developed in
C++ or Java, allows sound, visual animations and sophisticated graphics for an ef-
fective communication with the student. The server, implemented in an artificial
intelligence language (in general Prolog or LISP), models the expert, the student
and the pedagogical components.

Our work focussed on the expert module. It is the cornerstone of the ITSs. AHP-
Tutor solves the proposed problems and also offers an explanation by reusing its
reasoning and adapting it to the student. The whole reasoning tree is available.
However, it becomes quickly incomprehensible for bulky developments.
The major disadvantage of the implemented explanation component is caused by
the choice of the technology. It only offers an explanation of the type "how?" and
the processes of resolution and explanation are not separable.

The explanation component, readapted from JA-Tutor [LUSTI87], is completely
independent from the domain. The other modules (too rudimentary) do not have
this property. Furthermore, we cannot affirm that independence of the domain is
possible. For example pedagogy is extended to several modules: the choice of the
given explanations, the communication with the student, etc… It would be inter-
esting to study in how far a reusable module can be implemented without losing its
effectiveness.

AHP-Tutor was used in a beta version by about thirty students during an exercise
lesson in our university. If the sample was too weak to draw conclusions on the ef-
fectiveness of the system, we made interesting observations. We benefited from
criticism by the students to improve certain aspects of our system. In particular the
objectives of each exercise are better presented by a user. The students appreciated
the explanation faculty of AHP-Tutor. This adds an undeniable advantage over the
traditional software of computer based teaching. The students asked further ques-
tions than normally. We think that the playful aspect of the lesson encouraged the
curiosity of the users and led to a relaxed atmosphere. However, we argue that the
teacher must keep a role, because his teaching possibilities remain much more ef-
ficient than a machine’s, at least at the moment.

 55

Bibliography

[BANA93] Bana E Costa C., Vansnick J.C., Sur la Quantification des Jugements
de Valeurs: l’Approche MACBETH, Université Paris-Dauphine, Cahier du LAM-
SADE N° 117, (1993)

[BARZI87] Barzilai J., Cook W.D., Golany B., Consistent Weights for Judgments
Matrices of the Relative Importance of Alternatives, Operations Research Letters,
Vol. 6 (1), Elsevier Science Publishers, North-Holland, p. 131-134, (1987)

[BARZI90] Barzilai J., Golany B., Deriving Weights from Pairwise Comparison
Matrices: the Additive Case, Operations Research Letters, Vol. 9, Elsevier Science
Publishers, Amsterdam, p. 407-410, (1990)

[BARZI97] Barzilai J., Deriving Weights from Pairwise Comparison Matrices,
Journal of the Operational Research Society (JORS), Vol. 48 (12), Stockhom, p.
1226-1232, (1997)

[BARZI01] Barzilai J., Notes on the Analytic Hierarchy Process, Proceedings of
the NSF Design and Manufacturing Research Conference, Tampa, p. 1-6, (2001)

[BEREK01] Berekoven L., Eckert W., Ellenrieder P., Marktforschung. Methodi-
sche Grundlagen und praktische Anwendung, 9th edition, Gabler Verlag, Wiesba-
den, (2001)

[BLANK87] Blankmeyer E., Approaches to Consistency Adjustments, Journal of
Optimization Theory and Applications, Vol. 45, Kluwer Academic Publishers,
Dordrecht [etc…], p. 479-488, (1987)

[BRANS84] Brans J.-P., Mareschal B., Vincke Ph., PROMETHEE: A New Family
of Outranking Methods in Multicriteria Analysis, in: Brans J.-P. (ed.), Operational
Research ’84, Elsevier Science Publischers B.V., North-Holland, p. 408-421,
(1984)

[BUDES86] Budescu D.V., Zwick R., Rapoport A., A Comparison of the Eigen-
value Method and the Geometric Mean Procedure for Ratio Scaling, Applied Psy-
chological Measurement, Vol. 10 (1), p. 69-78, (1986)

[CHEN92] Chen S.-J., Hwang C.L., Fuzzy Multiple Attribute Decision Making:
Methods and Applications, Lecture Notes in Economics and Mathematical Sys-
tems, N° 375, Springer-Verlag, Berlin [etc...], (1992)

 56

[CHU79] Chu A.T.W., Kalabra R.E., Spingarn K.A., A Comparison of Two Meth-
ods for Determining the Weights of Belonging to Fuzzy Sets, Journal of Optimiza-
tion Theory and Applications, Vol. 27, Kluwer Academic Publishers, Dordrecht
[etc…], p. 531-538, (1979)

[CLOCK87] Clocksin W.F., Mellish C.S., Programming in Prolog, Springer Ver-
lag, Berlin [etc…], (1987)

[COGGE85] Cogger K.O., Yu P.L., Eigenweight Vectors and Least Distance Ap-
proximation for Revealed Preference in Pairwise Weight Ratios, Journal of Opti-
mization Theory and Applications, Vol. 46, Kluwer Academic Publishers,
Dordrecht [etc…], p. 483-491, (1985)

[COOK88] Cook W.D., Kress M., Deriving Weights from Pairwise Comparison
Ratio Matrices: An Axiomatic Approach, European Journal of Operational Re-
search (EJOR), Vol. 37, Elsevier, p. 355-362, (1988)

[CRAWF85] Crawford G., Williams C., A Note on the Analysis of Subjective
Judgement Matrices, Journal of Mathematical Psychology, Vol. 29, Elsevier Sci-
ence Publishers, Amsterdam, p. 387-405, (1985)

[DUCAS94] Ducassé M., Noye J., Logic Programming Environments: Dynamic
Program Analysis and Debugging, The Journal of Logic Programming, Vol. 19-
20, Elsevier, p. 351-384, May-June (1994)

[DYER90] Dryer J. S., Remarks on the Analytic Hierarchy Process, Management
Science, Vol. 36(3), p. 249-258, (1990)

[FISHBU67] Fishburn P.C., Additive Utilities with Incomplete Product Set: Ap-
plications to Priorities and Assignements, Operations Research Society of Amer-
ica (ORSA), Baltimore, p. 537-542, (1967)

[GOLAN93] Golany B., Kress M., A Multicriteria Evaluation of the Methods for
Obtaining Weights from Ratio-Scale Matrices, European Journal of Operational
Research (EJOR), Vol. 69, Elsevier Science Publishers, Amsterdam, p. 210-202,
(1993)

[ISHIZ02] Ishizaka A., Lusti M., An Intelligent Tutoring System for AHP, in:
Soric K., Hunjak T., Scitovski R. (eds) Proceedings of the ninth International Con-
ference on Operational Research KOI 2002, Grafika d.o.o.,Osijek, p. 215-223,
(2002)

 57

[ISHIZ03] Ishizaka A., Lusti M., Learning how to Derive Priorities from AHP
Matrices, Proceedings of the AIRO2003 – XXXIV Annual Conference of Opera-
tional Research Society of Italy, Venice, p.120, (2003)

[ISHIZ04a] Ishizaka A., Lusti M., An Expert Module to Improve the Consistency
of AHP Matrices, International Transactions in Operational Research (ITOR),
Vol.11(1), p. 97-105, (2004)

[ISHIZ04b] Ishizaka A., Lusti M., A Domain Independent Tracer for Explana-
tions, ED-MEDIA04 (World Conference on Education Multimedia, Hypermedia
& Telecommunication), Lugano, (2004) (accepted)

[ISHIZ04c] Ishizaka A., Développement d’un Système Tutoriel Intelligent pour
Apprendre à Dériver les Priorités des Matrices des Comparaisons d’AHP, PhD
Thesis, (2004)

[JACQU78] Jacquet-Lagreze E., Siskos J., Une Méthode de Construction d’une
Fonction d’Utilité Additive Explicative d’une Préférence Globale, Université Pa-
ris-Dauphine, Cahier du LAMSADE N°16, (1978)

[JENSE84] Jensen R.E., An Alternative Scaling Method for Priorities in Hierar-
chical Structures, Journal of Mathematical Psychology, Vol. 28, N°3 (September),
Elsevier Science Publishers, Amsterdam, p. 317-332, (1984)

[JOHNS79] Johnson C.R., Beine W.B., Wang T.J., Right-Left Asymmetry in an
Eigenvector Ranking Procedure, Journal of Mathematical Psychology, Vol. 19,
Elsevier Science Publishers, Amsterdam, p. 61-64, (1979)

[HARKE97] Harker P.T., Derivates of Perron Root of a Positive Reciprocal Ma-
trix: With Application to the Analytic Hierarchy Process, Applied Mathematics
and Computation, Vol. 22, Elsevier Science Publishers, Amsterdam, p. 217-232,
(1997)

[HWANG81] Hwang C.-L., Yoon K., Multiple Attribute Decision Making,
Springer Verlag, Berlin [etc…], (1981)

[HINLO83] Hinloopen E., Nijkamp P., Rietveld P., Qualitative Discrete Multiple
Criteria Choice Models in Regional Planning, Regional Science and Urban Eco-
nomics, Vol. 13, Elsevier Science Publishers, Amsterdam, p. 77-102, (1983)

[KEENE76] Keeney R.L., Raïffa H., Decision with Multiple Objectives: Prefer-
ences and Value Tradeoffs, Wiley, New-York, (1976)

 58

[LUSTI87] Lusti M., Methoden wissensbasierter Systeme bei der Entwicklung
von Lernprogramme. Ein Beispiel aus dem betrieblichen Rechnungswesen, unver-
öffentlichte Habilitationsschrift, Hochschule St.-Gallen, St.-Gallen, (1987)

[LUSTI90] Lusti M., Wissenbasierte Systeme, Bibliographisches Institut / Wis-
senschaftsverlag, Mannheim [etc...], (1990)

[LUSTI95] Lusti M., An Authoring Component for Protocol Driven Hypertext Ex-
planations, in: Greer J. (ed.), Proceedings of Artificial Intelligence in Education
95 (AIED95), Association for the Advancement of Computing in Education, Char-
lottesville, p. 290-298, (1995)

[LUSTI02] Lusti M., Data Warehousing und Data Mining, Springer-Verlag, 2nd
edition, Berlin [etc...], (2002)

[MAYST94] Maystre L.Y., Pictet J., Simos J., Méthodes Multicritères ELECTRE,
Presses Polytechniques et Universitaires Romandes, Lausanne, (1994)

[PAELI76] Paelinck J., Qualitative Multiple Criteria Analysis, Environmental
Protection and Multiregional Development, Papers of the regional Science Asso-
ciation, Vol. 36, p. 59-74, (1976)

[RÄTZ93] Rätz T., Erklärungen in Wissenbasierten Lernsystemen am Beispiel ei-
nes Tutors zur Normalisierung von Datenbanken, PhD Thesis, Peter Lang, Frank-
furt am Main [etc…], (1993)

[ROUBE79] Roubens M., Agrégation des Préférences en Présence de Préordres
Totaux sur l’Ensemble des Actions et d’une Relation de Type (I ,P,Q) sur les
Points de Vue, 10e réunion du Groupe de travail européen « Aide multicritère à la
décision », Liège, (1979)

[ROY68] Roy B., Classement et Choix en Présence de Points de Vue Multiples (la
Méthode ELECTRE), Revue Informatique et Recherche Opérationnelle, 2e année,
N°8, p. 57-75, (1968)

[SAATY77] Saaty Th. L., A Scaling Method for Priorities in Hierarchical Struc-
tures, Journal of Mathematical Psychology, Vol. 15, p. 234-281, 1977

[SAATY80] Saaty Th. L., The Analytic Hierarchy Process, Planning, Priority
Setting, Resource Allocation, McGraw-Hill, United States of America, (1980)

 59

[SAATY84a] Saaty Th. L., Vargas L. G., Inconsistency and Rank Preservation,
Journal of Mathematical Psychology, Vol. 28, Elsevier Science Publishers, Am-
sterdam, p. 205-214, (1984)

[SAATY84b] Saaty Th. L., Vargas L. G., Comparison of Eigenvalue, Logarithmic
Least Squares and Least Squares Methods in Estimating Ratios, Mathematical
Modelling, Vol. 5, New York, p. 309-324, (1984)

[SAATY90] Saaty Th. L., Eigenvector and Logarithmic Least Squares, European
Journal of Operational Research (EJOR), Elsevier Science Publishers, Amsterdam,
p. 156-160, (1990)

[SAATY94] Saaty Th. L., The Fundamentals of Decision Making and Priority
Theory with the Analytic Hierarchy Process, The Analytic Hierarchy Process Se-
ries, Vol. VI, RWS Publications, Pittsburgh, (1994)

[SAATY01] Saaty Th. L., Decision-making with the AHP: Why is the Principal
Eigenvector necessary?, in: Klaus Dellmann (ed.), Proceedings of the Sixth In-
ternational Symposium on the Analytic Hierarchy Process (ISAHP 2001), p. 383-
396, Bern (2001)

[SAATY03] Saaty Th. L., Decision-making with the AHP: Why is the Principal
Eigenvector necessary?, European Journal of Operational Research (EJOR), Vol.
145, Elsevier Science Publishers, Amsterdam, p. 85-91, (2003)

[TAKED87] Takeda E., Cooger K.O., Yu P.L., Estimating Criterion Weights Us-
ing Eigenvectors: a Comparative Study, European Journal of Operational Re-
search (EJOR), Elsevier Science Publishers, Amsterdam, Vol. 29, p. 360-369,
(1987)

[TRAPP00] Trapp U., Komponententechnologien zur Flexibilisierung konventio-
neller Lernsysteme am Beispiel einer wissenbasierten Erklärungskomponente,
dissertation.de, Berlin, (2000)

[TRIAN90] Triantaphyllou E., Pardalos P.M., Mann S.H., A Minimization Ap-
proach to Membership Evaluation in Fuzzy Sets and Error Analysis, Journal of
Optimization Theory and Applications, Vol. 66, no. 2, p. 275-287, (1990)

[TRIAN00] Triantaphyllou E., Multi-Criteria Decision Making Methods: A Com-
parative Study, Kluwer Academic Publishers, Dordrecht [etc…] (2000)

[YALCI91] Yalcinalp, L.U. Metaprogramming for Knowledge-Based Systems in
Prolog, PhD Thesis, Case Western Reserve University (1991)

 60

[WEDLE93] Wedley W.C., Schoner B., Tang T.S., Starting Rules for Incomplete
Comparisons in the Analytic Hierarchy Process, in: Vargas L., Zahedi F. M. (eds),
Mathematical and Computer Modelling, Vol. 17, no. 4-5, Analytic Hierarchy
Process, Pergamon Press, Oxford, p. 93-100, (1993)

[ZIMME96] Zimmermann H.-J., Fuzzy Set Theory and its applications, Kluwer
Academic Publishers, Amsterdam (1996)

